4,525 research outputs found

    A multi-objective optimisation model for a general polymer electrolyte membrane fuel cell system

    Get PDF
    This paper presents an optimisation model for a general polymer electrolyte membrane (PEM) fuel cell system Suitable for efficiency and size trade-offs investigation. Simulation of the model for a base case shows that for a given output power, a more efficient system is bigger and vice versa. Using the weighting method to perform a multi-objective optimisation, the Pareto sets were generated for different stack output powers. A Pareto set, presented as a plot of the optimal efficiency and area of the membrane electrode assembly (MEA), gives a quantitative description of the compromise between efficiency and size. Overall, our results indicate that, to make the most of the size-efficiency trade-off behaviour, the system must be operated at an efficiency of at least 40% but not more than 47%. Furthermore, the MEA area should be at least 3 cm(2) W-1 for the efficiency to be practically useful. Subject to the constraints imposed on the model, which are based on technical practicalities, a PEM fuel cell system such as the one presented in this work cannot operate at an efficiency above 54%. The results of this work, specifically the multi-objective model, will form a useful and practical basis for subsequent techno-economic studies for specific applications. (C) 2009 Elsevier B.V. All rights reserved

    Energy Management Strategies in hydrogen Smart-Grids: A laboratory experience

    Get PDF
    As microgrids gain reputation, nations are making decisions towards a new energetic paradigm where the centralized model is being abandoned in favor of a more sophisticated, reliable, environmentally friendly and decentralized one. The implementation of such sophisticated systems drive to find out new control techniques that make the system “smart”, bringing the Smart-Grid concept. This paper studies the role of Energy Management Strategies (EMSs) in hydrogen microgrids, covering both theoretical and experimental sides. It first describes the commissioning of a new labscale microgrid system to analyze a set of different EMS performance in real-life. This is followed by a summary of the approach used towards obtaining dynamic models to study and refine the different controllers implemented within this work. Then the implementation and validation of the developed EMSs using the new labscale microgrid are discussed. Experimental results are shown comparing the response of simple strategies (hysteresis band) against complex on-line optimization techniques, such as the Model Predictive Control. The difference between both approaches is extensively discussed. Results evidence how different control techniques can greatly influence the plant performance and finally we provide a set of guidelines for designing and operating Smart Grids.Ministerio de Economía y Competitividad DPI2013-46912-C2-1-

    Water Management in PEM Fuel Cells: Controllability Analysis and Steady-state Optimization for Temperature Control

    Get PDF
    This paper presents a controllability study of the water management inside anode channel by regulating the stack temperature for PEM fuel cell systems with dead-ended anode. Moreover, this work includes the design of a steady-state target optimizer which calculates the temperature set-point profiles that minimize the stack degradation and the hydrogen leaks. The control architecture is successfully simulated and the results show promising performanc

    Development and experimental evaluation of the control system of a hybrid fuel cell vehicle

    Get PDF
    This work presents the development and experimental evaluation of a Fuel Cell Hybrid Vehicle, focusing on the control system. The main objective of this paper is to present a real vehicle which has been designed in order to demonstrate the feasibility of the use of hydrogen as an energy source for automotive applications. The paper describes the components that are integrated in the vehicle and presents several experimental results obtained during normal operation. A control system is designed and tested in order to perform all the operations related to the coordinated operation of the fuel cell, the intermediate electrical storage and the power train. Its main task is to compute the power that must be demanded to the fuel cell in real time. This computation is done in order to satisfy the power demand of the electric motor taking into account the state of charge of the batteries and the operating regime of the fuel cell. This is accomplished by manipulating the electronic converter which regulate the current that the fuel cell supplies to the batteries.Ministerio de Ciencia y Tecnología DPI2007-66718-C04-0

    On the Comparison of Stochastic Model Predictive Control Strategies Applied to a Hydrogen-based Microgrid

    Get PDF
    In this paper, a performance comparison among three well-known stochastic model predictive control approaches, namely, multi-scenario, tree-based, and chance-constrained model predictive control is presented. To this end, three predictive controllers have been designed and implemented in a real renewable-hydrogen-based microgrid. The experimental set-up includes a PEM electrolyzer, lead-acid batteries, and a PEM fuel cell as main equipment. The real experimental results show significant differences from the plant components, mainly in terms of use of energy, for each implemented technique. Effectiveness, performance, advantages, and disadvantages of these techniques are extensively discussed and analyzed to give some valid criteria when selecting an appropriate stochastic predictive controller.Ministerio de Economía y Competitividad DPI2013-46912-C2-1-RMinisterio de Economía y Competitividad DPI2013-482443-C2-1-

    The novel application of optimization and charge blended energy management control for component downsizing within a plug-in hybrid electric vehicle

    Get PDF
    The adoption of Plug-in Hybrid Electric Vehicles (PHEVs) is widely seen as an interim solution for the decarbonization of the transport sector. Within a PHEV, determining the required energy storage capacity of the battery remains one of the primary concerns for vehicle manufacturers and system integrators. This fact is particularly pertinent since the battery constitutes the largest contributor to vehicle mass. Furthermore, the financial cost associated with the procurement, design and integration of battery systems is often cited as one of the main barriers to vehicle commercialization. The ability to integrate the optimization of the energy management control system with the sizing of key PHEV powertrain components presents a significant area of research. Contained within this paper is an optimization study in which a charge blended strategy is used to facilitate the downsizing of the electrical machine, the internal combustion engine and the high voltage battery. An improved Equivalent Consumption Method has been used to manage the optimal power split within the powertrain as the PHEV traverses a range of different drivecycles. For a target CO2 value and drivecycle, results show that this approach can yield significant downsizing opportunities, with cost reductions on the order of 2%–9% being realizable

    Modeling and Control of a Proton Exchange Membrane Fuel Cell-Battery Power System

    Get PDF
    A general methodology of modeling, control and building a proton exchange membrane fuel cell-battery system is introduced in this thesis. A set of fuel cell-battery power system model has been developed and implemented into Simulink environment. The model is able to address the dynamic behaviours of PEM fuel cell stack, boost DC/DC converter and lithium-ion battery. In order to control the power system to achieve a proper performance, a set of system controller including a PEM fuel cell reactant supply control, a humidification controller, and a power management controller was developed based on the system model. A physical 100W PEM fuel cell-battery power system using microcontroller as embedded controller is built to validate the simulation results as well as demonstrate this new environment-friendly power source. Experimental results show that the 100W PEM fuel cell-battery power system can operates automatically with the varying load condition as a stable power supply. The experiment results follow the basic trend of the simulation results

    Performance indicators for the dynamics modeling and control of PEMFC systems

    Get PDF
    Society is gradually becoming aware that the current energy industry, based on the use of fossil fuels, is inefficient, highly polluting and has a finite supply. Within the scientific community, there are indications that hydrogen (H2) as an energy vector, obtained from renewable energy sources, can represent a viable option to mitigate the problems associated with hydrocarbon combustion. In this context, the change from the current energy industry to a new structure with a significant involvement of H2 facilitates the introduction of fuel cells as elements of energy conversion. Polymer Electrolyte Membrane Fuel Cells (PEMFC) are gaining increased attention as viable energy conversion devices for a wide range of applications from automotive, stationary to portable. In order to optimize performance, these systems require active control and thus in-depth knowledge of the system dynamics which include fluid mechanics, thermal dynamics and reaction kinetics. One of the main issues, with respect to proper control of these systems, is the understanding of the water transport mechanisms through the membrane and the liquid water distribution. The thesis is based on the publication of nine international journal articles that are divided into 4 sub-topics: Dynamic fuel cell modeling, fuel cell system control-oriented analysis, identification of parameters and performance indicators and finally, fault and failure detection and system diagnosis. In the sub-topic of Dynamic Fuel cell modeling, experimentally validated Computational Fluid Dynamics (CFD) modeling is used to relate the effects of the physical phenomena associated with fluid mechanics and thermal dynamics, that occur inside the fuel cell [Alonso, 2009][Strahl, 2011], to water distribution. However, since these CFD models cannot be directly used for control, control-oriented models [Kunusch, 2008][Kunusch, 2011] have been developed in parallel. As well, another study is done in [Serra, 2006] which includes a controllability analysis of the system for future development and application of efficient controllers. The results of the above mentioned studies are limited because either they do not incorporate an electrochemical model or the model is not experimentally validated. Moreover, these models do not take into account the voltage losses due to liquid water inside the fuel cell. Therefore, there is a need to properly relate the relevant effects of fluid mechanics and thermal dynamics, including liquid water, to the fuel cell voltage. Primarily, methodologies are needed to determine the relevant indicators associated to the effect of water on the fuel cell performance. The works published in [Husar, 2008] and [Husar, 2011] treats experimental parameter identification, mainly focused on water transport through the membrane and fuel cell voltage loss indicators respectively. The implementation of the indicators indirect measurement methodology provides an experimental way for the isolation of three main types of voltage losses in the fuel cell: activation, mass transport and ohmic losses. Additionally since these voltage loss indicators relate the fuel cell operating conditions to the fuel cell voltage, they can be utilized to calibrate and validate CFD models as well as employed in novel control strategies. On the other hand, to develop reliable systems, the controller should not only take into account performance variables during standard operation but should also be able to detect failures and take the appropriate actions. A preliminary study on failure indicators is presented in [Husar 2007] and fault detection methodologies are described in [de Lira 2011]. As a whole, the compilation of articles represented in this thesis applies a comprehensive experimental approach which describes the implementation of novel methodologies and experimental procedures to characterize and model the PEMFC and their associated systems taking into consideration control oriented goals.La societat s'està adonant que la indústria energètica actual, basada en l'ús de combustibles fòssils, és ineficient, molt contaminant i té un subministrament limitat. Dins de la comunitat científica, hi ha indicis que el hidrogen (H2) com vector energètic, obtingut a partir de fonts d'energia renovables, pot representar una opció viable per a mitigar els problemes associats amb la combustió d'hidrocarburs. En aquest context, el canvi de la indústria energètica actual a una nova estructura amb una important participació de el hidrogen exigeix la introducció de les piles de combustible com elements de conversió d'energia. Les piles de combustible de membrana polimèrica (PEMFC) estan tenint cada vegada més atenció com a dispositius viables de conversió d'energia per a una àmplia gamma d'aplicacions com automoció, estacionàries o portàtils. Amb la finalitat d'optimitzar el seu rendiment, les piles PEM requereixen un control actiu i per tant un coneixement profund de la dinàmica del sistema, que inclou la mecànica de fluids, la dinàmica tèrmica i la cinètica de les reaccions. Un dels temes principals relacionat amb el control adequat d'aquests sistemes és la comprensió dels mecanismes de transport d'aigua a través de la membrana i la distribució d'aigua líquida. Aquesta tesi es basa en nou articles publicats en revistes internacionals que es divideixen en 4 subtemes: la modelització dinàmica de piles de combustible, l'anàlisi orientada al control del sistema, la identificació de paràmetres i d’indicadors de funcionament i, finalment, la detecció de fallades i la diagnosi dels sistemes. En el sub-tema de la modelització dinàmica de piles PEM, la modelització basada en la Dinàmica de Fluids Computacional (CFD) amb validació experimental s'ha utilitzat per a relacionar els efectes dels fenòmens físics de la mecànica de fluids i de la dinàmica tèrmica que es produeixen dintre de la pila [Alonso, 2009] [ Strahl, 2011] amb la distribució d'aigua. No obstant això, com aquests models CFD no poden ser utilitzats directament per al control, s'han desenvolupat models orientats a control [Kunusch, 2008] [Kunusch, 2011] en paral·lel. A més, en un altre estudi [Serra, 2006] s'inclou una anàlisi de control·labilitat del sistema per al desenvolupament i aplicació futurs de controladors eficaços. Però els resultats dels estudis esmentats anteriorment són limitats, ja sigui perquè no incorporen un model electroquímic o bé perquè no han estat validats experimentalment. A més, cap dels models té en compte les pèrdues de tensió degudes a l'aigua líquida dins de la pila de combustible. Per tant, hi ha una necessitat de relacionar adequadament els efectes rellevants de la mecànica de fluids i de la dinàmica tèrmica, incloent l'aigua líquida, amb el voltatge de la pila de combustible. Principalment, són necessàries metodologies per a determinar els indicadors rellevants associats a aquest efecte de l'aigua sobre el rendiment de la pila de combustible. Els treballs publicats en [Husar, 2008] i [Husar, 2011] tracten la identificació experimental de paràmetres, centrada en el transport d'aigua a través de la membrana i els indicadors de pèrdua de tensió, respectivament. L'aplicació d'una proposta de metodologia de mesura indirecte dels indicadors permet l'aïllament dels tres tipus principals de pèrdues de voltatge en la pila de combustible: l'activació, el transport de massa i les pèrdues ohmiques. Aquests indicadors de pèrdua de tensió relacionen les condicions d'operació amb el voltatge de la pila de combustible i per tant poden ser utilitzats per a calibrar i validar models CFD, així com per a definir noves estratègies de control. D'altra banda, per a aconseguir sistemes fiables, el controlador no només ha de considerar els indicadors de funcionament de l'operació normal, sinó que també ha de detectar possibles fallades per a poder prendre les accions adequades en cas de fallada. Un estudi preliminar sobre indicadors de fallades es presenta en [Husar 2007] i una metodologia de detecció de fallades completa es descriu en [Lira de 2011]. En el seu conjunt, el compendi d'articles que formen aquesta tesi segueix un enfocament experimental i descriu la implementació de noves metodologies i procediments experimentals per a la caracterització i el modelatge de piles PEM i els sistemes associats amb objectius orientats al control eficient d'aquests sistemes.La sociedad se ésta dando cuenta de que la industria energética actual, basada en el uso de combustibles fósiles, es ineficiente, muy contaminante y tiene un suministro limitado. Dentro de la comunidad científica, hay indicios de que el hidrógeno (H2) como vector energético, obtenido a partir de fuentes de energía renovables, puede representar una opción viable para mitigar los problemas asociados con la combustión de hidrocarburos. En este contexto, el cambio de la industria energética actual a una nueva estructura con una importante participación de H2 exige la introducción de pilas de combustible como elementos de conversión de energía. Las pilas de combustible de membrana polimérica (PEMFC) están ganando cada vez más atención como dispositivos viables de conversión de energía para una amplia gama de aplicaciones como automoción, estacionarias o portátiles. Con el fin de optimizar su rendimiento, las pilas PEM requieren un control activo y por lo tanto un conocimiento profundo de la dinámica del sistema, que incluye la mecánica de fluidos, la dinámica térmica y la cinética de las reacciones. Uno de los temas principales relacionado con el control adecuado de estos sistemas, es la comprensión de los mecanismos de transporte de agua a través de la membrana y la distribución de agua líquida. Esta tesis se basa en la publicación de nueve artículos en revistas internacionales que se dividen en 4 sub-temas: el modelado dinámico de pilas de combustible, el análisis orientado a control del sistema, la identificación de parámetros e indicadores de desempeño y, por último, la detección de fallos y la diagnosis. En el sub-tema de la modelización dinámica de pilas PEM, el modelado basado en Dinámica de Fluidos Computacional (CFD) con validación experimental se ha utilizado para relacionar los efectos de los fenómenos físicos de la mecánica de fluidos y la dinámica térmica que se producen dentro de la pila [Alonso, 2009] [ Strahl, 2011] con la distribución de agua. Sin embargo, como estos modelos CFD no pueden ser utilizados directamente para el control, modelos orientados a control [Kunusch, 2008] [Kunusch, 2011] se han desarrollado en paralelo. Además, en otro estudio [Serra, 2006] se incluye un análisis de controlabilidad del sistema para el futuro desarrollo y aplicación de controladores eficaces. Pero los resultados de los estudios mencionados anteriormente son limitados, ya sea porque no incorporan un modelo electroquímico o bien porque no son validados experimentalmente. Además, ninguno de los modelos tiene en cuenta las pérdidas de tensión debidas al agua líquida dentro de la pila de combustible. Por lo tanto, hay una necesidad de relacionar adecuadamente los efectos relevantes de la mecánica de fluidos y la dinámica térmica, incluyendo el agua líquida, con la tensión de la pila de combustible. Principalmente, son necesarias metodologías para determinar los indicadores relevantes asociados al efecto del agua sobre el rendimiento de la pila de combustible. Los trabajos publicados en [Husar, 2008] y [Husar, 2011] tratan la identificación experimental de parámetros, centrada en el transporte de agua a través de la membrana y los indicadores de pérdida de tensió, respectivamente. La aplicación de una metodología propuesta de medición indirecta de los indicadores permite el aislamiento de los tres tipos principales de pérdidas de tensión en la pila de combustible: la activación, el transporte de masa y las pérdidas óhmicas. Éstos indicadores de pérdida de tensión relacionan las condiciones de operación con la tensión de la pila de combustible y por lo tanto pueden ser utilizados para calibrar y validar modelos CFD, así como para definir nuevas estrategias de control. Por otro lado, para conseguir sistemas fiables, el controlador no sólo debe considerar los indicadores de desempeño de la operación regular, sino que también debe detectar posibles fallos para poder tomar las acciones adecuadas en caso de fallo. Un estudio preliminar sobre indicadores de fallos se presenta en [Husar 2007] y una metodología de detección de fallos completa se describe en [Lira de 2011]. En su conjunto, el compendio de artículos que forman esta tesis sigue un enfoque experimental y describe la implementación de nuevas metodologías y procedimientos experimentales para la caracterización y el modelado de pilas PEM y los sistemas asociados con objetivos orientados al control eficiente de estos sistemas

    Identification of PEM fuel cells based on support vector regression and orthonormal bases

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Polymer Electrolyte Membrane Fuel Cells (PEMFC) are efficient devices that convert the chemical energy of the reactants in electricity. In this type of fuel cells, the performance of the air supply system is fundamental to improve their efficiency. An accurate mathematical model representing the air filling dynamics for a wide range of operating points is then necessary for control design and analysis. In this paper, a new Wiener model identification method based on Support Vector (SV) Regression and orthonormal bases is introduced and used to estimate a nonlinear dynamical model for the air supply system of a laboratory PEMFC from experimental data. The method is experimentally validated using a PEMFC system based on a ZB 8-cell stack with Nafion 115 membrane electrode assembliesPeer ReviewedPostprint (author's final draft

    Robust fault diagnosis of proton exchange membrane fuel cells using a Takagi-Sugeno interval observer approach

    Get PDF
    In this paper, the problem of robust fault diagnosis of proton exchange membrane (PEM) fuel cells is addressed by introducing the Takagi-Sugeno (TS) interval observers that consider uncertainty in a bounded context, adapting TS observers to the so-called interval approach. Design conditions for the TS interval observer based on regional pole placement are also introduced to guarantee the fault detection and isolation (FDI) performance. The fault detection test is based on checking the consistency between the measurements and the output estimations provided by the TS observers. In presence of bounded uncertainty, this check relies on determining if all the measurements lie inside their corresponding estimated interval bounds. When a fault is detected, the measurements that are inconsistent with their corresponding estimations are annotated and a fault isolation procedure is triggered. By using the theoretical fault signature matrix (FSM), which summarizes the effects of the different faults on the available residuals, the fault is isolated by means of a logic reasoning that takes into account the bounded uncertainty, and if the number of candidate faults is more than one, a correlation analysis is used to obtain the most likely fault candidate. Finally, the proposed approach is tested using a PEM fuel cell case study proposed in the literature.Peer ReviewedPostprint (author's final draft
    corecore