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Abstract

In this paper, the problem of robust fault diagnosis of proton exchange mem-

brane (PEM) fuel cells is addressed by introducing the Takagi-Sugeno (TS)

interval observers that consider uncertainty in a bounded context, adapting

TS observers to the so-called interval approach. Design conditions for the

TS interval observer based on regional pole placement are also introduced

to guarantee the fault detection and isolation (FDI) performance. The fault

detection test is based on checking the consistency between the measure-

ments and the output estimations provided by the TS observers. In presence

of bounded uncertainty, this check relies on determining if all the measure-
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ments lie inside their corresponding estimated interval bounds. When a fault

is detected, the measurements that are inconsistent with their corresponding

estimations are annotated and a fault isolation procedure is triggered. By

using the theoretical fault signature matrix (FSM), which summarizes the

effects of the different faults on the available residuals, the fault is isolated

by means of a logic reasoning that takes into account the bounded uncer-

tainty, and if the number of candidate faults is more than one, a correlation

analysis is used to obtain the most likely fault candidate. Finally, the pro-

posed approach is tested using a PEM fuel cell case study proposed in the

literature.

Keywords: PEM fuel cells, model-based fault diagnosis, Takagi-Sugeno

fuzzy systems, analytical redundancy relations, interval observers.

1. Introduction

In the last years, major efforts to reduce greenhouse effects and pollution

have increased the demand for environmentally friendlier energy sources [1].

Fuel cells have been pointed out as a promising alternative way for an energy

source in the future, not only because they are considered a zero-emission

power source, but also because they are very quite, and reduce noise pol-

lution. Their energy density makes them specially suitable for embedded

2



generation systems in transport applications. Proton exchange membrane

fuel cells (PEMFC) are electrochemical devices in which the energy of a re-

action between a fuel, the hydrogen, and an oxidant, the oxygen, is directly

and continuously converted into electrical energy, obtaining water as a sub-

product [2]. Many control strategies for PEMFC have been proposed in the

recent literature, e.g. optimal control [3], model predictive control [4] and

sliding mode control [5].

However, fuel cell technology is still too expensive to be accessible to a

mass market, and there are still considerable difficulties to overcome. One of

the main drawbacks of fuel cell systems is related to the stack lifetime and

reliability when working at strongly changing charge conditions, like those

that could be usually found in transport applications. Several papers have

analyzed the PEMFC durability taking into account the phenomena that

could affect the PEMFC lifetime [6, 7, 8], e.g. catalyst degradation, fuel

starvation or inadequate water management [9, 10, 11]. To overcome these

drawbacks, adequate fault detection and isolation (FDI) and fault-tolerant

control (FTC) strategies are needed to avoid failure modes which could com-

promise the stack reliability and integrity. Real-time fault diagnosis (detec-

tion and isolation) can provide valuable information either for monitoring
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PEMFC operation, allowing to reconfigure/accommodate the control loop

whenever any malfunction is reported, or to suggest preventive maintenance

actions, to extend the lifetime of the system and thereby avoiding future

damage in the equipment.

In [12], fault diagnosis of PEMFC is reviewed with a special emphasis

on model-based methods. Fuel cells are complex and strongly non-linear

systems in which continuously varying parameters are difficult to identify,

even for static operation modes. Different authors have chosen different

approaches for fuel cell system modeling. Electric equivalent models [13],

state space models [14, 15] and bond graph representation models [16] are

the most representative approaches. Even if these models can represent fuel

cell behavior at some operating conditions, their application to fault diagnosis

is not so straightforward and, moreover, most of them are related just to the

stack and not to the overall system.

Recently, the complex and non-linear dynamics of the power generation

systems based on fuel cell technology, described in detail in [14], led to the

use of linear models that include parameters varying with the operating point

(known as linear parameter varying or LPV models) not only for advanced

control [17] but also for model-based fault diagnosis [18] purposes. The use of
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Takagi-Sugeno (TS) models [19] is an alternative to LPV models as a linear-

like modeling framework that allows extending control [20] and FDI methods

to non-linear systems [21]. Thus, this paper will consider TS models and ob-

servers for FDI in PEM fuel cells. In the literature, the use of the TS has

been widely considered for FDI (see, e.g. [21, 22]) and fault estimation/FTC

(see e.g. [23, 24]). However, due to the presence of parametric uncertainties

in the TS model, the design of a conventional observer that converges to the

exact value of the state is complicated [25]. In this situation, an interval es-

timation is still possible, and an observer that evaluates the set of admissible

values for the state at each time instant can be designed [25, 26, 27, 28, 29].

The main contribution of this paper is to address the problem of robust

fault diagnosis of PEM fuel cells by introducing the TS interval observers that

consider uncertainty in a bounded context, adapting TS observers to the so-

called interval approach. Design conditions for the TS interval observer based

on regional pole placement are also introduced to guarantee the FDI perfor-

mance. A bank of observers is designed by applying the structural analysis

[30] to the PEMFC model considering the set of available sensors. The fault

detection test is based on checking the full consistency between the measure-

ments and the output estimations provided by the TS interval observers. In
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presence of bounded uncertainty, this check relies on determining if all the

measurements lie inside their corresponding estimated interval bounds. In

the case a fault is detected, the measurements that are inconsistent with their

corresponding estimations are annotated and a fault isolation procedure is

triggered. By using the theoretical fault signature matrix (FSM), the fault is

isolated by means of a logic reasoning that takes into account the presence of

bounded uncertainty, and a posterior correlation analysis provides the most

likely fault candidate. Finally, the proposed approach is tested using a well

known PEMFC case study proposed in the literature in [14] by deriving an

interval TS model and observer.

The structure of the paper is the following. Section 2 describes the

PEMFC case study and presents its linear-like state-space model. Section

3 introduces the TS interval observer approach. Section 4 presents the pro-

posed fault diagnosis methodology based on TS interval observers. Then,

Section 5 presents the application of the proposed fault diagnosis approach

to the considered PEMFC case study. Finally, Section 6 gives the main

conclusions.
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2. Modeling of the PEMFC

2.1. Description

The fault diagnosis approach proposed in this paper is tested on a typical

PEMFC system (see Fig. 1) based on the model provided in [2].

Figure 1: PEM fuel cell system.

The fuel cell, in response to a current demand by an electrical load,

consumes oxygen and hydrogen and generates water and heat. The hydrogen

is provided by the hydrogen supply system, whose main components are a

pressurized hydrogen tank and a supply servo valve that allows controlling

the hydrogen flow or pressure. The air supply system, consisting mainly of a
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compressor driven by an electric motor, provides the air flow. The control of

the hydrogen and air supply systems aims at maintaining the required partial

pressures of the hydrogen and air entering into the anode and the cathode

of the stack, respectively. Additionally, since the compressor provides air

at a high temperature due to the increased pressure, the cooling system is

used to reduce the temperature of the air entering into the stack in order to

prevent the fuel cell membrane from damaging. Finally, a humidifier acts on

the cathode path to prevent membrane damage due to dehydration.

The main variables involved in the PEMFC system operation are listed

in Table 1.

Symbol Description
vcp Compressor input voltage
ωcp Compressor speed
Wcp Compressor air flow
pca Air pressure in the cathode
pan Hydrogen pressure in the anode
Tst Stack temperature
Ist Stack current
vst Stack voltage

Table 1: PEMFC variables.

Following other works in the literature, e.g. [31], six variables are assumed

to be measured:

• Compressor speed (ωcp).
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• Pressure in the cathode supply manifold (psm).

• Mass of hydrogen in the anode (mH2).

• Pressure in the anode (pan).

• Pressure in the cathode (pca).

• Stack voltage (vst).

The feedback control and safe operation of a PEMFC can be compro-

mised by sensor faults. Hence, it is important to develop fault diagnosis

methodologies that are able to detect and isolate such faults.

In this paper, faults affecting the previously listed sensors are considered.

These faults will be identified as f1, f2, . . . , f6, in accordance with the order

provided in the list. The extension to other types of faults is straightforward

by applying the proposed methodology to the new set of faults.

2.2. Linear-like representation of the PEMFC model

The model used in this paper is derived from the non-linear equations

presented in [14], that are valid under the following assumptions: the stack

temperature Tst is constant (it changes slowly with respect to the other sys-

tem variables); the temperature and humidity of the inlet reactant flows are
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perfectly controlled; the cathode and anode volumes of the multiple fuel cells

are lumped as a single stack cathode and anode volumes; all the reactants

behave as ideal gases.

According to [14], the stack current Ist can be considered as the system

input and nine state variables can be used to describe the system dynamics in

a non-linear state space representation: mass of oxygen in the cathode (mO2),

mass of hydrogen in the anode (mH2), mass of nitrogen in the cathode (mN2),

compressor speed (ωcp), air pressure in the supply manifold (psm), air mass

in the supply manifold (msm), mass of water in the anode (mw,an), mass of

water in the cathode (mw,ca), and pressure in the return manifold (prm).

The non-linear model of the PEMFC can be reshaped into a linear-like

10



representation, obtaining a model with the following structure:



ṁO2

ṁH2

ṁN2

ṁsm

ṗsm

ṗrm

ω̇cp

ṁw,an

ṁw,ca



=



α̃11 0 α̃13 0 α15 α̃16 0 0 0

0 α̃22 0 0 α̃25 0 0 α̃28 0

α̃31 0 α̃33 0 α35 α̃36 0 0 0

α41 0 α43 0 α45 0 0 0 0

α̃51 0 α̃53 0 α̃55 0 0 0 0

α61 0 α63 0 0 α̃66 0 0 0

0 0 0 0 0 0 α̃77 0 0

0 α̃82 0 0 α̃85 0 0 α̃88 0

α̃91 0 α̃93 0 α̃95 α̃96 0 0 0





mO2

mH2

mN2

msm

psm

prm

ωcp

mw,an

mw,ca



(1)

+

(
γ̃1 γ̃2 γ̃3 γ̃4 γ̃5 γ6 γ̃7 γ̃8 γ̃9

)T

+

(
β1 β2 0 0 0 0 0 0 β̃9

)T

Ist

where the coefficients with tilde, e.g. α̃11, are functions of the scheduling

parameter Ist and the remaining are constant. All the coefficients depend on

constants (physical and chemical constants, physical coefficients related with

the PEMFC construction and operating conditions) whose values are taken

from [14].

The measured variables ωcp, psm and mH2 correspond directly to state
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variables in (1). On the other hand, pan, pca and vst are related to some of

the state variables according to the following general expressions:

pca = f (mO2 ,mN2) (2)

pan = f (mH2 ,mw,an) (3)

vst = f (mH2 ,mO2 , pca) (4)

3. Takagi-Sugeno interval observers

3.1. System representation

TS systems, as proposed in [19], are described by local models merged

together using IF-THEN rules [32]. In particular, in this paper, we will

consider an uncertain discrete-time TS system, as follows:

IF ϑ1(k) is Mi1 AND . . . AND ϑp(k) is Mip

THEN


xi(k + 1) = (A0i + ∆Ai)x(k) +Biu(k) + d(k)

yi(k) = Cx(k) + v(k) i = 1, . . . , N

(5)

where x(k) ∈ Rnx is the state vector, u(k) ∈ Rnu is the input vector,

y(k) ∈ Rny is the output vector available for measurements, d(k) ∈ Rnx

is the exogenous disturbance and v(k) ∈ Rny is the measurement noise. Mij
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denote the fuzzy sets and N is the number of model rules. ϑ1(k), . . . , ϑp(k)

are the premise variables that can be functions of endogenous and/or exoge-

nous variables. Each linear consequent equation is called a subsystem.

Given x(k), u(k), d(k) and v(k), the state of the TS system at time k+ 1

and the output at time k can be easily inferred as:

x(k + 1) =
N∑
i=1

ρi (ϑ(k)) [(A0i + ∆Ai)x(k) +Biu(k) + d(k)] (6)

y(k) = Cx(k) + v(k) (7)

where ϑ(k) = [ϑ1(k), . . . , ϑp(k)]T is the vector containing the premise vari-

ables, and ρi (ϑ(k)) is defined as follows:

ρi (ϑ(k)) =

p∏
j=1

Mij (ϑj(k))

N∑
i=1

p∏
j=1

Mij (ϑj(k))

(8)

where Mij (ϑj(k)) is the grade of membership of ϑj(k) in Mij and ρi (ϑ(k))

is such that: 
N∑
i=1

ρi (ϑ(k)) = 1

ρi (ϑ(k)) ≥ 0, i = 1, . . . , N

(9)

The matrices A0i ∈ Rnx×nx , Bi ∈ Rnx×nu and C ∈ Rny×nx are known,
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whereas the matrices ∆Ai ∈ Rnx×nx represent the uncertainty, and are not

known. Also, the exact values of d(k) and v(k) are not available. However,

it is assumed that some bounds are known, as follows:

d(k) ≤ d(k) ≤ d(k) (10)

|v(k)| ≤ V (k) (11)

∆Ai ≤ ∆Ai ≤ ∆Ai (12)

for some known functions d(k), d(k), V (k) and for some known matrices

∆Ai,∆Ai ∈ Rnx×nx . The relations ≤ are understood elementwise.

The fault diagnosis test is based on checking whether the measurements

are consistent with the system model or not. However, due to the presence

of uncertainty, unknown disturbances and noise, an exact estimation x̂(k) of

the state x(k), to be used for comparison with the measurements, cannot be

obtained. However, taking into account (10)-(12), it is possible to design an

observer that provides an interval estimation of x(k), i.e. some lower and

upper estimates x(k), x(k) of x(k), such that:

x(k) ≤ x(k) ≤ x(k) ∀k ∈ Z (13)
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This observer will be denoted as TS interval observer.

3.2. The TS interval observer

The TS interval observer for the system (5) has the following form, ob-

tained as a slight modification of the one presented in [25]:

IF ϑ1(k) is Mi1 AND . . . AND ϑp(k) is Mip

THEN



xi(k + 1) =
[
A0i − LiC

]
x(k) +Biu(k)

+∆Ai
+x+(k)−∆Ai

+
x−(k)

−∆Ai
−x+(k) + ∆Ai

−
x−(k)

+Liy(k)−
∣∣Li

∣∣V (k)Eny + d(k)

xi(k + 1) =
[
A0i − LiC

]
x(k) +Biu(k)

+∆Ai
+
x+(k)−∆Ai

+x−(k)

−∆Ai
−
x+(k) + ∆Ai

−x−(k)

+Liy(k) +
∣∣Li

∣∣V (k)Eny + d(k)

(14)

where Li ∈ Rnx×ny and Li ∈ Rnx×ny are the observer gains to be designed,

∆Ai
+

= max
{

0,∆Ai

}
, ∆Ai

−
= ∆Ai

+ − ∆Ai, ∆Ai
+ = max

{
0,∆Ai

}
,

∆Ai
− = ∆Ai

+ − ∆Ai, x
+ = max {0, x}, x− = x+ − x, x+ = max {0, x},

x− = x+ − x and, finally, Eny ∈ Rny×1 denotes the column vector with all
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elements equal to 1.

Then, the lower and upper estimates of y(k) can be obtained as:

y(k) = C+x(k)− C−x̄(k) (15)

ȳ(k) = C+x(k)− C−x(k) (16)

where C+ = max {0, C} and C− = C+ − C.

3.3. Design conditions

In order to guarantee a proper dynamics regarding fault detection, the

interval estimation of x(k) with constraints on the closed-loop poles location

of the interval observer is desired. Although from the mathematical R1-3

point of view the concept of poles refers to linear time invariant

(LTI) systems, [33] has shown that when pole placement in linear

matrix inequality (LMI) regions [34] is considered, some transient

properties related to the poles location, e.g. decay ratio, would also

hold for the case of fuzzy TS systems. As discussed in [35], the observer

poles play an important role in the observer fault sensitivity. The following

theorem, based on the reasoning made by [25], provides some conditions to
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accomplish this goal under the assumption that:

x(0) ≤ x(0) ≤ x(0) (17)

Theorem 1. Given an LMI region, defined as [34]:

D = {z ∈ C : fD(z) < 0} (18)

where the characteristic function fD(z) is defined as:

fD(z) = α + zβ + z∗βT = {αkl + βklz + βlkz
∗}k,l∈[1,m] (19)

with α = αT ∈ Rm×m and β ∈ Rm×m, if there exist a diagonal matrix
P ∈ R2nx×2nx, a symmetric matrix Q = QT ∈ R2nx×2nx, block diagonal
matrices Wi ∈ R2nx×2nu, i = 1, . . . , N with the following structure:

Wi =

(
Wi ∈ Rnx×nu 0

0 Wi ∈ Rnx×nu

)
(20)

and constants ε1 > 0, ε2 > 0, γ > 0 such that:

P > 0 (21)

Q > 0 (22)

and, for i = 1, . . . , N : P
1+ε1

PDi −WiΥ
P

1+ε1

(PDi −WiΥ)T P −Q− γη2I2nx 0
P

1+ε1
0 γI2nx − εP

 ≥ 0 (23)

P

[
A0,i 0
0 A0,i

]
−WiΥ ≥ 0 (24){

αklP + βkl

((
AT

0,i 0
0 AT

0,i

)
P −ΥTW T

i

)
+βlk

(
P

(
A0,i 0
0 A0,i

)
−WiΥ

)}
k,l∈[1,m]

< 0
(25)
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with:

Di =

(
A0,i + ∆Ai

+ 0

0 A0,i + ∆Ai
+

)
(26)

Υ =

(
C 0
0 C

)
(27)

η = 2 max
i=1,...,N

(∥∥∥∆Ai
+ −∆Ai

+
∥∥∥
2

+
∥∥∆Ai

−∥∥
2

+
∥∥∥∆Ai

−
∥∥∥
2

)
(28)

ε = 1 + ε2 + (1 + ε1)
−1 (29)

then, the TS interval observer (14) with gains calculated as:

Li = P−1Wi (30)

Li = P−1Wi (31)

ensures the interval estimation of x(k) given by (13), provided that (10)-(12)
and (17) hold, and that:

∃!i ∈ {1, . . . , N} |ρi (ϑ(k)) = 1, ρj (ϑ(k)) = 0 ∀j 6= i,∀k ∈ Z (32)

Moreover, for each subsystem, the closed-loop poles of the TS interval
observer are in D.

Proof: See Appendix A. �

The overall system of LMIs (21)-(24) and (25) can be solved efficiently

using available solvers, e.g. the SeDuMi [36] in the YALMIP toolbox [37].

It is worth remarking that the proposed TS interval observer op- R1-2

erates under the assumption that the premise variables are known.

Cases in which such assumption does not hold could be dealt with

using results about TS observers with unmeasurable premise vari-

ables, see e.g. [38], but this extension goes beyond the goal of this
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paper.

4. Fault diagnosis

4.1. Overview of the proposed fault diagnosis methodology

The proposed fault diagnosis methodology uses a bank of TS interval

observers, as described in Section 3, to take into account the uncertainty,

and can be considered an alternative to the single observer methodology

presented in [18, 39]. By means of structural analysis, each observer can

be made sensitive to a subset of faults, thus avoiding the need to perform a

complex sensitive analysis, like the one in [39].

The whole procedure can be divided into off-line and on-line stages, and

it can be summarized as follows.

4.1.1. Off-line stage

The linear-like representation of the PEMFC model provided in Section

2.2 is used as a starting point to obtain a set of analytical redundancy re-

lations (ARRs) by means of structural analysis [30]. ARRs are equations

relating only measured variables (so they can be evaluated on-line), that are

satisfied in absence of faults. Each ARR is converted into a TS model by

choosing the premise variables, and by considering a set of operating points
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that cover the whole range of system operation. Then, the model uncertainty

associated to the TS models is adjusted in such a way that the outputs of

the TS interval observers designed using these models ”cover”, with minimal

over-bounding, all the measurements obtained in a complete fault-free sce-

nario. This assures that no false alarms will occur when these TS interval

observers are used for fault detection purposes.

4.1.2. On-line stage

At each time-instant, the TS observers provide estimations of the bounds

of the measured variables, which would be compatible with the fault-free

operation. The differences between the measurements and these bounds are

called residuals, and are used for fault detection and isolation, as detailed in

the following.

4.2. Fault detection

Fault detection is based on generating residuals, i.e. on comparing the

measurements of the physical variables of the process y(k) with the estima-

tions ŷ(k) provided by the associated system model:

r(k) = y(k)− ŷ(k) (33)
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where r(k) ∈ Rny is the residual vector.

When considering model uncertainty, the residual generated by (33) de-

viates from zero even in a non-faulty scenario. To cope with the parameter

uncertainty effect, a passive robust approach based on adaptive thresholding

can be used [40]. Thus, using this passive approach, the effect of the parame-

ter uncertainty on the residual r(k) associated to each system output y(k) is

bounded by the interval that will include the zero value in absence of faults.

Hence, a fault detection test can be formulated as:

0 ∈ [r(k), r(k)] (34)

where:

r(k) = y(k)− ȳ(k) (35)

r̄(k) = y(k)− y(k) (36)

being y(k) the output coming from the sensors, y(k) and ȳ(k) the bounds of

the predicted output given by (15)-(16).

The fault detection test (34) can be alternatively formulated as:

y(k) ∈ [y(k), ȳ(k)] (37)
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4.3. Fault isolation

Fault isolation consists in identifying the faults affecting the system. It is

carried out on the basis of fault signatures, generated by the fault detection

module, and their relation with all the considered faults. Robust residual

evaluation presented in Section 4.2 allows obtaining a set of fault signatures

φ(k) = [φ1(k), φ2(k), . . . , φny(k)], where each fault indicator is given by:

φi(k) =


0 if 0 ∈ [ri(k), r̄i(k)]

1 if 0 /∈ [ri(k), r̄i(k)]

(38)

The values of the fault signatures are compared with the theoretical FSM,

denoted as M . An element mi,j (i indicates rows, j indicates columns) of

M is equal to 1 if the fault f j affects the computation of the residual ri;

otherwise, the element mi,j is zero-valued.

Due to the uncertainty and to the different dynamics of the residuals, in

presence of a given fault, the different fault indicators φi(k) that are sensitive

to this particular fault can become active for non-overlapping short periods

of time. In this case, proper fault isolation cannot be achieved. In order to

minimize this problem and achieve correct fault isolation, a memory compo-

nent φi
max(k) that stores the maximum value of φi(k) in a prefixed waiting
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time Tw is used in Algorithm 1, as proposed in [41].

Additionally, to take into account the particular case where, due to the

presence of uncertainty, a given fault does not trigger some of the fault indi-

cators that are potentially affected by it according to the theoretical FSM,

the strategy proposed in [42], based on considering only the components of

the observed fault signature that are equal to 1, is used.

As a result of the previous strategies, the procedure could attribute the

observed fault signature to more than one fault candidate, although guar-

anteeing that the real fault present in the system is among the provided

candidates [42]. Due to this fact, a final decision based on taking into ac-

count the correlation of the nominal residual r0(k) with the steady state fault

sensitivities sj of the different fault candidates is implemented to obtain the

most likely fault (see [41] for more details).

The proposed fault detection and isolation procedure is summarized in

Algorithm 1.
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5. Application results

5.1. Off-line design

As it can be noticed by looking at the model structure in (1), the states

are highly coupled. However, the information about the variables that are

measured can be used for decoupling the system in sub-models, using struc-

tural analysis [30]. In this way, four decoupled sub-models can be obtained

from equations (1)-(4), as detailed in Appendix B.

The decoupled sub-models allow obtaining the following residuals:

r1 , ωcp − ω̂cp (39)

r2 , psm − p̂sm (40)

r3 , m̂O2,1 − m̂O2,2 (41)

r4 ,mH2 − m̂H2 (42)

where the ∧ indicates an estimation while the absence of ∧ indicates a mea-

surement.

It must be noticed that the mass of oxygen mO2 is not a measured variable

according to the list provided in Section 2.1. Hence, a second estimation for

it (the first one is provided by the cathode plus return manifold observer) is
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necessary to obtain analytical redundancy. This estimation can be computed

by inverting numerically the expression that relates mO2 with the measured

stack voltage vst [31].

The structural analysis of the system also allows determining the FSM

associated to the set of faults considered in Section 2.1 and the set of residuals

(39)-(42). The obtained FSM is presented in Table 2. Since all the columns

in the FSM are different, all the faults are potentially isolable.

Table 2: Fault signature matrix.

ARR f1 f2 f3 f4 f5 f6
r1 1 0 0 0 0 0
r2 0 1 0 0 1 0
r3 0 1 1 0 1 1
r4 0 1 1 1 0 0

It is worth highlighting that, by looking at the FSM (Table R2-1

2) and at the equations of the decoupled sub-models (Appendix

B), the importance of the availability of the measurements listed

in Section 2.1 becomes clear. In fact, with the exception of the

compressor speed ωcp sensor (which is needed for feedback control

purposes), the lack of one of the considered sensors would lead ei-

ther to non-detectability/non-isolability issues (e.g. if psm is not

available, both the r2 row and the f2 column in the FSM should be
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removed, and it is straightforward to see that the faults f5 and f6

would not be isolable) or to the appearance of unknown inputs in

the decoupled sub-models, which would impede the correct opera-

tion of the corresponding TS interval observer.

Then, a bank of TS interval observers is designed for estimating lower

and upper bounds of ωcp, psm, mO2 and mH2 . In order to take into account

the variation of the model parameters with the value of the stack current Ist,

the interval of possible values of Ist ∈ [100mA, 300mA] has been gridded

using a step of 10mA, obtaining a set of 21 possible operating points and

continuous-time TS representations of the ARRs. Then, in order to obtain

discrete-time TS representations suitable for applying the interval observer

theory introduced in Section 3, an Euler discretization with sampling time

Ts = 0.01 s has been performed.

For each TS representation, a TS interval observer has been designed

using the design conditions described in Section 3.3. In particular, disks of

center (0.01, 0) and radius 0.01 have been chosen as LMI regions, in order to

obtain TS interval observers whose behavior recalls the one of a predictor.

Notice that in order to design the interval observer, the uncertainty must be

estimated. Here, an adaptation to the TS interval observers of the approach
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proposed in [43] for interval observers is used. This approach relies on ad-

justing the parameter uncertainty to guarantee that no false alarms appear

using data from non-faulty scenarios. Also, it has been assumed that the

data coming from the sensors is affected by bounded noise with a bound of

1% of the measurement. On the other hand, a bound of 2% of the estimation

has been used for the mass of oxygen mO2 estimated from the stack voltage

vst.

It is worth remarking that, from a theoretical point of view, the design

conditions described in Section 3.3 guarantee the properties of the TS interval

observer only at the design points. However, from a practical point of view,

due to the use of a common Lyapunov matrix P , it is reasonable to assume

that, if the gridding of the parameter space is dense enough, then the desired

properties of interval bounded estimation and closed-loop pole clustering

would also hold at operating points different from the design ones. A deep

theoretical study of this fact is possible using the results developed by [44].

5.2. On-line simulation results

The proposed methodology has been applied to the case study with an

extensive performance assessment phase, where simulation experiments were

repeated for different faults and different magnitudes. In particular, faults
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where the value provided by the sensor corresponds to the measured value

plus a percentage due to the fault are considered (e.g. f1 = 30% means

that the compressor sensor ωcp returns 1.3 times the value that would have

returned in the non-faulty case).

The results of the performed simulations are shown in Tables 3-8 for

each of the six available sensors. For each considered sensor fault, the rate

of successful fault detection and isolation, as well as the average detection

and isolation times are reported. It can be seen that, for all the sensors,

there are critical fault magnitudes: for magnitudes above the upper critical

one (e.g. f1 = 6% for the compressor sensor ωcp), the performances of the

fault diagnosis approach are very good, since correct fault detection and

isolation are always achieved within a small time. On the other hand, for

fault magnitudes below the lower critical one (e.g. f1 = 5% for ωcp), fault

detection is not achievable, i.e. those faults are not detectable. Between these

two extremes, the behavior of the fault diagnosis approach varies depending

on the considered fault. In some cases, the smaller the fault magnitude is,

the smaller the rate of successful fault detection and isolation is, but with

the detection/isolation time remaining unaffected. This is the case of the

faults in ωcp and mH2 . In the remaining cases, the effect of decreasing the
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Table 3: Results of fault diagnosis for f1 (ωcp sensor fault).

Successful Successful
f1 fault detection fault isolation t̄d t̄i

≥ 6.6% 100% 100% 0.01 s 0.01 s
6.2%, 6.4% 95% 95% 0.01 s 0.01 s
5.8%, 6% 80% 80% 0.01 s 0.01 s

5.6% 55% 55% 0.01 s 0.01 s
5.4% 35% 35% 0.01 s 0.01 s
5.2% 15% 15% 0.01 s 0.01 s
≤ 5% 0% 0% - -

Table 4: Results of fault diagnosis for f2 (psm sensor fault).

Successful Successful
f2 fault detection fault isolation t̄d t̄i
≥ 6% 100% 100% 0.01 s 0.01 s
5.5% 100% 100% 0.015 s 0.015 s

[3.5%, 5%] 100% 100% 0.02 s 0.03 s
3% 100% 100% 0.02 s 0.031 s

2.5% 100% 100% 0.022 s 0.034 s
2% 100% 100% 0.033 s 0.055 s

1.5% 100% 80% 0.103 s 0.694 s
1% 10% 0% 0.850 s -
≤ 0.5% 0% 0% - -

fault magnitude is visible on the detection/isolation time.

Moreover, to better illustrate the proposed method, let us consider the

following two fault scenarios:

• Fault scenario 1: f2 = 30% (fault in the supply manifold sensor psm),

starting from t = 15 s

• Fault scenario 2: f4 = 10% (fault in the anode pressure sensor pan),
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Table 5: Results of fault diagnosis for f3 (vst sensor fault).

Successful Successful
f3 fault detection fault isolation t̄d t̄i

≥ 3.5% 100% 100% 0.01 s 0.01 s
3% 100% 100% 2.361 s 2.361 s

2.5% 100% 100% 9.597 s 9.597 s
2% 100% 100% 11.507 s 11.507 s

1.5% 100% 100% 11.998 s 11.998 s
≤ 1% 0% 0% - -

Table 6: Results of fault diagnosis for f4 (mH2 sensor fault).

Successful Successful
f4 fault detection fault isolation t̄d t̄i
≥ 14% 100% 100% 0.01 s 0.02 s
13% 95% 95% 0.01 s 0.02 s
12% 85% 85% 0.01 s 0.02 s
11% 70% 70% 0.01 s 0.02 s
10% 60% 60% 0.01 s 0.02 s
9% 20% 20% 0.01 s 0.02 s
8% 15% 15% 0.01 s 0.02 s
≤ 7% 0% 0% 0.01 s -

Table 7: Results of fault diagnosis for f5 (pca sensor fault).

Successful Successful
f5 fault detection fault isolation t̄d t̄i
≥ 25% 100% 100% 0.02 s 0.02 s
20% 100% 100% 0.02 s 0.026 s
15% 100% 100% 0.021 s 0.078 s
10% 10% 0% 0.03 s -
5% 0% 0% - -
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Table 8: Results of fault diagnosis for f6 (pan sensor fault).

Successful Successful
f6 fault detection fault isolation t̄d t̄i
≥ 3% 100% 100% 0.02 s 0.02 s
2.5% 100% 100% 0.022 s 0.025 s
2% 100% 100% 0.031 s 0.034 s

1.5% 100% 100% 0.218 s 0.231 s
≤ 1% 0% 0% - -

starting from t = 15 s

Figs. 2-4 show the measured value (red line), lower interval estimation

(blue line) and upper interval estimation (black line) in the first fault scenario,

for the residuals corresponding to psm, mO2 and mH2 that are sensitive to this

fault according to the FSM presented in Table 2. Notice that while the fault

is not present, the measurement is inside the interval estimation provided

by the corresponding TS interval observer. However, when the fault appears

(at t = 15 s), the measured values are outside the intervals estimated by the

TS interval observers, leading to the observer fault signature given by φ2, φ3

and φ4 shown in Fig. 5. By matching this observed fault signature with the

FSM presented in Table 2, the fault in the supply manifold sensor psm can

be diagnosed.

On the other hand, in the second fault scenario, the fault affects only

the residual corresponding to mH2 (see Fig. 6) according to the FSM matrix
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Figure 5: Fault signatures with f2 = 30% (fault in the supply manifold sensor psm).
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presented in Table 2. As in the case of the first fault scenario, before the fault

appearance, the measurement mH2 is inside the interval estimation provided

by the corresponding TS interval observer, as shown in Fig. 7. However,

after the fault occurs, the measurement goes out of the estimation interval,

allowing to detect the fault generating the observed fault signature φ4 that,

according to Table 2, allows diagnosing the fault in the anode pressure sensor

pan.

In order to conclude the performance analysis, the proposed approach has

been compared to a fault diagnoser based on fixed thresholds. In fact, the

main advantage of the proposed robust fault diagnosis using a TS interval

observer approach is that it is able to generate adaptive thresholds that guar-

antee that no false alarms occur due to the model uncertainty. As shown in

Table 9, where the minimum fault magnitudes that assure a 100% successful

fault isolation rate are listed, the conservatism provided by fixed thresholds

leads to worse performances than the proposed approach.

6. Conclusions

In this paper, the problem of robust fault diagnosis of PEM fuel cells

has been addressed by using a bank of TS interval observers that consider
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Table 9: Minimum fault magnitudes that assure a 100% successful fault isolation rate.

Adaptive thresholds Fixed thresholds
Fault 1 ωcp 6.5% 9.2%
Fault 2 psm 1.8% 3.4%
Fault 3 vst 1.4% 1.4%

Fault 4 mH2 13.4% 22%
Fault 5 pca 11.4% 22%
Fault 6 pan 1.4% 3.3%
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Figure 6: mH2, mH2 and mH2 with f6 = 10% (fault in the anode pressure sensor pan).
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Figure 7: Fault signatures with f6 = 10% (fault in the anode pressure sensor pan).

uncertainty in a bounded context. The design of the TS interval observers

is performed using LMIs and calibrating the uncertainty in such a way that,

in a non-faulty situation, the measurements will be inside the computed in-

tervals, thus avoiding the possibility of false alarms. Fault detection is based

on checking whether all the measurements lie inside their corresponding es-

timated interval bounds. In the case a fault is detected, the measurements

that are inconsistent with their corresponding estimations are annotated and

a fault isolation procedure is triggered. By using the theoretical fault signa-

ture matrix, the fault is isolated by means of a logic reasoning that takes into

account the presence of bounded uncertainty and, if the number of candidate
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faults is more than one, a posterior correlation analysis provides the most

probable fault.

The proposed approach has been successfully tested using a well known

PEM fuel case study proposed in the literature. It has been shown that

as long as the fault magnitudes are above some critical value, correct fault

detection and isolation is achieved. On the other hand, for each considered

fault, there is a lower critical value, below which fault detection cannot be

achieved, i.e. the fault is not detectable. Between these two extreme cases,

the performance of the fault diagnoser increases when the fault magnitude

increases.

The obtained results are satisfactory and the proposed strategy is promis-

ing. Future research includes its application to a real set-up, as well as to

extend the proposed approach to other types of faults, e.g. affecting the ac-

tuators, and integrate the proposed fault diagnosis methodology with some

fault tolerant control strategy in order to increase the reliability and perfor-

mance of PEM fuel cells under fault occurrence.
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Appendix A. Proof of Theorem 1

If (32) holds, the dynamics of the interval estimation errors e(k) = x(k)−

x(k) and e(k) = x(k)− x(k) are given by:

e(k + 1) = (A0i − LiC) e(k) +
3∑

j=1

wj
i (k) (A.1)

e(k + 1) =
(
A0i − LiC

)
e(k) +

3∑
j=1

wj
i (k) (A.2)

w1
i (k) = ∆Aix(k)−∆Ai

+x+(k) + ∆Ai
+
x−(k)

+∆Ai
−x+(k)−∆Ai

−
x−(k)

(A.3)

w2
i (k) =

∣∣Li

∣∣V (k)Eny − Liv(k) (A.4)

w3
i (k) = d(k)− d(k) (A.5)

w1
i (k) = −∆Aix(k) + ∆Ai

+
x+(k)−∆Ai

+x−(k)

−∆Ai
−
x+(k) + ∆Ai

−x−(k)

(A.6)

w2
i (k) =

∣∣Li

∣∣V (k)Eny + Liv(k) (A.7)

w3
i (k) = d(k)− d(k) (A.8)

38



Following [25], if (24) holds, then:

A0i − LiC,A0i − Li ∈ Rn×n
+ (A.9)

where Rn×n
+ denotes the set of real matrices with nonnegative elements.

Hence, the dynamics for e(k) and e(k) is cooperative [45] and (13) holds

as long as wj
i (k) ≥ 0 and wj

i (k) ≥ 0 ∀i = 1, . . . , N , ∀j = 1, . . . , 3 and ∀k ≥ 0,

which is true due to the assumptions (10)-(12) [25].

In order to show that x(k) and x(k) remain bounded for all t ≥ 0, the

equations in (14) are rewritten as:

xi(k + 1) =
[
A0i − LiC + ∆Ai

+
]
x(k) + fi (x(k), x(k)) + δi(k) (A.10)

xi(k + 1) =
[
A0i − LiC + ∆Ai

+
]
x(k) + fi (x(k), x(k)) + δi(k) (A.11)

with:

fi (x(k), x(k)) =
(

∆Ai
+ −∆Ai

+
)
x−(k)

−∆Ai
−x+(k) + ∆Ai

−
x−(k)

(A.12)

fi (x(k), x(k)) =
(

∆Ai
+ −∆Ai

+
)
x−(k)

−∆Ai
−
x+(k) + ∆Ai

−x−(k)

(A.13)
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δi(k) = Liy(k)−
∣∣Li

∣∣V (k)Eny + d(k) (A.14)

δi(k) = Liy(k)−
∣∣Li

∣∣V (k)Eny + d(k) (A.15)

Then, the boundedness of x(k) and x(k) is a consequence of the nonnegativity

of A0i − LiC + ∆Ai
+ and A0i − LiC + ∆Ai

+
, the boundedness of the inputs

δi(k) and δi(k) and the property of the functions fi and fi of being globally

Lipschitz [25], and is proved by introducing the system:

ξ(k + 1) = Giξ(k) + φi (ξ(k)) + δi(k) (A.16)

where:

ξ(k) =

 x(k)

x(k)

 φi (ξ(k)) =

 f
i
(ξ(k))

fi (ξ(k))

 δi(k) =

 δi(k)

δi(k)

 (A.17)

Gi = Di −

 Li 0

0 L̄i

Υ (A.18)

and:

| φi (ξ(k))| ≤ η |ξ(k)| (A.19)

with η defined as in (28). In fact, using Schur complement [46], it can be
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shown that if (23) holds, the following is true for the increment ∆V(k) of the

Lyapunov function V(k) = ξ(k)TPξ(k) [25]:

∆V(k) ≤ −ξ(k)TQξ(k) +
(
1 + ε−11 + ε−12

)
δi(k)TPδi(k) (A.20)

that proves the boundedness of x(k) and x(k) [47].

Finally, it must be shown that the closed-loop poles of the TS interval

observer are in D, defined as in (18). This is straightforward, by taking into

account that the closed-loop matrix of the TS interval observer is given by:

Acl,i =

 A0,i 0

0 A0,i

−
 Li 0

0 Li

Υ (A.21)

such that (25) is obtained from the direct application of Theorem 2.2 in [34]

to AT
cl,i. This completes the proof.

Appendix B. Decoupled sub-models

For illustrative purpose, the first sub-model obtained by applying struc-

tural analysis [30] to the linear-like model of the PEMFC (1) is completely

detailed in the following. For the remaining three sub-models, only their

structure is provided.
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Compressor

Starting from the non-linear equation for the compressor provided in [14],

and by approximating intermediate variables and terms as functions of the

stack current Ist, the following sub-model for the compressor can be obtained:

ω̇cp = ã11ωcp + c̃t1 (B.1)

with:

ã11 = − z̃3vcp
JcpRcm

kv (B.2)

c̃t1 =
z̃3
Jcp

(
v2cp
Rcm

− CpTamb

ηcmη̃cp
z̃1z̃2

)
(B.3)

vcp = 0.672519Ist + 33.554115 (B.4)

η̃cp ≈ 0.777217 (B.5)

z̃1 ≈ 0.275641 · 10−3Ist − 0.340993 · 10−3 (B.6)

z̃2 ≈ 0.001375Ist − 0.023710 (B.7)

z̃3 ≈ − 0.000426 · 10−3Ist + 0.213459 · 10−3 (B.8)

where kv = 0.0153V/(rad/s) is the motor electric constant, Jcp = 5×10−5 kg·

m2 is the compressor and motor inertia, Rcm = 0.816 Ω is the compressor
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motor circuit resistance, Cp = 1004 J/(kg · K) is the air heat capacity at

constant pressure, Tamb = 298K is the ambient temperature and ηcm = 0.9

is the compressor efficiency.

Supply manifold

The supply manifold sub-model is given by the following expression:

ṗsm = ã22psm + b̃25pca + c̃t2 (B.9)

Cathode plus return manifold

The cathode plus manifold sub-model is a second order state space model,

where the pressure at the return manifold prm is a state variable that is not

measured. It can be expressed as:

 ṁO2

ṗrm

 =

 ã77 ã78

0 ã88


 mO2

prm

+

 b̃75

b85

 pca

+

 b72

0

 psm +

 b70

0

 Ist +

 c̃t7

0

 (B.10)
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Anode

Finally, the anode sub-model is expressed as follows:

ṁH2 = b̃32psm + b̃34pan + b30Ist + c̃t3 (B.11)
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Algorithm 1 Fault diagnosis

1: fault ← FALSE
2: isolation ← FALSE
3: FC ← {f 1, f 2, . . . , fnf}
4: k ← 0
5: while isolation 6= TRUE do
6: k ← k + 1
7: Obtain input-output data {u(k), y(k)} at time instant k
8: Obtain [ri(k), ri(k)], i = 1, · · · , ny using Eqs. (35)-(36)
9: for i = 1 to ny do

10: if 0 /∈ [ri(k), ri(k)] then
11: φi(k) = 1
12: if fault 6= TRUE then
13: kf = k
14: end if
15: fault ← TRUE
16: else
17: φi(k) = 0
18: end if
19: φi

max(k) = max φi(j)
j∈{k−TW ,...,k}

20: end for
21: if fault == TRUE then
22: for i = 1 to ny do
23: if φi

max(k) == 1 then
24: for j = 1 to nf do
25: if mi,j == 0 then
26: FC ← FC − f j

27: end if
28: end for
29: end if
30: end for
31: if k == kf + TW then
32: isolation ← TRUE
33: end if
34: end if
35: end while
36: Fault candidate set FC
37: compute r0(k) =

(
r1(k)+r1(k)

2
, . . . ,

rny
(k)+rny (k)

2

)T
38: for j = 1 to | FC | do
39: πj(k) =

r0(k)T ·sj
‖r0(k)‖ ‖sj‖

40: end for
41: Candidate fault is: arg max

j=1,··· ,|FC|
πj(k)

53


