727 research outputs found

    Using Intelligent Prefetching to Reduce the Energy Consumption of a Large-scale Storage System

    Get PDF
    Many high performance large-scale storage systems will experience significant workload increases as their user base and content availability grow over time. The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) center hosts one such system that has recently undergone a period of rapid growth as its user population grew nearly 400% in just about three years. When administrators of these massive storage systems face the challenge of meeting the demands of an ever increasing number of requests, the easiest solution is to integrate more advanced hardware to existing systems. However, additional investment in hardware may significantly increase the system cost as well as daily power consumption. In this paper, we present evidence that well-selected software level optimization is capable of achieving comparable levels of performance without the cost and power consumption overhead caused by physically expanding the system. Specifically, we develop intelligent prefetching algorithms that are suitable for the unique workloads and user behaviors of the world\u27s largest satellite images distribution system managed by USGS EROS. Our experimental results, derived from real-world traces with over five million requests sent by users around the globe, show that the EROS hybrid storage system could maintain the same performance with over 30% of energy savings by utilizing our proposed prefetching algorithms, compared to the alternative solution of doubling the size of the current FTP server farm

    Static locality analysis for cache management

    Get PDF
    Most memory references in numerical codes correspond to array references whose indices are affine functions of surrounding loop indices. These array references follow a regular predictable memory pattern that can be analysed at compile time. This analysis can provide valuable information like the locality exhibited by the program, which can be used to implement more intelligent caching strategy. In this paper we propose a static locality analysis oriented to the management of data caches. We show that previous proposals on locality analysis are not appropriate when the proposals have a high conflict miss ratio. This paper examines those proposals by introducing a compile-time interference analysis that significantly improve the performance of them. We first show how this analysis can be used to characterize the dynamic locality properties of numerical codes. This evaluation show for instance that a large percentage of references exhibit any type of locality. This motivates the use of a dual data cache, which has a module specialized to exploit temporal locality, and a selective cache respectively. Then, the performance provided by these two cache organizations is evaluated. In both organizations, the static locality analysis is responsible for tagging each memory instruction accordingly to the particular type(s) of locality that it exhibits.Peer ReviewedPostprint (published version

    Neighbor cache prefetching for multimedia image and video processing

    Full text link
    Cache performance is strongly influenced by the type of locality embodied in programs. In particular, multimedia programs handling images and videos are characterized by a bidimensional spatial locality, which is not adequately exploited by standard caches. In this paper we propose novel cache prefetching techniques for image data, called neighbor prefetching, able to improve exploitation of bidimensional spatial locality. A performance comparison is provided against other assessed prefetching techniques on a multimedia workload (with MPEG-2 and MPEG-4 decoding, image processing, and visual object segmentation), including a detailed evaluation of both the miss rate and the memory access time. Results prove that neighbor prefetching achieves a significant reduction in the time due to delayed memory cycles (more than 97% on MPEG-4 with respect to 75% of the second performing technique). This reduction leads to a substantial speedup on the overall memory access time (up to 140% for MPEG-4). Performance has been measured with the PRIMA trace-driven simulator, specifically devised to support cache prefetching

    Author retrospective for the dual data cache

    Get PDF
    In this paper we present a retrospective on our paper published in ICS 1995, which to best of our knowledge was the first paper that introduced the concept of a cache memory with multiple subcaches, each tuned for a different type of locality. In this retrospective, we summarize the main ideas of the original paper and outline some of the later work that exploited similar ideas and could have been influenced by our original paper, including two actual industrial microprocessors.Peer ReviewedPostprint (author’s final draft

    Software caching techniques and hardware optimizations for on-chip local memories

    Get PDF
    Despite the fact that the most viable L1 memories in processors are caches, on-chip local memories have been a great topic of consideration lately. Local memories are an interesting design option due to their many benefits: less area occupancy, reduced energy consumption and fast and constant access time. These benefits are especially interesting for the design of modern multicore processors since power and latency are important assets in computer architecture today. Also, local memories do not generate coherency traffic which is important for the scalability of the multicore systems. Unfortunately, local memories have not been well accepted in modern processors yet, mainly due to their poor programmability. Systems with on-chip local memories do not have hardware support for transparent data transfers between local and global memories, and thus ease of programming is one of the main impediments for the broad acceptance of those systems. This thesis addresses software and hardware optimizations regarding the programmability, and the usage of the on-chip local memories in the context of both single-core and multicore systems. Software optimizations are related to the software caching techniques. Software cache is a robust approach to provide the user with a transparent view of the memory architecture; but this software approach can suffer from poor performance. In this thesis, we start optimizing traditional software cache by proposing a hierarchical, hybrid software-cache architecture. Afterwards, we develop few optimizations in order to speedup our hybrid software cache as much as possible. As the result of the software optimizations we obtain that our hybrid software cache performs from 4 to 10 times faster than traditional software cache on a set of NAS parallel benchmarks. We do not stop with software caching. We cover some other aspects of the architectures with on-chip local memories, such as the quality of the generated code and its correspondence with the quality of the buffer management in local memories, in order to improve performance of these architectures. Therefore, we run our research till we reach the limit in software and start proposing optimizations on the hardware level. Two hardware proposals are presented in this thesis. One is about relaxing alignment constraints imposed in the architectures with on-chip local memories and the other proposal is about accelerating the management of local memories by providing hardware support for the majority of actions performed in our software cache.Malgrat les memòries cau encara son el component basic pel disseny del subsistema de memòria, les memòries locals han esdevingut una alternativa degut a les seves característiques pel que fa a l’ocupació d’àrea, el seu consum energètic i el seu rendiment amb un temps d’accés ràpid i constant. Aquestes característiques son d’especial interès quan les properes arquitectures multi-nucli estan limitades pel consum de potencia i la latència del subsistema de memòria.Les memòries locals pateixen de limitacions respecte la complexitat en la seva programació, fet que dificulta la seva introducció en arquitectures multi-nucli, tot i els avantatges esmentats anteriorment. Aquesta tesi presenta un seguit de solucions basades en programari i maquinari específicament dissenyat per resoldre aquestes limitacions.Les optimitzacions del programari estan basades amb tècniques d'emmagatzematge de memòria cau suportades per llibreries especifiques. La memòria cau per programari és un sòlid mètode per proporcionar a l'usuari una visió transparent de l'arquitectura, però aquest enfocament pot patir d'un rendiment deficient. En aquesta tesi, es proposa una estructura jeràrquica i híbrida. Posteriorment, desenvolupem optimitzacions per tal d'accelerar l’execució del programari que suporta el disseny de la memòria cau. Com a resultat de les optimitzacions realitzades, obtenim que el nostre disseny híbrid es comporta de 4 a 10 vegades més ràpid que una implementació tradicional de memòria cau sobre un conjunt d’aplicacions de referencia, com son els “NAS parallel benchmarks”.El treball de tesi inclou altres aspectes de les arquitectures amb memòries locals, com ara la qualitat del codi generat i la seva correspondència amb la qualitat de la gestió de memòria intermèdia en les memòries locals, per tal de millorar el rendiment d'aquestes arquitectures. La tesi desenvolupa propostes basades estrictament en el disseny de nou maquinari per tal de millorar el rendiment de les memòries locals quan ja no es possible realitzar mes optimitzacions en el programari. En particular, la tesi presenta dues propostes de maquinari: una relaxa les restriccions imposades per les memòries locals respecte l’alineament de dades, l’altra introdueix maquinari específic per accelerar les operacions mes usuals sobre les memòries locals

    Seismic Wave Propagation Simulations on Low-power and Performance-centric Manycores

    Get PDF
    International audienceThe large processing requirements of seismic wave propagation simulations make High Performance Computing (HPC) architectures a natural choice for their execution. However, to keep both the current pace of performance improvements and the power consumption under a strict power budget, HPC systems must be more energy e than ever. As a response to this need, energy-e and low-power processors began to make their way into the market. In this paper we employ a novel low-power processor, the MPPA-256 manycore, to perform seismic wave propagation simulations. It has 256 cores connected by a NoC, no cache-coherence and only a limited amount of on-chip memory. We describe how its particular architectural characteristics influenced our solution for an energy-e implementation. As a counterpoint to the low-power MPPA-256 architecture, we employ Xeon Phi, a performance-centric manycore. Although both processors share some architectural similarities, the challenges to implement an e seismic wave propagation kernel on these platforms are very di↵erent. In this work we compare the performance and energy e of our implementations for these processors to proven and optimized solutions for other hardware platforms such as general-purpose processors and a GPU. Our experimental results show that MPPA-256 has the best energy e consuming at least 77 % less energy than the other evaluated platforms, whereas the performance of our solution for the Xeon Phi is on par with a state-of-the-art solution for GPUs
    • …
    corecore