
Static Locality Analysis for Cache Management

E Jes6s SBnchez, Antonio Gonzalez and Mateo Valero

Universitat Politkcnica de Catalunya
Department of Computer Architecture

c./ Jordi Girona, 1-3 - Mbdul D6
08034 - Barcelona (SPAIN)

E-mail: {fran,antonio,mateo)@ac.upc.es

Abstract [101 that most programs require considerably less cache

Most memory references in numerical codes corre-
spond to array references whose indices are afJine func-
tions of surrounding loop indices. These array references
follow a regular predictable memory pattern that can be
analyzed at compile time. This analysis can provide valu-
able information like the locality exhibited by the program,
which cun be used to implement a more intelligent caching
strategy.

III this paper we propose a static locality analysis ori-
ented to the management of data caches. We show that pre-
vious proposals on locality analysis are not appropriate
when the programs have a high conjlict miss ratio. This
paper extends those proposals by introducing a compile-
time inte ference analysis that significantly improve the
pe$ormance of them.

We first show how this analjsis can be used to charac-
terize the dynamic locality properties of numerical codes.
This evaluation show for instance that a iarge percentage
of references exhibit only temporal locality and another
significant percentage does not exhibit any type of locality.
This motivates the use of a dual data cache, which has a
niodule specialized to exploit temporal locality, and a
selective cache respectively. Then, the performance pro-
vided by these two cache organizations is evaluated. In
both organizations, the static locality analysis is responsi-
ble for tagging each memory instruction accordingly to the
particular type(s) of locality that it exhibits.

memory than what a typical superscalar processor has.
One of the drawbacks of conventional cache organiza-

tions is that they perform a blind management of all mem-
ory references, that is, all of them are handled in the same
way: if the reference misses, a new block i s brought into
cache at the expense of replacing another.

When a reference does not exhibit any type of locality,
this results in cache pollution and memory bandwidth
waste. The pollution is due to the placement in cache of a
non-reusable block whereas the memory bandwidth waste
is caused by the additional data brought from L2 cache to
L1 cache in the same block as the requested data. To cope
with this issue, some current microprocessors provide
memory reference instructions that can bypass the cache.

When a reference has only temporal locality (i.e., only
one data element of each cache block referenced by it is
used by itself or any other instruction), it also results in
cache pollution and memory bandwidth waste since only
one element of the new block will be used. To overcome
this problem, a cache could provide an additional module
to store those data elements with just temporal locality.
This was for instance proposed in the dual data cache orga-
nization [7].

In this paper we propose a static locality analysis to
manage both selective data cache and dual data cache orga-
nizations. The locality analysis is inspired in the proposals
presented in [181, [141 and [3] . However, these proposals
do not consider conflict misses when performing the local-
ity analysis. This may cause the analysis to be very inaccu-
rate for programs with a high conflict miss ratio. To
overcome this problem, we propose to extend those previ-
ous proposals for locality analysis with an interference
analysis module. w e show that very simple interference
analysis schemes may deliver a quite accurate estimation of
the locality Of most

The paper provides quantitative statistics about the dif-
ferent types of locality exhibited by the nested loops of the

1. Introduction

figh-perfomance microprocessors rely on a
efficient cache memory organization to mitigate the
increasing gal, between processor and memory
Despite of the tremendous research effort that has been
devoted to this topic, current cache organizations make a
poor use of the cache capacity. For instance, it is shown in

26 1
0-8186-8090-3/97 $10.00 0 1997 IEEE

SpecFP95 benchmarks. We find for instance that a substan-
tial percentage of references do not exhibit locality due to
cache conflicts for some programs and that a significant
percentage of references exhibit just temporal locality.
These observations motivate the use of selective and dual
data caches.

The rest of the paper is organized as follows. Section 2
reviews the related work. The static locality analysis is pre-
sented in section 3. The experimental framework is
described in section 4. Section 5 analyses the locality
exhibited by loop nests of numerical codes. The application
of the locality analysis to the selective cache and dual data
cache is discussed in section 6. Finally, the main conclu-
sions of this work are summarized in section 7.

2. Related work

Selective caching (also called cache bypassing) is a
feature of current microprocessors like the PowerPC [151.
In the literature there are a number of proposals on that
topic for both instruction and data caches. Some remark-
able works for data caches are [61, [ll, [71 and [17]. The
scheme proposed in [6] is based on a compile-time estima-
tion of data lifetimes. The mechanism proposed in [11 iden-
tifies non-cacheable data by means of profiling. The
scheme proposed in [7] is based on a run-time managed
history table of the most recent loadhtore instructions. The
approaches proposed in [171 are either hardware-based or
make use of simple schemes based on profiling.

The selective cache considered in this paper is like a
conventional cache in which all the memory instructions
have an additional bit that is set up by the compiler. In case
of a cache miss, this bit controls whether a new block is
brought from L2 cache and placed in L1 or just the missing
data is requested from L2 and it bypasses L1 cache. We
assume a 64-bit data bus between L1 and L2, thus, this is
the bandwidth spent by any bypassing request regardless of
the actual size of the required data.

The dual data cache was proposed in [7]. It is com-
posed of two modules, called temporal and spatial. The
former is targeted to exploit just temporal locality. The lat-
ter is designed to exploit spatial locality, in addition to tem-
poral locality if a reference exhibits both types of locality.
In consequence, the temporal module has very short blocks
(one 64-bit word is assumed in this study) and the spatial
cache has larger blocks (32 bytes per block is assumed
here). Figure I shows the basic block diagram of the dual
data cache. In this case, the compiler sets up a two-bit field
of each memory instructions that indicates one of three
possible actions in case of a cache miss: a) bring a new long
block (32 bytes) and place it in the spatial module; b) bring
a new short block (8 bytes) and place it in the temporal
module; and c) bring just the requested data, which requires

Spatial Temporal I
Cache 1 1 Cache 1 I

I I
I I
I I
I I
I I

I I data from
I I L2 cache
I I

4

Figure 1. Block diagram of the dual data cache

one 64-bit word transaction due to the assumed bus width,
and do not place it in any module.

The main difference between the dual data cache
architectures considered here and that proposed in [7] is
that in the latter, memory references were tagged at execu-
tion time using an additional hardware called locality pre-
diction table.

An architecture with some similarities with the dual
data cache has been recently proposed in [121. Like the dual
data cache, it has different modules for different types of
locality. However, the allocation of data to the modules is
done initially by a very simple heuristic based on the data
type and then it may be changed by profiling or dynami-
cally by means of a hardware that monitors their behavior.

A software managed data cache is provided in the HP
PA-7200 [5]. In this machine, every memory instruction
includes a hint called spatial locality only that indicates
that the data referenced by that instruction exhibits spatial
locality but not temporal locality. The first level of the
memory hierarchy of the PA-7200 consists of two modules:
the assist cache and the off-chip cache. The former stores
all the data referenced by any instruction while the latter
stores the data replaced in the assist cache if the spatial
locality hint is not set. In consequence, the assist cache is
targeted to any type of reference while the off-chip cache is
targeted to store all the data except that with just spatial
locality.

Static locality analysis has been previously used for
different purposes. The most remarkable proposals are tar-
geted to: a) improve the locality of loop nests by transfor-
mations like interchange, reversal, skewing and tiling [181;
and b) software prefetching schemes [13], [14], [3]. How-
ever, to our knowledge, this is the first study that addresses
the use of a static locality analysis oriented to the manage-

262

ment of selective and dual data caches. In addition, our pro-
posal extends previous schemes by incorporating an
interference analysis. This analysis is crucial for the accu-
racy of the locality analysis for those cases in which con-
flict misses are the main source of cache misses, which
usually is the case for small cache memories. For instance,
more than half of the cache misses of the SpecFP95 bench-
marks for a 8 Kbyte 2-way associative cache are conflict
misses [8]. An interference analysis was proposed in [16]
in order to estimate the number of conflict misses at com-
pile time. That analysis is different and much more com-
plex than the one proposed in this paper since it had a
different objective. They tried to quantify at compile time
the number of conflict misses whereas our objective is just
to identify those cases in which cache interference will
inhibit completely the exploitation of locality.

Regarding the quantitative evaluation of the locality
exhibited by loop nests of numerical codes, this has been
the focus of a recent paper [111. This paper improves that
work mainly in the following two ways. First, for each
memory reference we consider all types of reuse that it
exhibits (see section 3.1 for a definition of reuse) whereas
that work only considered the last one in the order given by
the source code. For each type of reuse, our analysis quan-
tifies the amount of cache volume required to exploit it.
Second, we consider any loop nest whereas that analysis

Reference

A (J)

same data blocks. In these cases, it is said that the instruc-
tions have group-temporal reuse and group-spatial reuse
respectively. For group reuse, it is distinguished which ref-
erence access first the common datalblock. This is called
the leading reference whereas the other one, which is the
one that can benefit from reuse, is called the trailing refer-
ence. Obviously, a reference may have several types of
reuse.

Reuse is a measure that is inherent in a given program
and does not depend on the order in which instructions are
later executed. For instance, it is the same for both an in-
order execution and an out-of-order execution processors.
Besides, it is almost independent of the particular cache
organization. In particular, the temporal reuse is com-
pletely independent whereas the spatial reuse just depends
on the cache block size.

The reuse of each memory instruction is computed fol-
lowing the methodology described in [18]. The results are
represented as a vector space that identifies the loops in
which reuse is found (each dimension corresponds to a
loop). We distinguish between two types of temporal and
spatial reuse:

1) Unitary: the vector has only one element different
from zero, that is, vector (0 ,..., O,ni,O ,..., 0) indicates
that this reference has reuse after ni iterations of loop
1 .

~

Reuse in J Reuse in I

self-spatial N.A.

2) Combined the vector has more than one elements dif-
ferent from zero, that is, vector (0 ,..., O,ni,ni+l ,..., nw)

only considered a subset of them with some particular fea-
tures: at most 3 deep and with only one loop at each level.

no reuse

no reuse

3. Static locality analysis

group-temporal (trail-
ing) with C (I+1, J)
and self-spatial
self-spatial

The static locality analysis consists of three steps that
are described below: reuse analysis, interference analysis
and volume analysis.

We restrict the locality analysis to references inside
loops, which represent the majority of references. The
locality analysis estimates the type of locality for both sca-
lar and vector references. For the latter, the locality analysis
is performed just for array references where the array indi-
ces are affine (i.e., linear) functions of surrounding loop
indices. In the analyzed benchmarks, the references that
were handled by the analysis represent about 90% of the
total. For the remaining references, it is assumed that they
exhibit spatial and temporal locality.

E (1, J)

3.1. Reuse analysis

The locality analysis starts by computing the reuse
properties of each loadktore instruction as proposed in
[18]. An instruction has self-temporal reuse if the same
data is referenced by at least two different iterations of the
loop. It exhibits self-spatial reuse if the same data block is
referenced by at least two different iterations. Likewise,
different instructions may access the same locations or the

no reuse self-temporal

indicates that this reference has reuse after ni itera-
tions of loop i, ni+] iterations of loop i+l and so on.

The result of this phase is a list of the different reuses
exhibited for each reference indicating the loop(s) for
which each reuse holds. For instance, the reuse analysis of
the sample code of Figure 2 will produce the following
result:

I B (I , J) I no reuse I self-spatial I

C (I+l, J)

no reuse I self-spatial

3.2. Interference analysis

Whereas the reuse analysis is almost independent of
any particular cache organization, the interference analysis
is not. For the interference analysis, we assume in this

263

Figure 2. Sample code.

paper a direct-mapped organization for the selective and
the spatial module of the dual data cache. The extension for
other organizations such as set-associative caches is possi-
ble, but it is beyond the scope of this paper.

This analysis tries to identify groups of memory
instructions that will repeatedly produce conflict misses
due to interferences among them. There are two types of
interferences: self-interferences and group-interferences.
The former are those caused by different executions of the
same instruction. The latter are produced by different
instructions that reference either the same of different
memory structures.

Interferences prevent the exploitation of the reuse
exhibited by the interfering instructions.

Traditionally the effect of interferences have been
taken into account by setting the “effective” cache size to
be a fraction of the actual cache size [13]. Th~s simple
scheme does not consider the reference characteristics at all
and may result in most cases in either an overestimation or
an underestimation of the effect of interferences. Besides,
interferences are not uniformly distributed over all memory
references and therefore, their contribution should be mea-
sured for each reference independently. The effect of mem-
ory conflicts may be very high for some programs as it has
been previously reported. Therefore, a more accurate esti-
mation is crucial for the performance of the locality analy-
sis.

3.2.1. Self-interferences. Self-interferences occur when
different data blocks referenced by the same instruction are
mapped onto the same cache location.

An affine array reference will generate sequences of
memory references at addresses separated by a constant
stride. The self-interference analysis only considers those
instructions with a stride larger than or equal to the block
size. Otherwise, the instruction exhibits self-spatial reuse
that can be exploited before any potential self-interference
happens.

If the stride is multiple of the block size, self-interfer-
ences will occur in a direct-mapped cache if the number of
blocks of the cache is lower than the length of the sequence

. The stride family defined by x is multiplied by 2
stride-famly

the set of strides o*ZXwith (T odd [9]. All the strides belong-
ing to the same family (e.g., 12=3.2 and 20=5*2’ belong
to family 2) have the same behavior from the point of view
of self-interference. Therefore, to approximate the effect of
self-interferences, the volume of cache (see section 3.3)

If the stride is not multiple of the block size, the stride
is rounded up to the next multiple of the block size and the
above scheme is applied.

consumed by a reference is multiplied by 2 stride-family

3.2.2. Cross-interferences. The cross-interference analy-
sis focus on identifying those groups of references that ref-
erence different data blocks that map onto the same cache
location for every iteration of the loop. These interferences
will inhibit completely the exploitation of any reuse exhib-
ited by the interfering instructions. This analysis is only
applied for references whose variables are allocated at
compile time, that is, those variables whose base address
and size of every dimension is statically known. We have
measured that more than 75% of dynamic references for
the benchmarks considered in this paper meet these condi-
tions. Extending the analysis to deal with other types of
interferences is an future extension of this work.

The interference analysis is applied between the reuse
and the volume phases, because its result can modify the
volume of data fetched by each loop. The analysis consists
of the following steps:

1) For each affine array reference, compute an expres-
sion that determines the effective memory address as
a function of the initial address and the loop indices:

EffAddress = IniAddress +
N

where Zi is the index variable of loop i in a nest of
depth N .
Build an interference graph for each basic block. A
conflict between two references RI and R2 is assumed
if they are mapped onto cache at a distance lower than
the block size:

lRlmod CacheSize - Rzmod CacheSizel < BZockSize

Potential conflicts are analyzed for each pair of refer-
ences and they are identified in the interference graph
by means of an edge.
Remove interferences. If two instructions with some
type of reuse interfere, their respective reuse cannot
be exploited since the block brought in cache by any
of them will be evicted immediately by the other,
before it is reused. The objective of this step is to tag
some of the interfering instructions as non-cacheable
so that the remaining instructions do not interfere and
therefore their reuse can be exploited.

264

Figure 3. Interference analysis for code of Figure 2

The algorithm works as follows: in the interference
graph, the node with the maximum number of edges
is chosen. This reference is labeled as non-cacheable,
and its edges are removed. Then, the process is
repeated until the graph has no edges.

If we apply this analysis to the example of Figure 2, the
results are shown in Figure 3. We have supposed that the
initial interference graph is the one on the left. The selected
reference is D (I , J) . Thus, this reference will be tagged as
non-cacheable and it will not be cached despite of having
reuse. However, the reuse exhibited by c (I , J) and
c (1+1, J) can be exploited.

3.3. Volume analysis

Another factor that may inhibit the exploitation of
reuse is the limited storage of cache memory. In other
words, if the amount of different data blocks that are refer-
enced between two consecutive reuses of the same block is
higher than the cache capacity, this reuse cannot be
exploited'. The resulting cache miss is usually called a
capacity miss.

This requires to determine the amount of data that is
used by each reference in each loop. This amount of data
depends on:

(a) o p e of reuse: calculated in the previous step.
(b) Loop bounds: if they are unknown at compile-time,

they are estimated using the approximation proposed
by D. Bernstein et al. [3]: each memory reference R is
represented in the following way:

M j - 1 N

R = c l + c c j . n D k = y o + c r i . I E
j = 2 k = l i = 1

where M is the number of dimensions of the variable,
Dk represents the size of dimension k, and cj repre-
sents the subexpression in dimension j .
Then, the last sum is sorted by order of decreasing
magnitude of coefficients r;. The estimation is based
on the assumption that a well behaved vector refer-
ence will access different locations for different val-

1 .This is true for LRU replacement. For other replacement policies,
this is just an approximation.

Unknown:

None: stride-family
V (R , i) = V (R , i + l) S i 2

Unitary temporal:
V(R,r) = V (R , i + l)

V (R , 1) = V(R, i+ 1) Bi

Combined temporal or spatial:

Group trailing:
V (R , 0 = VL(R, I) TR, ,where TR, i =

Bi

Figure 4. Contributed volume of a reference to a
loop. rL and rT are the coefficients of the
leading and trailing references respec-
tively and Bi is the upper bound of loop i.

ues of the loop indices appearing in the expression.
The estimated loop bounds are computed as follows:

B; = ri-l / ri, if i>l
B j = ArraySizeh,, if i=l
(a default value is used if the array size is
unknown at compile-time).

We use a simplification if the reference expression has
only one loop index. In this case the estimation is
based on the assumption that a vector subindex do not
exceed the corresponding dimension (ci<Di).

The analysis follows these steps:
Calculate for each memory reference the number of
cache blocks that are accessed in one iteration of each
loop. Figure 4 shows how the contributed volume of
a reference R to a loop i, which is denoted by V(R,i),
is computed according to the type of reuse (note that
V(R,N) = 1):

Unknown: we suppose the worst case, that is, every
access uses a new cache block.
None: every access uses a new cache block too, but
the volume is modified by the stride family in order
to take into account the effect of self-interferences.
In the case of the selective and the dual data
caches, this kind of accesses are bypassed and,
therefore, do not affect the computed volume.
Unitary temporal: the loop i accesses to the same
data set as loop i+l and thus, the volume is not
increased.

265

Unitary spatial: the volume is increased according
to the number of elements that fit in a cache block.
This number is given by the stride of the reference
sequence divided by the cache block size.
Combined temporal or spatial: the volume is com-
puted multiplying the previous volume by a factor
that represents the iterations where there is no
reuse and thus, a new cache block is needed. Each
loop with reuse contributes to the expression by
means of the percentage of the total iterations that
exploit reuse.
Group trailing: the volume is computed as the vol-
ume of its leading reference multiplied by a factor

rR, that represents the percentage of iterations
needed to exploit the group reuse with respect to
the total number of iterations of the loop. Since the
trailing and leading references only differ on the
independent term ro, this factor is computed by the
difference between independent terms divided by
the coefficient that affect the current loop index (r j)
and by the loop count (BJ .

A reuse in a loop b can be exploited if 2 V (R , b) is

not higher than the cache size. Otherwise, each
attempt to reuse a data element will result in a capac-
ity miss.

If we apply this analysis to our example of Figure 2 the
results are the following, assuming that the block size is 4
data elements and the cache has 256 blocks:

V R

Reference

B (I , J)

Contributed volume Contributed volume
to loop I to loop J

1 250
I I

C (I , J) I 1 I 250 1
C(I+l, J)

D (I , J)

E (1 , J)

Total

A (J)

Total

L I I I
0 0

1 250

1 10

4 760

1

4 76 1

Consequently, only reuse across loop I can be
exploited. Therefore, the reference A (J) will result in
repetitive cache misses even though it has spatial reuse.

After the locality analysis is done, each memory
instruction is tagged accordingly: references with no reuse
are tagged as bypass, and the rest as cacheable in the selec-
tive cache and as temporal or spatial in the dual data cache.
If the reference only can exploit temporal reuse, it is tagged
as temporal and it is tagged as spatial otherwise. An addi-
tional constraint in the dual data cache is that the references

that exhibit group locality have to be allocated to the same
module.

4. Experimental framework

The cache experiments presented in this paper have
been performed using the following SpecFP95 bench-
marks: tomcatv, swim, su2cor, hydro2d, mgrid, applu and
turb3d. All of them are written in Fortran language.

The locality analysis has been implemented using the
ICTINEO toolset [2]. ICTINEO is a source to source trans-
lator that produces a code in which each sentence has a
semantics similar to that of current machine instructions.
Currently, ICTINEO assumes an infinite number of regis-
ters and thus, the references produced by spill code are not
considered in this work. Optimizations usually applied by
current compilers are implemented in ICTINEO and are
applied to the resulting code. In this way, the resulting code
is very similar to the code generated by a production com-
piler.

Memory references are instrumented according to the
locality analysis results, and the trace obtained from the
execution of instrumented code feeds a cache simulator of
a selective and a dual data cache. A conventional cache is
also simulated for comparison. The results presented in this
paper correspond to the execution of the first 100 million of
memory instructions of each benchmark.

5. Statistics of loop nest locality

The locality analysis previously presented can be used
to obtain quantitative measures of the locality exhibited by
loop nests.

We are interested in all types of reuse exhibited by
each single memory reference. Consider for instance the
following code:

DO J=1,M
DO I=1,N

. . . A (I) . . .

. . .A(I+l). . .

. . .A(I) . . .
END DO

END DO

Our analysis will conclude that for loop I, the first and
third references exhibit group-temporal reuse. Group-tem-
poral reuse is also exhibited by the second and first refer-
ences (in this case the reuse is after one iteration). Besides,
each reference exhibits self-spatial reuse. Now, considering
loop J, we have that the three references exhibit self tempo-
ral reuse and any pair of references exhibits group-tempo-
ral reuse. Assuming that the interference analysis does not
detect any interference and that the size of vector A is not
higher than the cache capacity, the analysis will conclude

266

8 16 32 M

Line Size (bytes)

TOMCATV

8 16 31 64

Line Size (bytes)

SWIM

n 16 32 M

Line Size (bytes)

SUZCOR

1 L
8 ems

n 16 32 M

Line Size (bytes)

HYDROZD

8 16 32 M

Line Size (bytes)

MGIUD

S 16 32 61

Line Size (bytes)

APPLU

n 16 31 M

Line Size (bytes)

TURBJD

8 16 31 M

Line Size (bytes)

AVERAGE

Figure 5. Reuse statistics. The different types of reuse are denoted by: UR (unknown reuse), NR (no reuse),
ST (self-temporal), GT (group-temporal), SS (self-spatial) and GS (group-spatial).

that all the reuse can be exploited (the reuse across loop J
requires a larger volume that the reuse across loop I, but it
is still into the limits of the cache size).

Considering only the last type of reuse in program
order as proposed in [1 I], the analysis would detect only a
subset of the different reuses’. In particular, it would
observe just group spatial reuse for every memory refer-
ence. This could suggest that for the above code it is not
worthwhile to exploit temporal locality, whereas this is not
the case.

Figure 5 shows the reuse statistics for the loop nests of
the considered benchmarks. Each bar corresponds to the
dynamic frequency of a different type of reuse. Since spa-
tial reuse depends on the cache block size, different bars are
drawn for a block size ranging from 8 to 64 bytes. The fig-
ure shows the reuse characteristics of each benchmark and
the average among them. Notice that the sum of the fre-
quencies of the different types of reuse may be greater than
1 since a reference may exhibit more than one type of
reuse.

Several conclusions can be drawn from Figure 5. First,
we can see that in average, self-temporal and self-spatial

reuse are the most frequent and none of them is dominant.
Group temporal reuse is also quite common whereas group
spatial reuse is relatively infrequent. As expected, this
results differ from those presented in [111, where it was
reported for instance that self-temporal reuse was the least
frequent type of reuse2. The dominant type of reuse varies
significantly for the different benchmarks. Self-temporal is
dominant for tomcatv, applu and turb3d. Self-temporal and
group-temporal are the most frequent for mgrid. Self-spa-
tial is dominant for swim, su2cor and hydro2d. Group spa-
tial is always the least common type of reuse. Notice also
that in average, the locality analysis can determine the
reuse exhibited by about 90% of the executed instructions.
Finally, it can be observed that almost all the references
exhibit some type of reuse.

Figure 6 shows the percentage of executed instructions
that exhibit just one type of reuse, either spatial or tempo-
ral. From now on, the figures present just average statistics
over the different benchmarks. From this graph it can be
concluded that temporal reuse is the most common type of
single reuse, which may suggest the inclusion of a module

1 .In [11 1. what we call reuse is referred as to locality. However, to be
consistent with the rest of this paper, we have changed their termi-
nology according to our definition.

2.Another reason for the discrepancy is the different bench-
mark suite.

267

loo 1

Y
m

loo 1
60

a 3 40

U

B g 20

0
a a a m a d m a a a a a
z r m z c m zcrn 2 F . m

8 16 32 64

Line Size (bytes)

AVERAGE

Figure 6. Percentage of instructions with just one
type of reuse: no reuse (NR), temporal
(TR) or spatial (SR).

c - "1 L - J
+ tomcatv
--I- swim
--e su2cor
+ hydro2d
--I-- mgrid
- - - x - - applu
- -+ - - turb3d

"
64 128 256 512 1K ZK 4K 8K 16K 32K 64K 128K256K

Cache Size (bytes)

Figure 7. Exploiting temporal reuse only

specialized to exploit temporal locality as it is the case of
the dual data cache.

Figure 7 shows the percentage of temporal reuse that
can be exploited with a fully-associative cache that is used
only for references that exhibit just temporal reuse (here a
fully-associative cache is modelled by just not considering
cache interferences). In this case, the line size is 8 bytes
(one double precision float) since a larger line does not
make sense because spatial reuse is not present. From this
figure we can conclude that a 16 line (128 byte) temporal
module is enough to exploit most of the single temporal
reuse. As we have seen in Figure 6, these references repre-
sent about 35% of the total. Thus, this will be the size of the
temporal module of the dual data cache for the experiments
of the next section.

a

f- line size = 8 bytes
---t 16 bytes
+ 32 bytes
--t 64 bytes

w 20

v

64 I28 256 512 1K 2K 4K RK 16K 32K 64K12RK256K

Cache Size (bytes)
AVERAGE

Figure 8. Percentage of reuse exploited with a vary-
ing cache size without interferences.

As pointed out above, a given instruction can have
several types of reuse. Given a particular cache organiza-
tion, we define the percentage of reuse that is exploited as
the number of executed instructions that can exploit at least
one type of reuse divided by the number of executed
instructions that have at least one type of reuse.

Figure 8 shows the percentage of reuse that can be
exploited for a varying cache size with a line size ranging
from 8 to 64 bytes and neglecting the effect of cross-inter-
ferences. It can be seen that a cache size of about 1 Kbyte
with lines greater than 8 bytes can capture some reuse for
practically all the instructions of the analyzed programs
with some reuse

Since almost all the references exhibit some type of
reuse (as it has been shown in Figure 5) and this reuse can
be exploited with a relatively small volume, a locality anal-
ysis that did not include a interference analysis would
incorrectly conclude that it is worthwhile to cache almost
all memory references. The percentage of reuse that would
be exploited by this approach would be significantly lower
than expected due to interferences. This is shown in Figure
9 for a varying cache capacity and line size. For instance,
comparing the graphs of Figure 8 and Figure 9 for a 8
Kbytes capacity and 32-byte line size, it can be observed
that without interferences nearly 100% of the reuse can be
exploited but only 80% of it is actually exploited when con-
sidering the effect of interferences. For some programs
with a high conflict miss ratio, the effect of interferences is
even much more noticeable. This is the case for instance of
tomcatv. Figure 10 compares the percentage of reuse that
can be exploited with a varying cache size and a line size of
32 bytes. Whereas 1 Kbyte is enough to exploit all the reuse
if there were not interferences, when considering interfer-
ences the reuse exploited with a 8 Kbyte cache is just 28%.

268

100 -

- 80-
?5

60-
d
B .= 40-

2 w 20-

- + line size = 8 bytes
16 bytes

-t- 32 bytes

loo -

- 80-
5

60-
d

.- 40- -
2 w 20-

i + 64 bytes

Benchmark

tomcatv

64 I28 256 512 IK 2 8 4K 8K 16K 3ZK 64Kl28K256K

Cache Size (bytes)
AVERAGE

%Bypass %C-Hit %B-Miss

42.94 71.18 84.37

Figure 9. Percentage of reuse exploited with a vary-
ing cache size considering interferences.

applu
turb3d

m--.--.
r'

1.92 94.51 9.67
5.68 96.73 38.71

i

a--....d

f- Without interferences
. . I- - With interferences

64 128 256 512 IK 2K 4K 8K 16K 32K 64Kl28K256K

Cache Size (bytes)
TOMCATV

Figure 10. Percentage of reuse exploited with a vary-
ing cache size withlwithout interferences
for tomcatv.

Selective caching can play an important role to reduce
the negative effect of interferences. Applying the interfer-
ence analysis presented in section 3.2, reuse can be
exploited more effectively as it is shown in Figure 11. For
instance, a 4 Kbytes selective cache can exploit more reuse
than a 8 Kbyte conventional cache. The differences
observed in Figure 11 are much higher for programs with
many interferences (tomcam and swim).

6. Applying the locality analysis to the selec-
tive and dual data caches

In this section, we present two types of results: first the
accuracy of the locality analysis is evaluated, and then the

---t Conventional
- - I -. Selective

"
64 128 256 S I 2 IK ZK 4K RK 16K 32K 64K128K256K

Cache Size (bytes)
AVERAGE

Figure 11. Percentage of reuse exploited with a
selective cache, varying the cache size
and compared with a conventional
cache.

performance of the selective and dual data caches are com-
pared against that of a conventional cache.

For the latter, it is assumed that the cache memory is
connected to the next level of the memory hierarchy by
means of a 8 byte bus. The latency of the next memory
level is assumed to be 5 cycles plus an extra cycle per 64-
bit word. The conventional and selective caches are direct-
mapped, write-allocate and copy-back. Cache size is 8
Kbytes and block size is 32 bytes. The spatial module of the
dual data cache is like a conventional cache. The temporal
module is a very small (16 words) fully-associative buffer.
This size has been proved to be sufficient to store practi-
cally all memory references that exhibit only temporal
locality (see section 5).

Table 1 shows the results of the locality analysis
applied to the selective cache.

I swim I Si::: 1 89.09 I 82.06 I
su2cor 93.11 0.83

I hvdro2d I 0.05 I 84.44 I 69.15 I
I mgrid 1 0.04 I 97.19 I 38.62 I

Table 1. Locality results for the selective cache

The first column indicates the percentage of memory
references that are bypassed. The second column lists the
hit ratio for the references that are cached. The last column
shows the miss ratio of bypass references on a conventional

269

cache, which caches all references. The two last columns
provide an evaluation of the locality analysis. An accurate
locality analysis should result in a high hit ratio for cached
data and in a high miss ratio for non-cached data. One can
see in Table 1 that the hit ratio of cached references is near
or above 90% for most programs. On the other hand, the
miss ratio of bypassed references on a conventional cache
is high excepting some cases in which the percentage of
bypass references is very low and therefore the results are
not significant (suZcor, mgrid, applu and turb36).

Table 2 shows similar results for the locality analysis
applied to the dual data cache. The second and third col-
umns show the dynamic percentage of references labeled
respectively as temporal or spatial by the locality analy-
sis.The columns labeled as T-Hit and S-Hit list the hit ratio
in the temporal and spatial modules respectively. The rela-
tively high hit ratio of cached references prove again the
accuracy o f the locality analysis.

applu
turb3d

4.53 41.00 54.47 94.25 92.23
5.38 79.29 15.33 99.90 80.38

Table 2. Locality results for the dual data cache

Figure 12 shows a comparison among conventional,
selective and dual data caches in terms of hit ratio, average
memory access time and average number of words fetched
from the next memory level per memory reference. These
figures are divided in programs with low locality (tomcatv
and swim) and high locality (the others).

Figure 12 shows that the selective cache and the dual
data cache provide a significant improvement in the first
group of benchmarks. Compared with a conventional
cache, they reduce the average memory access time in
about 25% and the amount of data fetches in about 65%.
Notice that this latter benefit may be very effective to
reduce memory bandwidth, which is expected to be an
important limitation for future microprocessors [4]. In the
second group of benchmarks, where the memory behavior
on a conventional cache was already good (see Figure 12b),
the new cache architectures slightly improve the perfor-
mance except for one benchmark (applu) which experi-
ences a small increase in average memory access time.

The dual data cache provides very little improvement
compared with the selective cache. This lack of significant
enhancement may be due to the small number of cache

4 4 '1
da
2 i;l 0

1

" . A

w Selective cache
I Dual data cache

0 6

0 4

0 2

0 0

Figure 12. Comparison among conventional, selec-
tive and dual data caches

entries required to exploit temporal locality. Because of
that, they cause few interferences in the selective cache.

The extra bit (or two bits for the dual data cache) used
to manage the cache do not come free. The most obvious
implementation would reduce the range of the constant dis-
placement in memory instructions by a factor of two or
four. If the displacement field has 16 bits (which is typical
for current architectures) and can bz used to address 64KB
of data, in the modified instruction set we have that value
reduced to 32KB or 16KB. This may incur in extra instruc-

270

tions if the addressed data is larger. We have measured for
the benchmarks considered in this paper that only 2.41 % of
dynamic memory instructions executed need extra instruc-
tions (compared with memory instructions that has a dis-
placement of 16 bits) using 14 bits of displacement, and
1.32% using I5 bits, which confirms that the penalty intro-
duced by these additional instructions is negligible.

7. Conclusions

A static locality analysis oriented to the management
of cache memories have been presented. The analysis pre-
sented extends previous proposals with an interference
analysis step, which have been shown to be crucial for the
accuracy of the analysis in some programs where conflict
misses are dominant.

The analysis has been used to characterize the locality
exhibited by loop nests of numerical codes. It has been
shown that self-temporal and self-spatial reuse are domi-
nant, closely followed by group-temporal reuse. It has been
measured that about 35% of the references exhibit only
temporal reuse and that this reuse can be exploited with a
very small fully-associative buffer, which motivates the use
of the dual data cache.

It has also been shown that interferences cause a sig-
nificant degradation of cache memory. Interferences cause
a large increase in the volume required to exploit a given
percentage of reuse. This negative effect can be signifi-
cantly reduced by a selective caching strategy.

Applying the locality analysis to the management of a
selective cache and a dual data cache, it has been observed
that these cache architectures provide a significant reduc-
tion in average memory access time and amount of data
fetched from the next memory level, especially for pro-
grams with a poor locality, when compared with a conven-
tional cache.

Acknowledgments

This work has been supported by the Spanish Ministry
of Education under contract CICYT TIC 429/95 and by the
Catalan CIRIT under grant FI-DT/96-3.083.

References

[l] S.G. Abraham, R.S. Sugumar, B.R. Rau and R. Gupta
“Predictability of Loadstore Instruction Latencies”
in Proc. ofMICR0-26, pp. 139-152, 1993

[2] E. AyguadC, C. Barrado, A. GonzBlez, J. Labarta, D. Lbpez,
S. Moreno, D. Padua, F. Reig, Q. Riera and M. Valero
“Ictineo: a Tool for Research on ILP’
in Supercomputing ’96, Reseach Exhibit “Polaris at Work”

[lo] A.S. Huang and J.P. Shen
“A Limit Study of Local Memory Requirements Using

in Proc. of MICRO-28, pp. 71-81, Dec. 1995

“A Quantitative Analysis of Loop Nest Locality”
in Proc ofASPLOS-VU, pp. 94-104, Oct. 1996

[I21 V. Milutinovic, B. Markovic, M. Tomasevic and M. Trem-
blay
“The Split TempordSpatial Cache: Initial Performance

in Proc. of SClzzL-5, March 1996
[13] T.C. Mowry, M.S. Lam and A. Gupta

“Design and Evaluation of a Compiler Algorithm for

in Proc. of ASPLOS-y pp. 62-73, Oct. 1992

“Tolerating Latency Through Software-Controlled Data

PhD Thesis, Stanford University, CSL-TR-94-628, 1994
[15] J.M. Stone and R.P. Fitzgerald

“Storage in the PowerPC”
ZEEEMicro, vol. 15, no. 2, pp. 50-58, April 1995

“Cache Interference Phenomena”
in Proc. of SIGMETRICS 94, pp. 261-271,

[171 G. Tyson, M. Farrens, J. Matthews and A. Pleszkun
“A Modified Approach to Data Cache Management”
in Proc. ofMICR0-28, pp. 93-103, Dec. 1995

“A Data Locality Optimizing Algorithm”
in Proc. of PLDI 91, pp. 30-44, 1991

Value Reuse Profiles”

[111 K. McKinley and 0. Temam

Analysis”

Prefetching”

[14] T.C. Mowry

Prefetching”

[161 0. Temam, C. Fricker and W. Jalby

[18] M.E. Wolf and M.S. Lam

D. Bernstein, D. Cohen, A. Freund and D.E. Maydan
“Compiler Techniques for Data Prefetching on the Pow-

in Proc. of PACT95, pp. 19-26, 1995
D. Burguer, J.R. Goodman and A. Kagi
“Memory Bandwidth Limitations of Future Microproces-

in Proc. of ISCA 96, pp. 78-89, May 1996
K.K. Chan, C.C. Hay, J.R. Keller, G.P. Kurpanek, EX. Schu-
macher and J. Sheng
“Design of the HP PA 7200 CPU’
Hewlett-Packard Journal, Feb. 1996
C-H. Chi and H. Dietz
“Unified Management of Registers and Cache Using Live-

in Proc. of PLDZ 89, pp. 344-355, June 1989
A. GonzBlez, C. Aliagas and M. Valero
“A Data Cache with Multiple Caching Strategies Tuned to

in Proc. of ICs 95, pp. 338-347, 1995
A. GonzBlez, M. Valero, N. Topham and J.M. Parcerisa
“Eliminating Cache Conflict Misses Through XOR-Based

Placement Functions”
in Proc. of ICs 97, 1997
D.T. Harper I11 and D.A. Linebarger,
“A Dynamic Storage Scheme for Conflict Free Vector

in Proc of the 14th. ISCA, pp. 72-77, 1987.

erPC”

sors”

ness and Cache Bypass”

Different Types of Locality”

Access”

27 1

