
Author Retrospective for 
The Dual Data Cache 

Antonio González 
Department of Computer Architecture, UPC 
Intel Barcelona Research Center, Intel Labs 

antonio@ac.upc.edu 

Carlos Aliagas 
D. Enginyeria Informàtica I Matemàtiques 

Universitat Rovira I Virgili 
carles.aliagas@urv.net 

ABSTRACT
In this paper we present a retrospective on our paper published in 
ICS 1995, which to best of our knowledge was the first paper that 
introduced the concept of a cache memory with multiple subcaches, 
each tuned for a different type of locality. In this retrospective, we 
summarize the main ideas of the original paper and outline some of 
the later work that exploited similar ideas and could have been 
influenced by our original paper, including two actual industrial 
microprocessors.  
DOI: http://dx.doi.org/10.1145/224538.224622 

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles – Caches memories 

1. INSPIRATION and MOTIVATION
Cache memories had received a lot of attention by the research 
community prior to our work. There were many research proposals 
on better prefetching schemes, replacement algorithms, indexing 
functions, just to name a few. However, we were intrigued by the 
little use of specialization in cache architectures, as opposed to what 
was happening in other parts of the microprocessors. There was a 
trend to include more specialized units for particular program 
behaviors, but this trend was not seen in caches. For instance, the 
datapath had different parts for integer, FP and vector instructions; 
the front-end had hybrid branch predictors to use the most adequate 
one depending on the type of code. On the other hand, cache 
memories kept being composed of a monolithic unit with a smart 
but single policy to deal with all memory references. These 
observations motivated us to investigate cache architectures that had 
more than one caching policy, with mechanisms that dynamically 
choose the most adequate one for each memory reference. 

Cache memories are based on exploiting locality but there are 
different types of locality, so our plan was to investigate whether we 
could build a cache system that had multiple subcaches, each one 
specialized for a different type of locality. 

2. MAIN CONTRIBUTIONS
Among the different types of locality, the two main categories are 
spatial and temporal. Some memory references exhibit both, 
whereas others have only one of them, and some have none. The 
simplest way to exploit spatial locality is by means of very large 
cache lines, whereas the most effective way to exploit references 
with only temporal locality is by means of one-word lines. For 
memory references without locality, the most effective way to 
handle them is to bring only the required data (as opposed to a 
whole cache line) and not store it in the cache, to avoid polluting it. 
All these were the main goals of the Dual Data Cache [1]. 

The Dual Data Cache is a novel design with two subcaches, the 
Temporal Cache and the Spatial Cache. The Temporal Cache has 
very short lines to better exploit data that only exhibits temporal 
locality, whereas the Spatial Cache has longer lines to better exploit 
data with spatial locality and perhaps temporal too. 

A key part of the Dual Data Cache is the scheme that decides in 
which subcache each reference is placed. For this purpose, we 
proposed a structure called the Locality Prediction Table (LPT), 
which keeps track at runtime of the behavior of memory 
instructions and tries to estimate their locality properties. The LPT 
is based on capturing the stride exhibited by memory instructions. 
Instructions with strides smaller than the Spatial Cache line size are 
mapped into the Spatial Cache. Instructions with zero stride (e.g., 
scalar references) and instructions with strides larger than the 
Spatial Cache line size that do not interfere with themselves when 
placed in the Temporal Cache are stored in the Temporal Cache. 
Other references simply bypass the two subcaches because they 
have poor locality or they would interfere when placed in cache. 
Besides, the Spatial Cache uses a very simple next-block 
prefetching scheme, which is very effective for this type of 
references. 

In the same paper [1] we also propose a Selective Cache, which is a 
simplified version of the Dual Data Cache, in which there is only 
one subcache and the LPT that decides which references are cached 
and which ones are not. 
Some previous works related to our paper include: 

• Block algorithms [2], [3], [4] deal with large working sets.
• Bypassing [5] deals with pollution due to non-unit strides.
• Victim Cache [6], Skewed-associative Cache [7] and Column-

associative Cache [8] deal with interferences (conflict misses).
• Prefetching techniques [9], [10], [11] that are based on

dynamically identifying the stride of memory references.

3. IMPACT ON LATER WORKS
To the best of our knowledge, our paper was the first time a data 
cache with multiple caching strategies tuned to different types of 
locality was proposed. In the following years, there were multiple 
proposals that referenced our work and proposed alternative 
implementations that exploit this concept. In this section, we briefly 
summarized some of the main proposals in this area. We have 
classified them into three categories: 

• Evolutionary: They normally propose alternative
implementations that improve the behavior for some scenarios
or combine this concept with others.

• Adapted to other scenarios.
– Embedded systems.
– Multicore systems.

• Implementations in commercial processors.
– Samsung ClamRISC/32.
– Intel StrongARM SA-1110.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41778278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


3.1 Evolutionary 
3.1.1 Hardware Oriented Proposals 
A number of papers have studied the spatial/temporal locality 
characteristics of the memory references in different manners and 
proposed hardware mechanisms to exploit them.  

Moshovos et al. [12] use data dependence information to decide to 
bypass a memory instruction, to store it in the Transient Value 
Cache or in the main cache. The TVC has some similarity to the 
Temporal cache of the Dual Data Cache. 

To avoid some conflict misses in the main cache, the Annex 
cache[13] acts as an entry cache for compulsory misses  and when 
some locality is detected the data is moved to a bigger cache that 
acts as a conventional cache. It resembles a victim cache but for 
incoming data as opposed to outgoing. 

Johnson et al. focus on integer applications and propose a scheme 
that decides to do prefetching [14] or bypassing [15] of memory 
references via hardware monitoring of locality. 

Rivers et al. [16] compare several mechanisms to obtain the locality 
of memory references in the L1 cache. Some uses some bits of the 
address and others some bits of the PC to access a table to catch the 
reusability of the memory access. They use this information to place 
the data in one of the two parts of the cache. 
Kumar et al.[17] focus on spatial locality to emulate a large block 
cache via prefetching of the next predicted block. 

Ju et al.[18] claim that it is more beneficial to cache those memory 
references that are in the critical path of a program instead of the 
ones that have more reusability. 

Juurlink [19] uses a main cache with sub-blocking to emulate 
blocks of different sizes like those of the dual data cache. This 
scheme avoids to replicate data when a block has both types of 
locality. 
Qureshi et al.[20] propose a special design for the L2 cache. Like 
the Dual Data Cache, it consists of two subcaches, a Line-
Organized Cache and a Word-Organized Cache. When a line is 
evicted from the former, the used words of the lines are transferred 
to the later, and the unused words are discarded.  

3.1.2 Software Oriented Techniques 
These proposals do not require any hardware mechanism to track 
the behavior of memory references. Instead, this information is 
derived statically, during compilation, and is passed to the hardware 
through some ISA feature (e.g. a field in the memory instructions). 
The hardware uses this information to handle the memory 
instruction accordingly. 

A follow-up work of the same group that proposed the Dual Data 
Cache [21] shows that a very small full-associative cache can store 
the data that shows only temporal locality next to the main cache. 

Grun et al.[22] propose a software optimization via profiling to best 
map data in the address space of the application. This can be applied 
to any cache configuration including Dual Data Cache. 

3.1.3 Survey Papers 
There are a number of papers that survey the main proposals that 
deal with a cache organization divided in several parts to store 
different types of memory reference [23] [24] [25]. 

3.2 Adapted to Other Scenarios 
3.2.1 Embedded Systems 
For embedded systems, most of the works make a special emphasis 
in energy consumption. At the time when we proposed the Dual 

Data Cache, mid 90s, energy consumption was not yet a main 
concern. In our proposal, every memory request has to access both 
cache modules, then, it has to compute some data and store in a 
table, and in some cases, has to move or copy data form one 
subcache to the other. This obviously generates an increase in 
dynamic energy consumption.  
Hsien-hsin et al. [26] propose a three module cache system 
managed by the type of memory references: stack data go to one 
module, global data is mapped to another, and the rest go to the 
main cache, but only one module is accessed for a given memory 
reference. 

Petrov [27] and Kim [28] partition a cache memory in several 
subcaches and try to use only some of them for power reduction. 
The former uses static information to decide the partition assigned 
to each individual load/store instruction. The latter use dynamic 
information to map memory references to the various cache 
partitions. This dynamic partitioning can take into account spatial 
and temporal locality properties among others. 

3.2.2 Multicores 
Cache architectures for multiprocessors have been a hot topic in 
recent years due to the popularity of multithreaded processors, 
multicores and network on chips. Some proposals have leveraged 
the concept of different types of locality to optimize the design. 

Sahuquillo et al. [29] study a multiprocessor with a L1 cache 
organization very similar to the Dual Data Cache, which is 
composed of two modules, one for temporal locality and another for 
spatial locality. 

Memik et al. [30] investigate the Dual Data Cache in depth and 
optimize it for a multicore embedded system. They claim that the 
Dual Data Cache was not optimized for energy consumption, but 
due to its performance benefits, there is a reduction of the bus 
activity and the overall energy consumption is reduced. 
NUCA caches have been extensively studied for multicore systems. 
In general, these caches try to move data next to the core for which 
the data has higher locality. 
Kim et al. [31] explain that a D-NUCA is a cache organization that 
inherently adapts to the data locality. Chishti et al. [32] propose a 
new NUCA organization that has a flexible placement of blocks to 
try to keep them near the core that uses them. In both works data 
with poor locality is placed in farther modules, which has some 
similarity with our work on selective caching, in which we avoid 
storing in L1 blocks with poor locality. 

3.3 Real implementations 
3.3.1 Samsung 
The CalmRISC [33] uses a “cooperative cache” that resembles the 
structure of the Dual Data Cache. The TOC (Temporal Cache) is a 
direct-mapped cache with a block size of 8 bytes and the SOC 
(Spatial Cache) is a four-way associative cache with a block size of 
32 bytes. Both have a capacity of 8Kbytes. They claim that 
performance increases with respect to a conventional cache while 
maintaining similar values on energy consumption. 

3.3.2 Intel 
Intel StrongARM SA-1110 [34] uses a design similar to the Dual 
Data Cache. They use a ‘main cache’ of 8 Kbytes with a block size 
of 32 bytes and 32-way associativity and a ‘minicache’ of 512 bytes 
with write-back policy, 2-way set-associative and a block size of 32 
bytes. The placement is decided by two bits contained in the 
memory instruction. The C bit indicates to cache or bypass and the 
B bit decides to store the data in the main cache (Temporal and 



Spatial locality) or in the minicache (Spatial locality only). So the 
placement of the data is decided at compile time. This scheme is 
similar to a follow up work of our group published in 1997 [21]. 

4. CONCLUDING REMARKS
This paper has presented a retrospective on our ICS 1995 work on a 
novel cache architecture with multiple caching strategies to exploit 
different types of locality. This was the first paper that presented 
this concept to the best of our knowledge. Afterwards, a large 
number of papers have appeared which exploit this concept in a 
different manner and we have reviewed some of them in this 
retrospective. We have also briefly outlined two implementations in 
commercial microprocessors that have exploited this idea.  
In the era of abundant and transistors that is characterizing our 
current and future technology, there will be even more opportunities 
for specialization, and we believe we will see this concept more 
often applied to all components, including the memory hierarchy. 

5. ACKNOWLEDGMENTS
This work is partially supported by the Generalitat of Catalunya 
under grant 2009SGR-125 and the Spanish Ministry of Economy 
and Competitiveness under grant TIN 2010-18368. 

6. REFERENCES
[1] A. González, C. Aliagas, and M. Valero, “A data cache with 

multiple caching strategies tuned to different types of locality,” 
in 9th ICS, 1995, pp. 338–47. 

[2] M. Wolfe, “More iteration space tiling,” in 3rd ICS, 1989. 
[3] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache 

performance and optimizations of blocked algorithms,” in 
ASPLOS-IV, 1991, pp. 63–74. 

[4] S. Carr and K. Kennedy, “Compiler blockability of numerical 
algorithms,” in 6th ICS, 1992, no. April, pp. 114–24. 

[5] S. McFarling, “Cache replacement with dynamic exclusion,” 
ACM SIGARCH News, vol. 20, no. 2, pp. 191–200, 1992. 

[6] N. P. Jouppi, “Improving direct-mapped cache performance by 
the addition of a small fully-associative cache and prefetch 
buffers,” ACM SIGARCH News, vol. 18, 1990. 

[7] A. Seznec, “A case for two-way skewed-associative caches,” 
ACM SIGARCH News, vol. 21, no. 2, pp. 169–78, 1993. 

[8] A. Agarwal and S. D. Pudar, “Column-associative caches,” 
ACM SIGARCH News, vol. 21, no. 2, pp. 179–90, 1993. 

[9] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading 
scheme to reduce data access penalty,” 5th ICS, p. 176, 1991. 

[10] J. W. C. Fu, J. H. Patel, and B. L. Janssens, “Stride directed 
prefetching in scalar processors,” ACM SIGMICRO News, vol. 
23, no. 1–2, pp. 102–10, 1992. 

[11] Y. Jégou and O. Temam, “Speculative prefetching,” in 7th 
ICS, 1993, pp. 57–66. 

[12] C. F. Chen, B. Falsafi, and A. Moshovos, “Accurate and 
Complexity-Effective Spatial Pattern Prediction,” in IEEE 10th 
HPCA, 2004, pp. 276–276. 

[13] L. John and A. Subramanian, “Design and performance 
evaluation of a cache assist to implement selective caching,” in 
ICCD VLSI, 1997, pp. 510–8. 

[14] T. L. Johnson, M. C. Merten, and W. W. Hwu, “Run-time 
spatial locality detection and optimization,” IEEE/ACM Micro-
30, 1997. 

[15] T. Johnson et al., “Run-time cache bypassing,” IEEE Tr. 
Computers, vol. 48, no. 12, pp. 1338–54, 1999. 

[16] J. A. Rivers et al., “Utilizing reuse information in data cache 
management,” in 12th ICS, 1998, pp. 449–56. 

[17] S. Kumar and C. Wilkerson, “Exploiting spatial locality in data 
caches using spatial footprints,” ACM SIGARCH News, vol. 
26, no. 3, pp. 357–68, 1998. 

[18] R. D. Ju, A. R. Lebeck, and C. Wilkerson, “Locality vs. 
criticality,” ACM SIGARCH News, vol. 29, no. 2, 2001. 

[19] B. Juurlink, “Unified dual data caches,” in Euromicro DSD, 
2003, pp. 33–40. 

[20] M. K. Qureshi, M. A. Suleman, and Y. N. Patt, “Line 
Distillation: Increasing Cache Capacity by Filtering Unused 
Words in Cache Lines,” IEEE 13th HPCA, pp. 250–9, 2007. 

[21] F. J. Sanchez, A. Gonzalez, and M. Valero, “Static locality 
analysis for cache management,” in 6th. PACT, 1997. 

[22] P. Grun, N. Dutt, and A. Nicolau, “Access pattern based local 
memory customization for low power embedded systems,” in 
DATE, 2001, pp. 778–84. 

[23] J. Sahuquillo and A. Pont, “Splitting the data cache: a survey,” 
IEEE Concurrency, vol. 8, no. 3, pp. 30–5, 2000. 

[24] J. Sahuquillo, A. Pont, and V. Milutinovic, “The filter data 
cache: A tour management comparison with related split data 
cache schemes sensitive to data localities,” HPC, 2000. 

[25] Z. Sustran et al., “A survey of dual data cache systems,” in 
IEEE ICIT, 2012, pp. 450–6. 

[26] S. L. Hsien-hsin and G. Tyson, “Region-Based Caching: An 
Energy-Delay Efficient Memory Architecture for Embedded 
Processors,” Conf. Compilers Archit., 2000. 

[27] P. Petrov and A. Orailoglu, “Performance and power 
effectiveness in embedded processors - customizable 
partitioned caches,” IEEE Tr. CDICS, vol. 20, no. 11, 2001. 

[28] S. Kim et al., “Power-aware partitioned cache architectures,” 
ISLPED, pp. 64–7, 2001. 

[29] J. Sahuquillo and A. Pont, “The split data cache in 
multiprocessor systems: an initial hit ratio analysis,” in 7th 
Euromicro PDP, 1999, pp. 27–34. 

[30] G. Memik and W. H. Mangione-Smith, “Increasing power 
efficiency of multi-core network processors through data 
filtering,” CASES, p. 108, 2002. 

[31] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-
uniform cache structure for wire-delay dominated on-chip 
caches,” ACM SIGARCH News, vol. 30, no. 5, p. 211, 2002. 

[32] Z. Chishti, M. D. Powell, and T. N. Vijaykumar, “Distance 
associativity for high-performance energy-efficient non-
uniform cache architectures,” Digital Avionics Sys-22, 2003. 

[33] K. Lee et al., “The cache memory system for CalmRISC32,” in 
2nd IEEE AP-ASICs, 2000, pp. 323–6. 

[34] Intel, “Intel StrongARM SA-1110 Microprocessor. 
Developer’s Manual,” no. June, 2000. 




