912 research outputs found

    Investigation of Wireless LAN for IEC 61850 based Smart Distribution Substations

    Get PDF
    The IEC 61850 standard is receiving acceptance worldwide to deploy Ethernet Local Area Networks (LANs) for electrical substations in a smart grid environment. With the recent growth in wireless communication technologies, wireless Ethernet or Wireless LAN (WLAN), standardized in IEEE 802.11, is gaining interest in the power industry for substation automation applications, especially at the distribution level. Low Voltage (LV) / Medium Voltage (MV) distribution substations have comparatively low time-critical performance requirements. At the same time, expensive but high data-rate fiber-based Ethernet networks may not be a feasible solution for the MV/LV distribution network. Extensive work is carried out to assess wireless LAN technologies for various IEC 61850 based smart distribution substation applications: control and monitoring; automation and metering; and over-current protection. First, the investigation of wireless LANs for various smart distribution substation applications was initiated with radio noise-level measurements in total five (27.6 and 13.8 kV) substations owned by London Hydro and Hydro One in London, ON, Canada. The measured noise level from a spectrum analyzer was modeled using the Probability Distribution Function (PDF) tool in MATLAB, and parameters for these models in the 2.4 GHz band and 5.8 GHz band were obtained. Further, this measured noise models were used to simulate substation environment in OPNET (the industry-trusted communication networking simulation) tool. In addition, the efforts for developing dynamic models of WLAN-enabled IEC 61850 devices were initiated using Proto-C programming in OPNET tool. The IEC 61850 based devices, such as Protection and Control (P&C) Intelligent Electronic Devices (IEDs) and Merging Unit (MU) were developed based on the OSI-7 layer stack proposed in IEC 61850. The performance of various smart distribution substation applications was assessed in terms of average and maximum message transfer delays and throughput. The work was extended by developing hardware prototypes of WLAN enabled IEC 61850 devices in the R&D laboratory at University of Western Ontario, Canada. P&C IED, MU, Processing IED, and Echo IED were developed using industrial embedded computers over the QNX Real Time Operating System (RTOS) platform. The functions were developed using hard real-time multithreads, timers, and so on to communicate IEC 61850 application messages for analyzing WLAN performance in terms of Round Trip Time (RTT) and throughput. The laboratory was set up with WLAN-enabled IEC 61850 devices, a commercially available WLAN Access Point (AP), noise sources, and spectrum and network analyzers. Performance of various smart distribution substation applications is examined within the developed laboratory. Finally, the performance evaluation was carried out in real-world field testing at 13.8 and 27.6 kV distribution substations, by installing the devices in substation control room and switchyard. The RTT of IEC 61850 based messages and operating time of the overcurrent protection using WLAN based communication network were evaluated in the harsh environment of actual distribution substations. The important findings from the exhaustive investigation were discussed throughout this work

    Tunneling Horizontal IEC 61850 Traffic through Audio Video Bridging Streams for Flexible Microgrid Control and Protection

    Get PDF
    In this paper, it is argued that some low-level aspects of the usual IEC 61850 mapping to Ethernet are not well suited to microgrids due to their dynamic nature and geographical distribution as compared to substations. It is proposed that the integration of IEEE time-sensitive networking (TSN) concepts (which are currently implemented as audio video bridging (AVB) technologies) within an IEC 61850 / Manufacturing Message Specification framework provides a flexible and reconfigurable platform capable of overcoming such issues. A prototype test platform and bump-in-the-wire device for tunneling horizontal traffic through AVB are described. Experimental results are presented for sending IEC 61850 GOOSE (generic object oriented substation events) and SV (sampled values) messages through AVB tunnels. The obtained results verify that IEC 61850 event and sampled data may be reliably transported within the proposed framework with very low latency, even over a congested network. It is argued that since AVB streams can be flexibly configured from one or more central locations, and bandwidth reserved for their data ensuring predictability of delivery, this gives a solution which seems significantly more reliable than a pure MMS-based solution

    On reliability and performance analyses of IEC 61850 for digital SAS

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    A study of the applicability of software-defined networking in industrial networks

    Get PDF
    173 p.Las redes industriales interconectan sensores y actuadores para llevar a cabo funciones de monitorización, control y protección en diferentes entornos, tales como sistemas de transporte o sistemas de automatización industrial. Estos sistemas ciberfísicos generalmente están soportados por múltiples redes de datos, ya sean cableadas o inalámbricas, a las cuales demandan nuevas prestaciones, de forma que el control y gestión de tales redes deben estar acoplados a las condiciones del propio sistema industrial. De este modo, aparecen requisitos relacionados con la flexibilidad, mantenibilidad y adaptabilidad, al mismo tiempo que las restricciones de calidad de servicio no se vean afectadas. Sin embargo, las estrategias de control de red tradicionales generalmente no se adaptan eficientemente a entornos cada vez más dinámicos y heterogéneos.Tras definir un conjunto de requerimientos de red y analizar las limitaciones de las soluciones actuales, se deduce que un control provisto independientemente de los propios dispositivos de red añadiría flexibilidad a dichas redes. Por consiguiente, la presente tesis explora la aplicabilidad de las redes definidas por software (Software-Defined Networking, SDN) en sistemas de automatización industrial. Para llevar a cabo este enfoque, se ha tomado como caso de estudio las redes de automatización basadas en el estándar IEC 61850, el cual es ampliamente usado en el diseño de las redes de comunicaciones en sistemas de distribución de energía, tales como las subestaciones eléctricas. El estándar IEC 61850 define diferentes servicios y protocolos con altos requisitos en terminos de latencia y disponibilidad de la red, los cuales han de ser satisfechos mediante técnicas de ingeniería de tráfico. Como resultado, aprovechando la flexibilidad y programabilidad ofrecidas por las redes definidas por software, en esta tesis se propone una arquitectura de control basada en el protocolo OpenFlow que, incluyendo tecnologías de gestión y monitorización de red, permite establecer políticas de tráfico acorde a su prioridad y al estado de la red.Además, las subestaciones eléctricas son un ejemplo representativo de infraestructura crítica, que son aquellas en las que un fallo puede resultar en graves pérdidas económicas, daños físicos y materiales. De esta forma, tales sistemas deben ser extremadamente seguros y robustos, por lo que es conveniente la implementación de topologías redundantes que ofrezcan un tiempo de reacción ante fallos mínimo. Con tal objetivo, el estándar IEC 62439-3 define los protocolos Parallel Redundancy Protocol (PRP) y High-availability Seamless Redundancy (HSR), los cuales garantizan un tiempo de recuperación nulo en caso de fallo mediante la redundancia activa de datos en redes Ethernet. Sin embargo, la gestión de redes basadas en PRP y HSR es estática e inflexible, lo que, añadido a la reducción de ancho de banda debida la duplicación de datos, hace difícil un control eficiente de los recursos disponibles. En dicho sentido, esta tesis propone control de la redundancia basado en el paradigma SDN para un aprovechamiento eficiente de topologías malladas, al mismo tiempo que se garantiza la disponibilidad de las aplicaciones de control y monitorización. En particular, se discute cómo el protocolo OpenFlow permite a un controlador externo configurar múltiples caminos redundantes entre dispositivos con varias interfaces de red, así como en entornos inalámbricos. De esta forma, los servicios críticos pueden protegerse en situaciones de interferencia y movilidad.La evaluación de la idoneidad de las soluciones propuestas ha sido llevada a cabo, principalmente, mediante la emulación de diferentes topologías y tipos de tráfico. Igualmente, se ha estudiado analítica y experimentalmente cómo afecta a la latencia el poder reducir el número de saltos en las comunicaciones con respecto al uso de un árbol de expansión, así como balancear la carga en una red de nivel 2. Además, se ha realizado un análisis de la mejora de la eficiencia en el uso de los recursos de red y la robustez alcanzada con la combinación de los protocolos PRP y HSR con un control llevado a cabo mediante OpenFlow. Estos resultados muestran que el modelo SDN podría mejorar significativamente las prestaciones de una red industrial de misión crítica

    Investigating Performance and Reliability of Process Bus Networks for Digital Protective Relaying

    Get PDF
    To reduce the cost of complex and long copper wiring, as well as to achieve flexibility in signal communications, IEC 61850 part 9-2 proposes a process bus communication network between process level switchyard equipments, and bay level protection and control (P&C) Intelligent Electronic Devices (IEDs). After successful implementation of Ethernet networks for IEC 61850 standard part 8-1 (station bus) at several substations worldwide, major manufacturers are currently working on the development of interoperable products for the IEC 61850-9-2 based process bus. The major technical challenges for applying Ethernet networks at process level include: 1) the performance of time critical messages for protection applications; 2) impacts of process bus Ethernet networks on the reliability of substation protection systems. This work starts with the performance analysis in terms of time critical Sampled Value (SV) messages loss and/or delay over the IEC 61850-9-2 process bus networks of a typical substation. Unlike GOOSE, the SV message is not repeated several times, and therefore, there is no assurance that each SV message will be received from the process bus network at protection IEDs. Therefore, the detailed modeling of IEC 61850 based substation protection devices, communication protocols, and packet format is carried out using an industry-trusted simulation tool OPNET, to study and quantify number of SV loss and delay over the process bus. The impact of SV loss/delay on digital substation protection systems is evident, and recognized by several manufacturers. Therefore, a sample value estimation algorithm is developed in order to enhance the performance of digital substation protection functions by estimating the lost and delayed sampled values. The error of estimation is evaluated in detail considering several scenarios of power system relaying. The work is further carried out to investigate the possible impact of SV loss/delay on protection functions, and test the proposed SV estimation algorithm using the hardware setup. Therefore, a state-of-the-art process bus laboratory with the protection IEDs and merging unit playback simulator using industrial computers on the QNX hard-real-time platform, is developed for a typical IEC 61850-9-2 based process bus network. Moreover, the proposed SV estimation algorithm is implemented as a part of bus differential and transmission line distance protection IEDs, and it is tested using the developed experimental setup for various SV loss/delay scenarios and power system fault conditions. In addition to the performance analysis, this work also focuses on the reliability aspects of protection systems with process bus communication network. To study the impact of process bus communication on reliability indices of a substation protection function, the detailed reliability modeling and analysis is carried out for a typical substation layout. First of all, reliability analysis is done using Reliability Block Diagrams (RBD) considering various practical process bus architectures, as well as, time synchronization techniques. After obtaining important failure rates from the RBD, an extended Markov model is proposed to analyze the reliability indices of protection systems, such as, protection unavailability, abnormal unavailability, and loss of security. It is shown with the proposed Markov model that the implementation of sampled value estimation improves the reliability indices of a protection system

    Automation, Protection and Control of Substation Based on IEC 61850

    Get PDF
    Reliability of power system protection system has been a key issue in the substation operation due to the use of multi-vendor equipment of proprietary features, environmental issues, and complex fault diagnosis. Failure to address these issues could have a significant effect on the performance of the entire electricity grid. With the introduction of IEC 61850 standard, substation automation system (SAS) has significantly altered the scenario in utilities and industries as indicated in this thesis

    Communications for smart grid substation monitoring using WIMAX protocol

    Get PDF
    The SMARTGRID is a general term for a series of infrastructural changes applied to the electric transmission and distribution systems. By using the latest communication and computing technology, additional options such as Condition Monitoring can now be implemented to further improve and optimise complex electricity supply grid operation. Lifecycle optimisation of high voltage assets and other system components in the utility provide a case in point. Today Utility experts agree that application of scheduled maintenance is not the effective use of resources. To reduce maintenance expenses and unnecessary outages and repairs of equipment due to scheduled maintenance, utilities are adopting condition based approaches. Real time online monitoring of substation parameters can be achieved by retrofitting the existing substation with SMARTGRID technology. The IEC 61850 is a common protocol meant for Substation Automation Systems, designed for the purpose of establishing interoperability, one that all manufacturers of all different assets must comply with. This thesis advocates the estimation of bandwidth required for monitoring a substation after retrofitting the existing substation with smart communication technologies. This includes establishing a latest wireless communication infrastructure from the substation to the control centre and evaluating the performance modelling and simulating the physical layer of communication technologies such as WIMAX (IEEE802.16) and MICROWAVE point to point using MATLAB SIMULINK and RADIO mobile online simulation software. Also, link budget of the satellite communication for the same application is calculated. Satellite communication in this case is considered as a redundant or back up technology to ensure that the communication between entities is continuous. On performing the simulation on different environments the results prove that the selected protocols are best suited for condition monitoring. The measured Latency could be the best approximated value which complies with the current objective. However the white noise that exists in the substation has significant hazard with respect to the security of the wireless network. To compensate this constraint whole substation is hard wired by means of plastic fibre optics and the data sent to the base station located near the substation

    Toward a substation automation system based on IEC 61850

    Get PDF
    With the global trend to digitalize substation automation systems, International Electro technical Commission 61850, a communication protocol defined by the International Electrotechnical Commission, has been given much attention to ensure consistent communication and integration of substation high-voltage primary plant assets such as instrument transformers, circuit breakers and power transformers with various intelligent electronic devices into a hierarchical level. Along with this transition, equipment of primary plants in the switchyard, such as non-conventional instrument transformers, and a secondary system including merging units are expected to play critical roles due to their fast-transient response over a wide bandwidth. While a non-conventional instrument transformer has advantages when compared with the conventional one, extensive and detailed performance investigation and feasibility studies are still required for its full implementation at a large scale within utilities, industries, smart grids and digital substations. This paper is taking one step forward with respect to this aim by employing an optimized network engineering tool to evaluate the performance of an Ethernet-based network and to validate the overall process bus design requirement of a high-voltage non-conventional instrument transformer. Furthermore, the impact of communication delay on the substation automation system during peak traffic is investigated through a detailed simulation analysis. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
    corecore