2,311 research outputs found

    Learning from accidents : machine learning for safety at railway stations

    Get PDF
    In railway systems, station safety is a critical aspect of the overall structure, and yet, accidents at stations still occur. It is time to learn from these errors and improve conventional methods by utilizing the latest technology, such as machine learning (ML), to analyse accidents and enhance safety systems. ML has been employed in many fields, including engineering systems, and it interacts with us throughout our daily lives. Thus, we must consider the available technology in general and ML in particular in the context of safety in the railway industry. This paper explores the employment of the decision tree (DT) method in safety classification and the analysis of accidents at railway stations to predict the traits of passengers affected by accidents. The critical contribution of this study is the presentation of ML and an explanation of how this technique is applied for ensuring safety, utilizing automated processes, and gaining benefits from this powerful technology. To apply and explore this method, a case study has been selected that focuses on the fatalities caused by accidents at railway stations. An analysis of some of these fatal accidents as reported by the Rail Safety and Standards Board (RSSB) is performed and presented in this paper to provide a broader summary of the application of supervised ML for improving safety at railway stations. Finally, this research shows the vast potential of the innovative application of ML in safety analysis for the railway industry

    Railway Infrastructure Defects Recognition using Fine-grained Deep Convolutional Neural Networks

    Full text link
    © 2018 IEEE. Railway power supply infrastructure is one of the most important components of railway transportation. As the key step of railway maintenance system, power supply infrastructure defects recognition plays a vital role in the whole defects inspection sub-system. Traditional defects recognition task is performed manually, which is time-consuming and high-labor costing. Inspired by the great success of deep neural networks in dealing with different vision tasks, this paper presents an end-to-end deep network to solve the railway infrastructure defects detection problem. More importantly, this paper is the first work that adopts the idea of deep fine-grained classification to do railway defects detection. We propose a new bilinear deep network named Spatial Transformer And Bilinear Low-Rank (STABLR) model and apply it to railway infrastructure defects detection. The experimental results demonstrate that the proposed method outperforms both hand-craft features based machine learning methods and classic deep neural network methods

    A deep learning approach towards railway safety risk assessment

    Get PDF
    Railway stations are essential aspects of railway systems, and they play a vital role in public daily life. Various types of AI technology have been utilised in many fields to ensure the safety of people and their assets. In this paper, we propose a novel framework that uses computer vision and pattern recognition to perform risk management in railway systems in which a convolutional neural network (CNN) is applied as a supervised machine learning model to identify risks. However, risk management in railway stations is challenging because stations feature dynamic and complex conditions. Despite extensive efforts by industry associations and researchers to reduce the number of accidents and injuries in this field, such incidents still occur. The proposed model offers a beneficial method for obtaining more accurate motion data, and it detects adverse conditions as soon as possible by capturing fall, slip and trip (FST) events in the stations that represent high-risk outcomes. The framework of the presented method is generalisable to a wide range of locations and to additional types of risks

    A Survey on Audio-Video based Defect Detection through Deep Learning in Railway Maintenance

    Get PDF
    Within Artificial Intelligence, Deep Learning (DL) represents a paradigm that has been showing unprecedented performance in image and audio processing by supporting or even replacing humans in defect and anomaly detection. The Railway sector is expected to benefit from DL applications, especially in predictive maintenance applications, where smart audio and video sensors can be leveraged yet kept distinct from safety-critical functions. Such separation is crucial, as it allows for improving system dependability with no impact on its safety certification. This is further supported by the development of DL in other transportation domains, such as automotive and avionics, opening for knowledge transfer opportunities and highlighting the potential of such a paradigm in railways. In order to summarize the recent state-of-the-art while inquiring about future opportunities, this paper reviews DL approaches for the analysis of data generated by acoustic and visual sensors in railway maintenance applications that have been published until August 31st, 2021. In this paper, the current state of the research is investigated and evaluated using a structured and systematic method, in order to highlight promising approaches and successful applications, as well as to identify available datasets, current limitations, open issues, challenges, and recommendations about future research directions

    Review on Machine Learning-based Defect Detection of Shield Tunnel Lining

    Get PDF
    At present, machine learning methods are widely used in various industries for their high adaptability, optimization function, and self-learning reserve function. Besides, the world-famous cities have almost built and formed subway networks that promote economic development. This paper presents the art states of Defect detection of Shield Tunnel lining based on Machine learning (DSTM). In addition, the processing method of image data from the shield tunnel is being explored to adapt to its complex environment. Comparison and analysis are used to show the performance of the algorithms in terms of the effects of data set establishment, algorithm selection, and detection devices. Based on the analysis results, Convolutional Neural Network methods show high recognition accuracy and better adaptability to the complexity of the environment in the shield tunnel compared to traditional machine learning methods. The Support Vector Machine algorithms show high recognition performance only for small data sets. To improve detection models and increase detection accuracy, measures such as optimizing features, fusing algorithms, creating a high-quality data set, increasing the sample size, and using devices with high detection accuracy can be recommended. Finally, we analyze the challenges in the field of coupling DSTM, meanwhile, the possible development direction of DSTM is prospected

    Automated self-trained system of functional control and state detection of railway transport nodes

    Get PDF
    Аннотация - Automation of data processing of contactless diagnostics (detection) of the technical condition of the majority of nodes and aggregates of railway transport (RWT) minimizes the damage from failures of these systems in operating modes. This becomes possible due to the rapid detection of serious defects at the stage of their origin. Basically, in practice, the control of the technical condition of the nodes and aggregates of the RWT is carried out during scheduled repairs. It is not always possible to identify incipient defects. Consequently, it is not always possible to warn personnel (machinists, repairmen, etc.) of significant damage to the RWT systems until their complete failure. The difficulties of obtaining diagnostic information is that there is interdependence between the main nodes of the RWT. This means that if physical damage occurs at any of the RWT nodes, in other nodes there can also occur malfunctions.В качестве основного способа повышения эффективности обнаружения состояний узлов и агрегатов RWT мы видим направление предоставления свойства адаптивности для автоматизированной системы обработки данных из различных систем удаления бесконтактной диагностической информации. Глобальная цель может быть достигнута, в частности, за счет использования методов машинного обучения и распознавания ошибок (объектов распознавания). Для повышения эксплуатационной надежности и срока службы основных узлов и агрегатов RWT предложена соответствующая модель и алгоритм машинного обучения системы управления оператором узлов и агрегатов. Предлагается использовать нормированную меру Шеннона для энтропии и критерий информации о расстоянии Кульбака-Лейблера в качестве критерия эффективности обучения автоматизированной системы обнаружения и контроля состояния узла оператора RWT. В статье описано применение предлагаемого способа на примере системы автоматического обнаружения (АДС) состояния тягового двигателя электровоза. Приведены тестовые данные модели и алгоритма в среде MATLAB

    Automated self-trained system of functional control and state detection of railway transport nodes

    Get PDF
    Аннотация - Automation of data processing of contactless diagnostics (detection) of the technical condition of the majority of nodes and aggregates of railway transport (RWT) minimizes the damage from failures of these systems in operating modes. This becomes possible due to the rapid detection of serious defects at the stage of their origin. Basically, in practice, the control of the technical condition of the nodes and aggregates of the RWT is carried out during scheduled repairs. It is not always possible to identify incipient defects. Consequently, it is not always possible to warn personnel (machinists, repairmen, etc.) of significant damage to the RWT systems until their complete failure. The difficulties of obtaining diagnostic information is that there is interdependence between the main nodes of the RWT. This means that if physical damage occurs at any of the RWT nodes, in other nodes there can also occur malfunctions.В качестве основного способа повышения эффективности обнаружения состояний узлов и агрегатов RWT мы видим направление предоставления свойства адаптивности для автоматизированной системы обработки данных из различных систем удаления бесконтактной диагностической информации. Глобальная цель может быть достигнута, в частности, за счет использования методов машинного обучения и распознавания ошибок (объектов распознавания). Для повышения эксплуатационной надежности и срока службы основных узлов и агрегатов RWT предложена соответствующая модель и алгоритм машинного обучения системы управления оператором узлов и агрегатов. Предлагается использовать нормированную меру Шеннона для энтропии и критерий информации о расстоянии Кульбака-Лейблера в качестве критерия эффективности обучения автоматизированной системы обнаружения и контроля состояния узла оператора RWT. В статье описано применение предлагаемого способа на примере системы автоматического обнаружения (АДС) состояния тягового двигателя электровоза. Приведены тестовые данные модели и алгоритма в среде MATLAB

    Msb r‐cnn: A multi‐stage balanced defect detection network

    Get PDF
    Deep learning networks are applied for defect detection, among which Cascade R‐CNN is a multi‐stage object detection network and is state of the art in terms of accuracy and efficiency. However, it is still a challenge for Cascade R‐CNN to deal with complex and diverse defects, as the widely varied shapes of defects lead to inefficiency for the traditional convolution filter to extract features. Additionally, the imbalance in features, losses and samples cause lower accuracy. To address the above challenges, this paper proposes a multi‐stage balanced R‐CNN (MSB R‐CNN) for defect detection based on Cascade R‐CNN. Firstly, deformable convolution is adopted in different stages of the backbone network to improve its adaptability to the varying shapes of the defect. Then, the features obtained by the backbone network are refined and enhanced by the balanced feature pyramid. To overcome the imbalance of classification and regression loss, the balanced L1 loss is applied at different stages to correct it. Finally, for the sample selection, the interaction of union (IoU) balanced sampler and the online hard example mining (OHEM) sampler are combined at different stages to make the sampling more reasonable, which can bring a better accuracy and convergence effect to the model. The results of our experiments on the DAGM2007 dataset has shown that our network (MSB R‐CNN) can achieve a mean average precision (mAP) of 67.5%, an increase of 1.5% mAP, compared to Cascade R‐CNN

    Road Condition Estimation with Data Mining Methods using Vehicle Based Sensors

    Get PDF
    The work provides novel methods to process inertial sensor and acoustic sensor data for road condition estimation and monitoring with application in vehicles, which serve as sensor platforms. Furthermore, methods are introduced to combine the results from various vehicles for a more reliable estimation
    corecore