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Abstract: Deep learning networks are applied for defect detection, among which Cascade R-CNN
is a multi-stage object detection network and is state of the art in terms of accuracy and efficiency.
However, it is still a challenge for Cascade R-CNN to deal with complex and diverse defects, as the
widely varied shapes of defects lead to inefficiency for the traditional convolution filter to extract
features. Additionally, the imbalance in features, losses and samples cause lower accuracy. To address
the above challenges, this paper proposes a multi-stage balanced R-CNN (MSB R-CNN) for defect
detection based on Cascade R-CNN. Firstly, deformable convolution is adopted in different stages
of the backbone network to improve its adaptability to the varying shapes of the defect. Then,
the features obtained by the backbone network are refined and enhanced by the balanced feature
pyramid. To overcome the imbalance of classification and regression loss, the balanced L1 loss is
applied at different stages to correct it. Finally, for the sample selection, the interaction of union (IoU)
balanced sampler and the online hard example mining (OHEM) sampler are combined at different
stages to make the sampling more reasonable, which can bring a better accuracy and convergence
effect to the model. The results of our experiments on the DAGM2007 dataset has shown that
our network (MSB R-CNN) can achieve a mean average precision (mAP) of 67.5%, an increase of
1.5% mAP, compared to Cascade R-CNN.

Keywords: multi-stage balanced network; defect detection; convolutional neural network

1. Introduction

Defect detection [1], an important task in computer vision, has attracted widespread
attention in recent years. Defect detection can be applied in a wide range of fields, such as
parts manufacturing [2], book printing [3], medical health [4], traffic safety [5], building
maintenance [6], etc. In general, defect detection faces challenges of imbalances in different
levels of features and multiple loss functions in an object detection network. A balanced
network often encourages a better performance of computer vision tasks. For example,
Cai et al. [7] proposed Cascade R-CNN to address the interaction of union (IoU) imbalance,
and achieved state-of-the-art performance in object detection tasks [8] by designing a cas-
caded network structure and a gradually increased IoU threshold at each stage. However,
the performance is very limited when Cascade R-CNN is directly applied in a defect detec-
tion task. For example, compared with Grid R-CNN [9], Cascade R-CNN achieved lower
accuracy (66.0% mAP) than Grid R-CNN (66.5% mAP) on the DAGM2007 [10] dataset but
with more parameters and computational costs.

The main reason is that defect detection tasks also require balanced features to achieve
higher accuracy. The imbalance problem [11] and the shape features are major factors
limiting the accuracy of Cascade R-CNN. Specifically, the defect detection task needs to
extract the shape features of the defect and requires feature balance, object balance, and loss
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balance. Deformable convolution [12] calculates the offsets on the standard convolution to
extract the shape features of defects, which can improve the detection accuracy. However,
it also increases the complexity and computational costs of the model. Moreover, too many
deformable convolutions are not conducive to network learning and will lead to a decrease
in accuracy. So, the deformable convolution module needs to be carefully integrated into
the backbone network. Cascade R-CNN uses feature pyramid networks (FPN) [13] to
integrate the features from the backbone network. This also implies that the effects of
high-level and low-level features in the first and last layers are different. To solve this
problem, Libra R-CNN [14] uses the same deep integration to balance semantic features
and enhance multi-level features.

In view of the above challenges, we propose a multi-stage balanced R-CNN (MSB
R-CNN) to introduce a feature balanced module to Cascade R-CNN. Firstly, motivated by
the fact that the gradients of the outliers still have a negative effect on learning the inliers
with smaller gradients in smooth L1 loss [15], we use balanced L1 loss [14] to increase the
gradient contribution of the inliers to the total loss value. By applying balanced L1 loss in
each stage, the imbalance of loss can be effectively alleviated. Next, we reasonably combine
the advantages of OHEM and IoU balance sampling and create a sample screening strategy
to address the sample class imbalance problem. According to the statistics in Focal loss [16],
simple samples containing less information are usually negative, and the ratio of hard
samples that contain useful information varies dramatically. OHEM [17] can sort the loss
of the sample, but it is also susceptible to outliers. The IoU balanced sampling [14] takes
into account the relationship between IoU and sample difficulty, and can perform balanced
sampling more efficiently. The sample difficulty represents how difficult it is for the sample
to be detected.

The main contributions of this paper can be summarized as follows:

1. We reasonably add deformable convolution modules to the backbone network to
improve its ability of shape modeling. Therefore, the network can make more accurate
predictions of defects that have large varying shapes.

2. We present a balanced network learning strategy for defect detection to improve the
convergence effect of the network. For the feature imbalance, we adopt a balanced
feature fusion pyramid to make high-level and low-level features more balanced. For
the imbalance in regression loss, we apply balanced L1 loss in appropriate stages
to better balance the learning benefits between different tasks. For sample class
imbalance, we set the sampling method according to the stage to be more in line with
the sample distribution characteristics.

3. Our MSB R-CNN network shows better performance on defect detection tasks com-
pared to RetinaNet, Cascade R-CNN, and Libra R-CNN. MSB R-CNN can achieve a
mean average precision (mAP) of 67.5% on the DAGM2007 dataset, an improvement
of 1.5% mAP compared to Cascade R-CNN.

The remaining parts of this paper are organized as follows: related works are briefly
reviewed in Section 2; the proposed method is introduced in Section 3; Section 4 provides
the details of the experimental results and analysis; and finally, Section 5 concludes the
paper with prospective future work.

2. Introductions of Related Works

In this section, we review the existing works for object detection and introduce two im-
portant methods for the accuracy improvement of defect detection: deformable convolution
and feature balances.

2.1. Model Architectures for Object Detection

Recently, object detection models have become popularized by both two-stage and
single-stage detectors. A two-stage detector is firstly proposed in R-CNN [18], which
produced a significant performance improvement on VOC2007 [19]. SPPNet [20] introduces
the spatial pyramid pool (SPP) layer, which allows CNN [21] to generate fixed-length
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representations. Then, Fast R-CNN [15] allows simultaneous training of the detector and
the bounding box regressor under the same network configuration, which successfully
integrates the advantages of R-CNN and SPPNet. Faster R-CNN [22] proposes a region
proposal network to improve the efficiency of detectors and allow the detectors to be
trained end-to-end. Following the Faster R-CNN, lots of methods are proposed, such as
FPN [13], Cascade R-CNN [7], HTC [23] and Mask R-CNN [24]. On the other hand, single-
stage detectors are simpler and faster, and they are popularized by Single Shot MultiBox
Detector (SSD) [25] and YOLO [26,27]. RetinaNet [28] introduces a loss function called
Focal loss for the imbalance of foreground and background categories in the model, which
is used to reduce the weight of a large number of easy negative samples in the standard
cross-entropy, thereby making the model more focused on the hard negative samples.
Other methods focus on cascade procedures [29], duplicate removal [30], multi-scales
features [31], adversarial learning and more contextual information fusion [32].

2.2. Deformable Convolution

Dai et al. [12] first propose deformable convolution, in which additional offsets are
learned to allow the network to obtain information further from its regular local neighbor-
hood, to improve the capability of regular convolution. Zhu et al. [33] present an improved
Deformable ConvNets, which gives the network the ability to focus on regions of interests
in the image through increased modeling power and better training. Specifically, the
modeling power is enhanced by integrating a modulation mechanism to expand the scope
of the deformation, and a more comprehensive convolution mechanism into the network.
The authors also guide the network training via a feature mimicking scheme that helps the
network to learn features that reflect the object focus and classification power of R-CNN
features, to effectively use the enhanced capability.

2.3. Imbalance Problems in Detection

Oksuz et al. [11] define the problem of imbalance as the occurrence of a distributional
bias regarding an input property in the object detection training pipeline. They identify
eight different imbalance problems, which can be grouped into four main categories: class
imbalance, scale imbalance, spatial imbalance and objective imbalance. Class imbalance can
occur in two different ways from the object detection perspective: foreground–background
imbalance and foreground–foreground imbalance. OHEM [17] and prime sample atten-
tion (PISA) [34] are two representative methods for solving the class imbalance. OHEM
considers the sample loss value to select positive samples and negative samples in a more
balanced manner. PISA proposes importance-based sample reweighting, which assigns
weights to positive and negative examples based on the IoU of the samples. The scale im-
balance is caused by the unbalanced distribution between the object scale and the marked
bounding box, and the general solution is to use a balanced feature pyramid. Feature
pyramid networks [13], multi-scale contextual features (MSCF) [35], scale aware trident
networks [36], and path aggregation network (PANet) [37] are all proposed for solving the
scale imbalance. Spatial imbalance can be divided into three types: imbalance in regression
loss, IoU distribution imbalance and object location imbalance. Smooth L1 loss, Balanced L1
loss, Kullback–Leibler loss (KL loss) [38], hierarchical shot detector (HSD) [39], and Cascade
R-CNN are all proposed for tackling the spatial imbalance. Objective imbalance appears in
the process of minimizing the objective loss function during training. Classification-aware
regression loss (CARL) [35] and GIoU Loss [40] are proposed for solving the objective
imbalance. CARL is a more prominent approach combining classification and regression
tasks. GIoU Loss is in the [−1, 1] range and used together with cross-entropy loss.

3. The Proposed MSB R-CNN

MSB R-CNN is an object detection network designed for defect detection. It can better
balance the learning of the network and effectively improve the detection accuracy. The
network includes five parts, which can be seen in Figure 1: backbone network, feature
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transformation pyramid, multi-stage detection head, the loss functions, and sampling
strategies of the training process. The following subsections will focus on the deformable
convolution in the backbone network, the balanced feature pyramid, the staged balanced
L1 loss, and the sample selection strategy.

Figure 1. Multi-stage balanced R-CNN (MSB R-CNN) network framework. The backbone of the network incorporates
deformable convolution to balance high-level and low-level features. The balanced features then pass through the three-stage
detector. The loss balancing is carried out in each stage where different sampling methods are adopted at different stages.

3.1. Deformable Convolution for Defect Detection

Convolutional neural networks have an inherent deficiency in the modeling of large
and unknown shape transformations. This deficiency comes from the geometric structure
of the convolution module: the convolution unit samples the fixed position of the input
feature map, and the pooling layer is performed at a fixed ratio. Even the area of interest
pooling segments the area of interest into fixed areas. These characteristics are influential, as
the shapes of the defect object in the defect detection may have great differences in shapes.
Deformable convolution and deformable region of interest pooling can effectively improve
the ability of the modeling defect deformation. Figure 2 shows that the appropriate addition
of variable-shape convolution to the backbone convolutional network can improve the
adaptability of the network for different shapes of defects. The integration of deformable
convolution to the backbone network not only effectively improves the extraction of defect
shape features, but also regulates the number of parameters.

3.2. Feature Balance Transformation

The high-level features extracted by the backbone network have more semantic mean-
ing, while the low-level features have more descriptive content. Both level features have a
huge impact on defect detection. Therefore, the method of integrating the high-level and
low-level characteristics of defects in MSB R-CNN is particularly important. The feature
integration through horizontal connections in FPN [13] and PANet [37] promotes the de-
velopment of defect detection. However, the integrated feature maps are not balanced
from each resolution. Different from using horizontal connections to integrate multi-level
features, the key to feature balance is to use the same deep integration of each resolution
to balance semantic features to enhance multi-level features [14]. It consists of four steps:
scaling, integration, refinement and enhancement, as shown in Figure 3. The feature with
a l-level resolution is denoted as Cl . In Figure 3, C2 has the largest resolution. In order
to integrate multi-level features and retain their semantic hierarchical structure, we first
reshape the multi-level features {C2, C3, C4, C5} to an intermediate size, i.e., the same size as
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C4, with interpolation and maximum pooling. Once the features are rescaled, the balanced
semantic features are obtained by the following average formula:

Cbalanced =
1
L

lmax

∑
l=lmin

Cl (1)

where L denotes the number of multi-level features, and lmin and lmax are denoted as
the lowest and highest levels indicators involved. Then, we further refine the balanced
semantic features by an embedded Gaussian non-local attention module [41], to make the
features more discriminative. After refinement, the features are restored to the original
feature map sizes through up-sampling or down-sampling. Then, each one passes through
a 3 × 3 convolution for enhancement. Using this method, features from low-level to
high-level are aggregated at the same time. The output {P2, P3, P4, P5} is used for object
detection in the same pipeline as in FPN. Therefore, by feeding these balanced features to
the multi-stage detector, the performance of defect detection can be improved.

Figure 2. Regular convolution (left) and deformable convolution (right) for defect images. Unlike
regular convolution, which uses a fixed-shape convolution kernel, deformable convolution calculates
offsets and the orientation for sampling points, which makes the shape of the convolution kernel
variable, thereby improving the ability to extract shape features.

Figure 3. Pipeline and heat map visualization of balanced feature pyramid. C1–C5 represent different
levels of feature maps output from the backbone network and C2–C5 are used for feature integration.
With multi-scale feature integration and refinement, we obtain the balanced feature pyramid. Finally,
identity connect is performed, that is, adding the original features to the output.
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3.3. Staged Balanced Loss

A defect detector usually needs to perform the classification task and localization task;
hence, there is a tradeoff to balance the classification loss and location loss during training
process. If the two losses are not balanced, the training effect will be affected. There are
also imbalances between simple samples and hard samples. The difficulty of the sample
represents the difficulty of the sample to be detected, and usually the difficulty of small
targets is greater than that of large targets. If they are not properly balanced, the small
gradients produced by simple samples may be submerged by the large gradients produced
by hard samples, which will limit the ability for further refinement. Therefore, the losses
and samples both need to be rebalanced to achieve the best convergence.

Let us first review the commonly used smooth L1 loss. Smooth L1 loss is defined
as follows:

L1smooth(x̂) =
{

0.5x̂2, i f |x̂| < 1
|x̂| − 0.5, otherwise

(2)

where x̂ is the absolute difference between the predicted value and the true value of the
target bounding box coordinate. However, the gradients of the outliers still have a negative
effect on learning the inliers with smaller gradients in smooth L1 loss. To solve this problem,
balanced L1 loss [14] considers the gradient balance across inliers and outliers, and clips
the large gradients produced by outliers. After adding gradient restriction to the derivative
equation of smooth L1 loss, the gradient formulation of balanced L1 loss can be defined
as follows:

∂L1balanced
∂x̂

=

{
α ln(b|x̂|+ 1), i f |x̂| < 1
γ, otherwise

(3)

where α represents the contribution of inliers, and γ is the upper bound of the error of
outliers to balance the tasks. According to Equation (3), L1balanced can be obtained as
follows [14]:

L1balanced(x̂) =
{

α
b (b|x̂|+ 1) ln(b|x̂|+ 1)− α|x̂|, i f |x̂| < 1
γ|x̂|+ C, otherwise

(4)

where b is used to ensure L1balanced(x̂) is continuous at x̂ = 1, C is a constant, and the
condition between the parameters is the following:

α ln(b + 1) = γ (5)

The effect of the loss function in different detection stages of MSB R-CNN is different.
The experimental results seem to indicate that applying the balanced L1 loss to the first
and second stages can achieve the best results.

3.4. Sample Screening Strategy

In the process of model training, a lot of regional suggestions are proposed, and
the positive and negative samples are distinguished according to the IoU of the original
marked bounding box. Assuming that the threshold is set to 0.5, the samples with the
IoU in the interval of [0.5, 1] are marked as positive samples, and those with IoU in the
interval of [0, 0.5) are marked as negative samples. Most of the regional suggestions are
negative samples, which cause a large number of meaningless negative samples to cover
a few meaningful positive samples, especially in the multi-stage process in MSB R-CNN.
Therefore, the method of constructing the sampling mechanism has a great impact on the
training and accuracy of the model.

If there are no objects identified in the regional proposals, all these proposals are
considered as the background. Then, the classifier can easily and correctly classify them
into the background. The following case is also called a simple sample, that is, the IoU
of the regional proposal and the original marked box is between [0, 0.1]. In this case, the
object has few features and is easy to be classified. If the IoU of the regional proposal and
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the original marker box is close to but less than 0.5, such as 0.4, the regional proposal is
considered a negative sample. However, this sample is closer to the original marked box.
In this case, this sample becomes a hard sample. Another intuitive indicator to distinguish
simple samples from hard samples is the loss value of the sample. The larger the loss value
is, the more difficult the sample is to be detected correctly.

In view of this, OHEM and Focal loss are the main methods to solve the sample imbal-
ance problem. OHEM automatically selects hard samples according to their confidence.
This process significantly increases the use of memory and computational costs. In addition,
there are still noisy samples in OHEM and during the sampling process, so it does not
work well in some cases. Focal loss uses an elegant loss function to solve the problem of
the imbalance of additional foreground categories in the single-stage detector. However,
this brings little improvement on multi-stage detectors, due to the differences between
multiple types of imbalances.

In order to overcome the disadvantages of OHEM and Focal loss, the IoU balanced
sampling [35] takes into account the relationship between IoU and sample difficulty. The
public statistical data [14] show that more than 60% of the hard samples have IoU values
that are greater than 0.05, compared to the original marked box. However, only 30% of
the samples selected by the random sampler have IoU values greater than 0.05. This also
indicates that random sampler can easily lead to unbalanced samples with many hard
samples being buried in a large number of simple samples. Based on this observation, the
IoU balance sampling strategy is applied for mining hard samples.

4. Experimental Results and Analysis

Data sets: This paper conducts training and testing on the DAGM2007 data set [10]
and GC10 data set [42].

• The DAGM2007 data set is used to detect miscellaneous defects on various background
textures. It contains 10 categories of different kinds of defects. Both training set and
test set consist of 1000 images with one labeled defect each on the background texture.
The class distribution of samples in DAGM2007 training set is shown in Figure 4a.

• The GC10 data set contains 10 categories of different types of steel surface defects, for
steel defect detection. It consists of 2000 images in the training set and 500 images in
the test set. Each image has multiple labeled defects. The class distribution of samples
in the GC10 training set is shown in Figure 4b.

Figure 4. The class distribution of samples in the training set of (a) DAGM2007 and (b) GC10.
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Training settings: The optimizer used in training is Stochastic Gradient Descent (SGD);
the basic learning rate is 0.02; the momentum factor is 0.9; and the weight decay factor is set
to 0.0001. In the initial 500 iterations, a linear warm-up is used to increase the learning rate
from 0.0001 to the basic learning rate. A total of 40 epochs are trained, and a multi-stage
learning rate decay strategy is adopted, which reduces the learning rate to 10% at 16 and
38 epochs, respectively. Then, we save the model, test the results in each period, and
calculate its mAP and the AP of each AR of targets. The stop condition is either the loss
stops decreasing or the validation accuracy reaching the peak, whichever condition comes
first. The above settings are directly taken from mmdetection [43]. All models use the same
training settings in both databases.

4.1. Experiments on DAGM2007

Table 1 shows the overall defect detection performances of MSB R-CNN compared
with the experimental results of the previous mainstream single-stage detection algorithms
SSD, RetainNet, and multi-stage detection algorithms, Faster R-CNN, Grid R-CNN, Cas-
cade R-CNN and Libra R-CNN. Our network obtains the highest accuracy of 67.5%, which
is 1.5% higher than that of Cascade R-CNN. On the AP50 value, although we do not achieve
the best results, the detection accuracy reaches 98.9%, which is above the expectation of the
industrial application (usually above 95% is acceptable for industrial applications). The
mAP of MSB R-CNN on the AP75 project achieves the best accuracy of 79.8%. In the defect
detection of medium and large defects, the mAP of our network reaches the best accuracy
of 65.8% and 69%, indicating that MSB R-CNN has a better detection effect for medium
and large objects but less so for detecting small objects.

Table 1. Detection accuracy in DAGM2007 (%). mAP is AP (IoU = 0.5:0.95, AR = all), AP50 is AP (IoU = 0.5, AR = all),
AP75 is AP (IoU = 0.75, AR = all), APS is AP (IoU = 0.5:0.95, AR = S), APM is AP (IoU = 0.5:0.95, AR = M), and APL is AP
(IoU = 0.5:0.95, AR = L). AR is the average recall for objects, AR = S is AR for small objects (area < 322), AR = M is AR for
medium objects (322 < area < 962), and AR = L is AR for large objects (area > 962).

AP Faster R-CNN [22] Grid R-CNN [9] RetinaNet [28] Cascade
R-CNN [7] SSD [25] Libra

R-CNN [14] Ours

mAP 64.6 66.5 65.2 66.0 63.2 66.7 67.5
AP50 99.1 98.7 99.4 99.2 98.6 98.9 98.9
AP75 74.5 78.9 75.5 77.6 73.3 77.7 79.8
APS 54.7 56.7 57.1 60.7 55.9 61.6 60.1
APM 63.2 65.8 63.5 64.7 62.8 65.6 65.8
APL 66.0 67.4 65.2 66.8 65.5 66.1 69.0

Next, we analyze the detection effect of each category. Table 2 compares the results
of each class of defect detection with the state of the art one-stage detection algorithms,
i.e., SSD, RetainNet and multi-stage detection algorithms, Faster R-CNN, Grid R-CNN,
Cascade R-CNN and Libra R-CNN. In the accuracy of the second, fifth, seventh, and tenth
classes, MSB R-CNN achieves the best result. Especially in the tenth category, the mAP of
76.7% achieved by our network significantly outperforms other algorithms. It can also be
seen from Figure 5 that these are larger targets. The third type of object is relatively small,
and the edges are more complex. The results achieved by our algorithm are much better
than those of others.

4.2. Experiments on GC10

In order to verify the performance of the model in data sets of varying complexity, we
also evaluate our model and other state-of-the-art models on the GC10 data set, which has
much greater complexity than DAGM2007. Since the number of samples with a small area
is few in GC10 data set, we ignore the APS. As shown in Table 3, our model MSB R-CNN
obtains the highest mAP of 34.0%, compared to Faster R-CNN, Grid R-CNN, RetinaNet,
Cascade R-CNN, SSD and Libra R-CNN. Compared with Cascade R-CNN, the mAP of MSB
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R-CNN is 0.6% higher. MSB R-CNN achieves the best accuracy both in AP50 and AP75.
However, there is no advantage for MSB R-CNN on APM. Table 4 shows the comparison
of accuracy in each category. MSB R-CNN achieves the best results in the second, fourth,
fifth, sixth, eighth, and tenth categories. The visualization of the MSB R-CNN prediction
results is shown in Figure 6.

Table 2. Detection accuracy (%) in each category (mAP).

Class Faster R-CNN
[22] Grid R-CNN [9] RetinaNet

[28]
Cascade

R-CNN [7] SSD [25] Libra
R-CNN [14] Ours

Class1 60.5 63.2 62.5 63.1 52.6 63.5 62.4
Class2 64.4 68.3 66.9 66.2 67.3 70.1 70.8
Class3 56.5 55.0 56.0 56.4 56.1 57.0 54.3
Class4 69.2 72.2 70.2 66.5 68.5 68.3 70.9
Class5 69.6 73.6 72.8 72.0 71.7 71.5 74.2
Class6 70.6 70.7 71.7 75.4 65.8 73.9 75.1
Class7 58.8 63.4 60.9 62.8 59.5 62.8 65.1
Class8 51.9 54.9 53.7 53.0 48.2 54.9 53.9
Class9 72.2 70.7 69.8 69.8 69.7 71.0 71.2

Class10 72.0 74.1 71.9 73.4 72.6 74.7 76.7

Figure 5. Examples of detection result on DAGM2007 data set.

Table 3. Detection accuracy in GC10 (%).

AP Faster R-CNN
[22] Grid R-CNN [9] RetinaNet [28] Cascade

R-CNN [7] SSD [25] Libra R-CNN
[14] Ours

mAP 29.7 27.9 25.6 33.4 24.7 29.1 34.0
AP50 64.5 61.4 53.9 66.6 55.9 62.3 67.2
AP75 25.8 20.3 21.3 30.7 19.7 23.1 32.7
APS - - - - - - -
APM 18.2 18.2 16.7 18.3 14.7 17.5 17.5
APL 29.3 27.1 24.2 32.5 23.0 28.4 34.0

4.3. Ablation Study

All ablation experiments are based on the DAGM2007 data set. We train the models
on the training subset and test on the test subset.

4.3.1. Effectiveness of Our Method

We perform ablation experiments to prove the influence of each module on the ac-
curacy of MSB R-CNN. Table 5 summarizes the experimental results of multiple sets of
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ablation experiments, where the baseline is Cascade R-CNN, dcn represents a deformable
convolutional network, bf represents feature balance, bl represents balanced loss, and
sam represents a combination of OHEM and IoU balanced sampling. The baseline’s mAP
is 66.0% After adding deformable convolution, the mAP of our network is increased to
66.5%, and the mAP for detection of small defects reaches the highest of 62.6%. With the
deformable convolution, the feature balance is performed, and the mAP of the network
reaches 66.7%. After the feature is balanced, the loss is also balanced at a specific stage, and
the mAP of the network reaches 67.0%. Finally, on the basis of the previous network, the
sampling is selected in stages for IoU balanced sampling and OHEM sampling, making the
network’s mAP reaches a maximum of 67.5%, which is 1.5% higher than the benchmark.
Moreover, the ability to detect large-scale defects reaches the highest level.

Table 4. Detection accuracy (%) in each category (mAP).

Class Faster R-CNN
[22]

Grid R-CNN
[9] RetinaNet [28] Cascade

R-CNN [7] SSD [25] Libra
R-CNN [14] Ours

Crease 7.0 9.1 3.0 13.3 5.0 4.2 9.6
Crescent_gap 59.4 54.9 54.5 61.3 47.7 60.3 62.2

Inclusion 10.0 8.6 7.1 9.7 4.4 9.9 9.4
Oil_spot 25.4 22.2 22.9 24.2 16.5 22.6 26.6
Punching 54.0 54.3 53.5 54.2 52.0 54.5 54.8
Rolled_pit 16.0 16.5 2.6 15.9 6.0 17.7 19.6
Silk_spot 23.1 21.7 22.4 25.0 15.6 21.8 22.9

Waist_folding 34.6 35.5 30.6 36.2 22.0 30.8 41.8
Water_spot 41.2 40.5 40.1 44.0 33.5 41.5 42.9

Welding_line 26.6 16.0 22.2 49.9 44.7 27.9 50.4

Figure 6. Examples of detection result on GC10 data set.

Table 5. Results of ablation experiments (%).

AP Baseline Baseline + dcn Baseline + dcn + bf Baseline + dcn + bf + bl Baseline + dcn + bf + bl + sam

mAP 66.0 66.5 66.7 67.0 67.5
AP50 99.2 99.1 98.7 98.6 98.9
AP75 77.6 77.8 79.0 78.6 79.8
APS 60.7 62.6 59.1 59.7 60.1
APM 64.7 65.4 64.9 66.0 65.8
APL 66.8 66.4 68.3 65.5 69.0

4.3.2. Impact of Fusion Deformable Convolution Parameters

It can be seen from Table 6 that adding deformable convolution in the first and third
stages can obtain the highest mAP of 66.6%; the number of parameters is also increased by
0.33 M, compared to the benchmark. The more deformable convolutions are added, the
larger the number of the parameters. The feature map comparison between deformable
convolution and standard convolution is given in Figure 7.
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Table 6. Impact of deformable convolution being added at different stages (check symbol
√

means
deformable convolution being applied).

Experiment Stage 1 Stage 2 Stage 3 mAP@IoU = 0.5:0.95 (%) Params(M)

1 66.0 68.96
2

√
66.5 69.04

3
√

66.4 69.04
4

√
66.5 69.04

5
√ √

66.3 69.29
6

√ √
66.6 69.29

7
√ √

66.1 69.29
8

√ √ √
66.5 69.54

Figure 7. Feature comparison of deformable convolution and standard convolution. Judging from the features of the four
stages extracted from the backbone network, the deformable convolution fits the shape of the defect better than the original
convolution in the last stage.

4.3.3. Impact of Feature Balance Transformation

As seen from Table 7, although the value of mAP does not increase much after feature
balancing, the APS is increased from 60.7% to 63.0%. This shows that feature imbalance
mainly occurs in small targets. At the same time, the detection accuracy of each size is
improved to different degrees. Figure 8 shows that the balanced feature has a higher degree
of recognition.

Table 7. Feature balance result (bf means feature balance).

AP Baseline Baseline + bf

mAP 66.0 66.3
AP50 99.2 99.0
AP75 77.6 77.9
APS 60.7 63.0
APM 64.7 65.1
APL 66.8 67.8

4.3.4. Impact of Staged Loss Balance Parameters

Balanced L1 loss balances the contribution of difficult and simple samples to make the
network converge better. It can be seen from Table 8 that applying balanced L1 loss in all
three stages does not promise better results, as mAP drops to 65.9%. When the balanced L1
loss is applied in the first and second stages, the detection accuracy is the highest where
the mAP reaches 66.7%. Therefore, we apply balanced L1 loss in the first and second stages
of MSB R-CNN to achieve better results.
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Figure 8. Comparison of balanced feature and FPN feature. The features after feature balance is strengthened, and the
defect area is more obvious.

Table 8. Experimental results of adding balanced L1 loss function at different stages (check symbol√
means applying balanced L1 loss function).

Experiment Stage 1 Stage 2 Stage 3 mAP@IoU = 0.5:0.95 (%)

1 66.0
2

√
66.5

3
√

66.5
4

√
66.2

5
√ √

66.5
6

√ √
66.6

7
√ √

66.7
8

√ √ √
65.9

4.3.5. Impact of Construction Sample Screening Method

First, we analyze the impact of OHEM sampling on defect detection. The experimental
results are shown in Table 9. Applying OHEM at every stage is not the most effective. That
is because OHEM is used to sort the recommended regions with larger losses, and then
choose to learn the recommended regions with larger losses. The influence of noise on
the recommended regions is still unavoidable. Therefore, adding OHEM in specific stages
can improve detection performance, but adding it in all stages will result in a decrease in
detection accuracy. Moreover, Table 9 also shows that setting OHEM in one stage is usually
better than setting OHEM in multiple stages. So, we apply OHEM in the first stage of
MSB R-CNN.

Table 9. Experimental results of adding OHEM sampler in different stages (check symbol
√

indicates
OHEM is applied).

Experiment Stage 1 Stage 2 Stage 3 mAP@IoU = 0.5:0.95 (%)

1 66.0
2

√
66.7

3
√

66.5
4

√
66.2

5
√ √

66.5
6

√ √
66.7

7
√ √

66.1
8

√ √ √
66.4

Next, we analyze the impact of IoU balanced sampling on defect detection. Table 10
shows that IoU balanced sampling can effectively improve the accuracy of the network.
The mAP of IoU balanced sampling in the first and third stages and IoU balanced sampling
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in the first and second stages is 66.6%. Using IoU balanced sampling for all three stages,
the mAP is 66.5%. On considering the accuracy and complexity, we apply IoU balanced
sampling in the first and second stages.

Table 10. Experimental results of IoU balanced sampler in different stages (check symbol
√

indicates
IoU balanced sampling is applied).

Experiment Stage 1 Stage 2 Stage 3 mAP@IoU = 0.5:0.95 (%)

1 66.0
2

√
66.3

3
√

66.0
4

√
66.3

5
√ √

66.4
6

√ √
66.6

7
√ √

66.6
8

√ √ √
66.5

Here, we analyze the influence of OHEM sampling and IoU balanced sampling on
defect detection. From the experimental results in Table 11, it can be concluded that the
usage of three different sampling methods has a greater impact on the accuracy of the
network. From the results, the optimal setting is to apply the IoU balanced sampling in the
first and second stages and use OHEM in the third stage. In this case, we can obtain the
best results, and the mAP reaches 66.8%.

Table 11. Experimental results of adding IoU balance and OHEM sampler combination in different
stages (check symbol

√
indicates IoU balanced sampling is applied; otherwise, OHEM sampler

is used).

Experiment Stage 1 Stage 2 Stage 3 mAP@IoU = 0.5:0.95 (%)

1 66.5
2

√
66.4

3
√

66.3
4

√
66.3

5
√ √

66.2
6

√ √
66.4

7
√ √

66.8
8

√ √ √
66.6

5. Conclusions

In the face of complex defect types, it is difficult for general object detection networks
to achieve accurate detection. We optimized Cascade R-CNN for defect detection task
and proposed MSB R-CNN, which can better balance the learning of the network and
effectively improve the detection accuracy. MSB R-CNN adopts deformable convolution in
backbone network to improve the detection accuracy of defects with different shapes and
uses balanced feature pyramid to make high-level and low-level features more balanced.
During training, the balanced L1 loss is applied to better balance the learning benefits
between different tasks, and IoU balanced sampling is used to balance the hard samples
and simple samples. Based on the network architecture design and experiment results,
MSB R-CNN shows more advantages in terms of accuracy and network balance than
other popular detection networks. MSB R-CNN uses a multi-stage detector, which is
suitable for high-precision detection, but it is relatively time-consuming. In the future, the
proposed method can be further applied to a single-stage detector to meet the needs of
real-time detection.
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