266 research outputs found

    Distributed Transforms for Efficient Data Gathering in Sensor Networks

    Get PDF
    Devices, systems, and techniques for data collecting network such as wireless sensors are disclosed. A described technique includes detecting one or more remote nodes included in the wireless sensor network using a local power level that controls a radio range of the local node. The technique includes transmitting a local outdegree. The local outdegree can be based on a quantity of the one or more remote nodes. The technique includes receiving one or more remote outdegrees from the one or more remote nodes. The technique includes determining a local node type of the local node based on detecting a node type of the one or more remote nodes, using the one or more remote outdegrees, and using the local outdegree. The technique includes adjusting characteristics, including an energy usage characteristic and a data compression characteristic, of the wireless sensor network by selectively modifying the local power level and selectively changing the local node type

    Adaptive distributed algorithms for power-efficient data gathering in sensor networks

    Get PDF
    In this work, we consider the problem of designing adaptive distributed processing algorithms in large sensor networks that are efficient in terms of minimizing the total power spent for gathering the spatially correlated data from the sensor nodes to a sink node. We take into account both the power spent for purposes of communication as well as the power spent for local computation. Our distributed algorithms are also matched to the nature of the correlated field, namely, for piecewise smooth signals, we provide two distributed multiresolution wavelet-based algorithms, while for correlated Gaussian fields, we use distributed prediction based processing. In both cases, we provide distributed algorithms that perform network division into groups of different sizes. The distribution of the group sizes within the network is the result of an optimal trade-off between the local communication inside each group needed to perform decorrelation, the communication needed to bring the processed data (coefficients) to the sink and the local computation cost, which grows as the network becomes larger. Our experimental results show clearly that important gains in power consumption can be obtained with respect to the case of not performing any distributed decorrelating processing

    A Distributed Framework for Correlated Data Gathering in Sensor Networks

    Full text link

    Adaptive Distributed Algorithms for Power-Efficient Data Gathering in Sensor Networks

    Get PDF
    In this work, we consider the problem of designing adaptive distributed processing algorithms in large sensor networks that are efficient in terms of minimizing the total power spent for gathering the spatially correlated data from the sensor nodes to a sink node. We take into account both the power spent for purposes of communication as well as the power spent for local computation. Our distributed algorithms are also matched to the nature of the correlated field, namely, for piecewise smooth signals, we provide two distributed multiresolution wavelet-based algorithms, while for correlated Gaussian fields, we use distributed prediction based processing. In both cases, we provide distributed algorithms that perform network division into groups of different sizes. The distribution of the group sizes within the network is the result of an optimal trade-off between the local communication inside each group needed to perform decorrelation, the communication needed to bring the processed data (coefficients) to the sink and the local computation cost, which grows as the network becomes larger. Our experimental results show clearly that important gains in power consumption can be obtained with respect to the case of not performing any distributed decorrelating processing

    Minimizing Flow Time in the Wireless Gathering Problem

    Get PDF
    We address the problem of efficient data gathering in a wireless network through multi-hop communication. We focus on the objective of minimizing the maximum flow time of a data packet. We prove that no polynomial time algorithm for this problem can have approximation ratio less than \Omega(m^{1/3) when mm packets have to be transmitted, unless P=NPP = NP. We then use resource augmentation to assess the performance of a FIFO-like strategy. We prove that this strategy is 5-speed optimal, i.e., its cost remains within the optimal cost if we allow the algorithm to transmit data at a speed 5 times higher than that of the optimal solution we compare to

    H-MAC: A Hybrid MAC Protocol for Wireless Sensor Networks

    Full text link
    In this paper, we propose a hybrid medium access control protocol (H-MAC) for wireless sensor networks. It is based on the IEEE 802.11's power saving mechanism (PSM) and slotted aloha, and utilizes multiple slots dynamically to improve performance. Existing MAC protocols for sensor networks reduce energy consumptions by introducing variation in an active/sleep mechanism. But they may not provide energy efficiency in varying traffic conditions as well as they did not address Quality of Service (QoS) issues. H-MAC, the propose MAC protocol maintains energy efficiency as well as QoS issues like latency, throughput, and channel utilization. Our numerical results show that H-MAC has significant improvements in QoS parameters than the existing MAC protocols for sensor networks while consuming comparable amount of energy.Comment: 10 pages, IJCNC Journal 201
    • …
    corecore