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ABSTRACT

In this work, we consider the problem of designing adaptive
distributed processing algorithms in large sensor networks
that are efficient in terms of minimizing the total power
spent for gathering the spatially correlated data from the
sensor nodes to a sink node. We take into account both
the power spent for purposes of communication as well as
the power spent for local computation. Our distributed al-
gorithms are also matched to the nature of the correlated
field, namely, for piecewise smooth signals, we provide two
distributed multiresolution wavelet-based algorithms, while
for correlated Gaussian fields, we use distributed prediction
based processing. In both cases, we provide distributed al-
gorithms that perform network division into groups of dif-
ferent sizes. The distribution of the group sizes within the
network is the result of an optimal trade-off between the
local communication inside each group needed to perform
decorrelation, the communication needed to bring the pro-
cessed data (coefficients) to the sink and the local computa-
tion cost, which grows as the network becomes larger. Our
experimental results show clearly that important gains in
power consumption can be obtained with respect to the case
of not performing any distributed decorrelating processing.

1. INTRODUCTION

Consider a network of sensors that measure certain data
and that have to transmit all obtained information to a com-
mon central node, or sink, for processing or storage. Usu-
ally, in sensor networks, since the sensors are strongly con-
strained in terms of battery power [4], a meaningful task in
such settings is to design algorithms for data transmission
that minimize the total cost of gathering the measured data
[1]. The simplest possible strategy consists of direct trans-
mission of the information from all sensors to the sink (raw
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data gathering). However, it is clear that even for moderately
sized networks this approach results in very inefficient use
of the power for two main reasons. First, the measured phe-
nomenon is typically a spatially correlated process, and con-
sequently, physically close nodes measure correlated spa-
tial samples, and this similarity can be exploited to decrease
the amount of information required to be transmitted. Sec-
ond, further improvements can be obtained, in the context
of wireless sensor networks, by using multi-hop communi-
cation, having sensors that relay their data via neighboring
nodes rather than sending the data directly to the sink.

In this work, we focus on two classes of fields: (a) de-
terministic signals for which wavelet processing is appropri-
ate, namely piecewise defined signals, such as for instance
piecewise constant signals, which can be often found in
practice after some threshold detection process, and (b) cor-
related Gaussian fields, for which prediction based process-
ing is the optimal way to perform decorrelation across the
nodes. For deterministic piecewise continuous signals, the
amount of correlation present in the signal is essentially de-
termined by the number of discontinuities. We analyze how
the number of discontinuities affects the total transmission
cost when signal decorrelation is employed for data gather-
ing, in comparison to raw data gathering. A joint consid-
eration of wavelet coding and power efficient transmission
is exploited in [2], where wavelet lifting is used. However,
there are two important differences of our work with respect
to [2]: a) the signal models we consider, which motivate the
distributed algorithms that we provide, are different to the
ones considered in [2], b) the network model considered in
[2] is different, more specifically, in [2], the sink is not lo-
cated at the extremity of the network.

We analyze several efficient algorithms for data gather-
ing based on distributed signal processing, adapted to the
nature of the measured data. For the class of piecewise con-
stant signals, we propose an adaptive algorithm that involves
an adaptive network segmentation into groups of variable
size, where the segmentation is adapted to the particular
signal or realization of the field. For correlated Gaussian
fields, we propose an algorithm based on performing pre-
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diction locally inside each group, finding also the optimal
group sizes. In both cases, first, some local processing takes
place inside each group, and second, the processed data is
sent to the sink node in a multi-hop fashion. Multi-hop
transmission (as opposed to direct transmission from sensor
to sink) is clearly motivated by the fact that in sensor net-
works with wireless communication, the power dissipated
in transmitting R bits through a distance d is proportional
to R - d®, where & > 1 [5]. We show by numerical sim-
ulations that our algorithms provide important power gains
for the data gathering. Moreover, we show how these power
gains change, as a function of the number of discontinuities
present in the signal, for piecewise constant signals, and as
a function of the amount of correlation between samples in
the case of random correlated fields.

The rest of the paper is structured as follows. In Section
2, we describe our sensor network scenario and assumed
signal models. In Section 3, we introduce the algorithms for
wavelet based data gathering using the Haar wavelet trans-
form, where we describe our adaptive distributed algorithm.
Section 4 presents our adaptive algorithm for data gathering
of random correlated Gaussian fields. Finally, in Section 5,
we present several simulation results.

2. PROBLEM STATEMENT
2.1. Network Model

In this work, we consider, for the sake of simplicity, a one-
dimensional network model'. The one-dimensional models
simplifies the routing problem while still keeping the es-
sential characteristics of the two dimensional networks, in
terms of analyzing certain behaviors of large sensor net-
works. We consider a network of N = 2M sensors (M
being an integer) placed on a line (see Fig. 1). The network
sink (we assume that the node N in Fig. 1 collects all mea-
sured data) is on the extreme right end of the network and
we denote by d the distance between each pair of neigh-
boring sensors. We assume a multi-hop data transmission
model, motivated by the power efficiency constraints on the
network nodes and the usual power cost for wireless trans-
mission [5], namely, the transmission cost from one sensor
to its neighbor is given by [rate] x [path weight], where
[rate] is the number of transmitted bits, and [path weight] is
a power (usually 2 or 4) of the inter-node distance d. Due
to the presence of correlation in the sensed data, there are
two types of communication required: local communication
to remove correlation in the data and communication from
sensors to sink to bring the processed data to the sink.

2.2. Model of Measured Signal and Data Processing

In this work, we propose several efficient data gathering
algorithms for two classes of fields, namely, deterministic

'In our current work, we are extending the results of this paper to two-
dimensional network models.
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Fig. 1. A one-dimensional network model. The sink, represented
by the node N, is placed at the right extremity of the network

continuous piecewise polynomial signals (in particular, we
focus on constant piecewise signals), and also spatially dis-
tributed Gaussian correlated processes. In either case, the
whole set of spatial sample measurements is represented by
avector Y = (Y1,Ys,...,Yy) where Y; corresponds to the
sample obtained by sensor i. Our goal is to transport the
samples {Y;} X, from the sensors to the sink in such a way
as to minimize the total power cost spent. We assume that
the quantization (necessary for the subsequent digital trans-
mission) is sufficiently fine so that the resulting quantization
distortion is very small and the error incurred in performing
decorrelating operations with quantized samples is small.

2.2.1. Continuous Piecewise-Constant Fields

The first class of signals we consider are deterministic piece-
wise constant signals with a finite number of discontinu-
ities. Between any two discontinuities, the signal takes a
value from the finite interval [a, b], with a, b real numbers. We
assume that the positions of the discontinuities follow a uni-
form distribution over the interval [1, N ], i.e. the interval of
all possible locations in the network, but we also impose a
constraint that ensures having a sufficiently small frequency
of discontinuities, so that between any two neighbor sen-
sors, there can be at most one discontinuity. We propose a
distributed adaptive algorithm (described in Section 3.2.1)
based on the Haar transform, which is known to provide
a good data representation in the case of piecewise con-
stant signals. The standard full-size Haar transform consists
of M levels for a set of N = 2™ samples. Denote the
low-pass (LP) and high-pass. (HP) coefficients as yhtl =
(YEHL vt ...,Y_’;gl) and DF+! = (D¥*, DA ...,D’;N‘;‘),

respectively. The ci)mputation is done is the usual way: ~
Vi + Y5 Yo - Y5
V2o V2

for k = 1,2,..,M and i = 1,2,..., 4. Notice that if
the process has a single discontinuity, then there is at most
one non-zero HP coefficient in each multiresolution level &,
and this results in at most M non-zero HP coefficients for
the whole representation, with the rest of coefficients be-
ing zero. Generally, for a signal with P discontinuities, an
upper bound for the number of non-zero HP coefficients is
given by min(P - M, N). If the number of discontinuities is
small enough, the set of HP coefficients will contain a large
number of zeros, and by spending just one bit (e.g. first bit
transmitted) to sign the presence of a zero coefficient, we

k+1 _ k+1 _
A Df =

(D
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can achieve an important amount of power saving. How-
ever, coding a non-zero coefficient requires a much bigger
bit rate. Thus, we represent each coefficient with a packet
of bits where an initial bit indicates the coefficient pres-
ence and the remaining bits contain the information about
its value. In this work, we show that when the number of
discontinuities is small enough, the creation of zero-valued
coefficients provides an important saving in the total power
spent. The same quantization stepsize A is used for quan-
tizing the data to be transmitted and no entropy coding is
applied for this class of deterministic signals. Therefore, it
is clear that all the LP coefficients at level & will be coded
with the same rate, which we denote by Ry(k) That is,

since a - 2°7+ , =12
thatRy(k)=10g2 (———— 3 )—I—l: v 1)+—2—,where

Ry(l)=c+1landc= [log2 (
to code the original samples at the 0-th level. Similarly, it
is straightforward to see that for all the non-zero HP coeffi-
cients, the necessary rate at each level &, denoted by Rp (k),
is also given by Rp (k) = Ry (1) + "—;—1

. —,;, we have

‘I is the rate necessary

2.2.2. Correlated Random Gaussian Fields

Given the sample vector Y, the correlation model is deter-
mined by the covariance matrix K. Assuming a zero-mean
process, the N-dimensional multivariate normal distribu-

tion is given by f(Y) = Cem3Y'KTY

_— 1
V2m-det(K)1/2
this work, we use the following correlation models:

K;; =0’ e~elli=gla)” )
where 3 € {1,2}, and « determines the speed at which the
correlation decreases. For these signals, the best decorrelat-
ing technique that can be used is to perform prediction based
on neighbor samples (similar to DPCM). In other words,
we code each signal Y; using the knowledge about a cer-
tain number n of neighbor signals on the line, namely, using
Yir1,Yioo,...Y;_ . However, notice that since the sampled
signals need to be quantized prior to their transmission, the
prediction, as usual, will be based on reconstructed signals
Yi_1, Yi_z ,...,}7',-_". The prediction is given by:

Y, =K,y v . KJ!

i=lees Yioi,...Yicn

Yict, oo Vi) "

) 3
and the prediction error is given by ¢; = Y; — Y}, which has
substantially smaller variance and thus requires less bits to
be coded; notice that this residual has to be also quantized
for transmission, obtaining é;. The network sink will obtain
the reconstruction of the data Y; measured by the ¢-th node
simply as Y; = Y;+¢,. Notice that when assuming high-rate
quantization, i.e. a small quantization stepsize A\, followed
by entropy coding at the relay nodes, to code a sample with
variance o2, the required bit rate is well approximated by

log2 (m g’

variance comes together with a substantial increase in com-
putational complexity, since as the prediction is performed
by conditioning on more and more nodes, the number of lo-
cal computations in (3) that have to be performed increase
also rapidly. In Sections 4 and 5, we show that when the
network is large enough, there exists an optimal network
segmentation, which minimizes the total power cost, into
groups of sensors where the decorrelation is only performed
throughout each group. On the other hand, in the context of
piece-wise constant signals, the computational complexity
spent in a Haar wavelet step is very small since each LP and
HP coefficient involve just 1 addition and 1 multiplication.

) bits. However, this important reduction in

2.3. Power Cost of Data Gathering

We define the cost function for our data gathering problem
as the total power consumption taking place in the network
for collecting data to the sink. In our total power cost, in ad-
dition to considering communication cost, in terms of both
local communication to perform decorrelation and commu-
nication from sensors to sink, we also introduce the power
spent for local computation, in terms of power dissipated in
the DSP circuits. For processor-dependent power consump-
tion models, we use values described in the literature [5].

In the usual literature of sensor networks, this cost is
usually ignored, as compared to the cost of communication.
However, we show in this work that if the sensor network
becomes dense enough, in some cases, namely for corre-
lated Gaussian fields, because of the increasing need for per-
forming decorrelation by means of computing predictions,
the cost of local computation may influence importantly the
design of the most efficient distributed algorithm for per-
forming the data gathering. For piecewise constant signals,
the impact of computation is very small due to the simplic-
ity of Haar transform computing. Denote the bit-rate for
coding the data ¢ as R(&) and the number of hops between
a transmitter X and receiver Z as ky_,z. Also, denote the
dissipation in the DSP circuits as costpgp. Then, the cost
function for sending the data between X and Z is:

COS[(X —)5 Z) — COStCO}W + COStDSP
=R(§) - kx—z-d*+ p-numop )
= (R(§) - kx—z +7-numpp) - d*

where the parameter v = f; can be interpreted as the ra-
tio between the power dissipated by the processor (at the
transmitter) in performing a single operation and the power
necessary for transmitting one bit over the unit distance, in-
cluding the power dissipated by both the transmitter and the
receiver; this value will depend on the particular processor
that is used [5]. Throughout this work, we compare the per-
formance of our algorithms with the performance of a refer-
ence raw data gathering algorithm in which each sensor sim-
ply sends (by using multi-hops) each measured signal to the
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Fig. 2. Full-size non-adaptive Haar multiresolution processing.

sink without any local decorrelating processing. For this ref-
erence algorithm, the total gathering cost for a network with
N sensors is costyef(N) = cﬂ;’_—l) (costpsp = 0, since
we do not apply any signal processing strategy for decor-
relation) and all the transmitted data are non-zero. Thus
costyef(N) = O(N?). For the evaluation of the perfor-
mance of an algorithm, we compute the relative cost as:

cost(N)

(V) = costef(N)

®)
where cost(N) is given by the sum of (4) over all transmitter-
receiver pairs over all the steps of the data gathering algo-
rithm. Notice that this relative cost (5) is independent of the
inter-node distance because of the quotient. Therefore, from
now on, throughout this paper and without loss of general-
ity, we consider d = 1. Notice that the desired behavior of
an algorithm is to have (V) < 1 and as small as possible.

3. DATA GATHERING ALGORITHMS FOR
PIECEWISE CONSTANT SIGNALS

3.1. Distributed Full Haar Algorithm

First, we describe a basic distributed algorithm based on the
full Haar transform that we call NetHaar, which provides
insight into the design of the two adaptive distributed algo-
rithms that we present. For a network of N = 2™ nodes,
NetHaar consists of (M + 1) steps, as illustrated in Fig. 2.

Let Y'! denote the original measured data. In the first
algorithm step, sensors with the odd indices send their data
to the sensors with even indices. Thus, the set of transmit-
ted signals is (Y}, Yy, ..., Yy _,). Then, sensors 2,4,..., N
calculate the LP and HP coefficients by combining the re-
ceived data and the data measured by themselves obtain-
ingY? = (Yf,Yf,...,Yé) and D? = (D?,D ...,Di),
respectively. We can ignore the odd index sensors in the
next steps of the algorithm, since the remaining sensors con-
tain all information necessary for recovering the original
data. For the k — th step of the algorithm, nodes 2*~! . 1,

LEVEL 3 1.2.3.[5)

1107 1306, 15121

\\\\\\
Sraaaer” e e rere

PN [T TN [t _

Fig. 3. Tree representation of the algorithms.

2k=1.3 N — 2k=1 send their coefficients to the nodes
ok=1.9 9k=1.4 N, and the new set of coefficients is
calculated asin (1), fork =1,2,...,M andi = 1,2, ..., 51\{—
Finally, in the M + 1 — th step of the algorithm, node N
sends the last calculated coefficients, Y ™! and DM*! 1o
the network sink. Two types of transmissions occur, namely,
sensor-to-sensor and sensor-to-sink transmission. Also, ad-
ditional cost is introduced as a result of signal processing in
the network nodes. Thus, the total cost is:
cost(N) = (cost,p(N) + costgp(N)) + v - numop(N).
(6)

o total sensor-to-sensor communication cost(V):

l‘?)-"l =

M
costs(N) =) Y R(Y")2¥1d?;

k=1 i=

-

e total sensor-to-sink communication cost cost,g:

N
M+1 3k=1

costog(N) = Z Z R(D})(N

k=2 i=1

— 2Lk ) d*+ R(Y,M ) d?

since in the k** step, each transmitting sensor sends
its LP coefficient over 2¥~! hops and its HP coeffi-
cient over N — 2¥=1j 1+ 1 hops.

o total signal processing costpsp, which is equal to the
number of performed operations?:

numop(N) =2-(N —1).

The influence of the local processing cost term is given by
the parameter . It should be noted that for the algorithms
involving Haar processing, the total computational cost costpgp
depends linearly on the number of network nodes, the cost
of signal processing becomes really negligible as compared

to the cost of data transmission.

2By operation we assume one addition and one multiplication, i.e. the
mathematical operation necessary for calculating one Haar coefficient.
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3.2. Data Gathering with Network Segmentation

In this section, we introduce an adaptive algorithm that makes
use of the data gathering strategy described in Section 3.1,
but optimizing the trade-off between local communication
among sensors for decorrelation, the communication from
sensors to the sink, as well as the amount of local process-
ing. As a result, the network needs to be segmented into
groups, so that initially, the local communication takes place
only among the sensors in each (independent) group. For
the case of Haar processing, the dominant effect that de-
termines the group size is the distribution of discontinuities
in the measured process (i.e. the number of non-zero HP
coefficients, as well as their position inside the network),
since the involved computational complexity for each step
is small. A subset of sensors is called a group if one of the
sensors, the leader-node, located at the right extremity of
the group, collects all necessary local information to repre-
sent the signal data measured by the sensors in the spatial
region covered by the group. We illustrate all possible net-
work segmentations as well as the communication between
the corresponding groups, by using a full binary tree (see
Fig. 3). Each tree leaf corresponds to a single sensor, while
the root represents the whole network. Each in-tree node
represents a group of sensors. Notice that the possible sizes
for the groups are of the form 2%, where k € {0, 1, ..., M},
which is necessary to be able to apply the (k+ 1)-level Haar
transform step inside each group.

Inter-group communication is allowed only between neigh-

boring groups, as shown in Fig. 3. The NetHaar algorithm
fully spans the tree from bottom to top, without checking for
optimality of this operation in terms of cost. By using the
adaptive algorithm proposed in this section, we obtain an
improvement over NetHaar because we allow to stop adap-
tively at different levels of the tree, optimizing (6).

3.2.1. Adaptive Algorithm: Optimal Data Gathering
In this section, we propose a fully decentralized algorithm,
called AdaptNetHaar, which provides the optimal network
division adapting its behavior to each measured signal.

The algorithm starts from the bottom of the binary tree
in Fig. 3. As in NetHaar, the odd index sensors send their
data to the even index sensors (represented by arrows in

Fig. 3). Eachreceiving sensor makes a decision about whether

to create a 2-sensor group or to keep the present 1-sensor
group state, by comparing the costs of data gathering for the
new group with the sum of costs corresponding to the exist-
ing 1-sensor groups. After this operation, sensors 2,4,..., N
have information about their neighbors with odd index. In
the second step, they can transmit data further to the leader-
nodes of 4-sensor groups (see Fig. 3). A new set of coeffi-
cients is computed at the leader-nodes (precisely, two new
coefficients) and the newly computed cost is compared to
the cost of the previous step. The decision about collaps-
ing the groups into one larger group is essentially deter-

RELATIVE COST
°
3

. s . N s e
2 4 6 8 10 12 14
NETWORK SIZE (M, N=2M)

Fig. 4. Relative cost for AdaptNetHaar as a function of network
size and number of discontinuities (parameter p).

mined by the values of the computed HP coefficients. The
algorithm proceeds similarly for the other tree levels. For
k=2,...,M +1, there are 5{!—1 groups of size 251, For
each group, the total cost of data gathering is compared with
the gathering cost for that group corresponding to the previ-
ous algorithm steps. Further grouping is accepted only if it
decreases the cost. The algorithm stops once all data reach
the network sink. Note that the inter-group communication
in this algorithm does not incur any additional cost with re-
spect to NetHaar.

4. DATA GATHERING OF CORRELATED
RANDOM FIELDS

For random Gaussian correlated fields, we use prediction
based processing instead of Haar processing. Inside each
group, the prediction processing will be done iteratively from
left to right, thus, the right-hand side leader-node in each
group will get all the coefficient information of that cor-
responding group. Notice that in this case, as opposed to
piece-wise constant fields, the required processing has a com-
putational complexity that rapidly increases with the num-
ber of samples used for computation of the residuals. There-
fore, in this case, it becomes an important factor that influ-
ences the optimal sizes of the groups across the network.
For a given correlation model, it is also possible to design
an adaptive algorithm that will provide a network segmen-
tation trading-off the communication and local processing
costs. Consider a group of n + 1 nodes, 4,7+ 1,...,i + n
with node 7 4+ n being the closest to the sink. First, node i
sends its data Y; to its neighbor ¢ + 1. In that node, the first
step of DPCM is performed, namely, the signal Y, is pre-
dicted using Y;, and the corresponding (quantized) residual
€;+1 1s calculated. Then, node i + 1 sends both the signal re-
ceived from its neighbor and its own residual to node ¢ + 2.
Node ¢ + 2 first reconstructs signals Y; and Y; 1, and then
calculates the next residual €; o and so on. At the end, the
leader-node of each group has the coded signal Y;, and the
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Fig. 7. Network divisions for NetDPCM with v =
10—, Network sizes: N = 512,1024 and 4096 sensors

set of residuals (innovations) corresponding to the rest of
signals in the group. We call NetDPCM our algorithm. In
terms of computation, we can see that for one step of pre-
diction we need to perform two matrix multiplications and
one matrix inversion, and for large groups, this implies a
substantial computational complexity which will increase
the power dissipated. Thus, the size of the groups will be
limited due to the increasing value for costpgp relative to
the total data gathering cost. By considering the number of
additions and multiplications required for each of these op-
erations, the processing cost can be written as follows [5]:

g9 g
numop (V) :2'(ZJQ+ZJ'3) (7
j=2

=2

where ¢ is the number of sensors in the given group. Our
simulations show that the optimal network division has group
sizes that are larger as the distance to the sink increases, and
successfully smaller as we approach the sink.

5. EXPERIMENTAL RESULTS

For AdaptNetHaar, we use piecewise constant signals with
amplitude values uniformly distributed in the interval [—1, 1].
The number of signal discontinuities varies with the net-

work size, and it is given® as [pTJgAL'/\T] , with p a small real
o)

number p € [0.1,5]. For each number of discontinuities,
the performance was obtained by averaging over 1000 real-
izations. For NetDPCM, we use the correlation structure
with parameters 5 = 2, « € {0.0005,0.001,0.01} and
v = 107, The distance between each pair of neighbor-
ing sensors is fixed (d = 10 units). Fig. 4 illustrates the
cost gains of AdaptNetHaar for different values of the pa-
rameter p, and Fig. 5 presents some examples of optimal
network division for four different particular signals. Fig.
6 illustrates the dependency of the gain on the network size
for NetDPCM. We can see that for small enough values of
the correlation parameter « (i.e. strong enough correlation),
we achieve a considerable power gain. Also, the algorithm
gain increases with the network size. In Fig. 7, we illustrate
the resulting group sizes for the algorithm NetDPCM.
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