848 research outputs found

    Advancements, Challenges, and Future Directions in Rainfall-Induced Landslide Prediction: A Comprehensive Review

    Get PDF
    Rainfall-induced landslides threaten lives and properties globally. To address this, researchers have developed various methods and models that forecast the likelihood and behavior of rainfall-induced landslides. These methodologies and models can be broadly classified into three categories: empirical, physical-based, and machine-learning approaches. However, these methods have limitations in terms of data availability, accuracy, and applicability. This paper reviews the current state-of-the-art of rainfall-induced landslide prediction methods, focusing on the methods, models, and challenges involved. The novelty of this study lies in its comprehensive analysis of existing prediction techniques and the identification of their limitations. By synthesizing a vast body of research, it highlights emerging trends and advancements, providing a holistic perspective on the subject matter. The analysis points out that future research opportunities lie in interdisciplinary collaborations, advanced data integration, remote sensing, climate change impact analysis, numerical modeling, real-time monitoring, and machine learning improvements. In conclusion, the prediction of rainfall-induced landslides is a complex and multifaceted challenge, and no single approach is universally superior. Integrating different methods and leveraging emerging technologies offer the best way forward for improving accuracy and reliability in landslide prediction, ultimately enhancing our ability to manage and mitigate this geohazard

    Advancements, Challenges, and Future Directions in Rainfall-Induced Landslide Prediction: A Comprehensive Review

    Get PDF
    Rainfall-induced landslides threaten lives and properties globally. To address this, researchers have developed various methods and models that forecast the likelihood and behavior of rainfall-induced landslides. These methodologies and models can be broadly classified into three categories: empirical, physical-based, and machine-learning approaches. However, these methods have limitations in terms of data availability, accuracy, and applicability. This paper reviews the current state-of-the-art of rainfall-induced landslide prediction methods, focusing on the methods, models, and challenges involved. The novelty of this study lies in its comprehensive analysis of existing prediction techniques and the identification of their limitations. By synthesizing a vast body of research, it highlights emerging trends and advancements, providing a holistic perspective on the subject matter. The analysis points out that future research opportunities lie in interdisciplinary collaborations, advanced data integration, remote sensing, climate change impact analysis, numerical modeling, real-time monitoring, and machine learning improvements. In conclusion, the prediction of rainfall-induced landslides is a complex and multifaceted challenge, and no single approach is universally superior. Integrating different methods and leveraging emerging technologies offer the best way forward for improving accuracy and reliability in landslide prediction, ultimately enhancing our ability to manage and mitigate this geohazard

    Evolve the Model Universe of a System Universe

    Full text link
    Uncertain, unpredictable, real time, and lifelong evolution causes operational failures in intelligent software systems, leading to significant damages, safety and security hazards, and tragedies. To fully unleash the potential of such systems and facilitate their wider adoption, ensuring the trustworthiness of their decision making under uncertainty is the prime challenge. To overcome this challenge, an intelligent software system and its operating environment should be continuously monitored, tested, and refined during its lifetime operation. Existing technologies, such as digital twins, can enable continuous synchronisation with such systems to reflect their most updated states. Such representations are often in the form of prior knowledge based and machine learning models, together called model universe. In this paper, we present our vision of combining techniques from software engineering, evolutionary computation, and machine learning to support the model universe evolution

    A technological framework for data-driven IoT systems: application on landslide monitoring

    Get PDF
    The emergence of the paradigm of the Internet of Things has underpinned the development of data-driven cyber-physical systems that collect and process data that is dense both in space and time. The application areas of such data-driven IoT systems are numerous and their socio-economic impact of great importance as they enable the monitoring and management of processes in sectors ranging from urban management to management of the natural environment. In this work, we introduce and detail an end-to-end technological framework for data-driven IoT systems for landslide monitoring. The framework is articulated in three tiers – namely data acquisition, data curation and data presentation. For each tier we present and detail its design and development aspects; from the IoT hardware design and the wireless communication technologies of choice, to how Big Data infrastructure and Machine Learning components can be combined to support a sophisticated presentation tier that delivers the true added value of a system to its final users. The framework is validated, extended and fine-tuned by means of two pilots at locations experiencing the impact of different landslide types and activity. This work qualitatively improves upon existing methods of landslide monitoring and showcases how data-driven IoT systems can pave new pathways for interdisciplinary research as well as generate positive impact on modern societies

    IoT Resources and Their Practical Application, A Comprehensive Study

    Get PDF
    The Internet of Things (IoT) has become a paradigm shifter, connecting an enormous number of smart devices and facilitating seamless data exchange for a diverse array of applications. The availability and effective use of the IoT ecosystem's resources are key factors in determining how its practical applications will develop as they mature. The IoT resources and their practical application across several areas are thoroughly explored in this paper. The paper begins by classifying and describing the various sensor types, their applications in various fields, and IoT resources, highlighting their contributions to real-time data collection, processing, and transmission. It then goes on to demonstrate a wide range of real-world uses for these resources, such as smart cities, education, agriculture, business, healthcare, environment monitoring, transportation, and industrial automation. However, utilizing IoT resources effectively is not without difficulties. Critical difficulties such as resource allocation, scalability, security, interoperability, and privacy concerns are identified and discussed in the paper. Furthermore, the paper also highlights future directions and emerging trends in IoT resource management, including edge computing, cloud computing, human machine integration, and compatibility with other systems. These developments aim to increase the dependability of IoT applications in diverse settings and optimize resource allocation. This paper's conclusion highlights the crucial role that IoT resources play in advancing real-world applications across a variety of areas. Researchers, practitioners, policymakers, and other stakeholders may collaborate together to effectively leverage the full potential of IoT resources to build intelligent, effective ecosystems that meet the needs of contemporary society by solving difficulties and utilizing developing trends

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    Role of Machine Learning, Deep Learning and WSN in Disaster Management: A Review and Proposed Architecture

    Get PDF
    Disasters are occurrences that have the potential to adversely affect a community via casualties, ecological damage, or monetary losses. Due to its distinctive geoclimatic characteristics, India has always been susceptible to natural calamities. Disaster Management is the management of disaster prevention, readiness, response, and recovery tasks in a systematic manner. This paper reviews various types of disasters and their management approaches implemented by researchers using Wireless Sensor Networks (WSNs) and machine learning techniques. It also compares and contrasts various prediction algorithms and uses the optimal algorithm on multiple flood prediction datasets. After understanding the drawbacks of existing datasets, authors have developed a new dataset for Mumbai, Maharashtra consisting of various attributes for flood prediction. The performance of the optimal algorithm on the dataset is seen by the training, validation and testing accuracy of 100%, 98.57% and 77.59% respectively

    Smart Monitoring and Control in the Future Internet of Things

    Get PDF
    The Internet of Things (IoT) and related technologies have the promise of realizing pervasive and smart applications which, in turn, have the potential of improving the quality of life of people living in a connected world. According to the IoT vision, all things can cooperate amongst themselves and be managed from anywhere via the Internet, allowing tight integration between the physical and cyber worlds and thus improving efficiency, promoting usability, and opening up new application opportunities. Nowadays, IoT technologies have successfully been exploited in several domains, providing both social and economic benefits. The realization of the full potential of the next generation of the Internet of Things still needs further research efforts concerning, for instance, the identification of new architectures, methodologies, and infrastructures dealing with distributed and decentralized IoT systems; the integration of IoT with cognitive and social capabilities; the enhancement of the sensing–analysis–control cycle; the integration of consciousness and awareness in IoT environments; and the design of new algorithms and techniques for managing IoT big data. This Special Issue is devoted to advancements in technologies, methodologies, and applications for IoT, together with emerging standards and research topics which would lead to realization of the future Internet of Things
    • …
    corecore