12 research outputs found

    DVB-S2x Enabled Precoding for High Throughput Satellite Systems

    Get PDF
    Multi-user Multiple-Input Multiple-Output (MU-MIMO) has allowed recent releases of terrestrial LTE standards to achieve significant improvements in terms of offered system capacity. The publications of the DVB-S2x standard and particularly of its novel superframe structure is a key enabler for applying similar interference management techniques -such as precoding- to multibeam High Throughput Satellite (HTS) systems. This paper presents results resulting from European Space Agency (ESA) funded R&D activities concerning the practical issues that arise when precoding is applied over an aggressive frequency re-use HTS network. In addressing these issues, the paper also proposes pragmatic solutions that have been developed in order to overcome these limitations. Through the application of a comprehensive system simulator, it is demonstrated that important capacity gains (beyond 40%) are to be expected from applying precoding even after introducing a number of significant practical impairments

    Performance analysis of joint precoding and MUD techniques in multibeam satellite systems

    Get PDF
    This paper considers interference mitigation techniques in the forward link of multibeam satellite systems. In contrast to previous works, either devoted to receiver interference mitigation (e.g. multiuser detection) or transmitter interference mitigation (precoding), this work evaluates the achievable rates of the joint combination of both techniques. On the one hand, precoding cannot properly mitigate all the inter- beam interference while maintaining a sufficiently high signal-to-noise ratio. On the other hand, the receiver cost and complexity exponentially increases with the number of signals to be simultaneously detected. This highlights that the receiver cannot deal with all the interferences so that in general only 2 signals are jointly detected. As a result, the use of precoding within a coverage area jointly with multiuser detection can both benefit from each other and extremely increase the achievable rates of the system. This is numerically evaluated in a close-to-real coverage area considering simultaneous non-unique decoding strategies. The results show the benefits of this joint scheme that eventually can increase the current precoding performance a 23%.Peer ReviewedPostprint (author's final draft

    Performance Analysis of Joint Precoding and MUD Techniques in Multibeam Satellite Systems

    Get PDF
    This paper considers interference mitigation techniques in the forward link of multibeam satellite systems. In contrast to previous works, either devoted to receiver interference mitigation (e.g. multiuser detection) or transmitter interference mitigation (precoding), this work evaluates the achievable rates of the joint combination of both techniques. On the one hand, precoding cannot properly mitigate all the inter- beam interference while maintaining a sufficiently high signal-to-noise ratio. On the other hand, the receiver cost and complexity exponentially increases with the number of signals to be simultaneously detected. This highlights that the receiver cannot deal with all the interferences so that in general only 2 signals are jointly detected. As a result, the use of precoding within a coverage area jointly with multiuser detection can both benefit from each other and extremely increase the achievable rates of the system. This is numerically evaluated in a close-to-real coverage area considering simultaneous non-unique decoding strategies. The results show the benefits of this joint scheme that eventually can increase the current precoding performance a 23%

    Symbol-asynchronous transmission in multibeam satellite user down-link : rate regions for novel superposition coding schemes

    Get PDF
    We consider the forward link of a multibeam satellite system with high spectral reuse and the novel low-complexity transmission and detection strategies from [1]. More specifically, we study the impact of a time offset between the antenna beams that cooperate to simultaneously serve a given user. Assuming Gaussian signaling, we provide closed-form expressions for the achievable rate region. It is demonstrated that, in the absence of timing information at the gateway, this region is not affected by a time offset. Our numerical results further show that, in case timing is known at the gateway, an offset of half a symbol period at both user terminals is optimal in terms of spectral efficiency.Grant numbers : Satellite Network of Experts IV. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    End-to-end Precoding Validation over a Live GEO Satellite Forward Link

    Get PDF
    In this paper we demonstrate end-to-end precoded multi-user multiple-input single-output (MU-MISO) communications over a live GEO satellite link. Precoded communications enable full frequency reuse (FFR) schemes in satellite communications (SATCOM) to achieve broader service availability and higher spectrum efficiency than with the conventional four-color (4CR) and two-color (2CR) reuse approaches. In this scope, we develop an over-the-air test-bed for end-to-end precoding validations. We use an actual multi-beam satellite to transmit and receive precoded signals using the DVB-S2X standard based gateway and user terminals. The developed system is capable of end-to-end real-time communications over the satellite link including channel measurements and precompensation. It is shown, that by successfully canceling inter-user interference in the actual satellite FFR link precoding brings gains in terms of enhanced SINR and increased system goodput.Comment: Submitted to IEEE Access Journa

    Evaluation of multi-user multiple-input multiple-output digital beamforming algorithms in B5G/6G low Earth orbit satellite systems

    Get PDF
    Satellite communication systems will be a key component of 5G and 6G networks to achieve the goal of providing unlimited and ubiquitous communications and deploying smart and sustainable networks. To meet the ever-increasing demand for higher throughput in 5G and beyond, aggressive frequency reuse schemes (i.e., full frequency reuse), combined with digital beamforming techniques to cope with the massive co-channel interference, are recognized as a key solution. Aimed at (i) eliminating the joint optimization problem among the beamforming vectors of all users, (ii) splitting it into distinct ones, and (iii) finding a closed-form solution, we propose a beamforming algorithm based on maximizing the users' signal-to-leakage-and-noise ratio served by a low Earth orbit satellite. We investigate and assess the performance of several beamforming algorithms, including both those based on channel state information at the transmitter, that is, minimum mean square error and zero forcing, and those only requiring the users' locations, that is, switchable multi-beam. Through a detailed numerical analysis, we provide a thorough comparison of the performance in terms of per-user achievable spectral efficiency of the aforementioned beamforming schemes, and we show that the proposed signal to-leakage-plus-noise ratio beamforming technique is able to outperform both minimum mean square error and multi-beam schemes in the presented satellite communication scenario

    Next generation multibeam satellite systems

    Get PDF
    Satellite communication will play a central role towards fulfilling next generation 5G communication requirements. As a matter of fact, anytime-anywhere connectivity cannot be conceived without the presence of the satellite segment. Indeed, satellite communication industry is not only targeting popular markets but also to high dense populated areas where the satellite will become an essential element to decongest the terrestrial wireless network. In order to deliver broadband interactive data traffic, satellite payloads are currently implementing a multibeam radiation pattern. The use of a multibeam architecture brings several advantages in front of a single global beam transmission. First, as an array fed reflector is employed, the antenna gain to noise ratio can be increased leading to high gain in the achievable throughput. Second, different symbols can be simultaneously sent to geographically separated areas, allowing a spatially multiplexed communication. Last but not least, the available bandwidth can be reused in sufficiently separated beams, increasing the spectrum reuse in the overall coverage area. Whenever the system designers target the terabit satellite system the aforementioned multibeam architecture shall be reconsidered. Indeed, the achievable rates can be extremely increased in case a more aggressive frequency reuse is deployed and interference mitigation techniques are implemented either at the user terminal (multiuser detection) or in the transmitter (precoding). Our study deals with the problem of precoding and linear filtering receiving methods for multibeam satellite systems when full frequency reuse is considered. Concretely, we consider the particular restrictions of satellite communications which, in contrast to terrestrial communication systems, suffer from additional drawbacks. First, the feeder link shall aggregate the overall data traffic leading to a very large rate requirement. This required data rate is even increased whenever linear filtering at the return link and precoding in the forward link are deployed. This is because the feed signals, which are larger than the number of beams, shall be computed on ground. In order to solve this problem, we propose a hybrid architecture where the satellite payload is equipped with a fixed processing. This on-board processing linearly transforms the received and transmitted data in order to keep the feeder link rate requirement low. The on-board processing results to be the same for both return and forward links, leading to a large reduction of the payload complexity, mass and cost. Second, as the data traffic can be generated by different gateways, the precoding method shall be designed accordingly. In contrast to previous works, this work studies the case where the collaboration between different gateways is limited. In addition to the aforementioned contribution, in this work some unexplored aspects of multi-gateway multibeam precoding are also investigated. Finally, we consider an important phenomena that currently needs to be treated in multibeam systems: the fact that a single codeword is embedded the information of multiple users in each beam. This leads to the difficult so-called multigroup multicast model, whose optimization requires computationally complex operations. In order to solve this problem: i) we propose a two-stage precoding design in order to both limit the multibeam interference and to enhance the intra-beam minimum user signal power, ii) a robust version of the proposed precoder based on a first perturbation model is presented. This mechanism behaves well when the channel state information is corrupted, iii) we propose a per beam user grouping mechanism so as its robust version in order to increase the precoding gain. Forth, a method for dealing with the multiple gateway architecture is presented that offers high throughputs with a low inter-gateway communication.La comunicación por satélite desempeñará un papel central en el cumplimiento de los requisitos de comunicación 5G de próxima generación. Como cuestión de hecho, la conectividad cualquier momento y lugar no se puede concebir sin la presencia del segmento satelital. De hecho, la industria de la comunicación por satélite no sólo se dirige a los mercados populares, sino también a la alta densas zonas pobladas donde el satélite se convertirá en un elemento esencial para descongestionar la red inalámbrica terrestre. Para entregar el tráfico de datos interactiva de banda ancha, las cargas útiles de satélites están implementando un diagrama de radiación de haces múltiples. El uso de una arquitectura multihaz aporta varias ventajas frente a un único haz de transmisión global. En primer lugar, como se emplea un reflector alimentado matriz, la ganancia de antena a ruido puede aumentar dando lugar a una alta ganancia en el rendimiento alcanzable. En segundo lugar, diferentes símbolos pueden ser enviados simultáneamente a las áreas separadas geográficamente, lo que permite una comunicación multiplexada espacialmente. Por último, pero no menos importante, el ancho de banda disponible puede ser reutilizado en las vigas suficientemente separadas, el aumento de la reutilización del espectro en el área de cobertura global. Cada vez que los diseñadores de sistemas se dirigen el sistema de satélites terabit se reconsideró la arquitectura multihaz mencionado. De hecho, las tasas alcanzables pueden ser extremadamente aumentaron en caso de reutilización de frecuencias más agresiva está desplegado y las técnicas de reducción de interferencias se implementan ya sea en el terminal de usuario (detección multiusuario) o en el transmisor (precodificación). Nuestros estudio aborda el problema de precodificación y filtrado lineal recibir métodos para sistemas de satélites multihaz cuando se considera la reutilización de frecuencias completa. Concretamente, consideramos las restricciones particulares de comunicaciones por satélite que, en contraste con los sistemas de comunicación terrestres, sufren de desventajas adicionales. En primer lugar, el enlace de conexión deberá agregar el tráfico global de datos que conduce a un requisito tasa muy grande. Esta velocidad de datos requerida es incluso aumentó cada vez filtrado lineal en el enlace de retorno y precodificación en el enlace directo se despliegan. Esto se debe a que las señales de alimentación, que son más grandes que el número de haces, se computarán en el suelo. Con el fin de resolver este problema, se propone una arquitectura híbrida, donde la carga útil del satélite está equipado con un procesamiento fijo. Este procesamiento a bordo transforma linealmente los datos recibidos y transmitidos con el fin de mantener el requisito de baja tasa de enlace de conexión. Los resultados del procesamiento de a bordo para ser el mismo para ambos enlaces directo y de retorno, dando lugar a una gran reducción de la complejidad de carga útil, la masa y el coste. En segundo lugar, como el tráfico de datos puede ser generada por diferentes puertas de enlace, el método de precodificación deberá ser diseñado en consecuencia. A diferencia de los trabajos anteriores, este trabajo estudia el caso en que la colaboración entre las diferentes pasarelas es limitado. Además de la contribución anterior, en este trabajo también se investigan algunos aspectos inexplorados de multi-gateway multihaz precodificación. Finalmente, consideramos un fenómeno importante que necesita actualmente para ser tratados en sistemas multihaz: el hecho de que una sola palabra de código se incrusta la información de múltiples usuarios en cada viga. Esto conduce a la denominada modelo de multidifusión multigrupo difícil, cuya optimización requiere operaciones computacionalmente complejos. En tal escenario, el diseño de precodificación en el enlace directo será dirigido
    corecore