186,116 research outputs found

    Microfluidics for Advanced Drug Delivery Systems.

    Get PDF
    Considerable efforts have been devoted towards developing effective drug delivery methods. Microfluidic systems, with their capability for precise handling and transport of small liquid quantities, have emerged as a promising platform for designing advanced drug delivery systems. Thus, microfluidic systems have been increasingly used for fabrication of drug carriers or direct drug delivery to a targeted tissue. In this review, the recent advances in these areas are critically reviewed and the shortcomings and opportunities are discussed. In addition, we highlight the efforts towards developing smart drug delivery platforms with integrated sensing and drug delivery components

    Intraperitoneal chemotherapy for peritoneal metastases : an expert opinion

    No full text
    Introduction: The rationale for intraperitoneal (IP) drug delivery for patients with peritoneal metastases (PM) is based on the pharmacokinetic advantage resulting from the peritoneal-plasma barrier, and on the potential to adequately treat small, poorly vascularized PM. Despite a history of more than three decades, many aspects of IP drug delivery remain poorly studied. Areas covered: We outline the anatomy and physiology of the peritoneal cavity, including the pharmacokinetics of IP drug delivery. We discuss transport mechanisms governing tissue penetration of IP chemotherapy, and how these are affected by the biomechanical properties of the tumor stroma. We provide an overview of the current clinical evidence on IP chemotherapy in ovarian, colorectal, and gastric cancer. We discuss the current limitations of IP drug delivery and propose several potential areas of progress. Expert opinion: The potential of IP drug delivery is hampered by off-label use of drugs developed for systemic therapy. The efficacy of IP chemotherapy for PM depends on cancer type, disease extent, and mode of drug delivery. Results from ongoing randomized trials will allow to better delineate the potential of IP chemotherapy. Promising approaches include IP aerosol therapy, prolonged delivery platforms such as gels or biomaterials, and the use of nanomedicine

    Solid Lipid Nanoparticles: A Potential Approach for Dermal Drug Delivery

    Get PDF
    Solid lipid nanoparticles (SLNs) have attracted increasing attention during recent years. Due to their unique size dependent properties, lipid nanoparticles offer possibilities to develop new therapeutics. The ability to incorporate drugs into nanoparticles offers a new prototype in drug delivery thus realizing the dual goal of both controlled release and site-specific drug delivery. Drug delivery to the skin is widely used for local and systemic delivery and has potential to be improved by application of nanoparticulate formulations. If investigated appropriately, solid lipid nanoparticles may open new opportunities in therapy of complex diseases which is difficult to treat

    Programmable biomaterials for dynamic and responsive drug delivery

    Get PDF
    Biomaterials are continually being designed that enable new methods for interacting dynamically with cell and tissues, in turn unlocking new capabilities in areas ranging from drug delivery to regenerative medicine. In this review, we explore some of the recent advances being made in regards to programming biomaterials for improved drug delivery, with a focus on cancer and infection. We begin by explaining several of the underlying concepts that are being used to design this new wave of drug delivery vehicles, followed by examining recent materials systems that are able to coordinate the temporal delivery of multiple therapeutics, dynamically respond to changing tissue environments, and reprogram their bioactivity over time

    Multifunctional nanocarriers for lung drug delivery

    Get PDF
    Nanocarriers have been increasingly proposed for lung drug delivery applications. The strategy of combining the intrinsic and more general advantages of the nanostructures with specificities that improve the therapeutic outcomes of particular clinical situations is frequent. These include the surface engineering of the carriers by means of altering the material structure (i.e., chemical modifications), the addition of specific ligands so that predefined targets are reached, or even the tuning of the carrier properties to respond to specific stimuli. The devised strategies are mainly directed at three distinct areas of lung drug delivery, encompassing the delivery of proteins and protein-based materials, either for local or systemic application, the delivery of antibiotics, and the delivery of anticancer drugs-the latter two comprising local delivery approaches. This review addresses the applications of nanocarriers aimed at lung drug delivery of active biological and pharmaceutical ingredients, focusing with particular interest on nanocarriers that exhibit multifunctional properties. A final section addresses the expectations regarding the future use of nanocarriers in the area.UID/Multi/04326/2019; PD/BD/137064/2018info:eu-repo/semantics/publishedVersio

    Drug Delivery Systems based on hydrogels

    Get PDF
    Gel systems have found extensive applications in the medicinal/pharmaceutical field because of their ease of preparation, ability for modifications, and responsiveness to external chemical or physical stimuli. Gels usually act as hosts for active pharmaceutical agents for a variety of pathological conditions. They function as controllers of the release of pharmaceuticals that have proven to be “problematic” because they are either unsuitably insoluble to biological fluids, or they are metabolized unacceptably rapidly. In this presentation the use of silica-based hydrogels as controlled release drug delivery systems will be discussed, with emphasis on drugs against osteoporosisUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Nasal Drug Delivery Systems: An Overview

    Get PDF
    Since ancient times, drugs have been administered via the nasal route for therapeutic and recreational purposes. The interest in, and importance, of the systemic effects of drugs administered through the nasal route, have expanded over recent decades. Intra-nasal administration of drugs offers an interesting alternative for achieving systemic therapeutic effects of drugs that are comparable to the parenteral route, which can be inconvenient at times or oral administration, which can result in unacceptably low drug bioavailability. So, it is important to understand the potential and limitations of various nasal drug delivery systems. Therefore, the aim of this review article is to discuss the various pharmaceutical dosage forms that have the potential to be utilised for local or systemic drug administration. It is intuitively expected that this review will help to understand and further to develop suitable intra-nasal formulations to achieve specific therapeutic objectives

    Bioactive SrO-SiO2 glass with well-ordered mesopores: Characterization, physiochemistry and biological properties

    Get PDF
    For a biomaterial to be considered suitable for bone repair it should ideally be both bioactive and have a capacity for controllable drug delivery; as such, mesoporous SiO2 glass has been proposed as a new class of bone regeneration material by virtue of its high drug-loading ability and generally good biocompatibility. It does, however, have less than optimum bioactivity and controllable drug delivery properties. In this study, we incorporated strontium (Sr) into mesoporous SiO2 in an effort to develop a bioactive mesoporous SrO–SiO2 (Sr–Si) glass with the capacity to deliver Sr2+ ions, as well as a drug, at a controlled rate, thereby producing a material better suited for bone repair. The effects of Sr2+ on the structure, physiochemistry, drug delivery and biological properties of mesoporous Sr–Si glass were investigated. The prepared mesoporous Sr–Si glass was found to have an excellent release profile of bioactive Sr2+ ions and dexamethasone, and the incorporation of Sr2+ improved structural properties, such as mesopore size, pore volume and specific surface area, as well as rate of dissolution and protein adsorption. The mesoporous Sr–Si glass had no cytotoxic effects and its release of Sr2+ and SiO44− ions enhanced alkaline phosphatase activity – a marker of osteogenic cell differentiation – in human bone mesenchymal stem cells. Mesoporous Sr–Si glasses can be prepared to porous scaffolds which show a more sustained drug release. This study suggests that incorporating Sr2+ into mesoporous SiO2 glass produces a material with a more optimal drug delivery profile coupled with improved bioactivity, making it an excellent material for bone repair applications. Keywords: Mesoporous Sr–Si glass; Drug delivery; Bioactivity; Bone repair; Scaffold

    Biodegradable multiblock copolymers for drug delivery applications

    Get PDF
    With rapid advances in genomic research and biotechnology, an increasing number of pharmaceutical proteins and peptides become available for a variety of diseases. However, the efficient delivery of these drugs is hampered by their large size and (biological) instability. Consequently, to obtain a desired therapeutic effect, proteins and peptides are usually administered parenterally by repeated subcutaneous or intramuscular injection. To overcome the problem of patient compliance, extensive research is performed on the development of controlled release systems
    corecore