17 research outputs found

    NSEC5, DNSSEC authenticated denial of existence

    Full text link
    The Domain Name System Security Extensions (DNSSEC) introduced two resource records (RR) for authenticated denial of existence: the NSEC RR and the NSEC3 RR. This document introduces NSEC5 as an alternative mechanism for DNSSEC authenticated denial of existence. NSEC5 uses verifiable random functions (VRFs) to prevent offline enumeration of zone contents. NSEC5 also protects the integrity of the zone contents even if an adversary compromises one of the authoritative servers for the zone. Integrity is preserved because NSEC5 does not require private zone-signing keys to be present on all authoritative servers for the zone, in contrast to DNSSEC online signing schemes like NSEC3 White Lies.https://datatracker.ietf.org/doc/draft-vcelak-nsec5/First author draf

    Making DNSSEC Future Proof

    Get PDF

    Is DNS Ready for Ubiquitous Internet of Things?

    Get PDF
    The vision of the Internet of Things (IoT) covers not only the well-regulated processes of specific applications in different areas but also includes ubiquitous connectivity of more generic objects (or things and devices) in the physical world and the related information in the virtual world. For example, a typical IoT application, such as a smart city, includes smarter urban transport networks, upgraded water supply, and waste-disposal facilities, along with more efficient ways to light and heat buildings. For smart city applications and others, we require unique naming of every object and a secure, scalable, and efficient name resolution which can provide access to any object\u27s inherent attributes with its name. Based on different motivations, many naming principles and name resolution schemes have been proposed. Some of them are based on the well-known domain name system (DNS), which is the most important infrastructure in the current Internet, while others are based on novel designing principles to evolve the Internet. Although the DNS is evolving in its functionality and performance, it was not originally designed for the IoT applications. Then, a fundamental question that arises is: can current DNS adequately provide the name service support for IoT in the future? To address this question, we analyze the strengths and challenges of DNS when it is used to support ubiquitous IoT. First, we analyze the requirements of the IoT name service by using five characteristics, namely security, mobility, infrastructure independence, localization, and efficiency, which we collectively refer to as SMILE. Then, we discuss the pros and cons of the DNS in satisfying SMILE in the context of the future evolution of the IoT environment

    The Reality of Algorithm Agility:Studying the DNSSEC Algorithm Life-Cycle

    Get PDF
    The DNS Security Extensions (DNSSEC) add data origin authentication and data integrity to the Domain Name System (DNS), the naming system of the Internet. With DNSSEC, signatures are added to the information provided in the DNS using public key cryptography. Advances in both cryptography and cryptanalysis make it necessary to deploy new algorithms in DNSSEC, as well as deprecate those with weakened security. If this process is easy, then the protocol has achieved what the IETF terms "algorithm agility". In this paper, we study the lifetime of algorithms for DNSSEC. This includes: (i) standardizing the algorithm, (ii) implementing support in DNS software, (iii) deploying new algorithms at domains and recursive resolvers, and (iv) replacing deprecated algorithms. Using data from more than 6.7 million signed domains and over 10,000 vantage points in the DNS, combined with qualitative studies, we show that DNSSEC has only partially achieved algorithm agility. Standardizing new algorithms and deprecating insecure ones can take years. We highlight the main barriers for getting new algorithms deployed, but also discuss success factors. This study provides key insights to take into account when new algorithms are introduced, for example when the Internet must transition to quantum-safe public key cryptography

    The Impact of DNSSEC on the Internet Landscape

    Get PDF
    In this dissertation we investigate the security deficiencies of the Domain Name System (DNS) and assess the impact of the DNSSEC security extensions. DNS spoofing attacks divert an application to the wrong server, but are also used routinely for blocking access to websites. We provide evidence for systematic DNS spoofing in China and Iran with measurement-based analyses, which allow us to examine the DNS spoofing filters from vantage points outside of the affected networks. Third-parties in other countries can be affected inadvertently by spoofing-based domain filtering, which could be averted with DNSSEC. The security goals of DNSSEC are data integrity and authenticity. A point solution called NSEC3 adds a privacy assertion to DNSSEC, which is supposed to prevent disclosure of the domain namespace as a whole. We present GPU-based attacks on the NSEC3 privacy assertion, which allow efficient recovery of the namespace contents. We demonstrate with active measurements that DNSSEC has found wide adoption after initial hesitation. At server-side, there are more than five million domains signed with DNSSEC. A portion of them is insecure due to insufficient cryptographic key lengths or broken due to maintenance failures. At client-side, we have observed a worldwide increase of DNSSEC validation over the last three years, though not necessarily on the last mile. Deployment of DNSSEC validation on end hosts is impaired by intermediate caching components, which degrade the availability of DNSSEC. However, intermediate caches contribute to the performance and scalability of the Domain Name System, as we show with trace-driven simulations. We suggest that validating end hosts utilize intermediate caches by default but fall back to autonomous name resolution in case of DNSSEC failures.In dieser Dissertation werden die Sicherheitsdefizite des Domain Name Systems (DNS) untersucht und die Auswirkungen der DNSSEC-Sicherheitserweiterungen bewertet. DNS-Spoofing hat den Zweck eine Anwendung zum falschen Server umzuleiten, wird aber auch regelmäßig eingesetzt, um den Zugang zu Websites zu sperren. Durch messbasierte Analysen wird in dieser Arbeit die systematische Durchführung von DNS-Spoofing-Angriffen in China und im Iran belegt, wobei sich die Messpunkte außerhalb der von den Sperrfiltern betroffenen Netzwerke befinden. Es wird gezeigt, dass Dritte in anderen Ländern durch die Spoofing-basierten Sperrfilter unbeabsichtigt beeinträchtigt werden können, was mit DNSSEC verhindert werden kann. Die Sicherheitsziele von DNSSEC sind Datenintegrität und Authentizität. Die NSEC3-Erweiterung sichert zudem die Privatheit des Domainnamensraums, damit die Inhalte eines DNSSEC-Servers nicht in Gänze ausgelesen werden können. In dieser Arbeit werden GPU-basierte Angriffsmethoden auf die von NSEC3 zugesicherte Privatheit vorgestellt, die eine effiziente Wiederherstellung des Domainnamensraums ermöglichen. Ferner wird mit aktiven Messmethoden die Verbreitung von DNSSEC untersucht, die nach anfänglicher Zurückhaltung deutlich zugenommen hat. Auf der Serverseite gibt es mehr als fünf Millionen mit DNSSEC signierte Domainnamen. Ein Teil davon ist aufgrund von unzureichenden kryptographischen Schlüssellängen unsicher, ein weiterer Teil zudem aufgrund von Wartungsfehlern nicht mit DNSSEC erreichbar. Auf der Clientseite ist der Anteil der DNSSEC-Validierung in den letzten drei Jahren weltweit gestiegen. Allerdings ist hierbei offen, ob die Validierung nahe bei den Endgeräten stattfindet, um unvertraute Kommunikationspfade vollständig abzusichern. Der Einsatz von DNSSEC-Validierung auf Endgeräten wird durch zwischengeschaltete DNS-Cache-Komponenten erschwert, da hierdurch die Verfügbarkeit von DNSSEC beeinträchtigt wird. Allerdings tragen zwischengeschaltete Caches zur Performance und Skalierbarkeit des Domain Name Systems bei, wie in dieser Arbeit mit messbasierten Simulationen gezeigt wird. Daher sollten Endgeräte standardmäßig die vorhandene DNS-Infrastruktur nutzen, bei Validierungsfehlern jedoch selbständig die DNSSEC-Zielserver anfragen, um im Cache gespeicherte, fehlerhafte DNS-Antworten zu umgehen

    Deploying DNSSEC in islands of security

    Get PDF
    The Domain Name System (DNS), a name resolution protocol is one of the vulnerable network protocols that has been subjected to many security attacks such as cache poisoning, denial of service and the 'Kaminsky' spoofing attack. When DNS was designed, security was not incorporated into its design. The DNS Security Extensions (DNSSEC) provides security to the name resolution process by using public key cryptosystems. Although DNSSEC has backward compatibility with unsecured zones, it only offers security to clients when communicating with security aware zones. Widespread deployment of DNSSEC is therefore necessary to secure the name resolution process and provide security to the Internet. Only a few Top Level Domains (TLD's) have deployed DNSSEC, this inherently makes it difficult for their sub-domains to implement the security extensions to the DNS. This study analyses mechanisms that can be used by domains in islands of security to deploy DNSSEC so that the name resolution process can be secured in two specific cases where either the TLD is not signed or the domain registrar is not able to support signed domains. The DNS client side mechanisms evaluated in this study include web browser plug-ins, local validating resolvers and domain look-aside validation. The results of the study show that web browser plug-ins cannot work on their own without local validating resolvers. The web browser validators, however, proved to be useful in indicating to the user whether a domain has been validated or not. Local resolvers present a more secure option for Internet users who cannot trust the communication channel between their stub resolvers and remote name servers. However, they do not provide a way of showing the user whether a domain name has been correctly validated or not. Based on the results of the tests conducted, it is recommended that local validators be used with browser validators for visibility and improved security. On the DNS server side, Domain Look-aside Validation (DLV) presents a viable alternative for organizations in islands of security like most countries in Africa where only two country code Top Level Domains (ccTLD) have deployed DNSSEC. This research recommends use of DLV by corporates to provide DNS security to both internal and external users accessing their web based services.LaTeX with hyperref packagepdfTeX-1.40.1

    Addressing the challenges of modern DNS:a comprehensive tutorial

    Get PDF
    The Domain Name System (DNS) plays a crucial role in connecting services and users on the Internet. Since its first specification, DNS has been extended in numerous documents to keep it fit for today’s challenges and demands. And these challenges are many. Revelations of snooping on DNS traffic led to changes to guarantee confidentiality of DNS queries. Attacks to forge DNS traffic led to changes to shore up the integrity of the DNS. Finally, denial-of-service attack on DNS operations have led to new DNS operations architectures. All of these developments make DNS a highly interesting, but also highly challenging research topic. This tutorial – aimed at graduate students and early-career researchers – provides a overview of the modern DNS, its ongoing development and its open challenges. This tutorial has four major contributions. We first provide a comprehensive overview of the DNS protocol. Then, we explain how DNS is deployed in practice. This lays the foundation for the third contribution: a review of the biggest challenges the modern DNS faces today and how they can be addressed. These challenges are (i) protecting the confidentiality and (ii) guaranteeing the integrity of the information provided in the DNS, (iii) ensuring the availability of the DNS infrastructure, and (iv) detecting and preventing attacks that make use of the DNS. Last, we discuss which challenges remain open, pointing the reader towards new research areas

    IPv6-kotiverkon liittäminen Internetin nimipalveluun

    Get PDF
    Current home networks are very simple containing only a few devices. As the number of devices connected to the home network increases, there is no reasonable way for a user to access devices using only IP addresses. Due to the exponential growth of devices connected to the Internet, the addresses of the current IP version are however soon to be depleted. A new IP version has already been implemented in the Internet, containing a very large amount of addresses compared to the current IP version. Addresses in the new IP address version are also much longer and more complicated. Therefore it is not reasonable to try to use IP addresses alone to access devices anymore. The previous facts force to implement a name service to the home network. Name service is quite similar to that used in the Internet, although the home network version should be much more automatic and user friendly. This means that users do not have to type IP addresses anymore to be able to access services, but they can use meaningful names like in the Internet. The first objective of the thesis is to examine methods to implement as automated name service as possible to the home network. Second objective is to examine connecting the home network name service to the Internet name service. Accomplishing this allows users to access services at home from the Internet. This has to be made in a secure manner to protect the integrity and authenticity of the user information. A live experiment of the thesis concentrates to the second objective of the thesis by establishing the connection and transferring the name service information between home network and the Internet name service. The study and the live experiments indicate that there is still work to be done before the two objectives can be fully accomplished. At the moment there is no convenient way to automatically name devices at home. Connecting to the Internet name service involves also quite a lot of effort, thus requiring more than basic computing skills from the user

    NAT64/DNS64 in the Networks with DNSSEC

    Get PDF
    Zvyšuj?c? se pod?l resolverů a aplikac? použ?vaj?c? DNS-over-HTTPSvede k vyš?mu pod?lu klientů použ?vaj?c?ch DNS resolvery třet?chstran. Kvůli tomu ovšem selhává nejpouž?vanějš? NAT64 detekčn?metoda RFC7050[1], což vede u klientů použ?vaj?c?ch přechodovémechanismy NAT64/DNS64 nebo 464XLAT k neschopnosti tytopřechodové mechanismy správně detekovat, a t?m k nedostupnostiobsahu dostupného pouze po IPv4. C?lem této práce je navrhnoutnovou detekčn? metodu postavenou na DNS, která bude pracovati s resolvery třet?ch stran, a bude schopná využ?t zabezpečen? DNSdat pomoc? technologie DNSSEC. Práce popisuje aktuálně standardizovanémetody, protokoly na kterých závis?, jejich omezen?a interakce s ostatn?mi metodami. Navrhovaná metoda použ?vá SRVzáznamy k přenosu informace o použitém NAT64 prefixu v globáln?mDNS stromu. Protože navržená metoda použ?vá již standardizovanéprotokoly a typy záznamů, je snadno nasaditelná bez nutnostimodifikovat jak DNS server, tak s?t'ovou infrastrukturu. Protožemetoda použ?vá k distribuci informace o použitém prefixu globáln?DNS strom, umožňuje to metodě použ?t k zabezpečen? technologiiDNSSEC. To této metodě dává lepš? bezpečnostn? vlastnosti nežjaké vykazuj? předchoz? metody. Tato práce vytvář? standardizačn?bázi pro standardizaci v rámci IETF.The rising number of DNS-over-HTTPS capable resolvers and applicationsresults in the higher use of third-party DNS resolvers byclients. Because of that, the currently most deployed method of theNAT64 prefix detection, the RFC7050[1], fails to detect the NAT64prefix. As a result, clients using either NAT64/DNS64 or 464XLATtransition mechanisms fail to detect the NAT64 prefix properly,making the IPv4-only resources inaccessible. The aim of this thesisis to develop a new DNS-based detection method that would workwith foreign DNS and utilize added security by the DNS securityextension, the DNSSEC. The thesis describes current methods ofthe NAT64 prefix detection, their underlying protocols, and theirlimitations in their coexistence with other network protocols. Thedeveloped method uses the SRV record type to transmit the NAT64prefix in the global DNS tree. Because the proposed method usesalready existing protocols and record types, the method is easilydeployable without any modification of the server or the transportinfrastructure. Due to the global DNS tree usage, the developedmethod can utilize the security provided by the DNSSEC and thereforeshows better security characteristics than previous methods.This thesis forms the basis for standardization effort in the IETF.

    Formal analysis of security models for mobile devices, virtualization platforms and domain name systems

    Get PDF
    En esta tesis investigamos la seguridad de aplicaciones de seguridad criticas, es decir aplicaciones en las cuales una falla podria producir consecuencias inaceptables. Consideramos tres areas: dispositivos moviles, plataformas de virtualizacion y sistemas de nombres de dominio. La plataforma Java Micro Edition define el Perfil para Dispositivos de Informacion Moviles (MIDP) para facilitar el desarrollo de aplicaciones para dispositivos moviles, como telefonos celulares y asistentes digitales personales. En este trabajo primero estudiamos y comparamos formalmente diversas variantes del modelo de seguridad especificado por MIDP para acceder a recursos sensibles de un dispositivo movil. Los hipervisores permiten que multiples sistemas operativos se ejecuten en un hardware compartido y ofrecen un medio para establecer mejoras de seguridad y flexibilidad de sistemas de software. En esta tesis formalizamos un modelo de hipervisor y establecemos (formalmente) que el hipervisor asegura propiedades de aislamiento entre los diferentes sistemas operativos de la plataforma, y que las solicitudes de estos sistemas son atendidas siempre. Demostramos tambien que las plataformas virtualizadas son transparentes, es decir, que un sistema operativo no puede distinguir si ejecuta solo en la plataforma o si lo hace junto con otros sistemas operativos. Las Extensiones de Seguridad para el Sistema de Nombres de Dominio (DNSSEC) constituyen un conjunto de especificaciones que proporcionan servicios de aseguramiento de autenticacion e integridad de origen de datos DNS. Finalmente, presentamos una especificaci´on minimalista de un modelo de DNSSEC que proporciona los fundamentos necesarios para formalmente establecer y verificar propiedades de seguridad relacionadas con la cadena de confianza del arbol de DNSSEC. Desarrollamos todas nuestras formalizaciones en el C´alculo de Construccion
    corecore