

PEDECIBA Informática
Instituto de Computación – Facultad de Ingeniería

Universidad de la República
Montevideo, Uruguay

Tesis de Doctorado
en Informática

Formal analysis of security models for

mobile devices, virtualization platforms,

 and domain name systems

Carlos Luna

2014

Formal analysis of security models for
mobile devices, virtualization platforms,
and domain name systems
Carlos Luna
ISSN 0797-6410
Tesis de Doctorado en Informática
Reporte Técnico RT 14-11
PEDECIBA
Instituto de Computación – Facultad de Ingeniería
Universidad de la República.
Montevideo, Uruguay, 2014

PEDECIBA INFORMÁTICA
Instituto de Computación, Facultad de Ingenieŕıa

Universidad de la República

Montevideo, Uruguay

TESIS DE DOCTORADO
EN INFORMÁTICA

Formal analysis of security models for
mobile devices, virtualization platforms,

and domain name systems

Carlos Luna
cluna@fing.edu.uy

Agosto de 2014

Director académico y de tesis: Gustavo Betarte

Tribunal

Nazareno Aguirre
Departamento de Computación, Facultad de Ciencias Exactas, F́ısico-Qúımicas y

Naturales, Universidad Nacional de Ŕıo Cuarto, Argentina (Revisor)

Ana Bove
Department of Computing Science and Engineering, Chalmers University of

Technology, Sweden / PEDECIBA Informática

Eduardo Gramṕın
Instituto de Computación, Facultad de Ingenieŕıa, Universidad de la República,

Uruguay / PEDECIBA Informática

Alvaro Mart́ın
Instituto de Computación, Facultad de Ingenieŕıa, Universidad de la República,

Uruguay / PEDECIBA Informática (Presidente)

Tamara Rezk
INRIA Sophia Antipolis-Mediterranée, France (Revisora)

ii

Formal analysis of security models for mobile devices,
virtualization platforms, and domain name systems

Luna, Carlos

ISSN 0797-6410

Tesis de Doctorado en Informática

Reporte Técnico RT -2014

PEDECIBA

Instituto de Computación - Facultad de Ingenieŕıa

Universidad de la República

Montevideo, Uruguay, Agosto de 2014

Caminante, son tus huellas el camino y nada más;

caminante, no hay camino, se hace camino al andar...

Antonio Machado – Proverbios y Cantares; Campos de Castilla (1912)

Formal analysis of security models
for mobile devices, virtualization

platforms, and domain name systems

Abstract

In this thesis we investigate the security of security-critical applications,
i.e. applications in which a failure may produce consequences that are
unacceptable. We consider three areas: mobile devices, virtualization
platforms, and domain name systems.
The Java Micro Edition platform defines the Mobile Information De-
vice Profile (MIDP) to facilitate the development of applications for
mobile devices, like cell phones and PDAs. In this work we first study
and compare formally several variants of the security model specified
by MIDP to access sensitive resources of a mobile device.
Hypervisors allow multiple guest operating systems to run on shared
hardware, and offer a compelling means of improving the security and
the flexibility of software systems. In this thesis we present a formaliza-
tion of an idealized model of a hypervisor, and we establish (formally)
that the hypervisor ensures strong isolation properties between the dif-
ferent operating systems, and guarantees that requests from guest op-
erating systems are eventually attended. We show also that virtualized
platforms are transparent, i.e. a guest operating system cannot distin-
guish whether it executes alone or together with other guest operating
systems on the platform.
The Domain Name System Security Extensions (DNSSEC) is a suite
of specifications that provides origin authentication and integrity as-
surance services for DNS data. We finally present a minimalistic spec-
ification of a DNSSEC model which provides the grounds needed to
formally state and verify security properties concerning the chain of
trust of the DNSSEC tree.
We develop all our formalizations in the Calculus of Inductive Con-
structions —formal language that combines a higher-order logic and a
richly-typed functional programming language— using the Coq proof
assistant.

Keywords: Formal modelling, Security properties, Coq proof assis-
tant, JME-MIDP, Virtualization, DNSSEC.

viii

Análisis formal de
modelos de seguridad para

dispositivos móviles,
plataformas de virtualización y
sistemas de nombres de dominio

Resumen

En esta tesis investigamos la seguridad de aplicaciones de seguridad
cŕıticas, es decir aplicaciones en las cuales una falla podŕıa producir con-
secuencias inaceptables. Consideramos tres áreas: dispositivos móviles,
plataformas de virtualización y sistemas de nombres de dominio.
La plataforma Java Micro Edition define el Perfil para Dispositivos de
Información Móviles (MIDP) para facilitar el desarrollo de aplicaciones
para dispositivos móviles, como teléfonos celulares y asistentes digi-
tales personales. En este trabajo primero estudiamos y comparamos
formalmente diversas variantes del modelo de seguridad especificado
por MIDP para acceder a recursos sensibles de un dispositivo móvil.
Los hipervisores permiten que múltiples sistemas operativos se ejecuten
en un hardware compartido y ofrecen un medio para establecer mejo-
ras de seguridad y flexibilidad de sistemas de software. En esta tesis
formalizamos un modelo de hipervisor y establecemos (formalmente)
que el hipervisor asegura propiedades de aislamiento entre los diferen-
tes sistemas operativos de la plataforma, y que las solicitudes de estos
sistemas son atendidas siempre. Demostramos también que las platafor-
mas virtualizadas son transparentes, es decir, que un sistema operativo
no puede distinguir si ejecuta sólo en la plataforma o si lo hace junto
con otros sistemas operativos.
Las Extensiones de Seguridad para el Sistema de Nombres de Dominio
(DNSSEC) constituyen un conjunto de especificaciones que proporcio-
nan servicios de aseguramiento de autenticación e integridad de origen
de datos DNS. Finalmente, presentamos una especificación minimalista
de un modelo de DNSSEC que proporciona los fundamentos necesarios
para formalmente establecer y verificar propiedades de seguridad rela-
cionadas con la cadena de confianza del árbol de DNSSEC.
Desarrollamos todas nuestras formalizaciones en el Cálculo de Cons-
trucciones Inductivas —lenguaje formal que combina una lógica de or-
den superior y un lenguaje de programación funcional tipado— uti-
lizando el asistente de pruebas Coq.

Palabras clave: Modelos formales, Propiedades de seguridad, Asis-
tente de pruebas Coq, JME-MIDP, Virtualización, DNSSEC.

Contents

1 Introduction 3

1.1 Security policies . 3

1.2 Security models . 4

1.3 Reasoning about implementations and models 5

1.4 Formal analysis of security models for critical systems 5

1.4.1 Mobile devices . 5

1.4.2 Virtualization platforms . 7

1.4.3 Domain name systems . 8

1.4.4 Personal contributions . 9

1.5 Formal language used . 11

1.5.1 Coq . 11

1.5.2 Notation . 11

1.6 Document outline . 13

2 Formal analysis of security models for mobile devices 15

2.1 Introduction . 15

2.1.1 MIDP security model . 15

2.1.2 Contents of the chapter . 17

2.1.3 Formalization . 17

2.2 Formally verifying security properties of MIDP 2.0 17

2.2.1 Formalization of the MIDP 2.0 security model 18

2.2.2 Verification of security properties 26

2.2.3 Refinement . 28

2.3 A certified access controller for MIDP 2.0 30

2.3.1 Formalization of the access control module 30

2.3.2 Verification of security properties 32

2.3.3 A certified access controller . 33

2.4 Formally verifying security properties of MIDP 3.0 36

2.4.1 Security at the application level 36

2.4.2 New device state . 36

2.4.3 Application level access request 37

2.4.4 Conservative extension of security properties 38

2.4.5 Weaknesses of the security mechanisms of MIDP 3.0 40

2.5 A framework for defining and comparing access control policies 42

2.5.1 An alternative security model for mobile devices 42

2.5.2 A framework for access control modeling 43

2.5.3 Permission grant policies . 49

i

ii CONTENTS

2.5.4 Relating permission grant policies 50

2.6 Related work . 52

2.7 Summary . 53

3 Formally verifying security properties in an idealized model of virtu-
alization 55

3.1 Introduction . 55

3.1.1 A primer on virtualization . 56

3.1.2 Contents of the chapter . 56

3.1.3 Formalization . 56

3.2 The model . 57

3.2.1 Informal overview of the memory model 57

3.2.2 Formalizing states . 58

3.2.3 Actions . 61

3.2.4 Traces . 63

3.3 Isolation properties . 64

3.4 Availability . 67

3.5 Extension of the model with cache and TLB 68

3.5.1 Cache management . 68

3.5.2 States . 68

3.5.3 Actions semantics . 70

3.6 Verified implementation . 71

3.6.1 Error management . 71

3.6.2 Executable specification . 72

3.6.3 Soundness . 75

3.7 Isolation and transparency in the extended model 77

3.7.1 OS isolation . 77

3.7.2 OS isolation in execution traces 79

3.7.3 Transparency . 80

3.8 Related work . 82

3.9 Summary . 83

4 A formal specification of the DNSSEC model 85

4.1 Introduction . 85

4.1.1 A primer on the vulnerabilities of DNS 86

4.1.2 Contents of the chapter . 87

4.1.3 Formalization . 87

4.2 Formalization of the DNSSEC model . 87

4.2.1 Formalizing states . 87

4.2.2 Events . 93

4.3 Verification of security properties . 97

4.3.1 An invariant of one-step execution 97

4.3.2 Compromising the chain of trust 98

4.4 Summary . 100

CONTENTS iii

5 Conclusion and future work 101
5.1 Security models for mobile devices . 101
5.2 A model of virtualization . 102
5.3 The DNSSEC model . 103

Bibliography 105

List of Figures

2.1 A typical MIDlet descriptor, specifying the required and optional permis-
sion of suite for a suite with two applications 18

2.2 Specification of event request when user intervention is not required . . 23
2.3 Specification of event request when intervention is required and the user

accepts the request . 24
2.4 Specification of event request when intervention is required and the user

denies the request . 24
2.5 A session for a suite with identifier id 25
2.6 Simulation relation between interp and the relation →֒. Given states s, s

and events e, e such that s ⊑ s and e ⊑ e, for every state s′ and response
r computed by interp there must exist a corresponding abstract state s′

refined by s′ reachable from s by the →֒ relation with the same response 29
2.7 Semantics of instructions . 47
2.8 Control-flow graph example . 48

3.1 Memory model of the platform . 57
3.2 Formal specification of actions semantics 60
3.3 Memory model of the platform with cache and TLB 69
3.4 Axiomatic specification of action write 70
3.5 The step function . 73
3.6 Execution of write action . 73
3.7 Validation of write action precondition 74
3.8 Effect of write execution . 76
3.9 Cache update . 76
3.10 Formal specification of the action silent 81

4.1 Types of Resource Records . 88
4.2 Resource records introduced by DNSSEC 89
4.3 DNS Message Format . 90

5.1 LOC of Coq development – security for mobile devices 102
5.2 LOC of Coq development – model of virtualization 103
5.3 LOC of Coq development – DNSSEC formalization 104

v

List of Tables

2.1 Security-related events . 21
2.2 Event preconditions . 22
2.3 Event postconditions . 22

3.1 Platform actions . 62
3.2 Preconditions and error codes . 71

4.1 DNSSEC model events . 94
4.2 Error messages . 96

vii

Acknowledgments

En primer lugar, quiero agradecer a mi director académico y de tesis, Gustavo Betarte
(Gustun), quien me brindó todo el apoyo necesario para la realización de esta tesis. Su
trabajo, gúıa y motivación constantes fueron claves para mi durante estos años. Mil
gracias Gustun!

A Gilles Barthe, por empeñarse –junto con Gustun– en que concretara el doctorado.
Haber trabajado y publicado junto a él, en temas de virtualización, ha sido para mi
una experiencia muy valiosa, de la cual aprend́ı mucho. Gracias Gilles también por los
comentarios sobre versiones preliminares de este documento.

A los coautores de los art́ıculos (en Argentina y Uruguay) que constituyen la base de
esta tesis. En particular, a Santiago Zanella Béguelin, Ramin Roushani, Juan Manuel
Crespo, Gustavo Mazeikis, Julio Pérez, Jesús Mauricio Chimento y Ezequiel Bazán.

A Juan Diego Campo, un gran compañero de trabajo, con quien compartimos el
camino del doctorado en este último tiempo, y muchas jornadas de trabajo en torno a
dos proyectos de investigación. Su tesis será sin dudas memorable!

A los miembros del tribunal, y en particular a los revisores, por sus comentarios y
correcciones. Asimismo, a los revisores anónimos de los art́ıculos referidos.

Al PEDECIBA Informática y al Instituto de Computación (InCo) de la Facultad de
Ingenieŕıa, por darme la oportunidad.

A mis compañeras y compañeros de grupo; tanto en el área de métodos formales
como de seguridad informática. De distintas maneras, contribuyeron con este trabajo.

A las y los docentes que influyeron en mi iniciación en el campo de la investigación.
En particular, a Jorge Aguirre, Gilles Barthe, Grabriel Baum, Gustavo Betarte, Cristina
Cornes, Alberto Pardo, Nora Szasz y Alvaro Tasistro.

A la Universidad Nacional de Ŕıo Cuarto y la Universidad Nacional de Rosario
(Argentina); a la Universidad de la República y la Universidad ORT (Uruguay), por
brindarme la posibilidad de participar en estos años de una vida académica, que tanto
me apasiona.

A mis colegas y amigos, por acompañarme y aguantarme en este camino...
Finalmente, agradezco a mi familia (de aqúı y de allá) el apoyo y la comprensión

durante tanto tiempo! Dedico especialmente esta tesis a ellas: Juli, Sofi, Mayru (mis
tres niñas) y Jóse.

Este trabajo fue financiado, parcialmente, por: i) STEVE: Security Through Veri-
fiable Evidence (PDT 63/118, FCE 2006, DINACYT, Uruguay, 2007-2009); ii) Virtual-
Cert: Towards a Certified Virtualization Platform (ANII-Clemente Estable, PR-FCE-
2009-1-2568, Uruguay, 2010-2012); and iii) VirtualCert: Towards a Certified Virtualiza-
tion Platform - Phase II (UDELAR-CSIC I+D, Uruguay, 2013-2015).

1

Chapter 1

Introduction

There are multiple definitions of the term safety-critical system. In particular, if a
system failure could lead to consequences that are determined to be unacceptable, then
the system is safety-critical. In essence, a system is safety-critical when we depend on
it for our welfare.

In this thesis, we investigate the security of three areas of safety-critical applications:

1. mobile devices: with increasing capabilities in mobile devices (like cell phones and
PDAs) and posterior consumer adoption, these devices have become an integral
part of how people perform tasks in their works and personal lives. Unfortunately,
the benefits of using mobile devices are sometimes counteracted by security risks;

2. virtualization platforms : hypervisors allow multiple operating systems to run in
parallel on the same hardware, by ensuring isolation between their guest operating
systems. In effect, hypervisors are increasingly used as a means to improve system
flexibility and security; unfortunately, they are often vulnerable to attacks;

3. domain name systems: the domain name systems constitute distributed databases
that provide support to a wide variety of network applications such as electronic
mail, WWW, and remote login. The important and critical role of these systems in
software systems and networks makes them a prime target for (formal) verification.

1.1 Security policies

In general, security (mainly) involves the combination of confidentiality, integrity and
availability [1]. Confidentiality can be understood as the prevention of unauthorized
disclosure of information; integrity, as the prevention of unauthorized modification of
information; and availability, as the prevention of unauthorized withholding of informa-
tion or resources [2]. However, this list is incomplete.

We distinguish between security models and security policies. The security model
term could be interpreted as the representation of security systems confidentiality, in-
tegrity and availability requirements [3]. The more general usage of the term specifies a
particular mechanism, such as access control, for enforcing (in particular) confidentiality,
which has been adopted for computer security. Security issues arise in many different
contexts; so many security models have been developed.

3

4 Introduction

A security policy is a specification of the protection goals of a system. This specifica-
tion determines the security properties that the system should possess. A security policy
defines executions of a system that, for some reason, are considered unacceptable [4].
For instance, a security policy may affect:

• access control, and restrict the operations that can be performed on elements;

• availability, and restrict processes from denying others the use of a resource;

• information flow, and restrict what can be inferred about objects from observing
system behavior.

To formulate a policy is necessary to describe the entities governed by the policy
and set the rules that constitute the policy. This could be done informally in a natu-
ral language document. However, approaches based on natural languages fall short of
providing the required security guarantees. Because of the ambiguity and imprecision
of informal specification, it is difficult to verify the correctness of the system. To avoid
these problems, formal security models are considered.

1.2 Security models

Security models play an important role in the design and evaluation of high assurance
security systems. Their importance was already pointed out in the Anderson report [5].
The first model to appear was Bell-LaPadula [6], in 1973, in response to US Air Force
concerns over the confidentiality of data in time-sharing mainframe systems.

In the last decades, some countries developed specific security evaluation standards
[7]. This initiative opened the path to worldwide mutual recognition of security eval-
uation results. In this direction, new Common Criteria (CC) [8] was developed. CC
defines seven levels of assurance for security systems (EAL 1–7). In order to obtain a
higher assurance than EAL 4, developers require specification of a security model for
security systems and verify security using formal methods. For example, the Gemalto
and Trusted Logic companies obtained the highest level of certification (EAL 7) for their
formalization of the security properties of the JavaCard platform [9, 10, 11], using the
Coq proof assistant [12, 13].

State machines are a powerful tool used for modeling many aspects of computing
systems. In particular, they can be employed to specify security models. The basic
features of a state machine model are the concepts of state and state change. A state is
a representation of the system under study at a given time, which should capture those
system aspects relevant to our problem. Possible state transitions can be specified by
a state transition function that defines the next state based on the current state and
input. An output can also be produced.

If we want to analize a specific safety property of a system, like security, using a state
machine model, we must first identify all the states that satisfy the property. Then we
can to check if all state transitions preserve this property. If this is the case and if the
system starts in an initial state that has this property, then we can prove by induction
that the property will always be fulfilled. Thus, state machines can be used to enforce
a collection of security policies on a system.

1.3 Reasoning about implementations and models 5

1.3 Reasoning about implementations and models

The increasingly important role of critical components in software systems (as hyper-
visors in virtual platforms or access control mechanisms in mobile devices) make them
a prime target for formal verification. Indeed, several projects have set out to formally
verify the correctness of critical system implementations, e.g. [14, 15, 16].

Reasoning about implementations provides the ultimate guarantee that deployed
critical systems provide the expected properties. There are however significant hurdles
with this approach, especially if one focuses on proving security properties rather than
functional correctness. First, the complexity of formally proving non-trivial properties
of implementations might be overwhelming in terms of the effort it requires; worse,
the technology for verifying some classes of security properties may be underdeveloped:
specifically, liveness properties are generally hard to prove, and there is currently no
established method for verifying, using tools, security properties involving two system
executions, a.k.a. 2-properties, for implementations, making their formal verification on
large and complex programs exceedingly challenging. For instance, operating system
isolation property is a 2-safety property [17, 18] that requires reasoning about two pro-
gram executions. Second, many implementation details are orthogonal to the security
properties to be established, and may complicate reasoning without improving the un-
derstanding of the essential features for guaranteeing important properties. Thus, there
is a need for complementary approaches where verification is performed on idealized
models that abstract away from the specifics of any particular implementation, and yet
provide a realistic setting in which to explore the security issues that pertain to the
realm of those critical systems.

1.4 Formal analysis of security models for critical systems

In this section we introduce the research lines —in the three domains of safety-critical
applications listed above— and contributions of the thesis. The work was developed in
the context of the following research projects [19]:

• ReSeCo: Reliability and Security of Distributed Software Components (STIC-
AMSUD, 2006-2009);

• STEVE: Security Through Verifiable Evidence (PDT 63/118, FCE 2006, DINA-
CYT, Uruguay, 2007-2009);

• Especificación Formal y Verificación de Sistemas Cŕıticos (SeCyT-FCEIA ING266,
UNR, Argentina, 2009-2010);

• VirtualCert: Towards a Certified Virtualization Platform (ANII-Clemente Estable,
PR-FCE-2009-1-2568, Uruguay, 2010-2012);

• VirtualCert: Towards a Certified Virtualization Platform - Phase II (UDELAR-
CSIC I+D, Uruguay, 2013-2015).

1.4.1 Mobile devices

Today, even entry-level mobile devices (e.g. cell phones) have access to sensitive personal
data, are subscribed to paid services and can establish connections with external entities.

6 Introduction

Users of such devices may, in addition, download and install applications from untrusted
sites at their will. This flexibility comes at a cost, since any security breach may expose
sensitive data, prevent the use of the device, or allow applications to perform actions that
incur a charge for the user. It is therefore essential to provide an application security
model that can be relied upon—the slightest vulnerability may imply huge losses due
to the scale the technology has been deployed.

Java Micro Edition (JME) [20] is a version of the Java platform targeted at resource-
constrained devices which comprises two kinds of components: configurations and pro-
files. A configuration is composed of a virtual machine and a set of APIs that provide
the basic functionality for a particular category of devices. Profiles further determine
the target technology by defining a set of higher level APIs built on top of an underlying
configuration. This two-level architecture enhances portability and enables developers
to deliver applications that run on a wide range of devices with similar capabilities. This
work concerns the topmost level of the architecture which corresponds to the profile that
defines the security model we formalize.

The Connected Limited Device Configuration (CLDC) [21] is a JME configuration
designed for devices with slow processors, limited memory and intermittent connectivity.
CLDC together with the Mobile Information Device Profile (MIDP) provides a complete
JME runtime environment tailored for devices like cell phones and personal data assis-
tants. MIDP defines an application life cycle, a security model and APIs that offer the
functionality required by mobile applications, including networking, user interface, push
activation and persistent local storage. Many mobile device manufacturers have adopted
MIDP since the specification was made available. Nowadays, literally billions of MIDP
enabled devices are deployed worldwide and the market acceptance of the specification
is expected to continue to grow steadily.

The security model of MIDP has evolved since it was first introduced. In MIDP
1.0 [22] and MIDP 2.0 [23] the main goal is the protection of sensitive functions provided
by the device. In MIDP 3.0 [24] the protection is extended to the resources of an
application, which can be shared with other applications. Some of these features are
incorporated in the Android security model [25, 26, 27] for mobile devices, as we will
see in Section 2.6.

Contributions

The contributions of the work in this domain are manyfold:

1. We describe a formal specification of the MIDP 2.0 security model that provides
an abstraction of the state of a device and security-related events that allows us to
reason about the security properties of the platform where the model is deployed;

2. The security of the desktop edition of the Java platform (JSE) relies on two main
modules: a Security Manager and an Access Controller. The Security Manager is
responsible for enforcing a security policy declared to protect sensitive resources;
it intercepts sensitive API calls and delivers permission and access requests to
the Access Controller. The Access Controller determines whether the caller has
the necessary rights to access resources. While in the case of the JSE platform,
there exists a high-level specification of the Access Controller module (the basic
mechamism is based on stack inspection [28]), no equivalent formal specification
exists for JME. We illustrate the pertinence of the specification of the MIDP 2.0

1.4 Formal analysis of security models for critical systems 7

security model that has been developed by specifying and proving the correctness
of an access control module for the JME platform;

3. The latest version of MIDP, MIDP 3.0, introduces a new dimension in the security
model at the application level based on the concept of authorizations, allowing
delegation of rights between applications. We extend the formal specification
developed for MIDP 2.0 to incorporate the changes introduced in MIDP 3.0, and
show that this extension is conservative, in the sense that it preserves the security
properties we proved for the previous model;

4. Besson, Duffay and Jensen [29] put forward an alternative access control model for
mobile devices that generalizes the MIDP model by introducing permissions with
multiplicites, extending the way permissions are granted by users and consumed
by applications. One of the main outcomes of the work we report here is a general
framework that sets up the basis for defining, analyzing and comparing access
control models for mobile devices. In particular, this framework subsumes the
security model of MIDP and several variations, including the model defined in
[29].

1.4.2 Virtualization platforms

Hypervisors allow several operating systems to coexist on commodity hardware, and pro-
vide support for multiple applications to run seamlessly on the guest operating systems
they manage. Moreover, hypervisors provide a means to guarantee that applications
with different security policies can execute securely in parallel, by ensuring isolation
between their guest operating systems. In effect, hypervisors are increasingly used as
a means to improve system flexibility and security, and authors such as [30] already in
2007 predicted that their use would become ubiquitous in enterprise data centers and
cloud computing.

The increasingly important role of hypervisors in software systems makes them a
prime target for formal verification. Indeed, several projects have set out to formally
verify the correctness of hypervisor implementations. One of the most prominent ini-
tiatives is the Microsoft Hyper-V verification project [14, 15, 31], which has made a
number of impressive achievements towards the functional verification of the legacy im-
plementation of the Hyper-V hypervisor, a large software component that combines C
and assembly code (about 100 kLOC of C and 5kLOC of assembly). The overarching
objective of the formal verification is to establish that a guest operating system cannot
observe any difference between executing through the hypervisor or directly on the hard-
ware. The other prominent initiative is the L4.verified project [16], which completed the
formal verification of the seL4 microkernel, a general purpose operating system of the L4
family. The main thrust of the formal verification is to show that an implementation of
the microkernel correctly refines an abstract specification. Subsequent machine-checked
developments prove that seL4 enforces integrity, authority confinement [32] and intran-
sitive non-interference [33]. The formalization does not model cache.

Reasoning about implementations provides the final guarantee that deployed hyper-
visors provide the expected properties. There are however, as mentioned previously,
serious difficulties with this approach. For example, many implementation details are
orthogonal to the security properties to be established, and may complicate reasoning

8 Introduction

without improving the understanding of the essential features for guaranteeing isola-
tion among guest operating systems. Therefore, there is a need for complementary
approaches where verification is performed on idealized models that abstract away from
the specifics of any particular hypervisor, and yet provide a realistic environment in
which to investigate the security problems that pertain to the realm of hypervisors.

Contributions

The work presented here initiates such an approach by developing a minimalistic model
of a hypervisor, and by formally proving that the hypervisor correctly enforces iso-
lation between guest operating systems, and under mild hypotheses guarantees basic
availability properties to guest operating systems. In order to achieve some reasonable
level of tractability, our model is significantly simpler than the setting considered in
the Microsoft Hyper-V verification project, it abstracts away many specifics of mem-
ory management such as shadow page tables (SPTs) and of the underlying hardware
and runtime environment such as I/O devices. Instead, our model focuses on the as-
pects that are most relevant for isolation properties, namely read and write resources
on machine addresses, and is sufficiently complete to allow us to reason about isolation
properties. Specifically, we show that an operating system can only read and modify
memory it owns, and a non-influence property [34] stating that the behavior of an oper-
ating system is not influenced by other operating systems. In addition, our model allows
reasoning about availability; we prove, under reasonable conditions, that all requests of
a guest operating system to the hypervisor are eventually attended, so that no guest
operating system waits indefinitely for a pending request. Overall, our verification ef-
fort shows that the model is adequate to reason about safety properties (read and write
isolation), 2-safety properties (OS isolation), and liveness properties (availability).

Additionally, in this work we present an implementation of a hypervisor in the pro-
gramming language of Coq, and a proof that it realizes the axiomatic semantics, on an
extended memory model with a formalization of the cache and Translation Lookaside
Buffer (TLB). Although it remains idealized and far from a realistic hypervisor, the
implementation arguably provides a useful mechanism for validating the axiomatic se-
mantics. The implementation is total, in the sense that it computes for every state and
action a new state or an error. Thus, soundness is proved with respect to an extended
axiomatic semantics in which transitions may lead to errors. An important contribution
in this part of the work is a proof that OS isolation remains valid for executions that
may trigger errors.

Finally, we show that virtualized platforms are transparent, i.e. a guest operat-
ing system cannot distinguish whether it executes alone or together with other guest
operating systems on the platform.

1.4.3 Domain name systems

The Domain Name System (DNS) [35, 36] constitutes a distributed database that pro-
vides support to a wide variety of network applications such as electronic mail, WWW,
and remote login. The database is indexed by domain names. A domain name repre-
sents a path in a hierarchical tree structure, which in turn constitutes a domain name
space. Each node of this tree is assigned a label, thus, a domain name is built as a
sequence of labels separated by a dot, from a particular node up to the root of the tree.

1.4 Formal analysis of security models for critical systems 9

A distinguishing feature of the design of DNS is that the administration of the system
can be distributed among several (authoritative) name servers. A zone is a contiguous
part of the domain name space that is managed by a set of authoritative name servers.
Then, distribution is achieved by delegating part of a zone administration to a set of
delegated sub-zones. DNS is a widely used scalable system, but it was not conceived
with security concerns in mind, as it was designed to be a public database with no
intentions to restrict access to information. Nowadays, a large amount of distributed
applications make use of domain names. Confidence on the working of those aplications
depends critically on the use of trusted data: fake information inside the system has
been shown to lead to unexpected and potentially dangerous problems.

Already in the early 90’s serious security flaws were discovered by Bellovin and even-
tually reported in [37]. Different types of security issues concerning the working of DNS
have been discussed in the literature, see, for instance, [38, 37, 39, 40, 41, 42]. Identified
vulnerabilities of DNS make it possible to launch different kinds of attacks, namely:
cache poisoning, client flooding, dynamic update vulnerability, information leakage and
compromise of the DNS servers authoritative database [43, 37, 44, 45, 46].

Domain Name System Security Extensions (DNSSEC) [47, 48, 49] is a suite of Inter-
net Engineering Task Force (IETF) specifications for securing information provided by
DNS. More specifically, this suite specifies a set of extensions to DNS which are oriented
to provide mechanisms that support authentication and integrity of DNS data but not
its availability or confidentiality. In particular, the security extensions were designed to
protect resolvers from forged DNS data, such as the one generated by DNS cache poi-
soning [45, 45, 46], by digitally signing DNS data using public-key cryptography. The
keys used to sign the information are authenticated via a chain of trust, starting with a
set of verified public keys that belong to the DNS root zone, which is the trusted third
party.

The DNSSEC standards were finally released in 2005 and a number of testbeds, pilot
deployments, and services have been rolled out in the last few years [50, 51, 52, 53, 54,
55, 56]. In particular, the main objective of the OpenDNSSEC project [55] is to develop
an open source software that manages the security of domain names on the Internet.

Contributions

The important and critical role of DNSSEC in software systems and networks makes it a
prime target for formal analysis. This thesis presents the development of a minimalistic
specification of a DNSSEC model, and yet provides a realistic setting in which to explore
the security issues that pertain to the realm of DNS. The specification puts forward an
abstract formulation of the behavior of the protocol and the corresponding security-
related events, where security goals, such as the prevention of cache poisoning attacks,
can be given a formal treatment. In particular, the formal model provides the grounds
needed to formally state and verify security properties concerning the chain of trust
generated along the DNSSEC tree.

1.4.4 Personal contributions

The thesis builds upon and extends a number of previously published papers:

1. Betarte, G., Luna, C., Zanella Béguelin, S.: A formal specification of the MIDP
2.0 security model. In: 4th International workshop on Formal Aspects in Security

10 Introduction

and Trust, FAST 2006. Volume 4691 of Lecture Notes in Computer Science,
Springer-Verlag (2006) 220–234;

2. Betarte, G., Luna, C., Roushani Oskui, R.: A certified access controller for JME-
MIDP 2.0 enabled mobile devices. In: 2009 International Conference of the
Chilean Computer Science Society, SCCC 2009, Los Alamitos, CA, USA, IEEE
Computer Society (2009) 51–58;

3. Betarte, G., Luna, C., Mazeikis, G.: Formal specification and analysis of the MIDP
3.0 security model. In: 2009 International Conference of the Chilean Computer
Science Society, SCCC 2009, Los Alamitos, CA, USA, IEEE Computer Society
(2009) 59–66;

4. Betarte, G., Crespo, J., Luna, C.: A framework for the analysis of access control
models for interactive mobile devices. In: Types for Proofs and Programs, Inter-
national Conference, TYPES 2008. Volume 5497 of Lecture Notes in Computer
Science, Springer-Verlag (2009) 49–63;

5. Barthe, G., Betarte, G., Campo, J., Luna, C.: Formally verifying isolation and
availability in an idealized model of virtualization. In Butler, M., Schulte, W.,
eds.: Formal Methods 2011. Volume 6664 of Lecture Notes in Computer Science,
Springer-Verlag (2011) 231–245;

6. Barthe, G., Betarte, G., Campo, J.D., Chimento, J.M., Luna, C.: Formally veri-
fied implementation of an idealized model of virtualization. In Matthes, R., Schu-
bert, A., eds.: 19th International Conference on Types for Proofs and Programs
(TYPES 2013). Volume 26 of Leibniz International Proceedings in Informatics
(LIPIcs)., Dagstuhl, Germany, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik
(2014) 45–63;

7. Betarte, G., Eixarch, E. B., Luna, C. D.: A formal specification of the DNSSEC
model. Electronic Communications of the European Association of Software Sci-
ence and Technology (ECEASST) 48 (2011) 1–21.

In each of the papers that constitute the core of this thesis, I worked on the analysis
of different security models considered, in the development of formal specifications, the
formulation of relevant security properties, demonstrating many of these properties, and
building certified implementations. I have also collaborated in the analysis of results and
writing of those papers. Finally, I participated in the following works directly related
to this thesis, but which are not part of it:

• Barthe, G., Betarte, G., Campo, J., Luna, C.: Cache-Leakage Resilient OS Isola-
tion in an Idealized Model of Virtualization. In: IEEE 25th Computer Security
Foundations Symposium (2012) 186–197;

• Barthe, G., Betarte, G., Campo, J., Luna, C., Pichardie, D.: System-level non-
interference for constant-time cryptography. To appear in proceedings of the 21st
ACM Conference on Computer and Communications Security (2014).

Throughout the development of the thesis, and in the context of research projects
involved, I have officiated as (co)director of the final degree projects of the following

1.5 Formal language used 11

students (in Argentina and Uruguay): Santiago Zanella Béguelin, Ramin Roushani Os-
kui, Juan Manuel Crespo, Gustavo Mazeikis, Julio Pérez, Jesús Mauricio Chimento, and
Ezequiel Bazán.

1.5 Formal language used

1.5.1 Coq

The Coq proof assistant [12, 13] is a free open source software that provides a (depen-
dently typed) functional programming language and a reasoning framework based on
higher order logic to perform proofs of programs. Coq allows developing mathematical
facts. This includes defining objects (sets, lists, functions, programs); making state-
ments (using basic predicates, logical connectives and quantifiers); and finally writing
proofs. The Coq environment supports advanced notations, proof search and automa-
tion, and modular developments. It also provides program extraction towards languages
like Ocaml and Haskell for execution of (certified) algorithms [57, 58]. These features
are very useful to formalize and reason about complex specifications and programs.

As examples of its applicability, Coq has been used as a framework for formalizing
programming environments and designing special platforms for software verification:
Leroy and others developed in Coq a certified optimizing compiler for a large subset of
the C programming language [59]; Barthe and others used Coq to develop Certicrypt, an
environment of formal proofs for computational cryptography [60]. Also, as mentioned
previously, the Gemalto and Trusted Logic companies obtained the level CC EAL 7 of
certification for their formalization, developed in Coq, of the security properties of the
JavaCard platform.

We developed our specifications in the Calculus of Inductive Constructions (CIC) [61,
62, 63] using Coq. The CIC is a type theory, in brief, a higher order logic in which the
individuals are classified into a hierarchy of types. The types work very much as in
strongly typed functional programming languages which means that there are basic
elementary types, types defined by induction, like sequences and trees, and function
types. An inductive type is defined by its constructors and its elements are obtained
as finite combinations of these constructors. Data types are called “Sets” in the CIC
(in Coq). When the requirement of finiteness is removed we obtain the possibility of
defining infinite structures, called coinductive types, like infinite sequences. On top of
this, a higher-order logic is available which serves to predicate on the various data types.
The interpretation of the propositions is constructive, i.e. a proposition is defined by
specifying what a proof of it is and a proposition is true if and only if a proof of it has
been constructed. The type of propositions is called Prop.

1.5.2 Notation

We use standard notation for equality and logical connectives. Implication and universal
quantification may be encoded in Coq using dependent product, while equality and the
other connectives can be defined inductively. Anonymous predicates are introduced
using lambda notation, e.g. (λn : nat. n = 0) : nat → Prop is a predicate that when
applied to n, is true iff n is zero.

12 Introduction

We extensively use record types; a record type definition

R def

= [[field1 : T1, . . . , fieldn : Tn]] (1.1)

generates a non-recursive inductive type with just one constructor, namely mkR, and
projections functions fieldi : R → Ti. We write 〈a1, . . . , an〉 instead of mkR a1 . . . an
when the type R is obvious from the context. Application of projections functions is
abbreviated using dot notation (i.e. fieldi r = r.fieldi). Field update of a record r is
written as r.[fieldi := v]; we also use simultaneous field update, which is defined in the
usual way. For each field fieldi in a record type we define a binary relation ≡fieldi over
objects of the type as

r1 ≡fieldi r2
def

= ∀ j, j 6= i → r1.fieldj = r2.fieldj (1.2)

We define an inductive relation I by giving introduction rules of the form

P1 · · · Pm

I x1 . . . xn
rule

(1.3)

where free occurrences of variables are universally quantified. Similarly, inductive types
are defined by giving constructors in the following form

T
def
= | C1 : A1,1 → . . . A1,n1

→ T
...
| Cm : Am,1 → . . . Am,nm

→ T

(1.4)

where C1 . . . Cm are the constructors of T .
The following parametric (co)inductive types are assumed to be predefined:

• option A with constructors None : option A and Some : A → option A;

• finite lists over A, list A. The empty list is denoted by [] and the (infix) constructor
that inserts an element a at the front of a list s is denoted by a ⊲ s. Finite snoc
lists over A, snocListA, that is, lists that are constructed by inserting elements
at the back, are also used. [] denotes the empty snoc list and s ⊳ a denotes the
insertion of an element a at the back of the snoc list s. The symbol ⊕ stands for
the concatenation operator on lists;

• infinite lists. The type of streams of type A is written [A]∞. Objects of type [A]∞
are constructed with the (infix) operator ::, hence x :: xs is of type [A]∞ whenever
x is of type A and xs is of type [A]∞. Given s : [A]∞ we let s[i] denote the i-th
element of s;

• sets of type A are defined as set A, where set is an inductive type encoding sets
as lists. We use {a0, . . . , an}A to denote the set of elements a0, . . . , an of type A.
When the type A is obvious from the context, we write {a0, . . . , an}. Classical
notation is used for set operations (∪,∩, \,∈,⊆).

Moreover, we make an extensive use of partial maps, and bounded partial maps. The
type of partial maps from objects of type A into objects of type B is written A 7→ B,
and the type of partial maps from A to B whose domain is of size smaller or equal to

1.6 Document outline 13

k (where k is a natural number) is written as A 7→k B. Application of a map m on
an object a of type A is denoted m[a] and map update is written m[a := b], where b
overwrites the value, if any, associated to the key a.

In the formal constructions presented in Section 2.5 we use inductive types that have
constructors tagged either as valid or invalid. In that section we adopt the convention
that a type with the same name but prefixed with the valid keyword is the subtype
consisting of terms derivable using only constructors tagged as valid.

1.6 Document outline

The remainder of this document is organized as follows. In Chapter 2 we study and
compare formally several variants of the security model specified by MIDP to access
sensitive resources of a device. In Chapter 3 we present the formalization of an ide-
alized model of a hypervisor, and we establish (formally) that the hypervisor ensures
strong isolation properties between the different operating systems, and guarantees that
requests from guest operating systems are eventually attended. We then develop a cer-
tified implementation of a hypervisor —in the programming language of Coq— on an
extended memory model with a formalization of the cache and TLB, and we analyze
also security properties for the extended model with execution errors. In Chapter 4 we
present a minimalistic specification of a DNSSEC model which provides the grounds
needed to formally state and verify security properties concerning the chain of trust of
the DNSSEC tree. Finally, the conclusions of the research are formulated in Chapter 5,
along with some statistics on the formal developments in Coq and the possible lines of
future work.

Chapter 2

Formal analysis of security
models for mobile devices

2.1 Introduction

JME technology provides integral mechanisms that guarantee security properties for
mobile devices, defining a security model which restricts access to sensitive functions for
badly written or maliciously written applications.

The architecture of JME is based upon two layers above the virtual machine: the
configuration layer and the profile layer. The Connected Limited Device Configuration
(CLDC) is a minimum set of class libraries to be used in devices with low processors,
limited working memory and capacity to establish low broad band communications. This
configuration is complemented with the Mobile Information Device Profile (MIDP) to
obtain a run-time environment suitable to mobile devices such as mobile phones, personal
digital assistants and pagers. The profile also defines an application life cycle, a security
model and APIs that provide the functionality required by mobile applications, such as
networking, user interface, push activation, and local persistent storage.

2.1.1 MIDP security model

A security model at the platform level, based on sets of permissions to access the func-
tions of the device, is defined in the first version of MIDP (version 1.0) and refined in
the second version (version 2.0). In the third version (version 3.0) a new dimension to
the model is introduced: the security at the application level. The security model at
the application level is based on authorizations, so that an application can access the
resources shared by another application.

In this section we describe the two security levels considered by MIDP in its different
versions.

Security at the platform level

In the original MIDP 1.0 specification, any application not installed by the device manu-
facturer or a service provider runs in a sandbox that prohibits access to security sensitive
APIs or functions of the device (e.g. push activation). Although this sandbox security
model effectively prevents any rogue application from jeopardizing the security of the

15

16 Formal analysis of security models for mobile devices

device, it is excessively restrictive and does not allow many useful applications to be
deployed after issuance.

In contrast, MIDP 2.0 introduces a new security model at the platform level based
on the concept of protection domain. A protection domain specifies a set of permissions
and the modes in which those permissions can be granted to applications bound to the
domain. Each API or function on the device may define permissions in order to prevent
it from being used without authorization.

Permissions can be either granted in an unconditional way, and used without requir-
ing any intervention from the user, or in a conditional way, specifying the frequency
with which user interaction will be required to renew the permission. More concretely,
for each permission a protection domain specifies one of three possible modes:

• blanket : permission is granted for the whole application life cycle;

• session: permission is granted until the application is closed;

• oneshot : permission is granted for one single use.

The set of permissions effectively granted to an application is determined by the permis-
sions declared in its descriptor, the protection domain it is bound to, and the answers
received from the user to previous requests. A permission is granted to an application
if it is declared in its application descriptor and either its protection domain uncondi-
tionally grants the permission, or the user was previously asked to grant the permission
and its authorization remains valid.

The MIDP 2.0 model distinguishes between untrusted and trusted applications. An
untrusted application is one whose origin and integrity can not be determined. These
applications, also called unsigned, are bound to a protection domain with permissions
equivalent to those in a MIDP 1.0 sandbox. On the other hand, a trusted application
is identified and verified by means of cryptographic signatures and certificates based on
the X.509 Public Key Infrastructure [64]. These signed applications can be bound to
more specific and permissive protection domains. Thus, this model enables applications
developed by trusted third parties to be downloaded and installed after issuance of the
device without compromising its security.

Security at the application level

In MIDP 3.0 applications which are bound to different protection domains may share
data, components, and events. The Record Management System (RMS) API speci-
fies methods that make it possible for record stores from one application to be shared
with other applications. With the Inter-MIDlet Communication (IMC) protocol an
application can access a shareable component from another one running in a different
execution environment. Applications that register listeners or register themselves will
only be launched in response to events triggered by authorized applications.

By restricting access to shareable resources of an application, such as data, run-
time IMC communication and events, the MIDP 3.0 security model introduces a new
dimension at the application level. This new dimension introduces the concept of access
authorization, which enables an application to individually control access requests from
other applications.

An application that intends to restrict access to its shareable resources must declare
access authorizations in its application descriptor. There are four different types of access

2.2 Formally verifying security properties of MIDP 2.0 17

authorization declarations involving one or more of the following application credentials:
domain name, vendor name, and signing certificates. These four types apply respectively
to:

1. applications bound to a specific domain;

2. applications from a certain vendor with a certified signature;

3. applications from a certain vendor but whithout a certified signature;

4. applications signed under a given certificate.

When an application tries to access the shareable resources of another application, its
credentials are compared with those required by the access authorization declaration. If
there is a mismatch the application level access is denied.

2.1.2 Contents of the chapter

This chapter builds upon and extends a number of previously published papers [65,
66, 67, 68]. The rest of the chapter is organized as follows: Section 2.2 overviews the
formalization of the MIDP 2.0 security model, presents some of its verified properties
and proposes a methodology to refine the specification and obtain an executable proto-
type. Section 2.3 describes a high level formal specification of an access controller for
JME-MIDP 2.0, and presents an algorithm that has been proved correct with respect to
that specification. Section 2.4 develops extensions of the formal specification presented
in Section 2.2 concerning the changes introduced by MIDP 3.0, and puts forward some
weaknesses of the security mechanisms introduced in that (latest) version of the profile.
Section 2.5 presents a framework suitable for defining, analyzing, and comparing the ac-
cess control policies that can be enforced by (variants of) the security models considered
in this work, and to prove desirable properties they should satisfy. Then Section 2.6
discusses related work and finally Section 2.7 concludes with a summary of the chapter.

2.1.3 Formalization

The full development is available for download at

http://www.fing.edu.uy/inco/grupos/gsi/sources/midp

2.2 Formally verifying security properties of MIDP 2.0

In this section we overview the formalization of the MIDP 2.0 security model presented
in [65]. We begin, in Section 2.2.1, by introducing some types and constants used in
the remainder of the formalization, we then define the set of valid device states and
security-related events, give a transition semantics for events based on pre- and post-
conditions and define the concept of a session. Section 2.2.2 reports on some security
properties that we have verified, while Section 2.2.3 presents and discusses a proposal for
constructing a refinement of the formal specification to obtain an executable prototype.

18 Formal analysis of security models for mobile devices

MIDlet-Jar-URL: http://www.foo.com/foo.jar

MIDlet-Jar-Size: 90210

MIDlet-Name: Organizer

MIDlet-Vendor: Foo Software

MIDlet-Version: 2.1

MIDlet-1: Alarm, alarm.png, organizer.Alarm

MIDlet-2: Agenda, agenda.png, organizer.Agenda

MIDlet-Permissions: javax.microedition.io.Connector.socket,

javax.microedition.io.PushRegistry

MIDlet-Permissions-Opt: javax.microedition.io.Connector.http

MicroEdition-Configuration: CLDC-1.1

MicroEdition-Profile: MIDP-2.0

MIDlet-Certificate-1-1: MIICgDCCAekCBEH11wYwDQ...

MIDlet-Jar-RSA-SHA1: pYRJ8Qlu5ITBLxcAUzYXDKnmg...

Figure 2.1: A typical MIDlet descriptor, specifying the required and optional permission
of suite for a suite with two applications

2.2.1 Formalization of the MIDP 2.0 security model

Sets and constants

In MIDP, applications (usually called MIDlets) are packaged and distributed as suites.
A suite may contain one or more MIDlets and is distributed as two files, an application
descriptor file and an archive file that contains the actual Java classes and resources. A
suite that uses protected APIs or functions should declare the corresponding permissions
in its descriptor either as required for its correct functioning or as optional. The content
of a typical MIDlet descriptor is shown in Figure 2.1.

Let Permission be the total set of permissions defined by every protected API or
function on the device and Domain the set of all protection domains. Let us introduce,
as a way of referring to individual MIDlet suites, the set SuiteID of valid suite identifiers.
We will represent a descriptor as a record composed of two predicates, required and
optional, that identify respectively the set of permissions declared as required and those
declared as optional by the corresponding suite,

Descriptor def

= [[required : Permission → Prop,
optional : Permission → Prop]]

(2.1)

A record type is used to represent an installed suite, with fields for its identifier, asso-
ciated protection domain and descriptor,

Suite def

= [[id : SuiteID,
domain : Domain,
descriptor : Descriptor]]

(2.2)

Permissions may be granted by the user to an active MIDlet suite in either of three
modes, for a single use (oneshot), as long as the suite is running (session), or as long as
the suite remains installed (blanket). LetMode be the enumerated set of user interaction
modes {oneshot, session, blanket} and ≤m an order relation such that

oneshot ≤m session ≤m blanket (2.3)

2.2 Formally verifying security properties of MIDP 2.0 19

We will assume for the rest of the formalization that the security policy of the protection
domains on the device is an anonymous constant of type

Policy def

= [[allow : Domain → Permission → Prop,
user : Domain → Permission → Mode → Prop]]

(2.4)

which for each domain specifies at most one mode for a given permission,

(∀ d p, allow d p → ∀ m,¬user d p m) ∧
(∀ d p m, user d p m → ¬allow d p ∧ ∀ m′, user d p m′ → m = m′)

(2.5)

and such that allow d p holds when domain d unconditionally grants the permission p
and user d p m holds when domain d grants permission p with explicit user authorization
and maximum allowable mode m (w.r.t. ≤m). The permissions effectively granted to a
MIDlet suite are the intersection of the permissions requested in its descriptor with the
union of the permissions given unconditionally by its domain and those given explicitly
by the user.

Device state

To reason about the MIDP 2.0 security model most details of the device state may be
abstracted; it is sufficient to specify the set of installed suites, the permissions granted
or revoked to them and the currently active suite in case there is one. The active suite,
and the permissions granted or revoked to it for the session are grouped into a record
structure

SessionInfo def

= [[id : SuiteID,
granted : Permission → Prop,
revoked : Permission → Prop]]

(2.6)

The abstract device state is described as a record of type

State def

= [[suite : Suite → Prop,
session : option SessionInfo,
granted : SuiteID → Permission → Prop,
revoked : SuiteID → Permission → Prop]]

(2.7)

where suite is the characteristic predicate of the set of installed suites.

Example 2.2.1. Consider a MIDlet that periodically connects to a webmail service
using HTTPS when possible or HTTP otherwise, and alerts the user whenever they
have new mail. The suite containing this MIDlet should declare in its descriptor as re-
quired permissions p push, for accessing the PushRegistry (for timer-based activation),
and p http, for using the HTTP protocol API. It should also declare as optional the
permission p https for accessing the HTTPS protocol API. Suppose that upon installa-
tion, the suite (whose identifier is id) is recognized as trusted and is thus bound to a
protection domain dom that allows access to the PushRegistry API unconditionally but
by default requests user authorization for opening every HTTP or HTTPS connection.
Suppose also that the domain allows the user to grant the MIDlet the permission for
opening further connections as long as the suite remains installed. Then, the security
policy satisfies:

allow dom p push ∧
user dom p http blanket ∧
user dom p https blanket

(2.8)

20 Formal analysis of security models for mobile devices

If st is the state of the device, the suite is represented by some ms : Suite such that
st.suite ms and ms.id = id hold. Its descriptor ms.descriptor satisfies

ms.descriptor.required p push ∧
ms.descriptor.required p http ∧
ms.descriptor.optional p https

(2.9)

The MIDlet will have unlimited access to the PushRegistry applet, but will have to re-
quest user authorization every time it makes a new connection. The user may choose at
any time to authorize further connections by granting the corresponding permission in
blanket mode, thus avoiding being asked for authorization each time the applet commu-
nicates with the webmail service.

The remainder of this subsection enumerates the conditions that must hold for an
element s : State in order to represent a valid state for a device.

1. A MIDlet suite can be installed and bound to a protection domain only if the set
of permissions declared as required in its descriptor are a subset of the permissions
the domain offers (with or without user authorization). This compatibility relation
between des : Descriptor and dom : Domain can be stated formally as follows,

des ≀ dom def

=
∀ p : Permission, des.required p →

allow dom p ∨ ∃ m : Mode, user dom p m
(2.10)

Every installed suite must be compatible with its associated protection domain,

SuiteCompatible def

=
∀ ms : Suite, s.suite ms →

ms.descriptor ≀ms.domain
(2.11)

2. Whenever there exists a running session, the suite identifier in s.session must
correspond to an installed suite,

CurrentInstalled def

=
∀ ses : SessionInfo, s.session = Some ses →

∃ ms : Suite, s.suite ms ∧ms.id = ses.id
(2.12)

3. The set of permissions granted for the session must be a subset of the permissions
requested in the application descriptor of the active suite. In addition, the associ-
ated protection domain policy must allow those permissions to be granted at least
in session mode,

V alidSessionGranted def

=
∀ ses : SessionInfo, s.session = Some ses →

∀ p : Permission, ses.granted p →
∀ ms : Suite, s.suite ms → ms.id = ses.id →

(ms.descriptor.required p ∨ms.descriptor.optional p) ∧
∃ m : Mode, user ms.domain p m ∧ session ≤m m

(2.13)

2.2 Formally verifying security properties of MIDP 2.0 21

Table 2.1: Security-related events

Name Description Type

start Start of session SuiteID → Event

terminate End of session Event

request Permission request Permission → option UserAnswer → Event

install MIDlet suite installation SuiteID → Descriptor → Domain → Event

remove MIDlet suite removal SuiteID → Event

4. Every installed suite shall have a unique identifier,

UniqueSuiteID def

=
∀ ms1 ms2 : Suite, s.suite ms1 → s.suite ms2 →
ms1.id = ms2.id → ms1 = ms2

(2.14)

5. For every installed suite with identifier id, the predicate s.granted id should be
valid with respect to its descriptor and associated protection domain,

V alidGranted def

=
∀ (p : Permission)(id : SuiteID), s.granted id p →

∀ ms : Suite, s.suite ms → ms.sid = id →
(ms.descriptor.required p ∨ms.descriptor.optional p) ∧
user ms.domain p blanket

(2.15)

6. A granted permission shall not be revoked at the same time and viceversa. This
condition is formalized by the predicate V alidGrantedRevoked.

Events

We define a set Event for those events that are relevant to our abstraction of the device
state (Table 2.1). The user may be presented with the choice between accepting or
refusing an authorization request, specifying the period of time their choice remains
valid. The outcome of a user interaction is represented using the type UserAnswer
with constructors

ua allow, ua deny : Mode → UserAnswer (2.16)

The behaviour of the events is specified by their pre- and postconditions given by the
predicates Pre and Post respectively. Preconditions (Table 2.2) are defined in terms of
the device state while postconditions (Table 2.3) are defined in terms of the before and
after states and an optional response which is only meaningful for the request event and
indicates whether the requested operation is authorized,

Pre : State → Event → Prop
Post : State → State → option Response → Event → Prop

(2.17)

Example 2.2.2. Consider an event representing a permission request for which the
user denies the authorization. Such an event can only occur when the active suite has

22 Formal analysis of security models for mobile devices

Table 2.2: Event preconditions

Pre s (start id) def

=
s.session = None ∧ ∃ ms : Suite, s.suite ms ∧ms.id = id

Pre s terminate def

=
s.session 6= None

Pre s (install id des dom) def

=
des ≀ dom ∧ ∀ ms : Suite, s.suite ms → ms.id 6= id.

Pre s (remove id) def

=
(∀ ses : SessionInfo, s.session = Some ses → ses.id 6= id) ∧
∃ ms : Suite, s.suite ms ∧ms.id = id

Table 2.3: Event postconditions

Post s s′ r (start id) def

=
r = None ∧ s ≡session s′ ∧ ∃ ses′, s′.session = Some ses′ ∧ ses′.id = id ∧
∀ p : Permission,¬ses′.granted p ∧ ¬ses′.revoked p

Post s s′ r terminate def

=
r = None ∧ s ≡session s′ ∧ s′.session = None

Post s s′ r (install id des dom) def

=
r = None ∧ (∀ ms : Suite, s.suite ms → s′.suite ms) ∧
(∀ ms : Suite, s′.suite ms → s.suite ms ∨ms = 〈id, dom, des〉) ∧
s′.suite 〈id, dom, des〉 ∧ s′.session = s.session ∧
(∀ p : Permission,¬s′.granted id p ∧ ¬s′.revoked id p) ∧
(∀ id1 : SuiteID, id1 6= id →
s′.granted id1 = s.granted id1 ∧ s′.revoked id1 = s.revoked id1)

Post s s′ r (remove id) def

=
r = None ∧ s ≡suite s

′ ∧
(∀ ms : Suite, s.suite ms → ms.id 6= id → s′.suite ms) ∧
(∀ ms : Suite, s′.suite ms → s.suite ms ∧ms.id 6= id)

2.2 Formally verifying security properties of MIDP 2.0 23

Pre s (request p None) :=
∃ ses, s.session = Some ses ∧ ∀ ms, s.suite ms → ms.sid = ses.sid →
(ms.descriptor.required p ∨ ms.descriptor.optional p) →
∀ m,user ms.domain p m →
ses.granted p ∨ ses.revoked p ∨
s.granted ses.sid p ∨ s.revoked ses.sid p

Post s s′ r (request p None) :=
s = s′ ∧ ∀ ses ms, s.session = Some ses → s.suite ms → ms.sid = ses.sid →
(¬ms.descriptor.required p → ¬ms.descriptor.optional p →

r = Some denied) ∧
(ms.descriptor.required p ∨ms.descriptor.optional p →
(allow ms.domain p → r = Some allowed) ∧
(ses.granted p → r = Some allowed) ∧
(s.granted ses.sid p → r = Some allowed) ∧
(ses.revoked p → r = Some denied) ∧
(s.revoked ses.sid p → r = Some denied))

Figure 2.2: Specification of event request when user intervention is not required

declared the requested permission in its descriptor and is bound to a protection domain
that specifies a user interaction mode for that permission (otherwise, the request would
be immediately accepted or rejected). Furthermore, the requested permission must not
have been revoked or granted for the rest of the session or the rest of the suite’s life,

Pre s (request p (Some (ua deny m))) def
=

∃ ses : SessionInfo, s.session = Some ses ∧
∀ ms : Suite, s.suite ms → ms.id = ses.id →

(ms.descriptor.required p ∨ms.descriptor.optional p) ∧
(∃ m1 : Mode, user ms.domain p m1) ∧
¬ses.granted p ∧ ¬ses.revoked p ∧
¬s.granted ses.id p ∧ ¬s.revoked ses.id p

(2.18)

When m = session, the user revokes the permission for the whole session, therefore, the
response denies the permission and the state is updated accordingly,

Post s s′ r (request p (Some (ua deny session))) def
=

r = Some denied ∧ s ≡session s′ ∧
∀ ses : SessionInfo, s.session = Some ses →

∃ ses′ : SessionInfo,
s′.session = Some ses′ ∧ ses′ ≡revoked ses ∧ ses′.revoked p ∧
(∀ q : Permission, q 6= p → ses′.revoked q = ses.revoked q)

(2.19)

The full specification of event request is divided into three cases: i) when user
intervention is not required (Figure 2.2). The permission must have been previously
granted or revoked by the rest of the session or indefinitely; ii) when intervention is
required and the user accepts the request (Figure 2.3). In this case, the state changes if
the user gives permission to the suite by session or indefinitely; and iii) when intervention

24 Formal analysis of security models for mobile devices

Pre s (request p (Some (ua allow m))) :=
∃ ses, s.session = Some ses ∧ ∀ ms, s.suite ms → ms.sid = ses.sid →
(ms.descriptor.required p ∨ ms.descriptor.optional p) ∧
¬ses.granted p ∧ ¬ses.revoked p ∧
¬s.granted ses.sid p ∧ ¬s.revoked ses.sid p ∧
(∃ m′, user ms.domain p m′) ∧
(∀ m′, user ms.domain p m′ → m ≤m m′)

Post s s′ r (request (Some (ua allow oneshot))) := r = Some allowed ∧ s = s′

Post s s′ r (request (Some (ua allow session))) :=
r = Some allowed ∧ s ≡session s′ ∧
∀ ses, s.session = Some ses →

∃ ses′, s′.session = Some ses′ ∧ ses′ ≡granted ses ∧ ses′.granted p ∧
(∀ q, q 6= p → ses′.granted q = ses.granted q)

Post s s′ r (request (Some (ua allow blanket))) :=
r = Some allowed ∧ s ≡granted s′ ∧ ∀ ses, s.session = Some ses →

s′.granted ses.sid p ∧
(∀ q, q 6= p → s′.granted ses.sid q = s.granted ses.sid q) ∧
(∀ id, id 6= ses.sid → s′.granted id = s.granted id)

Figure 2.3: Specification of event request when intervention is required and the user
accepts the request

Pre s (request p (Some (ua deny m))) :=
∃ ses, s.session = Some ses ∧ ∀ ms, s.suite ms → ms.sid = ses.sid →
(ms.descriptor.required p ∨ ms.descriptor.optional p) ∧
¬ses.granted p ∧ ¬ses.revoked p ∧
¬s.granted ses.sid p ∧ ¬s.revoked ses.sid p ∧
(∃ m′, user ms.domain p m′)

Post s s′ r (request (Some (ua deny oneshot))) := r = Some denied ∧ s = s′

Post s s′ r (request (Some (ua deny session))) :=
r = Some denied ∧ s ≡session s′ ∧
∀ ses, s.session = Some ses →

∃ ses′, s′.session = Some ses′ ∧ ses′ ≡revoked ses ∧ ses′.revoked p ∧
(∀ q, q 6= p → ses′.revoked q = ses.revoked q)

Post s s′ r (request (Some (ua deny blanket))) :=
r = Some denied ∧ s ≡revoked s′ ∧ ∀ ses, s.session = Some ses →

s′.revoked ses.sid p ∧
(∀ q, q 6= p → s′.revoked ses.sid q = s.revoked ses.sid q) ∧
(∀ id, id 6= ses.sid → s′.revoked id = s.revoked id)

Figure 2.4: Specification of event request when intervention is required and the user
denies the request

2.2 Formally verifying security properties of MIDP 2.0 25

s0 ֒
start id/r1
−−−−−−−→ s1 ֒

e2/r2
−−−→ s2 ֒

e3/r3
−−−→ · · · ֒

en−1/rn−1

−−−−−−−→ sn−1 ֒
terminate/rn
−−−−−−−−→ sn

Figure 2.5: A session for a suite with identifier id

is required and the user denies the request (Figure 2.4). The state changes if the user
denies permission to the suite by session or indefinitely.

One-step execution

The behavioural specification of the execution of an event is given by the →֒ relation
with the following introduction rules:

¬Pre s e

s ֒
e/None
−−−−→ s

npre Pre s e Post s s′ r e

s ֒
e/r
−−→ s′

pre
(2.20)

Whenever an event occurs for which the precondition does not hold, the state must
remain unchanged. Otherwise, the state may change in such a way that the event

postcondition is established. The notation s ֒
e/r
−−→ s′ may be read as “the execution of

the event e in state s results in a new state s′ and produces a response r”.

Sessions

A session is the period of time spanning from a successful start event to a terminate
event, in which a single suite remains active. A session for a suite with identifier id
(Figure 2.5) is determined by an initial state s0 and a sequence of steps 〈ei, si, ri〉 (i =
1, . . . , n) such that the following conditions hold,

• e1 = start id ;

• Pre s0 e1 ;

• ∀ i ∈ {2, . . . , n− 1}, ei 6= terminate ;

• en = terminate ;

• ∀ i ∈ {1, . . . , n}, si−1 ֒
ei/ri
−−−→ si .

A partial session is a session for which the terminate event has not yet been elicited;
it is defined inductively by the following rules,

Pre s0 (start id) s0 ֒
start id/r1
−−−−−−−→ s1

PSession s0 ([] ⊳ 〈start id, s1, r1〉)
psession start

(2.21)

PSession s0 (ss ⊳ last) e 6= terminate last.s ֒
e/r
−−→ s′

PSession s0 (ss ⊳ last ⊳ 〈e, s′, r〉)
psession app

(2.22)

Now, sessions can be easily defined as follows,

PSession s0 (ss ⊳ last) last.s ֒
terminate/r
−−−−−−−→ s′

Session s0 (ss ⊳ last ⊳ 〈terminate, s′, r〉)
session terminate

(2.23)

26 Formal analysis of security models for mobile devices

2.2.2 Verification of security properties

This section is devoted to establishing relevant security properties of the model. Proofs
are merely outlined; however, all proofs have been formalized in Coq and are available
as part of the full specification.

An invariant of one-step execution

We call one-step invariant a property that remains true after the execution of every
event if it is true before. We show next that the validity of the device state, as defined
in Section 2.2.1, is a one-step invariant of our specification.

Theorem 2.2.3. Let V alid be a predicate over State defined as the conjunction of the
validity conditions in Section 2.2.1. For any s s′ : State, r : option Response and

e : Event, if V alid s and s ֒
e/r
−−→ s′ hold, then V alid s′ also holds.

Proof. By case analysis on s ֒
e/r
−−→ s′. When Pre s e does not hold, s = s′ and s′ is valid

because s is valid. Otherwise, Post s s′ r e must hold and we proceed by case analysis
on e. We will only show the case request p (Some (ua deny session)), obtained after
further case analysis on a when e = request p (Some a).

The postcondition (2.19) entails that s ≡session s′, that the session remains active,
and that ses′ ≡revoked ses. Therefore, the set of installed suites remains unchanged
(s′.suite = s.suite), the set of permissions granted for the session does not change
(ses′.granted = ses.granted) and neither does the set of permissions granted or revoked
in blanket mode (s′.granted = s.granted, s′.revoked = s.revoked). From these equal-
ities, every validity condition of the state s′ except V alidGrantedRevoked s′ follows
immediately from the validity of s. We next prove V alidGrantedRevoked s′.

We know from the postcondition of the event that

∀ q, q 6= p → ses′.revoked q = ses.revoked q (2.24)

Let q be any permission. If q 6= p, then from (2.24) follows ses′.revoked q =
ses.revoked q and because q was not granted and revoked simultaneously before the
event, neither it is afterwards. If q = p, then we know from the precondition (2.18)
that p was not granted before and thus it is not granted afterwards. This proves
V alidGrantedRevoked s′ and together with the previous results, V alid s′.

Session invariants

We call session invariant a step property that holds for the rest of a session once it is
established in a step. Let P be a predicate over T , we define all P as an inductive
predicate over snocList T by the following rules:

all P []
all nil

all P ss P s
all P (ss ⊳ s)

all snoc
(2.25)

Theorem 2.2.4. Let s0 be a valid state and ss a partial session starting from s0, then
every state in ss is valid,

all (λ step . V alid step.s) ss (2.26)

2.2 Formally verifying security properties of MIDP 2.0 27

Proof. By induction on the structure of PSession s0 ss.

• When constructed using psession start, ss has the form [] ⊳ 〈start id, s1, r1〉 and

s0 ֒
start id/r1
−−−−−−−→ s1 holds. We must prove

all (λ step . V alid step.s) ([] ⊳ 〈start id, s1, r1〉) (2.27)

By applying all app and then all nil the goal is simplified to V alid s1 and is proved

from s0 ֒
start id/r1
−−−−−−−→ s1 and V alid s0 by applying Theorem 2.2.3.

• When it is constructed using psession app, ss has the form ss1 ⊳ last ⊳ 〈e, s′, r〉

and last.s ֒
e/r
−−→ s′ holds. The induction hypothesis is

all (λ step . V alid step.s) (ss1 ⊳ last) (2.28)

and we must prove all (λ step . V alid step.s) (ss1 ⊳ last ⊳ 〈e, s
′, r〉). By applying

all app and then (2.28) the goal is simplified to V alid s′. From (2.28) we know

that last.s is a valid state. The goal is proved from last.s ֒
e/r
−−→ s′ and V alid last.s

by applying Theorem 2.2.3.

The above theorem may be easily extended from partial sessions to sessions using
Theorem 2.2.3 one more time. State validity is just a particular property that is true for
a partial session once it is established, the result can be generalized for other properties
as shown in the following lemma.

Lemma 2.2.5. For any property P of a step satisfying

∀ (s s′ : State)(r r′ : option Response)(e e′ : Event),

e′ 6= terminate → s ֒
e′/r′

−−−→ s′ → P 〈e, s, r〉 → P 〈e′, s′, r′〉 ,
(2.29)

if PSession s0 (ss ⊳ step⊕ ss1) and P step, then all P ss1 holds.

Perhaps a more interesting property is a guarantee of the proper enforcement of
revocation. We prove that once a permission is revoked by the user for the rest of a
session, any further request for the same permission in the same session is refused.

Lemma 2.2.6. The following property satisfies (2.29),

(λ step . ∃ ses, step.s.session = Some ses ∧ ses.revoked p) (2.30)

Theorem 2.2.7. For any permission p, if PSession s0 (ss⊳step⊳step1⊕ss1), step1.e =
request p (Some (ua deny session)) and Pre step.s step1.e, then

all (λ step . ∀ o, step.e = request p o → step.r 6= Some allowed) ss1 (2.31)

Proof. Since Post step.s step1.s step1.r step1.e must hold, p is revoked for the session
in step1.s. From Lemmas 2.2.5 and 2.2.6, p remains revoked for the rest of the session.
Let e = request p o be an event in a step step2 in ss1. We know that p is revoked
for the session in the state before step2.s. If the precondition for e does not hold in
the state before1, then step2.r = None. Otherwise, e must be request p None and its
postcondition entails step2.r = Some denied.

1Actually, it holds only when o = None.

28 Formal analysis of security models for mobile devices

2.2.3 Refinement

In the formalization described in the previous sections it has been specified the be-
haviour of events implicitly as a binary relation on states instead of explicitly as a state
transformer. Moreover, the described formalization is higher-order because, for instance,
predicates are used to represent part of the device state and the transition semantics of
events is given as a relation on states. The most evident consequence of this choice is
that the resulting specification is not executable. What is more, the program extraction
mechanism provided by Coq to extract programs from specifications cannot be used in
this case. However, had we constructed a more concrete specification at first, we would
have had to take arbitrary design decisions from the beginning, unnecessarily restrict-
ing the allowable implementations and complicating the verification of properties of the
security model.

We will show in the rest of this section that it is feasible to obtain an executable
specification from our abstract specification. The methodology we propose produces
also a proof that the former is a refinement of the latter, thus guaranteeing soundness of
the entire process. The methodology is inspired by the work of Spivey [69] on operation
and data refinement, and the more comprehensive works of Back and von Wright [70]
and Morgan [71] on refinement calculus.

Executable specification

In order to construct an executable specification it is first necessary to choose a concrete
representation for every object in the original specification not directly implementable in
a functional language. In particular, the transition relation that defines the behaviour of
events implicitly by means of their pre- and postconditions must be refined to a function
that deterministically computes the outcome of an event. At this point, it is unavoidable
to take some arbitrary decisions about the exact representation to use. For example,
a decidable predicate P on A might be represented as a function from A to a type
isomorphic to bool, as an exhaustive list of the elements of A that satisfy the predicate
(when P has finite support), or in some other equally expressive way. For every type
T in the abstract specification, we will denote its concrete model as T . Let a : A and
a : A; we will indicate that a is a refinement of a as a ⊑ a.

In our case, every predicate to be refined is decidable and is satisfied only by a finite
subset of elements in its domain (they are all characteristic predicates of finite sets).
Let P be one of such predicates on a set A and let l be a list of elements of A; we will
say that l refines P whenever

(∀ a, P a → ∃ a, a ∈ l ∧ a ⊑ a) ∧
(∀ a, a ∈ l → ∃ a, P a ∧ a ⊑ a)

(2.32)

where x ∈ l means that there exists at least one occurrence of x in l. When A and A
coincide, ⊑ is the equality relation on A, and the condition (2.32) simplifies to ∀ a, P a ↔
a ∈ l. Let a : A and a : A be such that a ⊑ a; we define

(None : option A) ⊑ (None : option A)
Some a ⊑ Some a

(2.33)

The above concrete representations can be used to obtain a concrete model for the

2.2 Formally verifying security properties of MIDP 2.0 29

s s′

s s′

interp

→֒

⊑ ⊑

State

State

Figure 2.6: Simulation relation between interp and the relation →֒. Given states s, s
and events e, e such that s ⊑ s and e ⊑ e, for every state s′ and response r computed by
interp there must exist a corresponding abstract state s′ refined by s′ reachable from s
by the →֒ relation with the same response

device state and the security-related events:

State := [[suite : list Suite,

session : option SessionInfo,
granted : SuiteID → list Permission,
revoked : SuiteID → list Permission]]

(2.34)

start : SuiteID → Event

terminate : Event

request : Permission → option UserAnswer → Event

install : SuiteID → Descriptor → Domain → Event

remove : SuiteID → Event

(2.35)

The refinement relation ⊑ can be naturally extended to states, events and the rest of
the types used in the formalization.

Soundness

Having chosen a concrete representation for the objects in the specification, everything
is set for specifying the behaviour of events as a function

interp : State → Event → State× (option Response) (2.36)

The soundness of the interp function w.r.t. the transition relation →֒ is given by the
following simulation condition, illustrated in Figure 2.6.

∀ (s : State)
(

s : State
)

(e : Event)
(

e : Event
)

(r : option Response),
s ⊑ s → e ⊑ e →

let (s′, r) := interp s e in ∃ s′ : State, s′ ⊑ s′ ∧ s ֒
e/r
−−→ s′

(2.37)

It can be shown that the refinement relation ⊑ on states satisfies

∀ s : State, ∃ s : State, s ⊑ s (2.38)

30 Formal analysis of security models for mobile devices

Thus, the existential quantifier in (2.37) may be replaced by a universal quantifier to
obtain the stronger (but sometimes easier to prove) condition:

∀ (s s′ : State)
(

s : State
)

(e : Event)
(

e : Event
)

(r : option Response),
s ⊑ s → e ⊑ e →

let (s′, r) := interp s e in s′ ⊑ s′ → s ֒
e/r
−−→ s′

(2.39)

With a function interp satisfying either (2.37) or (2.39) and a concrete initial state s0
that refines an initial abstract state s0, the Coq program extraction mechanism can be
used to produce an executable prototype of the MIDP 2.0 security model in a functional
language such as OCaml, Haskell or Scheme.

2.3 A certified access controller for MIDP 2.0

This section reports work, based on [66], concerning the development of a high level
formal specification of an Access Control module (AC) of JME - MIDP 2.0. In particular,
a certified algorithm that satisfies the proposed specification of an AC is described.

2.3.1 Formalization of the access control module

The specification of the module has been defined as a conservative extension of the model
presented in Section 2.2.1. The set methodID of (method) identifiers that compose a
MIDlet suite and the set functionID of functions (or APIs) in a mobile device are
introduced. The definition of a Suite is extended with a predicate that characterizes
the methods that belong to that suite:

Suite def

= [[id : SuiteID,
domain : Domain,
descriptor : Descriptor,
methodid : methodID → Prop]]

(2.40)

Then, the state of the device is extended with the following predicates: one that
specifies the functions or APIs registered in the device (function), one that describes
the sensitive functions registered in the device (functionSensitive), and one that models
the association of a permission to a sensitive function (funcperm). Formally,

State def

= [[suite : Suite → Prop,
session : option SessionInfo,
granted : SuiteID → Permission → Prop,
revoked : SuiteID → Permission → Prop,
function : functionID → Prop,
functionSensitive : functionID → Prop,
funcperm : functionID → Permission → Prop]]

(2.41)

A state now is said to be a valid one if it satisfies the conditions described in Section
2.2.1 and the following ones (for details see [66]):

• MIDletsAtLeastOneMethod: every installed MIDlet has at least one method;

• fAtLeastOnePerm: every installed sensitive function necessarily has associated
a permission;

2.3 A certified access controller for MIDP 2.0 31

• fPermInstalledSens: if a function has associated a permission then that function
must be installed in the device and is sensitive;

• fUniquePermission: no function has associated more than one permission;

• methodInOnlyOneMidlet: every method identifier is unique, even in distinct
midlets;

• permStateCoherence: if one permission was granted (revoked) to a MIDlet for the
rest of its life cycle, then neither could have been revoked (granted), for the rest
of its life cycle, nor could have been granted or revoked for the rest of the session.
Likewise, if one permission was granted (revoked) for the rest of the session, then
neither it could have been revoked (granted), for the rest of the session, nor could
have been granted or revoked for the rest of its life cycle life; and,

• policyCompatible: if the security policy does not mention any association between
the protection domain of a suite and a certain permission then that permission
can not be registered as granted or revoked to that suite in the device.

As to the events, the type Event is now extended with a new constructor, call,

call : methodID → functionID → Event (2.42)

which represents a method call to a function of the device. The behaviour of this kind
of event is formalized using the pre- and postconditions explained in what follows. Let
suite be a middlet suite, meth be a method, func be a function invoked by that method,
and dom be the protection domain associated to suite. Then, the precondition of call

Pre s (call meth func) def

=
PreCall meth ∧ (s.functionSensitive func →

∃ perm : Permission, s.funcperm func perm ∧
PreRequestNone perm ∧ ∀ (ua : UserAnswer) (m : Mode),
(ua = uaAllow m → PreRequestUserAllow perm m) ∧
(ua = uaDeny m → PreRequestUserDeny perm))

(2.43)

requires in the first place (PreCall) that it should exist an active session, that suite is
the active suite and meth belongs to it. Then, if func is a sensitive function, there must
exist a permission perm associated to the function such that perm has been declared
as required or optional inside the descriptor of suite. In the case no user intervention is
required, the precondition specifies (PreRequestNone) that the security policy either
unconditionally allows dom to access func, or dom specifies a user interaction mode for
perm, and the user has granted a permission which is still valid. If user intervention is re-
quired and the user denies access, the precondition establishes (PreRequestUserDeny)
that dom specifies a user interaction mode for perm, and the user has not granted any
permission that is still valid. If user intervention is required and the user allows the
access the precondition additionally requires (PreRequestUserAllow) the user autho-
rization mode to be less, according to the order defined on permission modes, than the
maximum allowed mode specified in the security policy.

32 Formal analysis of security models for mobile devices

The postcondition of the call event has been formally defined in Coq as follows

Pos s s′ r (call meth func) def

=
(s.functionSensitive func → ∀ perm : Permission,

s.funcperm func perm → PosRequestNone perm ∨
∃ (ua : UserAnswer) (m : Mode),
(ua = uaAllow m ∧ PosRequestUserAllow perm m) ∨
(ua = uaDeny m ∧ PosRequestUserDeny perm m)) ∧

¬s.functionSensitive func → s = s′ ∧ r = Some allowed

(2.44)

In the case no user intervention is required, the postcondition (PosRequestNone)
specifies the response of the access controller when a call event is executed, namely,
if the user has previously allowed (denied) authorization and it is still valid then the
module will respond allowing (denying) the access to the function. If the security policy
specifies that the access should be allowed unconditionally, then the module will respond
allowing permission.

In the case that is required user intervention and the user grants the permission,
the specification establishes (PosRequestUserAllow) that the response of the controller
should be to allow the access. Similarly, if the permission is granted at session level
(session mode) or for the whole life cycle of the application (blanket mode), this autho-
rization should be registered in the device. If it is granted in oneshot mode, then the
entire state of the device remains unchanged and the controller just reacts granting the
access. PosRequestUserDeny is similar to PosRequestUserAllow but the controller
shall deny the access and the update will be on the fields that register the access denial
(depending on whether the denial is for the rest of the session or for the rest of the life
cycle of the suite).

2.3.2 Verification of security properties

The invariants satisfied by the core model, which are described in Section 2.2.2, are
preserved in the extended model, including those regarding the validity of the state
of the device. The proof, for instance, that the execution of any event preserves the
compatibility property of installed MIDlet suites described in (2.11), follows by first
proving that the call event does not modify the state of the device and then proceeding as
shown in Section 2.2.2. In what follows only two of the properties, permStateCoherence
and policyCompatible, described in Section 2.3.1 are formally stated (Lemmas 2.3.1 and
2.3.2, respectively) and hints are provided on how it was proved they are satisfied by (in
particular) a call event execution. For the complete set of analyzed properties, including
their proofs, the interested reader is referred to [66, 72].

Lemma 2.3.1.

∀(s s′ : State)(e : Event)(r : option Response) V alid s → s ֒
e/r
−−→ s′ →

∀(sid : SuiteID)(p : Permission)(ses : SessionInfo),
s′.session = Some ses → ses.sid = sid →
(s′.granted sid p → ¬s′.revoked sid p ∧ ¬ses.granted p ∧ ¬ses.revoked p) ∧
(s′.revoked sid p → ¬s′.granted sid p ∧ ¬ses.granted p ∧ ¬ses.revoked p) ∧
(ses.granted p → ¬s′.granted sid p ∧ ¬s′.revoked sid p ∧ ¬ses.revoked p) ∧
(ses.revoked p → ¬s′.granted sid p ∧ ¬s′.revoked sid p ∧ ¬ses.granted p)

(2.45)

2.3 A certified access controller for MIDP 2.0 33

Proof. Each of the four subproperties (propositions in the conjunction formula) is proved
following a similar strategy, after the execution of an event (particularly a call). In the
case that no user intervention is required, either because is established by the security
policy or because the invoked function is not sensitive, the proof follows directly because
the state of the device remains unchanged. In the case that user intervention is required,
the proof proceeds by performing case analysis on the response provided by the user to
the permission request (allow or deny in oneshot, session and blanket modes).

Lemma 2.3.2.

∀(s s′ : State)(e : Event)(r : option Response) V alid s → s ֒
e/r
−−→ s′ →

∀(sid : SuiteID)(p : Permission)(ses : SessionInfo),
s′.session = Some ses → ses.sid = sid →
∀ ms : Suite, s′.suite ms → ms.sid = sid →
(¬policy.allow ms.domain p ∧ ¬∃ m : Mode, policy.user ms.domain p m) →
¬s′.granted s sid p ∧ ¬s′.revoked s sid p ∧ ¬ses.granted p ∧ ¬ses.revoked p

(2.46)

Proof. In the case that user intervention is not required in the execution of an event
(particularly a call), the proof follows directly because the state of the device remains
unchanged. Otherwise, the proof follows by contradiction, because a request for user
intervention would contradict the hypothesis that there is no relation in the security
policy between the permission and the protection domain of the active suite.

2.3.3 A certified access controller

The high level formalization that has been described in the previous sections is appro-
priate and general: it is a good setting to reason about the properties of the MIDP 2.0
security model and, in particular, about the behavior of the access control module with-
out conditioning possible implementations. However, in order to construct and certify
an algorithm that satisfies the access control behavior that has been specified, first the
high level model has been refined into a more computationally oriented one and then the
soundness of the refinement process has been proved. Then, the algorithm was defined
using the functional language of Coq and a theorem that establishes that the obtained
algorithm satisfies the concrete specification of the access controller has been formally
proved with the help of the proof assistant.

Model refinement

Following the methodology described in Section 2.2.3, the refinement of the high level
specification has been engineered by providing a representation for both the state of the
device and the events that can be directly implementable using a high level functional
language. In addition to that, the relation which specifies the behavior of the events
has been refined down to a deterministic function that computes explicitly the state
transformation specified by those events. For the refinement of a decidable predicate P
over a finite set A, it has been adopted the following approach: if the intended meaning
of P is to characterize a set, then it shall be represented using lists of elements of type A,
as in programming languages. If the intended meaning is that of a decision procedure, it
shall be represented as a boolean function over type A. To illustrate how the components

34 Formal analysis of security models for mobile devices

of the concrete model look like, it follows the definition of the set State, which should
be grasped as the concrete representation of the state of the device.

State def

= [[suite : list Suite,

session : option SessionInfo,

granted : SuiteID → Permission → bool,

revoked : SuiteID → Permission → bool,

function : functionID → bool,

functionSensitive : functionID → bool,

funcperm : functionID → Permission]]

(2.47)

The algorithm

Before proceeding to describe the algorithm, it is worth recalling that each method
inherits or gets the protection domain that has been associated to the MIDlet suite to
which the method belongs. Therefore, every method of a middlet suite is related to the
permissions that the protection domain embodies.

The algorithm has been built as a quite direct implementation of the specified be-
havior of the access controller in the concrete model. Basically, when a method invokes
a protected function or API the access controller checks that the method has the corre-
sponding permission and that the response from the user, if required, permits the access.
If this checkup is successful, the access is granted; otherwise, the action is denied and a
security exception is launched. The complete definition of the algorithm in Coq can be
found in the Coq repository specified in Section 2.1.3; here it is only included a pseudo-
code version. It can be noticed that its structure is that of a case expression where the
guards of the branches express properties involving some of the following components:
the state, the policy of the device, the method and the invoked function.

The certification

The certification of the algorithm that implements a correct access controller reduces
to prove the (correctness) theorem that establishes the following property: if the pre-
condition of the call event is satisfied by a given state, then the state resulting from
executing the algorithm satisfies its corresponding postcondition. Formally this is stated
as follows:

Theorem 2.3.3.

∀ (s s′ : State) (policy : Policy) (ua : UserAnswer) (m : methodID)
(f : functionID) (r : option Response),

P re s (call m f) →
accessCtrlExe s policy ua m f = (s′, r) →

Pos s s′ r (call m f)

(2.48)

The proof follows directly the structure of the algorithm and is constructed by per-
forming case analysis on the conditions of the branches, by resorting to the use of several
properties of the model, in particular those related to the validity of the state of the
device.

2.3 A certified access controller for MIDP 2.0 35

Algorithm 1

accessCtrlExe (s : State) (policy : Policy) (ua : UserAnswer) (m : methodID)

(f : functionID) : State × (option Response) :=

(∗ current MIDlet suite in s ∗)

let ms := getMIDletSuiteInSession s in

(∗ permission associated to the function f ∗)

let p := functionToPermission s f in

(∗ m is not a method in ms ∗)

case (methInCurrSuite s m) = false : (s,None)

(∗ f is not a sensitive function registered in the device ∗)

case (s.functionSensitive f = false) : (s, Some allowed)

(∗ p is not a permission declared in the descriptor of ms ∗)

case (ms.descriptor.required p ∨ms.descriptor.optional p) = false : (s, Some denied)

(∗ the permission p has been granted (revoked) previously in blanket mode ∗)

case s.granted s.session.sid p = true : (s, Some allowed)

case s.revoked s.session.sid p = true : (s, Some denied)

(∗ the permission p has been granted (revoked) previously in session mode

in the current session ∗)

case s.session.granted p = true : (s, Some allowed)

case s.session.revoked p = true : (s, Some denied)

(∗ the policy grants unconditionally the permission p to MIDlet ms ∗)

case policy.allow ms.domain p = true : (s, Some allowed)

(∗ the protection domain specifies interaction with the user for permission p,

which does not have a valid authorization (unauthorization) in s ∗)

case (policy.user ms.domain p oneshot ∨ policy.user ms.domain p session ∨

policy.user ms.domain p blanket) = true :

(∗ the permission p is allowed (denied) in one of three modes. In session and

blanket modes, the authorization (unauthoritization) is registered in the state ∗)

{

case ua = uaAllow oneshot : (s, Some allowed)

case ua = uaAllow session : (s except s.session.granted p = true, Some allowed)

case ua = uaAllow blanket : (s except s.granted (s.session.sid) p = true, Some allowed)

case ua = uaDeny oneshot : (s, Some denied)

case ua = uaDeny session : (s except s.session.revoked p = true, Some denied)

case ua = uaDeny blanket : (s except s.revoked (s.session.sid) p = true, Some denied))

}

(∗ the protection domain does not grant permission p unconditionally and

does not specify any user interaction for it ∗)

case (policy.user ms.domain p oneshot ∨ policy.user ms.domain p session ∨

policy.user ms.domain p blanket) = false : (s, Some denied)

36 Formal analysis of security models for mobile devices

2.4 Formally verifying security properties of MIDP 3.0

Two important enhancements in MIDP 3.0 (informal) specification are Inter-MIDlet
Communication (IMC) and Events. In particular, the IMC protocol enables MIDP 3.0
applications to communicate and collaborate among themselves. The MIDP 3.0 Event
framework is a publish and subscribe architecture that allows MIDlets to push data to
all authorized subscribers. MIDP 3.0 provides, in particular, the following capabilities:
i) enable and specify proper behavior for MIDlets, such as: allow multiple concurrent
MIDlets, and allow inter-MIDlet communications (direct communication, and indirect
using events); ii) enable shared libraries for MIDlets; and iii) increase functionality in all
areas, including: secure RMS stores, removable/remote RMS stores, IPv6, and multiple
network interfaces per device.

In this section the formalization described in Section 2.2 is extended so as to model
security at the application level, introduced in Section 2.1.1. The extended device state,
a new condition for state validity, and the authorization event are presented. The validity
of the security properties already proved for MIDP 2.0, and the new properties related
with MIDP 3.0 are examined. The content of this section is based on [67].

2.4.1 Security at the application level

New data types are introduced: V endor denotes the names of the MIDlet suite vendors,
Certificate represents the set of public key certificates, and Signature the signature of
the MIDlet suite archive.

The application descriptor is extended with the vendor name and, optionally, its
public key certificate and signature. A MIDlet suite declares access authorization to
each set of suites involved. DomainAuthorization authorizes access for all MIDlet
suites from a specific domain. SignerAuthorization authorizes access to a set of suites
signed by a given signer certificate. V endorUnsignedAuthorization gives access to
the set of unsigned vendor suites, while vendorSignedAuthorization indicate access
authorization to the set of MIDlet suites signed by the specified signing certificate of a
vendor.

Descriptor def

= [[required : Permission → Prop,
optional : Permission → Prop,
vendor : V endor,
jarSignature : option Signature,
signerCertificate : option Certificate,
domainAuthorization : Domain → Prop,
signerAuthorization : Certificate → Prop,
vendorUnsignedAuthorization : V endor → Prop,
vendorSignedAuthorization : V endor →

Certificate → Prop]]

(2.49)

2.4.2 New device state

In order to represent allowed and denied access authorizations, the device state is also
extended. Allowed access authorizations are represented with the authorized field while
the denied ones are represented with the unauthorized one.

2.4 Formally verifying security properties of MIDP 3.0 37

State def

= [[suite : SuiteID → Prop,
session : option SessionInfo,
granted : SuiteID → Permission → Prop,
revoked : SuiteID → Permission → Prop,
authorized : SuiteID → SuiteID → Prop,
unauthorized : SuiteID → SuiteID → Prop]]

(2.50)

A validity condition is added to the device state regarding access authorizations.
V alidAuthorization establishes that a MIDlet suite can not be simultaneoussly autho-
rized and unauthorized by another suite.

V alidAuthorization def

= ∀ idGrn idReq : SuiteID,
s.authorizedidGrnidReq → ¬s.unauthorizedidGrnidReq

(2.51)

2.4.3 Application level access request

A new event called authorization models the access authorization request from a MIDlet
suite to the shared resources of the active suite.

authorization : SuiteID → Event (2.52)

The precondition for this event establishes that in the state s an active suite must
exist, and the identifier of the requesting MIDlet suite idReq belongs to an installed
MIDlet suite.

Pre s (authorization idReq) def

=
∀ ses : SessionInfo, s.session = Some ses →
∃ msReq : Suite, s.suite msReq ∧ msReq.id = idReq

(2.53)

The postcondition establishes the possible device answers and the relation between
the previous state If the requesting MIDlet suite idReq was already authorized, the
access is granted and the device state remains unchanged. If the requesting MIDlet
suite idReq was not already authorized but there is a match between its credentials and
any of the access authorizations declared by the active MIDlet suite, the access is also
granted. This time the device state is modified since idReq becomes part of the set of
authorized MIDlet suites of the active suite.

Post s s′ (Some allowed) (authorization idReq) def

=
∀ ses : SessionInfo, s.session = Some ses →

(s.authorized ses.id idReq ∧ s = s′) ∨
(¬s.unauthorized ses.id idReq ∧AccessAuthorization s ses.id idReq ∧
s ≡authorized s′ ∧ s′.authorized ses.id idReq)

(2.54)
If the requesting MIDlet suite idReq was already unauthorized, the access is denied.

If idReq was not authorized and there is a mismatch between its credentials and the
access authorizations declared by the active MIDlet suite, the access is denied as well. In
this opportunity, the state is also modified since idReq is added to the set of unauthorized
MIDlet suites of the active suite.

38 Formal analysis of security models for mobile devices

Post s s′ (Some denied) (authorization idReq) def

=
∀ ses : SessionInfo, s.session = Some ses →

(s.unauthorized ses.id idReq ∧ s = s′)∨
(¬s.authorized ses.id idReq ∧ ¬AccessAuthorization s ses.id idReq ∧

s ≡unauthorized s′ ∧ s′.unauthorized ses.id idReq)
(2.55)

The predicate AccessAuthorization represents the comparison, in a given state,
between the access authorizations declared by the first MIDlet suite and the credentials
of the second one

AccessAuthorization : State → SuiteID → SuiteID → Prop (2.56)

An authorization is granted when at least one of the following conditions is verified:

• IsDomainAuthorized: the protection domain of the applicant suite msReq sat-
isfies the domainAuthorization predicate of the msGrn suite that shares the
resource

msGrn.descriptor.domainAuthorization (msReq.domain) (2.57)

• IsV endorSignedAuthorized: the vendor and the certificate of the applicant suite
msReq satisfy the vendorSignedAuthorization predicate of the msGrn suite that
shares the resource

msGrn.descriptor.vendorSignedAuthorization (msReq.vendor
msReq.signerCertificate)

(2.58)

• IsSignerAuthorized: the certificate of the applicant suite msReq satisfies the
signerAuthorization predicate of the msGrn suite that shares the resource

msGrn.descriptor.signerAuthorization (msReq.signerCertificate) (2.59)

• IsV endorUnsignedAuthorized: the vendor’s name of the applicant suite msReq
satisfies the vendorUnsignedAuthorization predicate of the msGrn suite that
shares the resource

msGrn.descriptor.vendorUnsignedAuthorization (msReq.vendor) (2.60)

2.4.4 Conservative extension of security properties

Several changes are introduced in the formalization of the security model of MIDP 2.0 to
incorporate the new aspects of MIDP 3.0. In the first place, the device state is modified
so as to keep a record of the authorized and unauthorized MIDlet suites. In the second
place, the access authorization is introduced as a new event. Finally, a new condition
for the state validity is added.

In this new context, it is essential to prove that the device state, extended with the
record of authorized and unauthorized MIDlet suites, is still valid after any event exe-
cution, even the authorization request. The state validity property must be considered
with the new condition added.

Lemma 2.4.1 shows that the resulting state of executing any event in a valid initial
state is still a valid state.

2.4 Formally verifying security properties of MIDP 3.0 39

Lemma 2.4.1. Let ExtV alid be a predicate over State defined as the conjunction of
the of the predicates V alid and V alidAuthorizationvalidity. For every s s′ : State, r :

option Response, and e : Event, if ExtV alid s and s ֒
e/r
−−→ s′ hold, then ExtV alid s′

also holds.

Proof. The proof follows by case analysis on s ֒
e/r
−−→ s′. When Pre s e does not hold,

s = s′. From this equality and ExtV alid s then ExtV alid s′. Otherwise, Post s s′ r e
must hold and we proceed by case analysis on e. Only the event authorization idReq
is considered here, in particular when the authorization is granted. Case analysis in
the postcondition (2.54) of the event is carried out. In the first case, if the suite is
authorized in the state s, the postcondition establishes s = s′. Being ExtV alid s
then ExtV alid s′ holds. In the second case, if the suite is unauthorized but there is
a match between its credentials and any of the access authorizations declared by the
active MIDlet suite in the state s, the postcondition establishes s ≡authorized s′. From
the previous equivalence and V alid s, follows V alid s′. V alidAuthorization s′ remains
to be proven. The equivalence s ≡authorized s′ preserves the unauthorized suites in
the state s′; therefore, the suite is not unauthorized in the state s′. Since the suite is
authorized in s′, V alidAuthorization s′ holds.

The state validity property is also invariant during a session. Lemma 2.4.2 shows
that result.

Lemma 2.4.2. Let ss be a session which starts in a valid state. Every state of ss is
valid:

all (λ step . ExtV alid step.s) ss (2.61)

Device state invariants, such as state validity, are useful to analyze other relevant
properties of the security model. For instance, having proved that nonauthorization is
an invariant, if a MIDlet suite has been unauthorized in a session, then any further
access authorization request of the same MIDlet suite will be denied. These two last
properties are presented in the next two lemmas.

Lemma 2.4.3. Given an unauthorized MIDlet suite identified by sidReq, and a session
ss generated from a valid initial state, the following expression is a session invariant:

all (λ step . ∃ ses,
step.s.session = Some ses ∧ step.s.unauthorized ses.id sidReq) ss

(2.62)

Lemma 2.4.4. Given a MIDlet suite identified by sidReq, and a session (ss ⊳ stepi ⊳
stepi+1) ⊳ ss′ generated from a valid initial state, such that

stepi+1.e = authorization sidReq ∧ stepi+1.r = Some denied ∧
Pre stepi.s stepi+1

(2.63)

Then,

all (λ step . step.e = authorization sidReq → step.r = Some denied) ss′ (2.64)

The lemmas stated were formalized and proven in the Coq proof assistant. An
algorithm for the access authorization of applications was developed and its correctness
proven [73].

Additionally, certified algorithms we have developed for application installation and
communication between applications (IMC protocol) in MIDP 3.0, as part of final degree
projects [74, 75].

40 Formal analysis of security models for mobile devices

2.4.5 Weaknesses of the security mechanisms of MIDP 3.0

MIDP 3.0 allows component-based programming. An application can access a shareable
component running in a different execution environment through thin client APIs, like
the IMC protocol previously mentioned. The shareable component handles requests
from applications following the authorization-based security policy. As described in
Section 2.1.1, this policy considers authorization access declarations and the credentials
shown by the potential client applications, to grant or deny access.

The platform and application security levels were conceived as independent and
complementary frameworks, however the (unsafe) interplay of some of the defined se-
curity mechanisms may lead to provoke (unexpected) violations to security policies. In
what follows some potential weaknesses of MIDP 3.0 are put forward and a plausible
(unsecure) scenario is discussed.

In the first place, while at the platform level permissions are defined for each sensitive
function of the device, at the application level access authorization declarations do not
distinguish between different shareable components from the same MIDlet suite. In this
way, once its credentials have been validated, a client application may have access to all
the components shared by another application.

In the second place, despite of the fact that permissions are granted in various modes
(oneshot, session, blanket), access authorization is allowed exclusively in a permanent
manner.

Finally, at the platform level the bounding of an application to a protection domain
is based on the X.509 Public Key Infrastructure. At the application level the same in-
frastructure is used to verify the integrity and authenticity of applications, except for one
case. The declaration shown in (2.49) with the predicate vendorUnsignedAuthorization,
has the vendor name as the unique credential needed to grant access authorization.

Considering the previously established elements, the following scenario is feasible.
Let A be an application which is bound to a certain protection domain and having a
shareable component. The shareable component uses a sensitive function f of the device
(granted by the protection domain) in order to implement its service. This application
A declares access authorizations for unsigned applications from certain vendor V . Let
B be an unsigned application which is bound to a different protection domain and that
has been denied permission to access the sensitive function f . Now, if the application
B is capable of providing just the vendor name V as credential, it would be granted
permanent access to the shareable component. Thereby, B shall be able to access the
sensitive function f of the device. This is a clear example of an unwanted behavior,
where a sensitive function is accessed by an application without its permission. The
next section shows the code of an unwanted access in MIDP 3.0.

Two observations are drawn from the previous scenario. On the one hand, a stronger
access authorization declaration is necessary. If declarations based only on the vendor
name are left aside, all the remaining ones demand the integrity and authenticity of
signatures and certificates. This will result in a more reliable security model.

On the other hand, to avoid circumventing the security at the platform level two
aspects should be considered. The first one is to declare the permissions of the protection
domain exposed by a shareable component. The second aspect is to extend the security
policy by conceding those permissions to sensitive functions when being accessed by
applications through shareable resources.

Considering the previously mentioned observations the formalization of the security

2.4 Formally verifying security properties of MIDP 3.0 41

model of MIDP 3.0 could be extended. This could be done by defining new conditions of
the device state according to the security policy described above. It should also establish
new pre and postconditions of the access authorization request.

An Unwanted Access Example in MIDP 3.0

This example illustrates a possible scenario where an unstrusted application manages
to access, presenting a false credential, a resource shared by another application.

The RMS is a sensitive resource of the device that allows one to create and to access
information persisted in a record store. Regardless of the protection domain to which
they are linked, all applications have permissions to invoke the methods of the RMS.

In MIDP 3.0 the application that is owner of a record store can share it with other
applications and restrict access to it using the authorization mechanism described in
this document. Provided by the RMS API, the openRecordStore method allows one to
create and to access a record store. Depending on the purpose, each application uses a
different signature of the same method.

An application must use the following signature to create and share a record store
in a restricted way. In particular, using the AUTHMODE APPLEV EL value on the
third parameter of the method it is activated the access control mechanism based on
authorizations:

public static javax.microedition.rms.RecordStore openRecordStore(

String recordStoreName, boolean createIfNecessary, int authmode, boolean writable)

A bank account store named BankAccountsDb, say, with security at the application
level can be created as follows:

rsPrv = RecordStore.openRecordStore ("BankAccountsDb", true, AUTHMODE_APPLEVEL, false);

To restrict access, the application must include access authorizations in the descrip-
tor. The access declaration by vendor shown below authorizes all the applications made
by the same vendor TrustyV endor that provides the application.

MIDlet-Name: TrustyMIDlet

MIDlet-Version: 1.0

MIDlet-Vendor: TrustyVendor

MIDlet-Access-Authorization-1: vendor;TrustyVendor

An application that intends to access the shared resource must use the signature
shown below of the openRecordStore method. It also requires to know the name of
the shared resource and some data of the provider application, namely, its vendor and
public name:

public static javax.microedition.rms.RecordStore openRecordStore(

String recordStoreName, String vendorName, String suiteName)

Now, let us suppose that an authorized third party seeks to obtain bank account
information. For that, it develops an application without signatures or digital certifi-
cates, using as vendor’s name that of the owner of the record store. A fragment of the
descriptor could be defined as follows:

42 Formal analysis of security models for mobile devices

MIDlet-Name: MaliciousMIDlet

MIDlet-Version: 1.0

MIDlet-Vendor: TrustyVendor

Not being signed, the malicious application is installed and linked to the Unidentified
Third Party Protection Domain. This protects the platform from the application per-
forming an unauthorized access to sensitive resources of the device. However, this does
not prevent access to the shared bank accounts store. The following Java code allows
the untrusted application to open the record store and then to proceed to obtain, using
the method getRecord, and to process, using the procedure processRecord, sensitive
information:

// open the shared store

rsCns = RecordStore.openRecordStore("BankAccountsDb", "TrustyVendor", "TrustyMIDlet");

// proceed to read the records of the store

int nextID = rs.getNextRecordID();

byte[] data = null;

for(int id = 0; id < nextID; ++id){

try {

int size = rs.getRecordSize(id); // obtain the size of the registry

if(data == null || data.length < size)

data = new byte[size];

rs.getRecord(id, data, 0); // obtain the registry

processRecord(rs, id, data, size); // process the registry

} catch(InvalidRecordIDException e){

} catch(RecordStoreException e){

handleError(rs, id, e); }

}

2.5 A framework for defining and comparing access control
policies

An alternative model has been proposed that extends MIDP’s by introducing permis-
sions with multiplicities and adding flexibility to the way in which permissions are
granted by the user of the device and used by the applications running on it. This
section presents a framework, formalized using Coq, suitable for defining and comparing
the access control policies that can be enforced by (variants of) those security models
and to prove desirable properties they should satisfy. The content of this section is based
on [68].

2.5.1 An alternative security model for mobile devices

In [29], a security model for interactive mobile devices is put forward which can be
grasped as an extension of that of MIDP. The work presented in this section has focused
on developing a formal model for studying, in particular, interactive user querying me-
chanisms for permission granting for application execution on mobile devices. Like in
the MIDP case, the notion of permission is central to this model. A generalisation of
the one-shot permission described above is proposed that consists in associating to a
permission a multiplicity which states how many times that permission can be used.

The proposed model has two basic constructs for manipulating permissions: grant
and consume. The grant construct models the interactive querying of the user, asking

2.5 A framework for defining and comparing access control policies 43

whether he grants a particular permission with a certain multiplicity. The consume
construct models the access to a sensitive function which is protected by the security
police, and therefore requires (consumes) permissions.

A semantics of the model constructs is proposed as well as a logic for reasoning on
properties of the execution flow of programs using those constructs. The basic security
property the logic allows one to prove is that a program will never attempt to access
a resource for which it does not have a permission. The authors also provide a static
analysis that makes it possible to verify that a particular combination of the grant-
consume constructs does not violate that security property. For developing that kind
of analysis the constructs are integrated into a program model based on control-flow
graphs. This model has also been used in previous work on modelling access control for
Java, see for instance [76, 77].

One of the objectives of the work that is being reported here, has been to build a
framework which would provide a formal setting to define the permission models defined
by MIDP and the one presented in [29] (and variants of it) in an uniform way and to
perform a formal analysis and comparison of those models. This framework, which
is formally defined using the CIC, adopts, with variations, most of the security and
programming constructions defined in [29]. In particular it has been modified so as to
be parameterized by permission granting policies, while in the original work this relation
is fixed.

2.5.2 A framework for access control modeling

This section introduces the formal setting used to define the security concepts that
constitute the basis of certain access control mechanisms, to proceed then to describe
how those mechanisms are used to define the permission granting models which are
object of analysis of this work.

Permissions

Every (controlled) resource of the device is given a type. Let ResType be the set of
types of resources. If rt is a resource type, Resources rt and Actions rt define the set
of resources of type rt available on the device and the actions that can performed over
them, respectively. The permissions of a resource type are defined as follows:

PermRes (rt : ResType)
def
=

| valid : list (Resources rt) → list (Actions rt) → PermRes rt

| invalid : PermRes rt (2.65)

That is, given a resource type rt, an object of type PermRes rt is a set (represented
by a list) of actions and resources over rt, or the constant invalid. A relation ⊑PermRes

is defined by applying set inclusion component-wise. This relation defines a lattice
structure where invalid is the bottom element ⊥PermRes and ⊔PermRes a lub operator
which is obtained applying set union component-wise.

As already mentioned, a notion of multiplicity of granted permission is introduced
in [29]. A multiplicity is defined to be either a natural number, a special value ∞ that

44 Formal analysis of security models for mobile devices

denotes irrestricted permission, or an error value ⊥. A type Mul is defined:

Mul
def
= | ⊥ : Mul

| val : nat → Mul
| ∞ : Mul

(2.66)

It is straightforward to see that a lattice can be constructed over Mul with ⊥ and ∞
as the bottom and top elements, respectively. The obvious extensions of functions and
predicates defined over naturals to functions and predicates over Mul, such as ⊑Mul,
+Mul, −Mul, predMul, are also defined.

An accumulated permission for a resource type is comprised of two components: the
set of resources and actions allowed and a multiplicity. One such permission (of resource
type rt) is then grasped as an object of the following record type:

PermMul (rt : ResType)
def
= [[permRes : PermRes, rtmul : Mul]] (2.67)

The lattice of permissions of a resource type can be obtained by defining the order
⊑PermMul:

pm1 ⊑PermMul pm2
def
= pm1.permRes ⊑PermRes pm2.permRes

∧ pm1.mul ⊑Mul pm2.mul (2.68)

where pm1 and pm2 are objects of type PermMul rt. Now, the permission state of the
device is defined. One such state is ultimately a mapping that associates a permission
to each resource type. Therefore, it is defined as the following dependent function type:

Perm
def
= ∀ (rt : ResType), P ermMul rt (2.69)

It is said that two permissions p1 and p2 are (extensionally) equal if for every resource
type rt it holds that p1 rt = p2 rt.

An order ⊑Perm can be defined as the product-wise extension of ⊑PermMul as follows:

p1 ⊑Perm p2
def
= ∀ (rt : ResType), (p1 rt) ⊑PermMul (p2 rt) (2.70)

In order to model the operations that affect the state of the permissions an update
function is introduced:

update (p : Perm)(rt : ResType)(pres : PermRes rt)(m : Mul) : Perm (2.71)

The intended (and formalized) behaviour of this function is that of a usual store updating
operator: the permission state remains unchanged for every resource type different from
rt, and for rt yields 〈pres,m〉. This behavior is captured by the following two lemmas:

Lemma 2.5.1.

∀ (p : Perm)(rt : ResType)(pres : PermRes rt)(m : Mul),
(update p rt pres m) rt = 〈pres,m〉

(2.72)

Lemma 2.5.2.

∀ (p : Perm)(rt rt′ : ResType)(pres : PermRes rt)(m : Mul),
rt <> rt′ → (update p rt pres m) rt′ = p rt′

(2.73)

2.5 A framework for defining and comparing access control policies 45

If rt is a resource type and p a permission state, then the following inductive relation
Error is defined

(p rt).permRes = invalid rt

Error p

(p rt).mul = ⊥

Error p
(2.74)

The intuition is that an error situation may occur when either there is an attempt to
perform an action over a resource of type rt and no valid permission is associated to it
(first rule) or when there are no granted permissions for that resource (second rule).

Programs

A program in, among others, [29, 78] is represented by a control-flow graph that captures
the manipulations of permissions and the handling of method calls and returns as well
as exceptions.

A control-flow graph is a tuple G = (NO,EX,KD, TG,CG,EG, n0) where:

• NO is the set of nodes of the graph (one for each instruction),

• EX is the set of exceptions,

• KD is a function of type KD : NO → Instr that associates each node to an
instruction,

• TG : NO → NO → Prop is the propositional function that characterizes the
set of intra-procedural edges (i.e. n1 TG n2 if control can be transferred from
instruction at node n1 to instruction at node n2 within the currect procedure),

• CG is the set of inter-procedural edges (which can be used to capture dynamic
method calls),

• EG : EX → NO → NO → Prop are the intra-procedural exception edges,

• n0 : NO is the graph entry node.

The instructions are formally defined in the framework by means of the following induc-
tive type:

Instr
def
=

| Grant : ∀ (rt : ResType), validPermRes rt → MulV alid → Instr

| Consume : ∀ (rt : ResType), validPermRes rt → Instr

| Call : Instr (2.75)

| Return : Instr

| Throw : EX → Instr

where MulV alid is the type of valid multiplicities, that is, different from the multiplicity
⊥. The definition of the operational semantics of programs strongly depends on those of
the permission granting and consumption mechanisms. They are briefly discussed and
described in what follows.

In [29] two variants are discussed concerning the effect of the update operation after
a permission has been granted: either the permissions before the update instruction are

46 Formal analysis of security models for mobile devices

discarded or they are accumulated. At a first sight these permission granting policies
have advantages and drawbacks. Furthermore, independently of this particular discus-
sion, it is at this point that the permission model proposed by the authors introduces
a generalization with respect to that of MIDP: the multiplicity of a permission. One
of the main objectives of the work presented here has been to design a framework that
would make it possible to provide a uniform setting where those different permissions
models could be formally defined and compared. To that end, the constructions defined
to provide semantics to the computational behaviour of the programs as well as to rea-
son over that behaviour have been parameterized by permission granting policies. One
such parameter shall be formally represented by an object of the following type:

grantPolicy
def
= ∀ (rt : ResType), (2.76)

validPermRes rt → NZMulV alid → Perm → Perm

where an object of type NZMulV alid is a valid multiplicity constructed with a non-zero
natural.

As to the consumption of permissions, the following is the definition of the consume
operation:

consume (rt : ResType)(pr : validPermRes rt)(p : Perm) : Perm
def
=

if (pr ⊑PermRes (p rt).permRes)

then update p rt (p rt).permRes (predMul (p rt).mul) (2.77)

else update p rt (invalid rt) (predMul (p rt).mul)

The consume operation is monotonic on permissions. This is stated (and proved) in the
following lemma:

Lemma 2.5.3.

∀ (rt : ResType)(pr : validPermRes rt)(p p′ : Perm),
p ⊑Perm p′ → (consume rt pr p) ⊑Perm (consume rt pr p′)

(2.78)

Following [29] the small-step operational semantics of a control-flow graph has been
defined basically as a relation that defines transitions between states consisting of a
standard control-flow stack of nodes enriched with the permissions held at that point in
the execution. This definition has been extended by making it depend on a permission
granting policy g. Formally, it has been defined as an inductive propositional function
 g whose rules are depicted in Figure 2.7. An important property of this semantics
is that it is non-intrusive, that is to say, the permission state does not interfere with
execution. In other words, a transition will not be blocked by the absence of permissions.
This is formally stated, and proved, in the following lemma:

Lemma 2.5.4.

∀ (g : grantPolicy)(s s′ : list NO)(ex ex′ : option EX)(p p′ : Perm),
s ex p g s′ ex′ p′ → ∀ (p : Perm), (∃ (p′ : Perm), s ex p g s′ ex′ p′)

(2.79)

2.5 A framework for defining and comparing access control policies 47

KD n = Grant rt pr m TG n n′

(n ⊲ s) None p g (n′ ⊲ s) None (g rt pr m p)

KD n = Consume rt pr TG n n′

(n ⊲ s) None p g (n′ ⊲ s) None (consume rt pr p)

KD n = Call CG n n′

(n ⊲ s) None p g (n′ ⊲ n ⊲ s) None p

KD r = Return TG n n′

(r ⊲ n ⊲ s) None p g (n′ ⊲ s) None p

KD n = Throw ex EG ex n h

(n ⊲ s) None p g (h ⊲ s) None p

KD n = Throw ex ∀ (h : NO),¬EG ex n h

(n ⊲ s) None p g (n ⊲ s) (Some ex) p

∀ (h : NO),¬EG ex n h

(t ⊲ n ⊲ s) (Some ex) p g (n ⊲ s) (Some ex) p
EG ex n h

(t ⊲ n ⊲ s) (Some ex) p g (h ⊲ s) None p

Figure 2.7: Semantics of instructions

Traces

In [29] global results on the execution of programs are expressed on traces, which in
turn are defined in terms of the operational semantics described above (instantiated for
a particular grant policy) as follows: a partial trace of a control-flow graph is a sequence
(of type snocList (NO, option EX)) of nodes

[] ⊳ 〈n0, None〉 ⊳ 〈n1, e1〉 ⊳ · · · ⊳ 〈nk, ek〉 (2.80)

such that for all 0 ≤ i < k there exists ρ, ρ′ǫ Perm, s, s′ǫ (list NO) and verifying
ni ⊲ s, ei, ρ ni+1 ⊲ s

′, ei+1, ρ
′.

The stacks s and s′ in the above definition are existentially quantified because they
are not defined to be components of the elements of a trace. This quantification, however,
induces a loss of information w.r.t. the operational semantics. An example should clarify
this situation. Consider the control-flow graph:

NO = {A,B,C,D}
EX = {}
KD = {(A,Return), (B, x), (C,Consume rt y), (D,Return)}
TG = {(B,C), (C,D)}
CG = {}
EG = {}
n0 = A

where x : Instr, rt : ResType, y : validPermRes rt, and with initial permission
pinit = λ (rt : ResType) . 〈(valid rt [] []), (val 0)〉. Figure 2.8 depicts the control-flow
graph in question. From this definition it can be noticed that [] ⊳ 〈A,None〉 is the only
admissible trace yielding a valid permission state. According to the definition of partial
trace stated above, the object ([] ⊳ 〈A,None〉 ⊳ 〈C,None〉 ⊳ 〈D,None〉) is admitted as
a partial trace of the defined control-flow graph. This trace can be built using the
transition rules for the Consume and Return instructions (see Figure 2.7). However,
this latter trace yields an error situation, because the transition from node C to node
D attempts to consume an unavailable permission.

48 Formal analysis of security models for mobile devices

� �

� �
��

��

��	
��

����
����	�� ��	
��

Figure 2.8: Control-flow graph example

The definition of program execution traces that are proposed in the framework pre-
sented here remedies the situation described above by including the node stack as a
component of the elements of the trace. This is formally represented by the following
type:

Trace
def
= snocList [[noT : NO, stT : list NO, exT : option EX]] (2.81)

The notion of parameterized partial trace is then inductively defined over elements
of type Trace as follows:

PTraceg [] PTraceg([] ⊳ 〈n0, [], None〉) (2.82)

PTraceg (tr ⊳ 〈n, s, ex〉) ∃ (p p′ : Perm), n ⊲ s ex p g n′ ⊲ s′ ex′ p′

PTraceg (tr ⊳ 〈n, s, ex〉 ⊳ 〈n′, s′, ex′〉)
(2.83)

Let tr be a trace and g be a grant policy, if PTraceg tr holds then it shall be said
that tr is a valid trace according to g.

Given a trace tr and a grant policy g, the function

PermsOfg : Perm → Trace → Perm (2.84)

computes the permission state resulting from the execution of the program that tr
represents:

PermsOfg(pinit : Perm)(tr : Trace) : Perm
def
=

match tr with
| [] ⇒ pinit
| tr′ ⊳ e ⇒ match KD e.noT with

| Consume rt pr ⇒ consume rt pr (PermsOfg pinit tr
′)

| Grant rt pr m ⇒ g rt pr m (PermsOfg pinit tr
′)

| ⇒ PermsOfg pinit tr
′

end
end

(2.85)

Finally, given a grant policy g, a trace is said to be safe if none of its prefixes yields
a faulty permission state:

Safeg(tr : Trace)(pinit : Perm)
def
=

∀ tr′ : Trace, (prefix tr′ tr) → ¬Error(PermsOfg pinit tr
′)

(2.86)

2.5 A framework for defining and comparing access control policies 49

2.5.3 Permission grant policies

Two kinds of grant policies are analysed in [29]: given a resource type rt, one of the
policies establishes that when a new permission is granted to resources of rt, all previous
granted permissions are overwritten. This policy is called here grantow. The other pol-
icy, called here grantac, establishes that new granted permissions for rt are accumulated
with the ones previously obtained for that resource type. These policies are formally
defined as follows:

grantow : grantPolicy
def
=

λ (p : Perm) (rt : ResType) (pr : PermRes rt) (m : Mul) .
update p rt pr m

(2.87)

grantac : grantPolicy
def
=

λ (p : Perm) (rt : ResType) (pr : PermRes rt) (m : Mul) .
update p rt (pr ⊔PermRes (p rt).permRes) (m+mul (p rt).mul)

(2.88)

The permission modes defined by MIDP are also defined below as grant policies.
The grantbk term represents the blanket permission mode, which specifies unrestricted
access to a given resource type. The one-shot permission mode, which specifies a single
access to a given resource type, is represented by the term grantos.

grantbk : grantPolicy
def
=

λ (p : Perm) (rt : ResType) (pr : PermRes rt) (m : Mul) .
update p rt (pr ⊔PermRes (p rt).permRes) ∞

(2.89)

grantos : grantPolicy
def
=

λ (p : Perm) (rt : ResType) (pr : PermRes rt) (m : Mul) .
update p rt pr 1

(2.90)

It should be noticed that both the allowed mode and the session permission mode
specified by MIDP 2.0 can be modeled as a blanket grant policy. In the first case, the
granted permission would hold for the rest of the life cycle of the application to which
is granted the permission and, in the second case, the scope would be that of a session
during which that application is active.

In order to perform a comparative analysis of grant policies of the kind of the ones
just defined, the following relation is defined:

g1 ⊑g g2
def
= ∀ (tr : Trace)(p : Perm),

P traceg1 tr → Safeg1 p tr → Safeg2 p tr
(2.91)

This order establishes that given a control-flow graph, for every valid trace of the graph
according to g1 and every initial set of permissions it holds that if the trace is safe by
granting the permissions using g1 as policy, then it must also be safe if the permissions
are granted using the policy g2. Intuitively, g1 yields a more restrictive permission
model.

The following lemma states that the order relation between permission states pre-
serves error situations. It can also be proved that ⊑g is a partial order (reflexive,
transitive and antisymmetric). These results shall be of help when relating the grant
policies described so far.

50 Formal analysis of security models for mobile devices

Lemma 2.5.5.

∀ (p1 p2 : Perm), Error p1 → p1 ⊑Perm p2 → Error p2 (2.92)

The relation ⊑g defines a lattice structure with the policies grantos and grantbk as
the bottom and top elements respectively.

The following theorem states a sufficient condition (a criterion) to prove that two
permission granting policies, say g1 and g2, are in the order relation (g1 ⊑g g2):

1. the error situations that arise using g2 as a policy are also error situations if g1 is
used, and

2. if a grant policy g1 is applied, then every permission available at the end of a trace
is also available if g2 is used instead of g1.

This theorem is important in order to compare different security policies.

Theorem 2.5.6.

∀ (g1 g2 : grantPolicy)
(Herrors : ∀ (rt : ResType) (pr : validPermRes rt) (m : NZMulV alid)

(p : Perm), Error(g2 rt pr m p) → Error(g1 rt pr m p))
(Hperms : ∀ (p : Perm) (tr : Trace),

(PermsOfg1 p tr) ⊑Perm (PermsOfg2 p tr)),
g1 ⊑g g2

(2.93)

Proof. The proof proceeds by induction over (PTraceg1 tr), which is obtained after
unfolding g1 ⊑g g2. If the trace tr is empty, then the theorem holds trivially. In the
case the trace is a singleton node, the proof uses hypothesis Herrors and proceeds by
doing case analysis on the instruction type associated with that node; the interesting
case corresponds to the Grant instruction, since consume is monotonic w.r.t. ⊑Perm

and the rest of the instructions do not affect the permission state.
The inductive step follows basically from the Lemma 2.5.5, the hypothesis Hperms,

and the induction hypothesis.

2.5.4 Relating permission grant policies

Using the formal setting defined so far it is now possible to state and prove a theorem that
establishes how the four policies described in the previous section are related according
to the order relation ⊑g.

Theorem 2.5.7.

grantos ⊑g grantow ⊑g grantac ⊑g grantbk (2.94)

Proof. The proof proceeds first by proving the three inequalities grantos ⊑g grantow,
grantow ⊑g grantac and grantac ⊑g grantbk, and then applying the transitivity of the
order ⊑g. Each inequality is proved applying the theorem that establishes the sufficient
conditions to prove that two grant policies are in the order relation (Theorem 2.5.6),
and following a similar strategy. Here it shall be presented in detail the proof of the
first inequality, indications on how to proceed for the remaining two cases shall also be
provided.

2.5 A framework for defining and comparing access control policies 51

The application of the Theorem 2.5.6 to prove grantos ⊑g grantow generates in turn
the following proof obligations:

∀ (rt : ResType) (pr : validPermRes rt) (m : NZMulV alid) (p : Perm),
Error(g2 rt pr m p) → Error(g1 rt pr m p))

(2.95)

∀ (p : Perm) (tr : Trace), (PermsOfg1 p tr) ⊑Perm (PermsOfg2 p tr)) (2.96)

The proof of (2.95) proceeds by first applying the Lemma 2.5.5. This leads to have to
prove that (grantos rt pr m p) ⊑Perm (grantow rt pr m p). Unfolding the definition of
grantow and grantos, and applying the lemmas that characterize the function update,
we have to prove 〈pr, 1〉 ⊑PermMul 〈pr,m〉 and (p rt) ⊑PermMul (p rt). The latter follows
directly because ⊑PermMul is reflexive. As to the former, as m : NZMulV alid so the
least number it can be is 1, in which case, since ⊑PermMul is reflexive, the obligation is
discharged.

For (2.96), the proof proceeds by induction on tr:

• tr = [], the inequality simplifies to p ⊑Perm p and since ⊑Perm is reflexive, this
obligation is discharged.

• tr = tr′ ⊳ 〈n, st, ex〉, the proof proceeds by case analysis on KD n. The relevant
cases are Grant and Consume, since the rest of the instructions do not affect
the permission state. The Consume case is straightforward since the function
consume is monotonic, and by induction hypothesis it is known that:

(PermsOfgrantos p tr′) ⊑Perm (PermsOfgrantow p tr′) (2.97)

The Grant case is proved using transitivity of ⊑Perm, the induction hypothesis
and the following two lemmas:

– ∀ (rt : ResType)(pr : validPermRes rt)(m : NZMulV alid)(p : Perm),
(grantos rt pr m p) ⊑Perm (grantow rt pr m p)

– ∀ (rt : ResType)(pr : validPermRes rt)(m : NZMulV alid)(p p′ : Perm),
p ⊑Perm p′ → (grantow rt pr m p) ⊑Perm (grantow rt pr m p′).

(2.98)

The structure of the proof of the two remaining inequalities are quite similar to
the one just described above. In both cases the bulk of the proof reduces to proving
auxiliary lemmas similar to the ones of the proof obligation (2.96) for the involved grant
policies.

This theorem and its proof provide a formal evidence that, in the first place, of the four
policies, MIDP’s one-shot is the most restrictive policy and MIDP’s blanket is the most
permissive one. In addition to that, these two policies have been formally related with
the permission grant policies defined in [29]. Furthermore, the theorem also formally
relates these two latter granting policies, showing that the accumulative one is more
permissive than the overwriting one.

The difference between accumulating permissions and overwriting permissions is sub-
tle. The problem with accumulating permissions is that at any program point to ap-
proximate the permissions available for a given resource type it has to be considered all

52 Formal analysis of security models for mobile devices

the consumptions and all the permissions granted for that resource type. Whereas in
the overwriting grant policy it is enough to consider the last grant operation and the
subsequent consume operations. This suggests that a static permission analysis might
be simpler using the overwriting grant policy.

2.6 Related work

This work builds upon and extends a number of previously published papers [65, 66, 67,
68]. In what follows we discuss work related with the results that have been presented
in the previous sections.

Some effort has been put into the evaluation of the security model for MIDP 2.0; Kolsi
and Virtanen [79] and Debbabi et al. [80] analyze the application security model, spot
vulnerabilities in various implementations and suggest improvements to the specification.
Although these works report on the detection of security holes, they do not intend to
prove their absence. The formalizations we overview in this article, however, provide a
formal basis for the verification of the model and the understanding of its intricacies.

Various articles analyze access control in Java and C♯, see for instance [78, 77, 81,
76, 82]. All these works have mainly focused on the stack inspection mechanism and
the notion of granting permissions to code through privileged method calls. The access
control check procedures in MIDP do not involve a stack walk. While in the case of the
JSE platform there exists a high-level specification of the access controller module (the
basic mechanism is based on stack inspection [28]), no equivalent specification exists for
JME. In this work, we illustrate the pertinence of the specification of the MIDP (version
2.0) security model that has been developed by specifying and proving the correctness
of an access control module for the JME platform.

Besson, Duffay and Jensen [29, 83] have put forward an alternative access control
model for mobile devices that generalizes the MIDP model by introducing permissions
with multiplicites, extending the way permissions are granted by users and consumed
by applications. One of the main outcomes of the work we report in the present paper is
a general framework that sets up the basis for defining, analyzing and comparing access
control models for mobile devices. In particular, this framework subsumes the security
model of MIDP and several variations, including the model defined in [29, 83].

Android [25] is an open platform for mobile devices developed by the Open Handset
Alliance led by Google, Inc. Focusing on security, Android combines two levels, Linux
system and application framework level, of enforcement [26, 27]. At the Linux system
level, Android is a multi-process system. The Android security model resembles a multi-
user server, rather than the sandbox model found on JME platform. At the application
framework level, Android provides fine control through Inter-Component Communica-
tion reference monitor, that provides Mandatory Access Control enforcement on how
applications access the components. There have been several analysis done on the secu-
rity of the Android system, but few of them pay attention to the formal aspect of the
permission enforcing framework. In [84, 85], the authors propose an entity-relationship
model for the Android permission scheme [86]. This work —the first formalization of the
permission scheme which is enforced by the Android framework— builds a state-based
formal model and provides a behavioral specification, based in turn on the specification
developed in [65] and described in Section 2.3. The abstract operation set considered
in [84, 85] does not include permission request/revoke operations presents in MIDP. In

2.7 Summary 53

[87], Chaudhuri presents a core language to describe Android applications, and to rea-
son about their dataflow security properties. The paper introduces a type system for
security in this language. The system exploits the access control mechanisms already
provided by Android. Furthermore, [26] reports a logic-based tool, Kirin, for determin-
ing whether the permissions declared by an application satisfy a certain safety invariant.
A formal comparison between both JME-MIDP and Android security models is an in-
teresting further work. However, we develop a first informal analysis in the technical
report [88], which also details the Android security model and analyzes some of the more
recent works that formalize different aspects of this model.

Language-based access control has been investigated for some idealised program
models, see e.g. [89, 90, 91]. These works make use of static analysis for verifying
that resources are accessed according to access control policies specified and that no
security violations will occur at run-time. They do not study, though, specific language
primitives for implementing particular access control models.

2.7 Summary

The Java Micro Edition platform defines the Mobile Information Device Profile (MIDP)
to facilitate the development of applications for mobile devices. In this chapter, we have
studied and compared formally several variants of the security model specified by MIDP
to access sensitive resources of a device. Our contributions are manyfold. First, we have
described a formal specification of the MIDP 2.0 security model that has been developed
using proof assistant Coq. This formalization provides an abstraction of the state of a
device and security-related events that allows to reason about the security properties
of the platform where the model is deployed. Then, we have illustrated the pertinence
of this formalization by specifying and proving the correctness of an access control
module. The latest version of MIDP (3.0), introduces a new dimension in the security
model at the application level. We have extended the formal specification developed
for MIDP 2.0 to incorporate the changes introduced in MIDP 3.0, and we have showed
that this extension is conservative, in the sense that it preserves the security properties
we proved for the previous model. We have spotted and discuss here some weaknesses
introduced by the security mechanisms of version 3.0. In [29, 83] it has been proposed an
alternative access control model for mobile devices that generalizes the MIDP model by
introducing permissions with multiplicities, extending the way permissions are granted
and consumed. Finally, we have presented a general framework in the Coq proof assistant
that allows one to define and compare access control policies that can be enforced by
(variants of) this generalized security model.

Chapter 3

Formally verifying security
properties in an idealized model
of virtualization

3.1 Introduction

Virtualization is a prominent technology that allows high-integrity, safety-critical, sys-
tems and untrusted, non-critical, systems to coexist securely on the same platform and
efficiently share its resources. To achieve the strong security guarantees requested by
these application scenarios, virtualization platforms impose a strict control on the inter-
actions between their guest systems. While this control theoretically guarantees isolation
between guest systems, implementation errors and side-channels often lead to breaches
of confidentiality, allowing a malicious guest system to obtain secret information, such
as a cryptographic key, about another guest system.

Over the last few years, there have been significant efforts to prove that virtual-
ization platforms deliver the expected, strong, isolation properties between operating
systems. The most prominent efforts in this direction are within the Hyper-V [14, 15]
and L4.verified [16] projects, which aim to derive strong guarantees for concrete imple-
mentations: more specifically, Murray et al [33] recently presented a machine-checked
information flow security proof for the seL4 microkernel. In comparison with the Hyper-
V and L4.verified projects, our proofs are based on an axiomatization of the semantics
of a hypervisor, and abstract away many details from the implementation; on the other
hand, our model integrates caches and Translation Lookaside Buffers (TLBs), two secu-
rity relevant components that are not considered in these works.

There are three important isolation properties for virtualization platforms. On the
one hand, read and write isolation respectively state that guest operating systems cannot
read and write on memory that they do not own. On the other hand, OS isolation states
that the behavior of a guest operating system does not depend on the previous behavior
and does not affect the future behavior of other operating systems. In contrast to
read and write isolation, which are safety properties and can be proved with deductive
verification methods, OS isolation is a 2-safety property [17, 18] that requires reasoning
about two program executions. Unfortunately, the technology for verifying 2-safety
properties is not fully mature, making their formal verification on large and complex
programs exceedingly challenging.

55

56 Formally verifying security properties in an idealized model of virtualization

3.1.1 A primer on virtualization

This section provides a primer on virtualization, focusing on the elements that are most
relevant for our formal model, which we develop in Section 3.2.

Virtualization is a technique used to run on the same physical machine multiple
operating systems, called guest operating systems. The hypervisor, or Virtual Machine
Monitor [92], is a thin layer of software that manages the shared resources (e.g. CPU,
system memory, I/O devices). It allows guest operating systems to access these resources
by providing them an abstraction of the physical machine on which they run. One of
the most important features of a virtualization platform is that its OSs run isolated
from one another. In order to guarantee isolation and to keep control of the platform, a
hypervisor makes use of the different execution modes of a modern CPU: the hypervisor
itself and trusted guest OSs run in supervisor mode, in which all CPU instructions
are available; while untrusted guest operating systems will run in user mode in which
privileged instructions cannot be executed.

Historically there have been two different styles of virtualization: full virtualization
and paravirtualization. In the first one, each virtual machine is an exact duplicate of
the underlying hardware, making it possible to run unmodified operating systems on
top of it. When an attempt to execute a privileged instruction by the OS is detected
the hardware raises a trap that is captured by the hypervisor and then it emulates the
instruction behavior. In the paravirtualization approach, each virtual machine is a sim-
plified version of the physical architecture. The guest (untrusted) operating systems
must then be modified to run in user CPU mode, changing privileged instructions to
hypercalls, i.e. calls to the hypervisor. A hypercall interface allows OSs to perform a
synchronous software trap into the hypervisor to perform a privileged operation, anal-
ogous to the use of system calls in conventional operating systems. An example use of
a hypercall is to request a set of page table updates, in which the hypervisor validates
and applies a list of updates, returning control to the calling OS when this is completed.

In this work, we focus on the memory management policy of a paravirtualization
style hypervisor, based on the Xen virtualization platform [93]. Several features of the
platform are not yet modeled (e.g. I/O devices, interruption system, or the possibility
to execute on multi-cores), and are left as future work.

3.1.2 Contents of the chapter

This Chapter builds upon and extends the previously published papers [94, 95]. In Sec-
tion 3.2 we develop our formal model. Isolation properties are considered in Section 3.3,
whereas availability is discussed in Section 3.4. Section 3.5 presents an extension of
the memory model with cache and TLB. Section 3.6 describes the executable semantics
of the hypervisor and outlines the proof of correctness of the implementation. In Sec-
tion 3.7 we present the isolation theorems for the extended model with execution errors
and a proof of transparency. Section 3.8 considers related work, and finally Section 3.9
concludes with a summary of the chapter.

3.1.3 Formalization

The formal development is available at

http://www.fing.edu.uy/inco/grupos/gsi/proyectos/virtualcert.php

3.2 The model 57

and can be verified using the Coq proof assistant.

3.2 The model

In this section we present and discuss the formal specification of the idealized model. We
first introduce the set of states, and the set of actions; the latter include both operations
of the hypervisor and of the guest operating systems. The semantics of each action is
specified by a precondition and a postcondition. Then, we introduce a notion of valid
state and show that state validity is preserved by execution. Finally, we define execution
traces.

3.2.1 Informal overview of the memory model

The most important component of the state is the memory model, which we proceed
to describe. As illustrated in Figure 3.1, the memory model involves three types of
addressing modes and two address mappings: the machine address is the real machine
memory; the physical memory is used by the guest OS, and the virtual memory is used
by the applications running on an operating system. The virtual memory is the one used

����������	
��

���
��

���
��

���
��

���
��

���
��

���
��

���
��

���
��

���

���

���

���
��

���
��

���
��

��
���������������

��	
��

��������
�
��������
�� �
�

����������!��
�� �
�

�����������
��	
�� �����������
�

	�����

����������
����� �
	�����

Figure 3.1: Memory model of the platform

by applications running on OSs. Each OS stores a partial mapping of virtual addresses to
machine addresses. This will allow us to represent the translation of the virtual addresses
of the applications executing in the OS into real hardware addresses. Moreover, each
OS has a designated portion of its virtual address space (usually abbreviated VAS) that
is reserved for the hypervisor to attend hypercalls. We say that a virtual address va is
accessible by the OS if it belongs to the virtual address space of the OS which is not
reserved for the hypervisor. We denote the type of virtual addresses by vadd.

The physical memory is the one addressed by the kernel of the guest OS. In the Xen
[93] platform, this is the type of addresses that the hypervisor exposes to the domains
(the untrusted guest OSs in our model). The type of physical addresses is written padd.

58 Formally verifying security properties in an idealized model of virtualization

The machine memory is the real machine memory. A mechanism of page classifi-
cation was introduced in order to cover concepts from certain virtualization platforms,
in particular Xen. The model considers that each machine address that appears in a
memory mapping corresponds to a memory page. Each page has at most one unique
owner, a particular OS or the hypervisor, and is classified either as a data page with
read/write access or as a page table, where the mappings between virtual and machine
addresses reside. It is required to register (and classify) a page before being able to use
or map it. The type of machine addresses is written madd.

As to the mappings, each OS has an associated collection of page tables (one for each
application executing on the OS) that map virtual addresses into machine addresses.
When executed, the applications use virtual addresses, therefore on context switch the
current page table of the OS must change so that the currently executing application may
be able to refer to its own address space. Neither applications nor untrusted OSs have
permission to read or write page tables, because these actions can only be performed in
supervisor mode. Every memory address accessed by an OS needs to be associated to a
virtual address. The model must guarantee the correctness of those mappings, namely,
that every machine address mapped in a page table of an OS is owned by it.

The mapping that associates, for each OS, machine addresses to physical ones is, in
our model, maintained by the hypervisor. This mapping might be treated differently by
each specific virtualization platform. There are platforms in which this mapping is public
and the OS is allowed to manage machine addresses. The physical-to-machine address
mapping is modified by the actions page pin and page unpin, as shall be described in
Section 3.2.3.

3.2.2 Formalizing states

The platform state consists of a collection of components that we now proceed to de-
scribe.

Operating systems

We start from a type os ident of identifiers for guest operating systems, and a predicate
trusted os indicating whether a guest operating system is trusted. The state contains
information about each guest OS current page table, which is a physical address, and
information on whether it has a hypercall pending to be resolved. Formally the infor-
mation is captured by a mapping oss map that associates OS identifiers with objects of
type os, where

os
def
= [[curr page : padd,

hcall : option Hyper call]]

oss map
def
= os ident 7→ os

(3.1)

Execution modes

Most hardware architectures distinguish at least two execution modes, namely user mode
(usr) and supervisor mode (svc). These modes are used as a protection mechanism, where
privileged instructions are only allowed to be executed in supervisor mode. In our model,
untrusted OSs execute in user mode while trusted ones and the hypervisor execute in
supervisor mode. When an untrusted OS needs to execute a privileged operation, it

3.2 The model 59

requests the hypervisor to do it on its behalf. Execution modes are formalized by the
enumerated type exec mode, where

exec mode
def
= usr | svc (3.2)

Moreover, there is a single active OS in each state. After requesting the hypervisor to
execute some service, the active guest OS will turn in processor execution mode waiting
until the service is completed and the execution control returned, switching then its
execution mode to running. Active OS execution mode is formalized by the type

os activity
def
= running | waiting (3.3)

Memory mappings

The mapping, that given an OS returns the corresponding mapping from physical to
machine addresses, is formalized as an object of the type hypervisor map, where

hypervisor map
def
= os ident 7→ (padd 7→ madd) (3.4)

The real platform memory is formalized as a mapping that associates to a machine
address a page, thus

system memory
def
= madd 7→ page (3.5)

A page consists of a page content and a reference to the page owner. Page contents
can be either (readable/writable) values, an OS page table or nothing; note that a page
might have been created without having been initialized, hence the use of option types.
Page owners can be the hypervisor, a guest OS or none. Formally:

content
def
= RW (v : option V alue)
| PT (va to ma : vadd 7→ madd)
| Other

page owner
def
= Hyp

| Os (osi : os ident)
| No Owner

page
def
= [[page content : content,

page owned by : page owner]]

(3.6)

States

The states of the platform are modeled by a record with six components:

State
def
= [[active os : os ident,

aos exec mode : exec mode,
aos activity : os activity,
oss : oss map,
hypervisor : hypervisor map,
memory : system memory]]

(3.7)

60 Formally verifying security properties in an idealized model of virtualization

Pre s (read va)
def
=

os accessible(va) ∧ s.aos activity = running ∧
∃ ma : madd, va mapped to ma(s, va,ma) ∧
is RW ((s.memory[ma]).page content)

Post s (read va) s′
def
= s = s′

Pre s (write va val)
def
= Pre s (read va)

Post s (write va val) s′
def
=

∃ ma : madd, va mapped to ma(s, va,ma) ∧
s′ = s · [memory := (s.memory[ma := 〈RW (Some val), s.active os〉])]

Pre s (chmod)
def
=

s.aos activity = waiting ∧ (s.oss[s.active os]).hcall = None

Post s (chmod) s′
def
=

trusted os(s.active os) ∧

s′ = s ·

[

aos exec mode := svc,
aos activity := running

]

∨

¬ trusted os(s.active os) ∧

s′ = s ·

[

aos exec mode := usr,
aos activity := running

]

Pre s (page pin untr o pa t)
def
=

¬ trusted os(o) ∧ s.aos activity = waiting ∧
(s.oss[o]).hcall = Some (Hyperv call pin(pa, t)) ∧
physical address not allocated(s.hypervisor[o], pa) ∧
∃ ma : madd, memory available(s.memory,ma)

Post s (page pin untr o pa t) s′
def
=

∃ ma : madd,memory available(s.memory,ma) ∧

s′ = s ·

oss := s.oss[o := 〈None, (s.oss[o]).curr page〉],
hypervisor := s.hypervisor[o, pa := ma],

memory := s.memory[ma := newpage(t, o)]

Figure 3.2: Formal specification of actions semantics

The component active os indicates which is the active operating system, and the compo-
nents aos exec mode and aos activity the corresponding execution and processor mode.
oss stores the information of the guest operating systems of the platform. Finally, the
components hypervisor and memory are the mappings used to formalize the memory
model described in the previous section.

We define the predicate os accessible(va), that holds if va belongs to the set of
virtual addresses accessible by any OS.

Valid state

We define a notion of valid state that captures essential properties of the platform.
Formally, the predicate valid state holds on state s if s satisfies the following properties:

• a trusted OS has no pending hypercalls;

• if the active OS is in running mode then no hypercall requested by it is pending;

3.2 The model 61

• if the hypervisor or a trusted OS is running the processor must be in supervisor
mode;

• if an untrusted OS is running the processor must be in user mode;

• the hypervisor maps an OS physical address to a machine address owned by that
same OS. This mapping is also injective;

• all page tables of an OS o map accessible virtual addresses to pages owned by o
and not accessible ones to pages owned by the hypervisor;

• the current page table of any OS is owned by that OS;

• any machine addressma which is associated to a virtual address in a page table has
a corresponding pre-image, which is a physical address, in the hypervisor mapping.

All properties have a straightforward interpretation in our model. For example, the
first property is captured by the proposition:

∀ osi : os ident, trusted os(osi) → (s.oss[osi]).hcall = None (3.8)

Valid states are invariant under execution, as shall be shown later.

3.2.3 Actions

Table 3.1 summarises the set of the actions specified in the model, and their effects.
Actions can be classified as follows:

• hypervisor calls new, delete, pin, unpin and lswitch;

• change of the active OS by the hypervisor (switch);

• access, from an OS or the hypervisor, to memory pages (read and write);

• update of page tables by the hypervisor on demand of an untrusted OS or by a
trusted OS directly (new and delete);

• changes of the execution mode (chmod, ret ctrl);

• changes in the hypervisor memory mapping (pin and unpin), which are performed
by the hypervisor on demand of an untrusted OS or by a trusted OS directly. These
actions model (de)allocation of resources.

Actions Semantics

The behaviour of actions is specified by a precondition Pre and by a postcondition Post
of respective types:

Pre : State → Action → Prop
Post : State → Action → State → Prop

(3.9)

Figure 3.2 provides the axiomatic semantics of some relevant actions, namely, read,
write, chmod and page pin untr (the names of the auxiliary predicates used should be
self-explanatory). Notice that what is specified is the effect the execution of an action

62 Formally verifying security properties in an idealized model of virtualization

read va A guest OS reads virtual address va.
read hyper va The hypervisor reads virtual address va.
write va val A guest OS writes value val in virtual address va.
write hyper va val The hypervisor writes value val in virtual address va.
new tr va pa The virtual address va is mapped to the machine address ma in the

memory mapping of the trusted active OS, where pa translates to
ma for the active OS.

new untr o va pa The hypervisor adds (on behalf of the OS o) a new ordered pair
(mapping virtual address va to the machine address ma) to the
current memory mapping of the untrusted OS o, where pa translates
to ma for o.

new hyper va ma The hypervisor adds a new ordered pair to the current memory map-
ping of the active OS (mapping virtual address va to the machine
address ma) for his own purposes.

del tr va The trusted active OS deletes the ordered pair that maps virtual
address va from its memory mapping.

del untr o va The hypervisor deletes (on behalf of the o OS) the ordered pair that
maps virtual address va from the current memory mapping of o.

del hyper va The hypervisor deletes (for its own purposes) the ordered pair that
maps virtual address va from the current memory mapping of the
active OS.

switch o The hypervisor sets o to be the active OS.
lswitch tr pa The trusted active OS changes its current memory mapping to be

the one located at physical address pa. This action corresponds to
a traditional context switch by the active OS.

lswitch untr o pa The hypervisor changes the current memory mapping of the un-
trusted active OS, to be the one located at physical address pa.

silent Represents the silent action (the system does not advertise any ef-
fects).

hcall c An untrusted OS requires privileged service c to be executed by the
hypervisor.

ret ctrl Returns the execution control to the hypervisor.
chmod The hypervisor changes the execution mode from supervisor to user

mode, if the active OS is untrusted, and gives to it the execution
control.

page pin tr pa t The memory page that corresponds to physical address pa (for the
active OS) is registered and classified with type t.

page pin untr o pa t The memory page that corresponds to physical address pa (for un-
trusted OS o) is registered and classified with type t.

page unpin tr pa The memory page that corresponds to physical address pa (for the
active OS) is un-registered.

page unpin untr o pa The memory page that corresponds to physical address pa (for the
untrusted OS o) is un-registered.

Table 3.1: Platform actions

has on the state of the platform. In particular, the action read does not return the
accessed value.

The precondition of the action read va requires that va is accessible by the active
OS, that there exists a machine address ma to which va is mapped, that the active OS
is running and that the page indexed by the machine address ma is readable/writable.
The postcondition requires the execution of this action to keep the state unchanged.

3.2 The model 63

The precondition of the action write is identical to that of the action read. The
postcondition establishes that the state after the execution of the action only differs in
the value (val) of the page associated to ma, which is owned by the active OS. The
precondition of the action chmod requires that there must not be a pending hypercall
for the active OS. The postcondition establishes that after the execution of the action,
if the active OS is a trusted one, then the effect on the state is to change its execution
mode to supervisor mode. Otherwise, the execution mode is set to user mode. In both
cases, the processor mode is set to running.

The execution of the action page pin untr requires, in the first place, that the
hypervisor is running and that the active OS is untrusted. In addition to that, the OS
o must be waiting for an hypercall to pin the physical address pa of type t, pa must
not be already allocated and there must be machine memory available. The effect of
the action is to create and allocate at machine address ma a new page of type t whose
owner is the OS o and bind, in the hypervisor mapping, the physical address pa to ma.
The rest of the state remains unchanged.

One-step execution

The execution of an action is specified by the →֒ relation:

valid state(s) Pre s a Post s a s′

s ֒
a
−→ s′ (3.10)

Whenever an action occurs for which the precondition holds, the (valid) state may change
in such a way that the action postcondition is established. The notation s ֒

a
−→ s′ may be

read as the execution of the action a in a valid state s results in a new state s′. Note
that this definition of execution does not consider the cases where the preconditions of
the actions are not fulfilled.

Invariance of valid state

One-step execution preserves valid states, that is to say, the state resulting from the
execution of an action is also a valid one.

Lemma 3.2.1.

∀ (s s′ : State) (a : Action), s ֒
a
−→ s′ → valid state(s′) (3.11)

Platform state invariants, such as state validity, are useful to analyze other relevant
properties of the model. In particular, the results presented in this work are obtained
from valid states of the platform.

3.2.4 Traces

Isolation properties are eventually expressed on execution traces, rather than execution
steps; likewise, availability properties are formalized as fairness properties stating that
something good will eventually happen in an execution traces. Thus, our formalization
includes a definition of execution traces and proof principles to reason about them.

64 Formally verifying security properties in an idealized model of virtualization

Informally, an execution trace is defined as a stream (an infinite list) of states that
are related by the transition relation →֒, i.e. an object of the form

s0 ֒
a0−→ s1 ֒

a1−→ s2 ֒
a2−→ s3 . . . (3.12)

such that every execution step si ֒
ai−→si+1 is valid. Formally, an execution trace is defined

as a stream t of pairs of states and actions, such that for every i ≥ 0, s[i] ֒
a[i]
−−→ s[i + 1],

where t[i] = 〈s[i], a[i]〉 and t[i+ 1] = 〈s[i+ 1], a[i+ 1]〉. We let Trace define the type of
traces.

State properties are lifted to properties on pairs of states and actions in the obvious
way. Moreover, state properties can be lifted to properties on traces; formally, each
predicate P on states can be lifted to predicates � P (read always P) and ♦ P (read
eventually P) in a temporal logic as Computation Tree Logic (CTL) [96, 97], formalized
in the CIC (in Coq) [98]. The former � P is defined co-inductively defined by the
clause �(P, s :: t) iff P (s) and �(P, t), whereas the latter ♦ P is defined inductively
by the clauses ♦(P, s :: t) iff P (s) or ♦(P, t); each modality has an associated reasoning
principle attached to its definition. Similar modalities can be defined for relations, and
can be used to express isolation properties. In particular, given a relation R on states,
and two traces t1 and t2, we have �(R, t1, t2) iff R(t1[i], t2[i]) for all i.

3.3 Isolation properties

We formally establish that the hypervisor enforces strong isolation properties: an op-
erating system can only read and modify memory that it owns, and its behavior is
independent of the state of other operating systems. The properties are established for
a single step of execution, and then extended to traces.

Read isolation

Read isolation captures the intuition that no OS can read memory that does not belong
to it. Formally, read isolation states that the execution of a read va action requires that
va is mapped to a machine address ma that belongs to the active OS current memory
mapping, and that is owned by the active OS.

Lemma 3.3.1.

∀ (s s′ : State) (va : vadd),

s ֒
read va
−−−−−→ s′ → ∃ ma : madd, va mapped to ma(s, va,ma) ∧

∃ pg : page, pg = s.memory[ma] ∧ pg.page owned by = s.active os

(3.13)

The property is proved by inspection of the pre and postcondition for the read

action, using the definition of valid state.

Write Isolation

Write isolation captures the intuition that an OS cannot modify memory that it does
not own. Formally, write isolation states that, unless the hypervisor is running, the
execution of any action will at most modify memory pages owned by the active OS or
it will allocate a new page for that OS.

3.3 Isolation properties 65

Lemma 3.3.2.

∀ (s s′ : State) (a : Action) (ma : madd),
s ֒

a
−→ s′ → ¬hyper running(s) →

s′.memory[ma] = s.memory[ma] ∨ owner or free(s.memory,ma, s.active os)
(3.14)

where hyper running and owner or free respectively denote that the hypervisor is
running, and that the owner of the given machine address is either the given OS or it is
free.

The property is proved by case analysis on the action executed. The relevant cases
are the actions that are performed by the active OS and that modify the memory; for
each such action, the property follows from its pre and postconditions, and from the
definition of valid state.

OS Isolation

OS isolation is a 2-safety property [17, 18], cast in terms of two executions of the sys-
tem, and is closely related to the non-influence property studied by Oheimb and co-
workers [34, 99].

OS isolation captures the intuition that the behavior of any OS does not depend on
other OSs states, and is expressed using the notion of equivalence w.r.t. an operating
system osi. Formally, two states s and s′ are osi-equivalent, denoted s ≡osi s

′, if the
following conditions are satisfied:

• osi is the active OS in both states and the processor mode is the same, or the
active OS is different to osi in both states;

• osi has the same hypercall in both states, or no hypercall in both states;

• the current page tables of osi are the same in both states;

• all page table mappings of osi that maps a virtual address to a RW page in one
state, must map that address to a page with the same content in the other;

• the hypervisor mappings of osi in both states are such that if a given physical
address maps to some RW page, it must map to a page with the same content on
the other state.

All conditions have a straightforward interpretation in our model. The first condition
is formalized by the proposition:

(s.active os = osi ∧ s′.active os = osi ∧ s.aos activity = s′.aos activity) ∨
(s.active os 6= osi ∧ s′.active os 6= osi)

(3.15)

The following two conditions are captured by the proposition:

s.oss[osi] = s′.oss[osi] (3.16)

Finally, the last two conditions are formally represented by the sentence:

(os equivalent PT pages s s′ osi) ∧ (os equivalent hyper mapping s s′ osi) (3.17)

66 Formally verifying security properties in an idealized model of virtualization

where os equivalent PT pages and os equivalent hyper mapping are formally defined
in http://www.fing.edu.uy/inco/grupos/gsi/proyectos/virtualcert.php. In par-
ticular, os equivalent hyper mapping s s′ osi holds iff s ∼hyp

osi s′ and s′ ∼hyp
osi s, where:

s1 ∼
hyp
osi s2 iff

∀ (pa : padd) (pg : page),
(∃ (ma : madd), s1.hypervisor[osi][pa] = ma ∧ s1.memory[ma] = pg) →
is RW (pg.page content) →
∃ (ma′ : madd), s2.hypervisor[osi][pa] = ma′ ∧ s2.memory[ma′] = pg

(3.18)

Note that we cannot require that memory contents be the same in both states for
them to be osi-equivalent, because on a page pin action, the hypervisor can assign
an arbitrary (free) machine address to the OS, so we consider osi-equivalence without
taking into account the actual value of the machine addresses assigned. In particular,
two osi-equivalent states can have different page table memory pages, which contain
mappings from virtual to arbitrary machine addresses, but such that the contents of
such an arbitrary machine address be the same on both states, if it corresponds to a
RW page. This definition bears some similarity with notions of indistinguishable states
used for reasoning about non-interference in object-oriented languages [100].

OS isolation states that osi-equivalence is preserved under execution of any action,
and is formalized as a “step-consistent” unwinding lemma, see [101].

Lemma 3.3.3.

∀ (s1 s′1 s2 s′2 : State) (a : Action) (osi : os ident),
s1 ≡osi s2 → s1 ֒

a
−→ s′1 → s2 ֒

a
−→ s′2 → s′1 ≡osi s

′
2

(3.19)

The proof of OS isolation relies on write isolation, on Lemma 3.3.4, and on an isolation
lemma for the case where osi is the active OS of both states s1 and s2.

The next lemma formalizes a “locally preserves” unwinding lemma in the style
of [101], stating that the osi-component of a state is not modified when another op-
erating system is executing.

Lemma 3.3.4.

∀ (s s′ : State) (a : Action) (osi : os ident),
¬ os action(s, a, osi) → s ֒

a
−→ s′ → s ≡osi s

′
(3.20)

where os action(s, a, osi) holds if, in the state s, osi is the active and running OS and
therefore is executing action a, or otherwise the hypervisor is executing the action a on
behalf of osi.

Extensions to traces

All isolation properties extend to traces, using coinductive reasoning principles. In par-
ticular, the extension of OS isolation to traces establishes a non-influence property [34].
Formally, we define for each operating system osi a predicate same os actions stating
that two steps have the same set of actions w.r.t. osi: concretely, if for all i the actions
in t1[i] and t2[i] are the same os action for osi, or both are arbitrary actions not related
to osi, then same os actions(osi, t1, t2) holds.

3.4 Availability 67

Lemma 3.3.5.

∀ (t1 t2 : Trace) (osi : os ident),
same os actions(osi, t1, t2) → (t1[0] ≡osi t2[0]) →
�(≡osi, t1, t2)

(3.21)

For technical reasons related to the treatment of coinductive definitions in Coq
(specifically the need for corecursive definitions to be productive), our formalization
of non-influence departs from common definitions of non-interference and non-influence,
which rely on a purge function that eliminates the actions that are not related to osi.
One can however define an erasure function erase that replaces actions that are not
related to osi by silent actions, and prove for all traces t that

�(≡osi, t, erase(osi, t)) (3.22)

3.4 Availability

An essential property of virtualization platforms is that all guest operating systems are
given access to the resources they need to proceed with their execution. In this section,
we establish a strong fairness property, showing that if the hypervisor only performs
chmod actions whenever no hypercall is pending, then no OS blocks indefinitely waiting
for its hypercalls to be attended. The assumption on the hypervisor is satisfied by all
reasonable implementations of the hypervisor; one possible implementation that would
satisfy this restriction is an eager hypervisor which attends hypercalls as soon as it
receives them and then chooses an operating system to run next. If this is the case, then
when the chmod action is executed, no hypercalls are pending on the whole platform.

Formally, the assumption on the hypervisor is modelled by considering a restricted
set of execution traces in which the initial state has no hypercall pending, and in chmod

actions can only be performed whenever no hypercall is pending. Then, the strong
fairness property states that: if the hypervisor returns control to guest operating systems
infinitely often, then infinitely often there is no pending hypervisor call.

Lemma 3.4.1.

∀ (t : Trace),¬ hcall(t[0]) →
�(chmod nohcall, t) →
�(♦ ¬ hyper running, t) →
�(♦ ¬ hcall, t)

(3.23)

where hcall and chmod nohcall respectively denote that there is an hypercall pending
and that chmod actions only arise when no hypercall is pending.

The proof of the strong fairness property proceeds by co-induction and relies on
showing that ¬ hyper running(s) → ¬ hcall(s) is an invariant of all traces that satisfy
the hypothesis of the lemma.

Note that our strong fairness property is independent of the scheduler: in particular,
the hypothesis �(♦ ¬ hyper running, t) does not guarantee that each operating system
will be able to execute infinitely often. Further restricting the implementation of the
hypervisor so as to guarantee that the hypervisor is fair to each guest operating system
is left for future work.

68 Formally verifying security properties in an idealized model of virtualization

3.5 Extension of the model with cache and TLB

In this section, we present an extension of the idealized model of virtualization, intro-
duced in Section 3.2, that features cache and TLB. We show the new formulation of the
set of state and the semantics of the actions of state transformers. We start by providing
some background on cache managment, according to [102].

3.5.1 Cache management

In order to reduce the overhead necessary to access memory values, CPUs use faster
storage devices called caches to store a copy of the data from main memory. When
the processor needs to read a memory value, it fetches the value from the cache if it is
present (cache hit), or from memory if it is not (cache miss). In systems with virtual
memory, the TLB is analogously used to speed up the translation from virtual to physical
memory addresses. In the event of a TLB hit, the physical address corresponding to a
given virtual address is obtained directly, instead of searching for it in the process page
table (which resides in main memory).

The cache may potentially be accessed either with a physical address (physically
indexed cache) or a virtual address (virtually indexed cache). There are, in turn, two
variants of virtually indexed caches: those where the entries are tagged with the virtual
address (virtually indexed, virtually tagged or VIVT cache) and those which are tagged
with the corresponding physical address (virtually indexed, physically tagged or VIPT
cache).

There exist several alternatives policies for implementing cache content management,
in particular concerning the update and replacement of cache information. A replace-
ment policy is one that specifies the criteria used to remove a value when the cache is
full and a new value needs to be stored. Among the most common policies we find those
that specify that the value to be removed is either the least recently used value (LRU),
the most recently used (MRU) or the least frequently used (LFU). In our model we
specify an abstract replacement policy which can be refined to any of the three policies
just described. A write policy specifies how the modification of a cache entry impacts
the memory structures: a write-through policy, for instance, requires that values are
written both in the cache and in the main memory. A write-back policy, on the other
side, requires that values are only modified in the cache and marked dirty, and updates
to main memory are performed when a dirty entry is removed from the cache.

In this work we provide a model of a VIVT cache and TLB (as in Xen on ARM [103]),
for a write-through policy.

3.5.2 States

Figure 3.3 shows a diagram of the extended memory model of the platform. It involves
the already presented three types of addresses. The figure also shows the cache and
the TLB. The cache is indexed with virtual addresses and holds a (partial) copy of the
memory pages. The TLB is used in conjunction with the current page table of the active
OS to map virtual to machine addresses.

The type of states of the platform is defined as an extension of the set State of
Section 3.2.2 including two additional components that model the cache and the TLB.
Formally,

3.5 Extension of the model with cache and TLB 69

����������	
��

���
��

���
��

���
��

���
��

���
��

���
��

���
��

���
��

���

���

���

���
��

���
��

���
��

��
���������������

��	
��

��������
�
��������
�� �
�

����������!��
�� �
�

�����������
��	
��

�����������
�
	�����

"��������������

���
��

���

���
��

���

���
��

���
��

���
��

���
��

���
��

���

���

���

	��

	��

�#$

����������
����� �
	�����

Figure 3.3: Memory model of the platform with cache and TLB

State
def
= [[oss : oss map,

active os : os ident,
mode : exec mode,
activity : os activity,
hypervisor : hypervisor map,
memory : machine memory,
cache : cache vivt,
tlb : tlb struct]]

(3.24)

Thus, the remaining two components of the state, the cache and the tlb, are mod-
elled as partial maps, whose domains are bounded in size with positive fixed constants
size cache and size tlb:

cache vivt
def
= vadd 7→size cache page

tlb struct
def
= vadd 7→size tlb madd

(3.25)

The notion of valid state is formalized by a predicate valid state that captures
essential properties of the platform and extends the one presented in Section 3.2.2. The
following are examples of properties verified by valid states that relate to cache and
TLB: i) the size of the cache and TLB mappings does not exceed their bound; ii) if pg
is associated to va in the data cache, then vamust be translated to some machine address
ma in the active memory mapping, and s.memory[ma] = pg; iii) if va is translated into
ma according to the TLB, then the machine address ma is associated to va in the active
memory mapping; where the active memory mapping is the current memory mapping
of the active OS. Notice that these conditions are necessary to ensure the main memory
has been updated according to the write-through policy.

70 Formally verifying security properties in an idealized model of virtualization

3.5.3 Actions semantics

As in Section 3.2.3, the behaviour of actions in the extended model is specified by a
precondition Pre and by a postcondition Post. For instance, Figure 3.4 provides the
axiomatic semantics of the write action.

Pre s (write va val)
def
=

∃ (ma : madd),
va mapped to ma(s, va,ma) ∧
is RW (s.memory[ma].page content) ∧
s.activity = running
os accessible(va) ∧

Post s (write va val) s′
def
=

∃ (ma : madd),
va mapped to ma(s, va,ma) ∧
let pg := s.memory[ma] in
let new pg := 〈RW (Some val), pg.page owned by〉 in

s′ = s ·

memory := s.memory[ma := new pg],
cache := cache add(fix cache syn(s, s.cache,ma), va, new pg),

tlb := tlb add(s.tlb, va,ma)

Figure 3.4: Axiomatic specification of action write

The precondition of the action write va val says that there exists a machine address
ma such that va is associated to it (va mapped to ma) and that the page associated
to it in the memory is readable/writable (is RW); that the guest OS activity must be
running; and that va must be accessible by the active guest OS (os accessible). Its
postcondition sets up that the only variations in the state after executing this action
can be produced in the value of the page associated to ma in memory, and in the values
stored in the cache and the TLB. It is not hard to see that, as the cache uses a write-
through policy, both the memory and the cache are updated when a write is performed.
A cache c2 is the result of updating a cache c1 with a pair va and pg, written c2 =
cache add(c1, va, pg), iff

pg = c2[va] ∧

∀ (va′ : vadd) (pg′ : page), va 6= va′ → pg′ = c2[va
′] → pg′ = c1[va

′]
(3.26)

The definition of c2 = tlb add(c1, va,ma) is analogous. Moreover, in order to avoid
aliasing problems we fix synonyms before adding a new entry into the cache using the
function fix cache syn. The result of fix cache syn(s, c1,ma) is a cache c2 whose
indexes (virtual addresses) are translated to machine addresses ma′ which differ from
ma in s. We recall that we are modeling a VIVT cache.

3.6 Verified implementation 71

Action Failure Error Code

write va val

s.aos activity 6= running wrong os activity
¬ va mapped to ma(s, va,ma) invalid vadd
¬ os accessible(va) no access va os
¬ is RW (s.memory[ma].page content) wrong page type

new tr va pa

s.aos activity 6= running wrong os activity
¬ os accessible(va) no access va os
¬ trusted os(osi) os trust failure
¬ page of OS(s.active os, pa,ma) wrong owner

lswitch untr osi pa

s.aos activity 6= waiting wrong os activity
trusted os(osi) os trust failure
¬ is PT (s.memory[ma].page content) wrong page type
¬ lswitch hypercall(s.oss[osi].hcall) wrong pending hcall
¬ page of OS(s.activeos, pa,ma) wrong owner

page unpin untr osi pa

s.aos activity 6= waiting wrong os activity
trusted os(osi) os trust failure
¬ page unpin hypercall(s.oss[osi].hcall) wrong pending hcall
¬ pa not curr page(s, s.oss, pa) wrong curr page add
s.hypervisor[osi][pa] 6= ma invalid madd
¬ no va mapped to ma(s, osi,ma) invalid vadd

Table 3.2: Preconditions and error codes

3.6 Verified implementation

In this section we present an extension of the model with execution errors. We describe
the executable specification and show that it constitutes a correct implementation of
the behavior specified by the idealized model, with cache and TLB.

3.6.1 Error management

There can be attempts to execute an action on a state that does not verify the precon-
dition of that action. In the presence of one such situation the system answers with a
corresponding error code. These error codes are defined in our model by the enumerated
type ErrorCode.

We define the relation between an error code and the unfulfilled precondition of an
action with the predicate ErrorMsg. Formally,

ErrorMsg : State → Action → ErrorCode → Prop (3.27)

where ErrorMsg s a ec means that the execution of the action a in the state s generates
the error ec. In Table 3.2 we show some examples about error codes associated to
unverified preconditions of some actions of our model. Notice that in the case of the
write action, for instance, to each of the propositions that compose the precondition of
that action there corresponds an element of ErrorCode that indicates the failure of the
state s to satisfy that proposition.

Executions with error management

Executing an action a over a state s produces a new state s′ and a corresponding answer

r (denoted s ֒
a/r
−−→ s′), where the relation between the former state and the new one is

72 Formally verifying security properties in an idealized model of virtualization

given by the postcondition relation Post.

valid state(s) Pre(s, a) Post(s, a, s′)

s ֒
a/ok
−−−→ s′

valid state(s) ErrorMsg(s, a, ec)

s ֒
a/error ec
−−−−−−→ s

(3.28)

Whenever an action occurs for which the precondition holds, the (valid) state may change

in such a way that the action postcondition is established. The notation s ֒
a/ok
−−−→ s′ may

be read as the execution of the action a in a valid state s results in a new state s′.
However, if the precondition is not satisfied, then the state s remains unchanged and
the system answer is the error message determined by the relation ErrorMsg.

Formally, the possible answers of the system are defined by the following type:

Response
def
= ok : Response
| error : ErrorCode → Response

(3.29)

where ok is the answer resulting from a successful execution of an action.

One-step execution with error management preserves valid states, that is to say, the
state resulting from the execution of an action is also a valid one.

Lemma 3.6.1.

∀ (s s′ : State)(a : Action)(r : Response),

valid state(s) → s ֒
a/r
−−→ s′ → valid state(s′)

(3.30)

3.6.2 Executable specification

The executable specification of the hypervisor has been written using the Coq proof
assistant and it ultimately amounts to the definition of functions that implement action
execution. The functions have been defined so as to conform to the axiomatic speci-
fication of action execution as provided by the idealized model. The implementation
of the hypervisor consists of a set of Coq functions, such that for every predicate in-
volved in the axiomatic specification of action execution there exists a function which
stands for the functional counterpart of that predicate. An important characteristics of
our formalization is that the definition of state that is used for defining the executable
semantics of the hypervisor is exactly the same as the one introduced in the idealized
model. This simplifies the formal proof of soundness between the inductive and the
functional semantics of the hypervisor. The execution of the virtualization platform
consists of a (potentially infinite) sequence of action executions starting in an (initial)
platform state. The output of the execution is the corresponding sequence of memory
states (the trace of execution) obtained while executing the sequence of actions.

Action execution

The execution of actions has been implemented as a step function, that given a memory
state s and an action a invokes the function that implements the execution of a in s,

3.6 Verified implementation 73

which in turn returns an object res of type Result:

Result
def
= [[resp : Response, st : State]] (3.31)

where res.resp is either an error code ec, if the precondition of the actions does not
hold in state s, or otherwise the value ok, and the state res.st represents the execution
effect. The step function acts basically as an action dispatcher. Figure 3.5, which shows
the structure of the dispatcher, details the branch corresponding to the dispatching
of action write, which is the action we shall use along this section to illustrate the
working of the implementation. The functions invoked in the branches, like write safe,

Definition step s a :=
match a with

| . . . ⇒ . . .
| Write va val ⇒ write safe(s, va, val)
| . . . ⇒ . . .

end.

Figure 3.5: The step function

are state transformers whose definition follows this pattern: first it is checked whether
the precondition of the action is satisfied in state s, and then, if that is the case, the
function that implements the execution of the action is invoked, otherwise, the state s,
unchanged, is returned along with an appropriate response.

In Figure 3.6 we show the definition of the function that implements the execution
of the write action. The Coq code of this function, together with that of the remaining
functions, can be found in [104].

Definition write safe (s : state) (va : vadd) (val : value) : Result :=
match write pre(s, va, val) with

| Some ec ⇒ 〈error(ec), s〉
| None ⇒ 〈ok, write post(s, va, val)〉

end.

Figure 3.6: Execution of write action

The function write pre is defined as the nested validation of each of the properties
of the precondition (see Figure 3.7). The function write post, shown in Figure 3.8,
implements the expected behavior of the write action: when a new value has to be
written in a certain virtual address va, first it must be checked whether va is in the
cache (i.e. is an index of the cache). If that is the case, then the function updates both
the cache and the memory, because it implements a write-through policy. Otherwise,
i.e. if the virtual address va is not already in the cache, the machine address associated
to va has to be determined in order to write the new value in memory. First, the TLB is
inspected to check whether va has already been translated. If there is a translation of va
in the TLB, then the machine address is used to update the memory and the new entry
〈va, new pg〉 is added to the cache. If there is no translation of va in the TLB, then
the corresponding machine address has to be recovered using the current page table of

74 Formally verifying security properties in an idealized model of virtualization

Definition write pre (s : state) (va : vadd) (val : value) : option ErrorCode :=
match get os ma(s, va) with

| None ⇒ Some invalid vadd
| Some ma

⇒ match page type(s.memory,ma) with
| Some RW

⇒ match aos activity(s) with
| Waiting ⇒ Some wrong os activity
| Running

⇒ if vadd accessible(s, va)
then None
else Some no access va os

end
| ⇒ Some wrong page type
end

end.

Figure 3.7: Validation of write action precondition

the active guest OS. Once that translation has been found, the memory is updated, the
new entry 〈va, new pg〉 is added to the cache and the corresponding translation of va
is added to the TLB.

Cache and TLB update

In the axiomatic semantics of cache and TLB management the replacement policy has
been left abstract. For the execution semantics we have chosen to implement a simple
FIFO replacement mechanism. However, this behavior is encapsulated in the definition
of the functions fcache add and ftlb add, which implement cache and TLB replacement,
respectively. Therefore, for the implementation of an alternative replacement policy
it suffices to modify correspondingly these two functions leaving the rest of the code
unchanged.

Figure 3.9 shows the definition of the fcache add function: first, it is checked whether
the virtual address va is the index of an entry of the cache c (map valid index). If this
is the case, it suffices to perform a simple update of c with the page pg (caches are
implemented as bounded maps of virtual addresses to machine addresses). Otherwise,
the behaviour of the function depends on whether c has room for a new entry or it is full
(is full cache). If c is full, the cache update, and entry eviction, is handled using the
FIFO replacement algorithm (fifo replace). If there is room left for a new entry, then
c must be updated following the FIFO replacement algorithm guidelines for adding new
entries in the cache (fifo add).

The definitions of the replacement and update function for the TLB are analogous.

3.6 Verified implementation 75

3.6.3 Soundness

We proceed now to outline the proof that the executable specification of the hypervisor
correctly implements the axiomatic model. It has been formally stated as a soundness
theorem and verified using the Coq proof assistant.

Theorem 3.6.2.

∀ (s : State) (a : Action), valid state(s) →

s ֒
a/step(s,a).resp
−−−−−−−−−−→ step(s, a).st

(3.32)

The proof of this theorem follows by, in the first place, performing a case analysis
on Pre(s, a) (this predicate is decidable) and then: if Pre(s, a) applying Lemma 3.6.3;
otherwise applying Lemma 3.6.5.

Lemma 3.6.3.

∀ (s : State) (a : Action),
valid state(s) → Pre(s, a) →

s ֒
a/ok
−−−→ step(s, a).st ∧ step(s, a).resp = ok

(3.33)

The proof of Lemma 3.6.3 proceeds by applying functional induction on step(s, a) and
then by providing the corresponding proof of soundness of the function that implements
the execution of each action. Thus, in the case of the action write we have stated and
proved Lemma 3.6.4. This lemma, in turn, follows by performing a case analysis on the
result of applying the function write pre on s and the action: if the result is an error
code then the thesis follows by contradiction. Otherwise, it follows by the correctness
of the function write post.

Lemma 3.6.4.

∀ (s : State) (va : vadd) (val : value),
valid state(s) → Pre(s, (write va val)) →
Post(s, (write va val), write post(s, va, val))

(3.34)

As to Lemma 3.6.5, the proof also proceeds by first applying functional induction
on step(s, a). Then, for each action a, it is shown that if ¬Pre(s, a) the execution
of the function that implements that action yields the values returned by the branch
corresponding to the case that the function that validates the precondition of the action
a in state s fails, i.e., an error code ec and the (unchanged) state s.

Lemma 3.6.5.

∀ (s : State) (a : Action),
valid state(s) → ¬Pre(s, a) →
∃ (ec : ErrorCode), step(s, a).st = s ∧
step(s, a).resp = error(ec) ∧ ErrorMsg(s, a, ec)

(3.35)

76 Formally verifying security properties in an idealized model of virtualization

Definition write post (s : state) (va : vadd) (val : value) : state :=
match s.cache[va] with
| V alue old pg ⇒

let new pg := Page (RW c (Some val)) (page owned by old pg) in
let val ma := va mapped to ma system(s, va) in
match val ma with
| V alue ma ⇒

s · [mem := s.memory[ma := new pg],
cache := fcache add(fix cache syn(s, s.cache,ma), va, new pg)]

| Error ⇒ s
end

| Error ⇒
match s.tlb[va] with
| V alue ma ⇒

match s.memory[ma] with
| V alue old pg ⇒
let new pg := Page (RW c (Some val)) (page owned by old pg) in
s · [mem := s.memory[ma := new pg],

cache := fcache add(fix cache syn(s, s.cache,ma), va, new pg)]
| Error ⇒ s
end

| Error ⇒
match va mapped to ma currentPT (s, va) with
| V alue ma ⇒

match s.memory[ma] with
| V alue old pg ⇒

let new pg := Page (RW c (Some val)) (page owned by old pg) in
s · [mem := s.memory[ma := new pg],

cache := fcache add(fix cache syn(s, s.cache,ma), va, new pg),
tlb := ftlb add(s.tlb, va,ma)]

| Error ⇒ s
end

| Error ⇒ s
end end end.

Figure 3.8: Effect of write execution

Definition fcache add (c : cache vivt) (va : vadd) (pg : page) : cache vivt :=
if map valid index(c, va)
then map add(c, va, pg)
else if is full cache(c)

then fifo replace(c, va, pg)
else fifo add(c, va, pg).

Figure 3.9: Cache update

3.7 Isolation and transparency in the extended model 77

3.7 Isolation and transparency in the extended model

Isolation theorems ensure that the virtualization platform protects guest operating sys-
tems against each other, in the sense that a malicious operating system cannot gain
information about another victim operating system executing on the same platform. In
this section we extend the proof of OS isolation from Section 3.3, yielding modifications
in some key technical definitions and lemmas below, so that it accounts for errors in
execution traces for the model extended with cache and TLB.

Finally, we present a machine-checked proof of transparency. Transparency states
that the virtualization platform is a correct abstraction of the underlying hardware, in
the sense that a guest operating system cannot distinguish whether it executes alone
or together with other systems. Transparency is a 2-safety property; its formulation
involves an erasure function which removes all the components of the states that do not
belong to some fixed operating system. We define an appropriate erasure, establish its
fundamental properties, and finally derive transparency.

3.7.1 OS isolation

We have mechanically verified three isolation properties:

1. read isolation: no OS can read memory that does not belong to it;

2. write isolation: an OS cannot modify memory that it does not own;

3. OS isolation: the behavior of an OS does not depend on other OSs states.

Read and write isolation are safety properties, whereas OS isolation is a 2-property, i.e.
it is cast in terms of two executions of the system. We focus on OS isolation, which is
by far the most challenging property.

Informally, as presented in Section 3.3, OS isolation states that starting from states
with the same information for an operating system osi, osi cannot distinguish between
the two traces, as long as it executes the same actions in both. This captures the idea
that the execution of osi does not depend on the state or behaviour of the other systems,
even in the presence of erroneous executions.

Note that there is one particular error (the out of memory error in [104]) that
can in principle influence the execution of an operating system, if during its execution
the platform runs out of memory. Since we are specifically interested in modelling
observations on states (and the cache, in particular), we treat this error as transparent
for the executing operating system, and only make sure it does not modify the state.
This is consistent with what usually happens in real implementations, where there are
no data leaks from the victims when the platform runs out of memory, and the only
information an attacker learns is the total memory consumption of the other operating
systems in the platform. Additionally it is possible, in this case, to assign to each guest
OS a fixed pool of memory from which to allocate, so whether allocation succeeds or
fails for one OS doesn’t depend on what any other guest OS does.

To formalize OS isolation we use a notion of state equivalence w.r.t. an operating
system osi. The definition of osi-equivalence (≡osi), coincides with the one used in [94]
and presented in Section 3.3; in particular, it does not mention the cache and the
TLB. However, one can prove that it entails some form of cache equivalence and TLB
equivalence on valid states. Formally, we define two valid states s1 and s2 to be cache

78 Formally verifying security properties in an idealized model of virtualization

equivalent for osi, written s1 ≡
cache
osi s2, iff either osi is not active in both states, or it is

active and the caches hold equal values for all accessible virtual addresses va that are in
the domain of the cache of both states, i.e. for all virtual address va and pages p1 and
p2:

os accessible(va) → s1.cache[va] = p1 → s2.cache[va] = p2 → p1 = p2 (3.36)

Note that we do not require that the domains of both caches coincide, as it would
invalidate the following lemma.

Lemma 3.7.1.

∀ (s1 s2 : State) (osi : os ident),
valid state(s1) → valid state(s2) → s1 ≡osi s2 → s1 ≡

cache
osi s2

(3.37)

The notion of TLB equivalence is defined in a similar way. We say that two valid
states s1 and s2 are TLB equivalent for osi, written s1 ≡

tlb
osi s2, iff either osi is not active

in both states, or it is active and for all accessible virtual addresses va that are in the
domain of the TLB of both states, if the machine address s1.tlb[va] holds a page with
RW memory content, then if va appears in s2.tlb, it holds the same page, i.e. for all
machine addresses ma1 and ma2, and page pg:

s1.tlb[va] = ma1 → s1.memory[ma1] = pg →
is RW (pg.page content) →
s2.tlb[va] = ma2 → s2.memory[ma2] = pg

(3.38)

and conversely. We have:

Lemma 3.7.2.

∀ (s1 s2 : State) (osi : os ident),
valid state(s1) → valid state(s2) → s1 ≡osi s2 → s1 ≡

tlb
osi s2

(3.39)

We write s1 ≡cache,tlb
osi s2 as a shorthand for s1 ≡osi s2 ∧ s1 ≡cache

osi s2 ∧ s1 ≡tlb
osi s2.

We can now generalize the unwinding lemmas of Section 3.3. The first lemma states
that equivalence is preserved by the execution of all actions that do not generate errors.

Lemma 3.7.3.

∀ (s1 s′1 s2 s′2 : State) (a : Action) (osi : os ident),
s1 ≡osi s2 → os action(s1, a, osi) → os action(s2, a, osi) →

s1 ֒
a/ok
−−−→ s′1 → s2 ֒

a/ok
−−−→ s′2 → s′1 ≡

cache,tlb
osi s′2

(3.40)

where os action(s, a, osi) denotes that action a is an action successfully executed by
the OS osi in the state s; in particular, its execution does not cause an error. Note that
an execution that fails does not generate a change in the system state.

The second lemma states that execution does not alter the state of non-active OSs,
or active OS if it performs an execution that fails.

Lemma 3.7.4.

∀ (s s′ : State) (a : Action) (r : Response) (osi : os ident),

¬ os action(s, a, osi) → s ֒
a/r
−−→ s′ → s ≡cache,tlb

osi s′
(3.41)

3.7 Isolation and transparency in the extended model 79

3.7.2 OS isolation in execution traces

The extension to traces of the relation one-step execution with error management is
defined as follows: an execution trace is defined as a stream (an infinite list) of states

that are related by the transition relation ֒
a/r
−−→, i.e. an object of the form

s0 ֒
a0/r0
−−−→ s1 ֒

a1/r1
−−−→ s2 ֒

a2/r2
−−−→ s3 . . . (3.42)

In the sequel, we use s ֒
a/r
−−→ t to denote the trace obtained by prepending the valid

execution step s ֒
a/r
−−→ t[0] to a trace t. We let Trace define the type of these traces.

Isolation properties are eventually expressed on execution traces, rather than execution
steps.

Non-influencing execution (errors)

Using the unwinding lemmas previously presented, one can establish a non-influence
result in the style of [34].

We define for each operating system osi a predicate same os actions stating that
two traces have the same set of actions w.r.t. osi; so that two traces are related iff
they perform the same valid osi-actions. Then we define two traces t1 and t2 to be
osi-equivalent, written t1 ≈osi,cache,tlb t2, co-inductively by the following rules:

t1 ≈osi,cache,tlb t2 ¬ os action(s, a, osi)

(s ֒
a/r
−−→ t1) ≈osi,cache,tlb t2

t1 ≈osi,cache,tlb t2 ¬ os action(s, a, osi)

t1 ≈osi,cache,tlb (s ֒
a/r
−−→ t2) (3.43)

t1 ≈osi,cache,tlb t2 os action(s1, a, osi) os action(s2, a, osi) s1 ≡
cache,tlb
osi s2

(s1 ֒
a/ok
−−−→ t1) ≈osi,cache,tlb (s2 ֒

a/ok
−−−→ t2)

Theorem 3.7.5.

∀ (t1 t2 : Trace) (osi : os ident),
same os actions(osi, t1, t2) → (t1[0] ≡osi t2[0]) → t1 ≈osi,cache,tlb t2

(3.44)

OS isolation formally establishes that two traces are osi-equivalent if they have
the same set of osi-actions and if their initial states are osi-equivalent. The proof of
OS isolation is based on co-induction principles and on the previous unwinding lemmas.
Note that the definition of osi-equivalent traces conveniently generalizes the notion used
in Section 3.3, by allowing related traces to differ in the number of actions executed by
other OSs, and extends considering executions with error management. In particular,
Theorem 3.7.5 states that the OS isolation property introduced in Section 3.3 is also valid
in the context of executions that include error handling, considering that an osi-action
is an action successfully executed by the OS osi.

Though it is left as future work, it is interesting to comment on the validity of
isolation properties under other policies. On the one hand, the replacement policy for the
cache and the TLB is left abstract in our model, so any reasonable algorithm will preserve
these properties (as embodied e.g. in the definition of cache add in Section 3.5.3). On

80 Formally verifying security properties in an idealized model of virtualization

the other hand, we have fixed a write-through policy for the main memory: this policy
entails that updates to memory pages are done simultaneously to the cache and main
memory, and we have used throughout the development the invariant property that
cache data is included in the memory. This inclusion property will not hold if we were
to use a write-back policy, in which written entries are marked dirty and updates to
main memory are done when a page is removed from the cache. We believe that it
remains possible to prove strong isolation properties under the write-back policy, since
page values, even if different in memory, will be equal if we consider the cache and
memory together.

Finally, the flushing policy is assumed to be a total flush on switch and local switch
execution. An alternative would be to tag cache (and TLB) entries with the virtual
spaces allowed to access the entry. This will not have as much impact on the current
model as the write policy, though changes will need to be done to the cache definition to
include the tags. Isolation properties would still hold, given correct semantics of access
control of cache entries.

3.7.3 Transparency

Functional correctness of a hypervisor is conveniently formalized as a transparency prop-
erty, stating that, under some specific conditions, a guest operating system cannot distin-
guish whether it runs on the virtualization platform or operates directly on hardware. In
this section, we prove a variant of this property suitable for paravirtualization: namely,
a guest OS is unable to distinguish between executing together with other OSs and
executing alone on the platform. More precisely, the proved properties establish that
given a guest OS osi, the (concurrent) execution of other guest OSs does not interfere
with the execution of osi.

Intuitively, our formulation of transparency states that for any operating system osi,
any execution trace is osi-equivalent to its osi-erased trace, in which all state components
not related to osi have been removed, and all actions not performed by osi, or by the
hypervisor on behalf of osi, have been turned into silent actions. This approach is
similar, but somewhat stronger than OS isolation, as it requires that after erasing all
non-osi data, the execution is still valid; i.e. that state validity and action semantics
are maintained.

More precisely, the erasure s\osi of a state s is obtained by removing all state com-
ponents that do not belong to osi, and it satisfies the following properties: i) osi is
the only OS in the erased environment; ii) if osi was not active on s, the activity of
the erased state is waiting, otherwise it is not changed; iii) hypervisor mappings on the
erased state should only be defined for osi and be the same as in s; iv) all memory pages
whose owner is not osi (including hypervisor owned ones) are freed; v) osi RW pages
remain unchanged; vi) non accessible virtual address (i.e. owned by the hypervisor)
are removed from all osi PT pages; vii) if osi is active in s, all non accessible virtual
addresses are removed from the cache and the TLB; viii) if osi is not active in s, the
cache and the TLB get flushed.

Note that if osi is not active, no cache (or TLB) entry will belong to osi, so we erase
all of the entries, flushing the cache. If osi is active, cache entries will be owned either
by osi or by the hypervisor; in the second case, we erase them by removing all entries
corresponding to non accessible virtual addresses. The result of these transformations
is that only data from osi stays in the erased cache in all cases.

3.7 Isolation and transparency in the extended model 81

Pre s silent
def
= True

Post s silent s′
def
=

s′ = s.[cache := ⋆, tlb := ⋆] ∧ valid cache(s′) ∧ valid tlb(s′)

Figure 3.10: Formal specification of the action silent

The erasure of a valid state is also valid:

Lemma 3.7.6.

∀ (s : State), valid state(s) → valid state(s\osi) (3.45)

Moreover, the erasure of a state is equivalent to the original state. Since osi is always

the active OS in s\osi, we must consider a weaker notion, denoted
w
≡osi, that is identical

to ≡osi except that it does not require that the two states have the same active OS.

Lemma 3.7.7.

∀ (s : State), valid state(s) → s
w
≡osi s\osi (3.46)

Next, erasure must be extended to actions. We silence all actions that are executed
by OSs different from osi, and by the hypervisor for itself or for one of those other OSs.
All other actions (those executed directly by osi or by the hypervisor on behalf of osi)
remain unchanged. We use the a\osi notation for the erasure of an action. Erasure
preserves valid step executions.

Lemma 3.7.8.

∀(s s′ : State)(a : Action), s ֒
a
−→ s′ → s \osi ֒

a\osi
−−−→s′\osi (3.47)

The proof of the lemma hinges upon the “loose” semantics silent action. Informally,
the semantics allows for the cache and the TLB to be different in the pre and post
states, only requiring that both are still valid, according to the explanation provided
in Section 3.5.2. The formal axiomatic semantics is presented in Figure 3.10; for the
sake of readbility, we use non-deterministic field update r · [f := ⋆] in the rule—the Coq
formalization introduces existential quantification instead.

As the erasure of the cache removes every hypervisor entry, a full cache in s will not
necessarily be full in s\osi. Moreover, a silenced action that adds an entry to the cache
in the original execution (a read hyper action, for instance) will remove another entry
to make space. In the erased execution, the initial state will not be full, but after the
effects of silent, the resulting state will have less entries in the cache. This is not an
issue, however, because the valid state invariance and Lemma 3.7.6 imply that caches
in both states will be consistent: all memory accesses by osi will obtain the same data
either from the cache or from main memory.

Lemmas 3.7.6 and 3.7.8 entail that the erasure of a trace is another trace. The desired
transparency property can then be expressed as: given an osi and any valid trace of
the system, the erasure of the trace is another trace osi-equivalent to the original one.

Formally, weak equivalence
w

≈osi on traces is defined as a straightforward generalization

of weak equivalence
w
≡osi on states.

82 Formally verifying security properties in an idealized model of virtualization

Theorem 3.7.9.

∀ (osi : os ident) (t : Trace), t
w

≈osi t\osi (3.48)

3.8 Related work

Thanks to recent advances in verification technology, it is now becoming feasible to
verify formally realistic specifications and implementations of operating systems. A
recent account of existing efforts can be found in the surveys [105, 106].

The Microsoft Hyper-V verification project focuses on proving the functional correct-
ness of the deployed implementation of the Hyper-V hypervisor [14, 15] or of a simplified,
baby, implementation [107]. Using VCC, an automated verifier for annotated C code,
these works aim to prove that the hypervisor correctly simulates the execution of the
guest operating systems, in the sense that the latter cannot observe any difference from
executing on their own on a standard platform. At a more specific level, these works
provide a detailed account of many components that are not considered in our work,
including page tables [108] and devices [109].

The L4.verified project [16] focuses on proving that the functional correctness of
an implementation of seL4, a microkernel whose main application is as a hypervisor
running paravirtualized Linux. The implementation consists of approximately 9kLOC
of C and 600 lines of assembler, and has been shown to be a valid refinement of a
very detailed abstract model that considers for example page tables and I/O devices.
Subsequent machine-checked developments prove that seL4 enforces integrity, authority
confinement [32] and intransitive non-interference [110, 33]. The formalization does not
model cache.

Recently, the Verve project [111] has initiated the development of a new operating
system whose type safety and memory safety has been verified using a combination of
type systems and Hoare logic. Outside these projects, several projects have implemented
small hypervisors, to reduce the Trusted Computing Base, or with formal verification
in mind [112], but we are not aware of any completed proof of functional correctness or
security.

Our work is also related to formal verification of isolation properties for separation
kernels. Earlier works on separation kernels [113, 114, 115] formalize a simpler model
where memory is partitioned a priori. In contrast, our model allows the partition to
evolve and comprises three types of addressing modes and is close to those of virtual-
ization platforms, where memory requested by the OSs is dynamicaly allocated from a
common memory pool. Dealing with this kind of memory management adds significant
complications in isolation proofs.

Our work is also inspired by earlier efforts to prove isolation for smartcard plat-
forms. Andronick, Chetali and Ly [116] use the Coq proof assistant to establish that
the JavaCard firewall mechanism ensures isolation properties between contexts—sets of
applications that trust each other. Oheimb and co-workers [34, 99] independently verify
isolation properties for Infineon SLE 88 using the Isabelle proof assistant. In particular,
their work formalizes a notion of non-influence that is closely related to our isolation
properties.

Moving away from OS verification, many works have addressed the problem of relat-
ing inductively defined relations and executable functions, in particular in the context of

3.9 Summary 83

programming language semantics. For instance, Tollitte et al [117] show how to extract
a functional implementation from an inductive specification in the Coq proof assistant.
Similar approaches exist for Isabelle, see e.g. [118]. Earlier, alternative approaches such
as [119, 120] aim to provide reasoning principles for executable specifications.

3.9 Summary

Hypervisors allow multiple guest operating systems to run on shared hardware, and offer
a compelling means of improving the security and the flexibility of software systems. In
this chapter we have formalized in the Coq proof assistant an idealized model of a hy-
pervisor, and we have established (formally) that the hypervisor ensures strong isolation
properties between the different operating systems, and guarantees that requests from
guest operating systems are eventually attended.

In contrast to most prominent projects on operating systems verification, where
such guarantees are proved directly on concrete implementations of hypervisors, the
machine-checked model of virtualization presented in this work abstracts away most
implementations issues and specifies the effects of hypervisor actions axiomatically, in
terms of preconditions and postconditions. Unfortunately, seemingly innocuous imple-
mentation issues are often relevant for security. Incorporating the treatment of errors
into the model has been therefore an important step towards strengthening the isolation
theorems proved initially. In this chapter, we also have extended our earlier model with
errors, for a memory system with cache and TLB, and we have proved that isolation
theorems still apply. In addition, we have provided an executable specification of the
hypervisor, and we have proved that it correctly implements the axiomatic model. The
executable specification constitutes a first step towards a more realistic implementation
of a hypervisor, and provides a useful tool for validating the axiomatic semantics devel-
oped. In [104] we derive two certified hypervisor implementations, using the extraction
mechanism of Coq, in functional languages Haskell and OCaml.

Finally, we have showed that virtualized platforms are transparent, i.e. a guest
operating system cannot distinguish whether it executes alone or together with other
guest operating systems on the platform.

Chapter 4

A formal specification of the
DNSSEC model

4.1 Introduction

The Domain Name System (DNS) [35, 36] constitutes a distributed database that pro-
vides support to a wide variety of network applications. The database is indexed by
domain names. A domain name represents a path in a hierarchical tree structure, which
in turn constitutes a domain name space. Each node of this tree is assigned a label, thus,
a domain name is built as a sequence of labels separated by a dot, from a particular
node up to the root of the tree.

A distinguishing feature of the design of DNS is that the administration of the system
can be distributed among several (authoritative) name servers. A zone is a contiguous
part of the domain name space that is managed by a set of authoritative name servers.
Then, distribution is achieved by delegating part of a zone administration to a set of
delegated sub-zones. DNS is a widely used scalable system, but it was not conceived
with security concerns in mind, as it was designed to be a public database with no
intentions to restrict access to information. Nowadays, a large amount of distributed
applications make use of domain names. Confidence on the working of those aplications
depends critically on the use of trusted data: fake information inside the system has
been shown to lead to unexpected and potentially dangerous problems.

Already in the early 90’s serious security flaws were discovered by Bellovin and even-
tually reported in [37]. Different types of security issues concerning the working of DNS
have been discussed in the literature [38, 37, 39, 40, 41, 42]. Identified vulnerabilities
of DNS make it possible to launch different kinds of attacks, such as cache poisoning
[45, 46].

DNSSEC [47, 48, 49] is a suite of Internet Engineering Task Force (IETF) specifi-
cations for securing information provided by DNS. More specifically, this suite specifies
a set of extensions to DNS which are oriented to provide mechanisms that support au-
thentication and integrity of DNS data but not its availability or confidentiality. In
particular, the security extensions were designed to protect resolvers from forged DNS
data, such as the one generated by DNS cache poisoning, by digitally signing DNS data
using public-key cryptography. The keys used to sign the information are authenticated
via a chain of trust, starting with a set of verified public keys that belong to the DNS
root zone, which is the trusted third party.

85

86 A formal specification of the DNSSEC model

4.1.1 A primer on the vulnerabilities of DNS

In this section we provide some background on DNS, its vulnerabilities and the security
extensions specified in DNSSEC.

The administration of DNS can be distributed among several (authoritative) name
servers. DNS defines two types of server:

• Nameservers: which are authoritative servers that manage data of a contiguous
part of the domain name space and where the master files reside. For redundancy
sake, primary and secondary nameservers are provided for each zone.

• Resolvers: which are standard programs used to interact with the nameservers to
extract information in response to client requests.

The process of obtaining information from DNS is called name resolution. Each
server is initialized with the contact information of some authoritative servers of the
root zone. Moreover, the root servers know how to contact the authoritative name
servers of second level (e.g. the domains com, net, edu). Second level servers know the
information of third level servers, and so on. By these means, the requestor can proceed
refining the sought response by walking the tree structure, contacting different servers
and getting “closer” to the answer after each referral.

Servers store the results of previous queries in their caches in order to speed up the
resolution process, but as the mapping of names evolves, cached data has a limited time
of validity. Authoritative servers attach, for instance, a Time To Live atribute (TTL) to
this stored data, indicating when it should be removed from the cache. For more details
concerning the working of DNS we refer to [121, 35, 36].

In an early work, Cheung and Levitt [122] discuss security issues of DNS and provide
formal basis to model and prove security mechanisms that can be added to the system
to prevent two specific problems:

• Failure to authenticate DNS responses: The message authentication mechanism
used by DNS is weak. DNS checks if a received response matches a previously
asked query only by checking if the Id attached in the query’s header matches
with the Id of the pointed response. In this way, if an attacker can predict the
used query Id and his answer reaches before the real one does (as if a name server
receives multiple responses for its query, it uses the first one), it will be able to
send a forged response.

• Cache poisoning attacks: An attacker can take advantage of the lack of authenti-
cation mechanisms to intentionally formulating misleading information, injecting
bogus information into some server DNS cache. Having cached this information,
the cheated DNS server is likely to get a Denial of Service (DoS), if the attacker
sends a negative response that could actually be resolved; or in the worst case,
the attacker can masquerade as a trusted entity, and then be able to intercept,
analyze and intentionally corrupt the communication.

Cache poisoning attacks exploits a flaw in DNS, namely, the weak mechanisms used
to ensure the authentication of data origin. As one of the goals of the DNS security
extensions was to solve these vulnerabilities, we have put special focus in developing
a formal specification that allows us to reason on the effectiveness of those extensions
regarding impersonation and cache poisoning attacks.

4.2 Formalization of the DNSSEC model 87

The extensions introduced by DNSSEC to improve the security of DNS require the
combined application of mechanisms that make it possible to i) sign data, using public
key cryptography, within zones ii) generate a chain of trust along the DNSSEC tree
iii) perform key exchange within parent-child zones, and regular key rollover routines.
The security extensions provide origin authentication and integrity assurance services
for DNS data, including mechanisms for public key distribution and authenticated denial
of existence of DNS data. However, respecting the principle assumed in the design of
DNS that all data in the system must be visible, DNSSEC is not designed to provide
confidentiality [47].

The specification of the security extensions does not prevent the interaction of secure
name servers and resolvers with non-secure ones. However, any communication that
involves an unsecure server results in the loss of all DNSSEC security related capabilities.
For this reason, in our model it is assumed that every server is security aware.

4.1.2 Contents of the chapter

We present here a minimalistic specification of a DNSSEC model which provides the
grounds needed to formally state and verify security properties concerning the chain
of trust of the DNSSEC tree. The specification puts forward an abstract formulation
of the behavior of the protocol and the corresponding security-related events, where
security goals, such as the prevention of cache poisoning attacks, can be given a formal
treatment. This chapter builds upon the previously published paper [123].

The rest of the chapter is organized as follows. In Section 4.2 we develop the elements
that are most relevant for our formal model. Section 4.3 presents some of the verified
properties and outlines the corresponding proofs. Finally, Section 4.4 concludes with a
summary of the chapter.

4.1.3 Formalization

The full development is available for download at

http://www.fing.edu.uy/inco/grupos/gsi/sources/dnssec

4.2 Formalization of the DNSSEC model

In this section, we present an abstract model of DNSSEC. First, we introduce auxiliary
definitions, to proceed then to define the set of states and a notion of valid state. Finally,
we define the semantics of security-related events as state transformers and provide a
formal definition of their execution.

4.2.1 Formalizing states

The state of a DNSSEC system consists of a collection of components that we now
proceed to describe. Servers distributed globally are represented as objects of an abstract
type Process.

88 A formal specification of the DNSSEC model

Secure resource records

A Resource Record (RR) is the basic unit of information used in DNS. A structure
of this kind is defined by six fields: i) the field NAME defines the domain name
that applies to the given RR, ii) the field TY PE indicates the type of resource record.
Figure 4.1 depicts the most common ones, iii) the field CLASS is used to identify the
protocol group to which the record belongs. In the sequel we shall only make use of
the class IN, which is the one of interest to people using TCP/IP software, since it
stands for Internet, iv) TTL stands for Time To Live; it is primarily used by resolvers,
and specifies how long a resource record should be cached before discarding it, v) the
field RDLENGTH is an unsigned integer that specifies the length of the RDATA field,
vi) the field RDATA contains the data of the resource record. The data field is defined
differently for each type and class of data.

Type Description

A Internet Address

CNAME Canonical Name (nickname pointer)

HINFO Host Information

MX Mail Exchanger

NS Name Server

PTR Pointer

SOA Start Of Authority

Figure 4.1: Types of Resource Records

Formally, a resource record is defined as an object of the following record type:

RR
def
= [[Rdname :DName,

Rtype :RRType,
RClass :RRClass,
Rttl :TTL,
RDL :RDLength,
Rrdata :RData]]

(4.1)

A set of resource records that share the same domain name, type and class is for-
malized as an object of the following type:

RRset
def
= set RR (4.2)

To implement the proposed security extensions, DNSSEC introduces additional security-
related resource records: i) for origin authentication DNSSEC provides a hierarchical
public key infrastructure (PKI), which allows resolvers to obtain the DNSSEC key of
a zone and use it for authenticating signed data belonging to that zone. To support
this PKI, three resource records were introduced: RRSIG, DNSKEY, and DS, ii) for
assuring integrity of data each zone signs all the RRsets over it is authoritative. In
every transmission, RRSIGs are transmitted along with the replied RRsets, and by
these means, when a transmission is received, data integrity can be verified, iii) for
authenticated denial of existence, Next Secure (NSEC) resource records are provided.
They list all of the existent RRs belonging to an owner name within an authoritative

4.2 Formalization of the DNSSEC model 89

zone, making it possible to verify the non-existence of a RR, by comparing against
the RR list of its owner name. Figure 4.2 describes the security oriented new resource
records.

RR Description

RRSIG Signature over RRset made using private key

DNSKEY Public key, needed for verifying a RRSIG

DS Delegation Signer, pointer for building chains of trust.
The Parent DNSKEY signs the Parent DS, Parent DS signs the Child
DNSKEY, and so forth, providing a mechanism to verify origin integrity
from a domain name up to the root servers

NSEC Used to provide an authenticated non-existence of data.
Indicates which name is the next one in the zone and which type codes
are available for the current name

Figure 4.2: Resource records introduced by DNSSEC

The type of a resource record, which includes the specific types defined by the
DNSSEC specifications, is defined by the following enumerated type:

RRType
def
= A

| PTR
| NS
| CNAME
| MX
| SOA
| HINFO
| RRSIG
| DNSKEY
| DS
| NSEC

(4.3)

We formalize the notion of secure (set of) RR by the following two types:

SecRR
def
= [[RR′ :RR,

Rsign :RR]]
(4.4)

SecRRset
def
= [[RRset′ :RRset,

RRsign :RR]]
(4.5)

where Rsign and RRsign contain, respectively, the signature corresponding to RR′ and
to RRset′.

The distributed database

DNS manages a distributes database, which is indexed by a tuple (dname, type, class)
of type Idx:

Idx
def
= [[Idname :DName,

Itype :RRType,
IClass :RRClass]]

(4.6)

90 A formal specification of the DNSSEC model

The range of this database is a set of secure RRs. A DNS database is thus formalzed as
an object of the function type:

DbMap
def
= Idx → SecRRset (4.7)

DNS message

A DNS(SEC) message consists of a header and four additional sections [43], as illustrated
in Figure 4.3. The HEADER contains an identification (Id) field, which is used to match

Figure 4.3: DNS Message Format

an answer to its corresponding query. The QUESTION section consists of a target do-
main name (QNAME), a type (TYPE), and a class (QCLASS). A query to find out, for
instance, the IP address of the host h1.fing.edu.uy will have QNAME=h1.fing.edu.uy,
QTYPE=A and QCLASS=IN. The ANSWER section contains RRs which directly an-
swer the query. The AUTHORITY section carries RRs which describe other authori-
tative server (e.g. may contain RRs to refer the querier to other name servers during
the resolution process). The ADDITIONAL section carries RRs that may be helpful
for using RRs information of other sections (e.g. may contain A RRs to provide the IP
address for the RRs listed in the authority section).

We define the DNSMessage type as follows:

DNSMessage
def
= [[Hdr :Header,

Q :Idx,
Ans :SecRRset,
Auth :SecRRset,
Additional :SecRRset]]

(4.8)

Pending submissions

Pending submissions, that is to say, requests or answers, possibly triggered by a received
answer, which are waiting to be delivered, are defined as objects of the following type:

SendQR
def
= [[SendQ :set InfoMsg,

SendR :set InfoMsg]]
(4.9)

An object of the type InfoMsg represents the required information needed to be sent.

InfoMsg
def
= [[MFrom :Process,

MTo :Process,
MMsg :DNSMessage]]

(4.10)

4.2 Formalization of the DNSSEC model 91

System keys

DNSSEC security is based in the use of public key cryptography. Each DNS server owns
two keys, namely, a Zone Signing Key (ZSK) and a Key Signing Key (KSK). A ZSK key
is used to sign every RRset within a zone, generating the RRSIG records. A KSK key is
used especifically to sign the DNSKEY RRset and generate its corresponding RRSIG.
To access the system’s DNSKEYS, the following record have been defined:

keySet
def
= [[key :RR,

ksign :RR]]
(4.11)

where key is a DNSKEY and ksign its corresponding RRSIG signature.

Each server has its corresponding pair of keys:

keys
def
= [[zsk :keySet,

ksk :keySet]]
(4.12)

Delegations

A delegation describes a father-child relationship between DNSSEC servers. As shown
in Figure 4.2, it helps building the DNSSEC chain of trust. To model delegation in our
specification we have defined the following function:

DSpDB
def
= Process → DSp (4.13)

where:

DSp
def
= [[Tsrv :Process,

rrDS :SecRR]]
(4.14)

In words, we have defined a function that maps Parent servers with its corresponding
Childs to whom they trust, along with the digest RR to prove it. This is an essential
part of the model, as it will allow us to reason over the effectiveness of the chain of trust.

System state

To reason about the DNSSEC security system most details of the state may be ab-
stracted. States are modeled by a record type with nine components:

State
def
= [[Servers :set Process,

T rustedServers :set Process,
ServerKeys :Process → keys,
Delegations :Process → DSpDB,
Parents :Process → DSp,
viewAuth :Process → DbMap,
viewCache :Process → DbMap,
PendingQueries :Process → set Header,
SendBuffer :Process → SendQR]]

(4.15)

The component Servers indicates the involved DNS servers, whereas that the compo-
nents TrustedServers and ServerKeys represent set of publicly known trusted servers

92 A formal specification of the DNSSEC model

and the set of keys for every server, respectively. The delegations issued by each server
and the fathers of a server are indicated by the components Delegations and Parents.
The components viewAuth and viewCache are used to represent the authoritative view
and the cache view of every server, PendingQueries is a function that maps a server
with the expected answers to the already performed queries, and SendBuffer is a buffer
with the corresponding pending submissions for each server.

Valid state

We define a notion of valid state that captures essential security properties of the system,
and more particularly of the DNSSEC specification provided by the “DNSSEC protocol
document set”, which refers to the three documents that form the core of the DNS
security extensions: “DNS Security Introduction and Requirements” [47], “Resource
Records for DNS Security Extensions” [48], and “Protocol Modifications for the DNS
Security Extensions” [49].

We say that the predicate V alid holds on state s if s satisfies the following properties:

1. “Every RRset within the view of a server must be signed by its corresponding
RRSIG signature”, which can be stated formally as follows,

RR integrity s
def
= ∀ srv :Process, srv ∈ s.Servers →

signedV iew s srv (s.viewAuth srv) ∧
signedV iew s srv (s.viewCache srv)

(4.16)

where signedV iew verifies that every RRset of a sever’s zone is correctly signed
by its corresponding RRSIG.

2. “Every server’s Zone keys must be signed by its corresponding Key Signing Key
(KSK)”,

ZSK integrity s
def
= ∀ (srv :Process), srv ∈ s.Servers →

verifySign (s.ServerKeys srv).ksk.key
{(s.ServerKeys srv).ksk.key} ∪

{(s.ServerKeys srv).zsk.key}
(s.ServerKeys srv).zsk.ksign

(4.17)

where verifySign checks that the RRSIG of a RRset has been effectively generated
from a given key.

3. “Every server must be publicly known as trusted, or be verified by the corresponding
digest in its father’s zone”,

KSK integrity s
def
= ∀ (srv :Process), srvH ∈ s.T rustedServers ∨

checkDigest s srvH (s.Parents srvH).rrDS.RR′

(4.18)

where checkDigest validates if a DS record in the Parent zone really contains a
digest of its Child keys.

4.2 Formalization of the DNSSEC model 93

We thus formally define the V alid predicate over State as the conjunction of the previous
validity conditions:

Valid s
def
= RR integrity s ∧

ZSK integrity s ∧
KSK integrity s

(4.19)

4.2.2 Events

The working of the system is modelled in terms of the execution of events. An event is
understood as an action that transforms the state of the system. Next we present the
syntax, and specify the semantics and execution of events.

Syntax

The syntax and signature for every event relevant to our abstract model of DNSSEC is
formalized by the non-recursive inductive set Event:

Event
def
=
| Add Server : Process → keys → DSpDB → DSp → DbMap →

DbMap → Event
| Delete Server : Process → Event
| Add RRset : Process → Idx → RRset → Event
| Delete RRset : Process → Idx → Event
| Server ZSK rollover : Process → RR → Event
| Server KSK rollover : Process → RR → RR → Event
| Add TrustedServer : Process → Event
| Del TrustedServer : Process → Event
| Send Query : Process → Process → DNSMessage → Event
| Receive Query : Process → Process → DNSMessage → Event
| Receive Response : Process → Process → DNSMessage → Event
| Send PendingQ : Process → Event
| Send PendingR : Process → Event
| RR TimeOut : Process → Idx → RR → Event

(4.20)
A brief description of each event is shown in Table 4.1. In the next section we present

the formal semantics for a small subset of these events.

Semantics

The behavior of the events is specified by their pre- and postconditions, which are given
by the predicates Pre and Post respectively,

Pre : State → Event → Prop
Post : State → State → Event → Prop

(4.21)

Preconditions are defined in terms of the system state while postconditions are defined
in terms of the before and after states. Due to space constraints, we only present here
the formal specification of three distinguished events, namely, Server ZSK rollover,
Receive Response and RR TimeOut. In the specification of the postconditions we

94 A formal specification of the DNSSEC model

Table 4.1: DNSSEC model events

Name Description

Add Server Creates a new server in the domain name system

Delete Server Deletes a server from the domain name system

Add RRset Inserts a new RRset in the authoritative view of a given server

Delete RRset Deletes a RRset from the authoritative view of a given server

Server ZSK rollover Performs a rollover of the zone key of a given server

Server KSK rollover Performs a rollover of the KSK of a given server

Add TrustedServer Indicates the reliable publication of a server known as trusted

Del TrustedServer Indicates that a server should no longer be consider as trusted

Send Query Sends a specific query to a given server

Receive Response Receives a response from a given server

Send PendingQ Sends pending queries

Send PendingR Sends pending responses

RR TimeOut Indicates that the TTL of a given RRset has expired

have omitted all fields of the state that remain invariant when executing the corre-
sponding event. The names of the auxiliary functions and predicates used should be
self-explanatory.

• Server ZSK rollover srv rrzsk This event performs the rollover of the ZSK key
for a specific server srv. For this event to take place it is needed that srv exists in
the system and rrzsk should be a ZSK key, that is to say,a key which is identified
as a Zone Signing key by the information of its RRDATA.

Pre s (Server ZSK rollover srv rrzsk)
def
=

isServer s srv ∧
isZSK rrzsk

(4.22)

Pos s s’ (Server ZSK rollover srv rrzsk)
def
=

(s′.ServerKeys srv).zsk.key = rrzsk
∧ (s′.ServerKeys srv).zsk.ksign =

sign (s.ServerKeys srv).ksk.key
({(s.ServerKeys srv).ksk.key} ∪ {rrzsk})

∧ ∀ (i :Idx), (s′.viewAuth srv i).RRsign =
sign rrzsk (s.viewAuth srv i).RRset′

(4.23)

The postcondition states that when this event executes successfully the key rrzsk
is stored as the new ZSK, its signature is calculated, using sign, and stored as
its corresponding RRSIG. In addition to that, all the signatures for the resource
records within the authoritative view of the server srv are re-calculated.

• Receive Response srv from srv to m This event models the processing of an an-
swer message m. For this operation to succeed, servers srv from and srv to must
belong to the set of servers of the system and the received response should be an
answer to a previously submitted query delivered by the server srv to.

4.2 Formalization of the DNSSEC model 95

Pre s (Receive Response srv from srv to m)
def
=

isServer s srv from
∧ isServer s srv to
∧ m.Hdr ∈ (s.PendingQueries srv to)

(4.24)

Pos s s’ (Receive Response srv from srv to m)
def
=

if (nodata newrefer m)
(s′.SendBuffer srv to).SendQ = (s.SendBuffer srv to).SendQ ∪
{(makeResp srv to (next m.Additional.RRset′) m)}

elseif (verifySign (s.ServerKeys srv to).zsk.key m.Ans.RRset′

m.Ans.RRsign)
((s′.viewCache srv to) m.Q).RRset′ = m.Ans.RRset′

∧ ((s′.viewCache srv to) m.Q).RRsign = m.Ans.RRsign
∧ s′.P endingQueries srv to = (s.PendingQueries srv to) \ {m.Hdr}

(4.25)

The postcondition establishes the conditions required to be satisfied for a given
resource record to be accepted and allocated in the cache view of a server. In the
case that the received answer does not contain information in its auth section, but
it does contain a closer server to refer, then the message will be re-sent to that
server. On the contrary, if the received message contains data in its auth section,
and the received RRsets as well as their corresponding received signatures are
verified by the sender zsk key, then the RRsets and their signatures are added to
the server’s cache view and, as the query has been successfully replied, the message
is removed from the PendingQueries set. It should be noticed that a correct
execution of this event would prevent a cache poisoning like the one discussed in
Section 4.1.1. In Section 4.3 we will skecth the proof that the state remains valid
after the execution of this event.

• RR TimeOut srv i rr Runs on the expiration of the TTL of a resource record rr
for a given server srv. The operation precondition will be verified when srv belongs
to the set of servers of the system and the TTL of rr has expired due to timeout
of either the resource record or its corresponding signature.

Pre s (RR TimeOut srv i rr)
def
=

isServer s srv ∧ isT imeout s srv i rr
∧ (rr ∈ (s.viewCache srv i).RRset′ ∨

rr ∈ (s.viewAuth srv i).RRset′)

(4.26)

Pos s s’ (RR TimeOut srv i rr)
def
=

if (rr ∈ (s.viewAuth srv i).RRset′)
((s′.viewAuth srv) i).RRset′ = ((s.viewAuth srv) i).RRset′ \ {rr}
∧ ((s′.viewAuth srv) i).RRsign =

sign (s.ServerKeys srv).zsk.key ((s′.viewAuth srv) i).RRset′

else ((s′.viewCache srv) i).RRset′ = ((s.viewCache srv) i).RRset′{rr}
∧ ((s′.viewCache srv) i).RRsign =

sign (s.ServerKeys srv).zsk.key ((s′.viewCache srv) i).RRset′

(4.27)

96 A formal specification of the DNSSEC model

The postcondition of RR TimeOut states that the expired resource record and its
signature are removed from the correponding authoritative or cache view.

Errors

When an event is executed and a precondition is not valid, the system answers with a
corresponding error code. These error codes are defined by the following enumerated
type:

ErrorCode
def
= server not exists

| invalid zsk
| query not asked
| rrset not exists
| rr not timeout
| ...

(4.28)

Table 4.2 specifies the error code associated to unverified preconditions of the three
events whose semantics was presented in Section 4.2.2. In our model this is formalized
as a relation ErrorMsg between valid states of the system and error messages.

Table 4.2: Error messages

Server ZSK rollover srv rrzsk

¬ isServer s srv server not exists

¬ isZSK rrzsk invalid zsk

Receive Response srv from srv to m

¬ isServer s srv from ∨ ¬ isServer s srv to server not exists

¬ m.Hdr ∈ s.PendingQueries srv to query not asked

RR TimeOut srv i rr

¬ isServer s srv server not exists

rr /∈ (s.viewCache srv i).RRset′

∨ rr /∈ (s.viewAuth srv i).RRset′ rrset not exists

¬isT imeout s srv i rr rr not timeout

One-step execution

Executing an event e over a state s produces a new state s′ and a corresponding answer

r (denoted s ֒
e/ans
−−−→ s′), where the relation between the former state and the new one is

given by the postcondition relationship Post.

Pre s e Post s s′ e

s ֒
e/ok
−−−→ s′

exec pre (4.29)

¬ Pre s e ∃ ec :ErrorCode, ErrorMsg s e ec ∧ ans = error ec

s ֒
e/ans
−−−→ s

exec npre

(4.30)

4.3 Verification of security properties 97

If the precondition Pre s e is satisfied, then the resulting state s′ and the corresponding
answer ans are the ones described by the relation exec. However, if Pre s e is not
satisfied, then the state s remains unchanged and the system answer is the error message
determined by the relation ErrorMsg. Formally, the possible answers of the system are
defined by the following type:

answer
def
= ok : answer
| error : ErrorCode → answer

(4.31)

where ok is the answer resulting from a successful execution of an event.

4.3 Verification of security properties

In this section we discuss two relevant properties of the model that have been formally
stated and verified. We first concentrate on the proof that one-step execution preserves
the validity of states. We sketch the proof of this property and show that the notion
of valid state embodies necessary conditions to prove the objective security properties.
Then, we show, formally, that to have this invariance result is not enough to ensure
consistency of the chain of trust.

4.3.1 An invariant of one-step execution

A one-step execution invariant is a property that if it holds for the state before the
execution of any event it remains valid for the state resulting from that execution. We
show that the validity of the model state, as defined in Section 4.2.1, is a one-step
invariant of our specification.

Proposition 4.3.1. For any s s′ : State, ans : answer and e : Event, if V alid s and

s ֒
e/ans
−−−→ s′ hold, then V alid s′ also holds.

(4.32)

Proof. The proof of this proposition proceeds by case analysis on the execution s ֒
e/ans
−−−→

s′: i) if the precondition Pre s e is not satisfied, then the specification of executions
establishes that the state s is not modified and that s = s′, so s′ is trivially valid because
s is valid, ii) otherwise, Post s s′ r e must hold and then we proceed by case analysis
on the event e.

We shall here discuss in detail the proof argument for the case the event e is of the
form Receive Response srv from srv to m. The complete formal proof of this and
each of the remaining cases can be found in the accompanying formalization.

The proof starts by analyzing the type of response obtained. In the case the answer
has authoritative content we proceed by checking whether the signature of the received
RRset is verified. Then we have two possible cases:

1. If the received answer does not contain data, then, as specified in its postconditions,
when executing Receive Response, the component viewCache of the state s′ will
remain invariant, moreover the only component modified in s′ will be SendBuffer
which is not verified in the validity property, so we can state that s′ remain valid.

98 A formal specification of the DNSSEC model

2. On the contrary, if the answer contains data in its Auth section, we must analyze
if the received RRset is verified by its corresponding signature RRsig: i) if the
signature is not verified, the received answer will be discarded and no component
of the state will be modified, so the property will remain satisfied for s′, ii) if the
signature is correctly verified and so the RRset is added to the viewCache view
of the server srv to, the resultant state s′ will stay valid, as viewCache is the only
modified component and, by adding verified RRset and RR signature, it remains
correctly signed.

Observe that the instantiation of Proposition 4.3.1 to the case in which the executed
event is Receive Response reflects the (informal) security requirement that no man-in-
the-middle can masquerade as a trusted entity in order to provide answers with fake
resource records. By proving the correct execution of this event, we are providing
(formally verified) evidence that if a classical DNS attacker sends a malicious resource
record to a secure server that record shall be discarded as it will not be verified by its
corresponding signature, which, in turn, has been created by its father within the chain
of trust. This is clearly a security improvement regarding DNS, because the reception
mechanism of this system is what makes it a potential victim of cache poisoning attacks.

4.3.2 Compromising the chain of trust

It is important to notice that the conditions specified for a state of our model to be a
valid one constitute an almost straightforward interpretation of the (security) recom-
mendations laid down in relevant DNSSEC RFCs like, for instance, [47, 48, 49]. We can
show, however, that despite the validity of states is preserved by execution this does not
necessarily guarantee that the chain of trust remains valid. In particular, analyzing the
conditions required for the rollover of a zone key, which in our model is specified as part
of the semantics of the event Server ZSK rollover, we have detected a small inconsis-
tency concerning the data of the system. Namely, for a resource record to be discarded
from a view either authoritative or cache, it is only required that its corresponding TTL
is recached. Now, a rollover of a zone key might be needed to be executed, for instance,
in the case the server’s zone is compromised, even if the TTL of the key has not expired.
Consequently, every RRset within the zone must be signed to generate the new RRSIG
records. Therefore, every DNS server that contains these, just re-signed, records inside
its cache view will become inconsistent. This issue could not be detected during the ver-
ification of the invariance of the event Server ZSK rollover because the specification
of the DNSSEC protocol mandates for a resource record to be discarded from the zone
file only in if its TTL has expired.

This problem was independently discovered and pointed out by Bau and Mitchell in
[124], where they study the security properties of a restricted model of DNSSEC using
model checking techniques. We adhere to their recommendation that the resolver logic
specified in the corresponding RFC [47] should be strengthened so as to prevent the
identified problem.

We now proceed to provide a formal argument that the (incomplete) current speci-
fication of the zone key rollover procedure may facilitate the occurrence of inconsistent
chains of trust. DNSSEC provides no mechanisms to validate a cached resource record

4.3 Verification of security properties 99

faced to another signature in its attestation chain. We shall show that if for some rea-
son it is performed a rollover of the zone key for a given server (srv) which has not yet
arrived to its TTL a resolver (srvOldCache) caching the corresponding resource record
(identified by its index a) signed with the old zone key may keep cached that resource
record for the entire signature validity period, turning the previous valid chain of trust
into an inconsistent one.

We assume that the server srvOldCache has information in its cache view corre-
sponding to the authoritative zone of the server srv, i.e. for an index a:

((s.viewAuth srv) a).RRsign = ((s.viewCache srvOldCache) a).RRsign (4.33)

Now, let us consider a correct execution of the event Server ZSK rollover. Thus,
for arbitrary s′ : State and rrzsk : RR, the following predicates are verified:

V alid s (4.34)

Pre s (Server ZSK rollover srv rrzsk) (4.35)

Post s s′ (Server ZSK rollover srv rrzsk) (4.36)

Therefore, when performing a rollover of the zone key zsk for the server srv, the following
inconsistency will take place:

((s′.viewAuth srv) a).RRsign 6= ((s′.viewCache srvOldCache) a).RRsign (4.37)

The proof will be performed by reduction to the absurd, assuming that the mentioned
inconsistency in fact does not occur, considering as valid:

((s′.viewAuth srv) a).RRsign = ((s′.viewCache srvOldCache) a).RRsign (4.38)

We know from the postcondition of the event Server ZSK rollover that:

(s′.ServerKeys srv).zsk.key = rrzsk (4.39)

∀ i :Idx, ((s′.viewAuth srv) i).RRsign = sign rrzsk (s.viewAuth srv i).RRset′

(4.40)

s′.viewCache = s.viewCache (4.41)

Rewriting (4.41) and then (4.33) in (4.38) we have that:

((s′.viewAuth srv) a).RRsign = ((s.viewAuth srv) a).RRsign (4.42)

Now, considering that if a given record RR is signed with two different zsk keys, different
RRSIG records are obtained, we arrive to:

((s′.viewAuth srv) a).RRsign 6= ((s.viewAuth srv) a).RRsign (4.43)

The propositions (4.42) and (4.43) reflects an absurd. This allow us to conclude that
(4.37) holds.

100 A formal specification of the DNSSEC model

4.4 Summary

The Domain Name System Security Extensions (DNSSEC) is a suite of specifications
that provide origin authentication and integrity assurance services for DNS data. In
particular, DNSSEC was designed to protect resolvers from forged DNS data, such
as the one generated by DNS cache poisoning. In this chapter we have presented a
minimalistic specification of a DNSSEC model which provides the grounds needed to
formally state and verify security properties concerning the chain of trust of the DNSSEC
tree. The model, which has been formalized and verified using the Coq proof assistant,
specifies an abstract formulation of the behavior of the protocol and the corresponding
security-related events, where security goals can be given a formal treatment.

Chapter 5

Conclusion and future work

Our work shows that it is feasible to analyze formally models of safety-critical appli-
cations, and is part of a trend to build and analyze realistic models of mobile devices,
operating systems, hypervisors, and other kinds of complex critical systems. The Coq
proof assistant is a useful tool when sophisticated algorithms and specifications are in-
volved and also as a general framework to design special platforms for the verification
of critical systems.

We present now the conclusions and describe future work for each of the areas of
safety-critical applications addressed in this work.

5.1 Security models for mobile devices

We have provided the first verifiable formalization of the MIDP 2.0 security model, ac-
cording to [65], and have also constructed the proofs of several important properties
that should be satisfied by any implementation that fulfills its specification. Our for-
malization is detailed enough to study how other mechanisms interact with the security
model, for instance, the interference between the security rules that control access to
the device resources, and mechanisms such as application installation. We have also
proposed a refinement methodology that might be used to obtain a sound executable
prototype of the security model.

Moreover, a high-level formalization of the JME-MIDP 2.0 Access Control module
also has been developed. This specification assumes that the security policy of the device
is static, that there exists at most one active suite in every state of the device, and that all
the methods of a suite share the same protection domain. The obtained model, however,
can be easily extended so as to consider multiple active suites as well as to specify a
finer relation allowing to express that a method is bound to a protection domain, and
then that two different methods of the same suite may be bound to different protection
domains. With the objective of obtaining a certified executable algorithm of the access
controller, the high-level specification has been refined into a executable equivalent one,
and an algorithm has been constructed that is proved to satisfy that latter specification.
The formal specification and the obtained derived code of the algorithm contribute to
the understanding of the working of such an important component of the security model
of that platform.

Additionally, it has also been presented an extension of the formalization of MIDP
2.0 security model which considers the changes introduced in version 3.0 of MIDP. In

101

102 Conclusion and future work

particular, a new dimension of security is represented: the security at the application
level. This extended specification preserves the security properties verified for MIDP
2.0 and enables the research of new security properties for MIDP 3.0. In this way, the
formalization is updated keeping its validity as a useful tool to analyze the security model
of MIDP at both, the platform and the application level. Some weaknesses introduced by
the informal specification of version of MIDP 3.0 are also discussed, in particular those
regarding the interplaying of the mechanisms for enforcing security at the application
and at the platform level. They reflect potential weaknesses of implementations which
satisfy the informal specification [24].

Finally, we have also built a framework that provides a uniform setting to define
and formally analyze access control models which incorporate interactive permission re-
questing/granting mechanisms. In particular, the work presented here has focused on
two distinguished permission models: the one defined by version 2.0 (and 3.0) of MIDP
and the one defined by Besson et al. in [29]. A characterization of both models in terms
of a formal definition of grant policy has also been provided. Another kind of permission
policies can also be expressed in the framework. In particular, it can be adapted to in-
troduce a notion of permission revocation, a permission mode not considered in MIDP.
A revoke can be modeled in the permission overwriting approach, for instance, by as-
signing a zero multiplicity to a resource type. In the accumulative approach, revocation
might be modeled using negative multiplicities. To introduce revocations, in turn, en-
ables, without further changes to the framework, to model a notion of permission scope.
One such scope would be grasped as the session interval delimited by an activation and
a revocation of that permission.

The formal development is about 20kLOC of Coq (see Figure 5.1).

MIDP 2.0 formalization 3.2k

AC for MIDP 2.0 8k

MIDP 3.0 formalization 5.6k

Framework 3.2k

Total 20k

Figure 5.1: LOC of Coq development – security for mobile devices

Further work is the study and specification, using the formal setting provided by the
framework, of algorithms for enforcing the security policies derived from different sort of
permission models to control the access to sensitive resources of the devices. Moreover,
one main objective is to extend the framework so as to be able to construct certified
prototypes from the formal definitions of those algorithms. Finally, an exhaustive for-
mal comparison between both JME-MIDP and Android security models is proposed as
further work. We have begun developing a formal specification of the Android security
model in Coq, considering [88, 125, 126, 127, 128, 129, 130, 131, 132, 133], which focuses
on the analysis of the permission system in general, and in the scheme of permission
re-delegation, in particular [134].

5.2 A model of virtualization

We have presented a formalization of an idealized model of a hypervisor —initially
introduced in [94]— and established within this model important security properties

5.3 The DNSSEC model 103

that are expected from virtualization platforms. In particular, our verification effort
showed that the model is adequate to reason about safety properties (read and write
isolation), 2-safety properties (OS isolation), and liveness properties (availability). The
basic formal development is about 20kLOC of Coq (see Figure 5.2), including proofs,
and forms a suitable basis for reasoning about hypervisors.

Model and basic lemmas 4.8k

Valid state invariance 8.0k

Read and write isolation 0.6k

OS Isolation and lemmas 6.0k

Traces, safety and availability 1.0k

Total 20.4k

Figure 5.2: LOC of Coq development – model of virtualization

Additionally, we have enhanced the idealized model of virtualization considered
in [94] with an explicit treatment of errors, and showed that OS isolation is preserved in
this setting. Moreover we have implemented an executable specification that realizes the
axiomatic semantics used in [94], for the model extended with cache and TLB. Finally,
we have proved that in our idealized model the virtualization platform is transparent for
guest operating systems in the sense that they cannot tell whether they execute alone or
together with other systems on the platform. The formal development for this extension
is about 15 kLOC of Coq, where 8k correspond to the verified executable specification
and 7k to the proofs on the extended model with errors.

There are several directions for future work: one immediate direction is to complete
our formalization with a proof of correctness of the hypervisor, as in the Hyper-V veri-
fication project. We also intend to enrich our model with devices and interrupts, and to
give sufficient conditions for isolation properties to remain valid in this extended setting.
Another immediate direction is to prove availability properties on an implementation
of the hypervisor. Additionally, we intend to implement and analyze alternative exe-
cutable semantics for different models of cache and policies. Finally, it is of interest
to understand how to adapt our models to other virtualization paradigms such as full
virtualization and microvisors.

5.3 The DNSSEC model

We have developed an abstract model of DNS that incorporates the security extensions
defined by the DNSSEC specification suite. We have established and proved the security
properties required to be satisfied by the operational behaviour of an implementation of
this version of DNS, which is specified in our model by an abstract state and the events
that represent the working of the system. In particular, this result provides a formal
means to assess the effectiveness of a (correct) deployment of the security requirements
specified by DNSSEC to prevent cache poisoning attacks.

In addition to that, we have identified an exploitable vulnerability that, according
to our understanding, emerges as a flaw of the specification in question. As shown in
Section 4.3, the conditions that must be verified in the case a rollover of a zone key must
be performed, as specified in the RFC 4033 [47], do not suffice to ensure the validity of

104 Conclusion and future work

the chain of trust. We have sketched in this article a formal proof that shows how the
chain of trust can be compromised if only the expiration time of a key is considered as
the cause to perform the rollover procedure. This property is established as a lemma in
the formalization available in http://www.fing.edu.uy/inco/grupos/gsi/sources/

dnssec.
The formal development is about 5kLOC of Coq (see Figure 5.3), including proofs,

and forms a suitable basis for reasoning about DNSSEC.

Model and basic lemmas 2k

Valid state invariance 3k

Proof of inconsistency 0.2k

Total 5.2k

Figure 5.3: LOC of Coq development – DNSSEC formalization

There are several directions for future work. One immediate direction is to extend
our specification and to establish results concerning the impact of introducing resource
records of type NSEC. An NSEC record points to the next valid name in the zone file
and is used to provide proof of non-existence of names within a zone. Through repeated
queries that return NSEC records it is possible to retrieve all of the names in the zone,
a process commonly called walking the zone. This side effect of the NSEC architecture
subverts policies frequently implemented by zone owners which forbid zone transfers
by arbitrary clients. We see as an interesting and challenging task to specify ways of
preventing zone walking by constructing NSEC records that cover fewer names [135].

Bibliography

[1] Housley, R., Ford, W., Polk, W., Solo, D.: Internet X.509 Public Key Infrastruc-
ture Certificate and CRL Profile (1999)

[2] Gollmann, D.: Computer Security (3. ed.). Wiley (2011)

[3] Mclean, J.: Security models. In: Encyclopedia of Software Engineering, Wiley
and Sons (1994)

[4] Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1)
(2000) 30–50

[5] Anderson, J.P.: Computer Security technology planning study. Technical report,
Deputy for Command and Management System, USA (1972)

[6] Bell, D.E., LaPadula, L.J.: Secure computer systems: Mathematical foundations.
Technical Report MTR-2547, Vol. 1, MITRE Corp., Bedford, MA (1973)

[7] Department of Defense: Department of Defense Trusted Computer System Eval-
uation Criteria. (1985) DOD 5200.28-STD (supersedes CSC-STD-001-83).

[8] CCMB-2012: Common Criteria for Information Technology Security Evaluation,
Part 1: Introduction and General Model, Version 3.1. (2012)

[9] Chetali, B., Nguyen, Q.H.: About the world-first smart card certificate with
eal7 formal assurances. Slides 9th ICCC, Jeju, Korea (2008) Available at: www.

commoncriteriaportal.org/iccc/9iccc/pdf/B2404.pdf.

[10] Betarte, G., Giménez, E., Loiseaux, C., Chetali, B.: FORMAVIE: Formal Mode-
ling and Verification of the Java Card 2.1.1 Security Architecture. In: Proceedings
of eSmart’02. (2002)

[11] Andronick, J.: Modélisation et Vérification Formelles de Systèmes Em-
barqués dans les Cartes à Microprocesseur – Plate-Forme Java Card et Système
d’Exploitation. PhD thesis, Université Paris-Sud (2006)

[12] The Coq Development Team: The Coq Proof Assistant Reference Manual – Ver-
sion V8.4. (2012)

[13] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer-Verlag (2004)

105

106 BIBLIOGRAPHY

[14] Cohen, E.: Validating the microsoft hypervisor. In Misra, J., Nipkow, T., Sek-
erinski, E., eds.: FM ’06. Volume 4085 of LNCS. Springer (2006) 81–81

[15] Leinenbach, D., Santen, T.: Verifying the microsoft hyper-v hypervisor with vcc.
In Cavalcanti, A., Dams, D., eds.: FM 2009. Volume 5850 of LNCS., Springer
(2009) 806–809

[16] Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: Formal verification of an OS kernel. Communications of the ACM
(CACM) 53(6) (2010) 107–115

[17] Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In Hankin,
C., Siveroni, I., eds.: Proceedings of SAS’05. Volume 3672 of Lecture Notes in
Computer Science., Springer-Verlag (2005) 352–367

[18] Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Security
18(6) (2010) 1157–1210

[19] Grupo de Seguridad Informática: Projects: STEVE, ReSeCo, VirtualCert, and
VirtualCert - phase II (2013) Available at: www.fing.edu.uy/inco/grupos/gsi.

[20] Sun Microsystems, Inc.: Java Platform Micro Edition. (Last accessed: March
2013) Available at: //java.sun.com/javame/index.jsp.

[21] JSR 139 Expert Group: Connected Limited Device Configuration. Version 1.1.
Sun Microsystems, Inc. and Motorola, Inc. (2003)

[22] JSR 37 Expert Group: Mobile information device profile for java 2 micro edition.
version 1.0. Technical report, Sun Microsystems, Inc. (2000)

[23] JSR 118 Expert Group: Mobile information device profile for java 2 micro edition.
version 2.0. Technical report, Sun Microsystems, Inc. and Motorola, Inc. (2002)

[24] JSR 271 Expert Group: Mobile information device profile for java micro edition.
version 3.0. Technical report, Motorola, Inc. (2009)

[25] Open Handset Alliance: Android project. (Last accessed: March 2013) Available
at: //source.android.com/.

[26] Enck, W., Ongtang, M., McDaniel, P.: Understanding android security. IEEE
Security and Privacy 7 (2009) 50–57

[27] Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., Glezer, C.: Google
android: A comprehensive security assessment. IEEE Security and Privacy 8(2)
(2010) 35–44

[28] Wallach, D.S., Felten, E.W.: Understanding java stack inspection. In: Proceedings
of the 1998 IEEE Symposium on Security and Privacy. (1998) 52–63

[29] Besson, F., Dufay, G., Jensen, T.: A formal model of access control for mobile
interactive devices. In: 11th European Symposium on Research in Computer
Security (ESORICS’06), LNCS 4189. (2006) 110–126

BIBLIOGRAPHY 107

[30] Garfinkel, T., Warfield, A.: What virtualization can do for security. ;login: The
USENIX Magazine 32 (2007)

[31] Cohen, E., Paul, W.J., Schmaltz, S.: Theory of multi core hypervisor verification.
In van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J.R., Sack, H.,
eds.: SOFSEM. Volume 7741 of Lecture Notes in Computer Science., Springer
(2013) 1–27

[32] Sewell, T., Winwood, S., Gammie, P., Murray, T., Andronick, J., Klein, G.: seL4
enforces integrity. In: 2nd Conference on Interactive Theorem Proving, Nijmegen,
The Netherlands (2011)

[33] Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S., Lewis,
C., G., X., Klein, G.: sel4: from general purpose to a proof of information flow
enforcement. In: IEEE Symposium on Security and Privacy. (2013) 415–429

[34] Oheimb, D.v.: Information flow control revisited: Noninfluence = Noninterfer-
ence + Nonleakage. In Samarati, P., Ryan, P., Gollmann, D., Molva, R., eds.:
Computer Security – ESORICS 2004. Volume 3193 of LNCS., Springer (2004)
225–243

[35] Mockapetris, P.: Domain names - concepts and facilities. RFC 1034 (Standard)
(1987) Updated by RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308, 2535,
4033, 4034, 4035, 4343, 4035, 4592, 5936.

[36] Mockapetris, P.: Domain names - implementation and specification. RFC 1035
(Standard) (1987) Updated by RFCs 1101, 1183, 1348, 1876, 1982, 1995, 1996,
2065, 2136, 2181, 2137, 2308, 2535, 2845, 3425, 3658, 4033, 4034, 4035, 4343, 5936,
5966.

[37] Bellovin, S.M.: Using the Domain Name System for System Break-ins. In: Pro-
ceedings of the 5th conference on USENIX UNIX Security Symposium - Volume
5, Berkeley, CA, USA, USENIX Association (1995) 18–18

[38] Bellovin, S.M.: Security problems in the tcp/ip protocol suite. SIGCOMM Com-
put. Commun. Rev. 19 (1989) 32–48

[39] Cert/c, C.: Cert advisory ca-2001-02 multiple vulnerabilities in bind (2001) Avail-
able at: http://www.cert.org/advisories/CA-2001-02.html.

[40] Gavron, E.: RFC 1535: A security problem and proposed correction with widely
deployed DNS software (1993) Status: INFORMATIONAL.

[41] Purdue University. Dept. of Computer Sciences and Schuba, C.L.: Addressing
weaknesses in the domain name system protocol. Number n.o 28 in CSD-TR /
Computer Sciences Department, Purdue University. Purdue University, Dept. of
Computer Sciences (1994)

[42] Vixie, P.: Dns and bind security issues. In: Proceedings of the 5th conference on
USENIX UNIX Security Symposium - Volume 5, Berkeley, CA, USA, USENIX
Association (1995) 19–19

108 BIBLIOGRAPHY

[43] Davidowicz, D.: Domain Name System (DNS) Security (1999) Available at: //

compsec101.antibozo.net/papers/dnssec/dnssec.html.

[44] Atkins, D., Austein, R.: Threat analysis of the domain name system. In: DNS.
RFC 3833, Internet Engineering Task Force. (2004)

[45] Herzberg, A., Shulman, H.: Security of patched dns. CoRR abs/1205.5190
(2012)

[46] Son, S., Shmatikov, V.: The hitchhiker’s guide to dns cache poisoning. In Jajodia,
S., Zhou, J., eds.: SecureComm. Volume 50 of Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering.,
Springer (2010) 466–483

[47] Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS Security Intro-
duction and Requirements. RFC 4033 (Proposed Standard) (2005) Updated by
RFC 6014.

[48] Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: Resource Records for
the DNS Security Extensions. RFC 4034 (Proposed Standard) (2005) Updated by
RFCs 4470, 6014.

[49] Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: Protocol Modifications
for the DNS Security Extensions. RFC 4035 (Proposed Standard) (2005) Updated
by RFCs 4470, 6014.

[50] T. I. I. Foundation: .se top level domain (2011) Available at: www.iis.se/.

[51] IANA: Interim trust-anchor repository (2011) Available at: //itar.iana.org/.

[52] Internet Research Lab, UCLA CS Department: The secspider dnssec monitoring
project (2011) Available at: //secspider.cs.ucla.edu/.

[53] Nominet: Nominet dnssec testbed (2011) Available at: www.nominet.org.uk/

registrars/DNSSEC/.

[54] P.I.R. PIR: Org Top Level Domain (2011) Available at: www.iana.org/domains.

[55] Arends, R., Bellgrim, R., Dalitz, A., Dickinson, J.A., Jansen, J., Lloyd, S.,
Mekking, M., Morris, S., Post, R., Schaeffer, Y., Schlyter, J., Wallstrm, P.: The
opendnssec project (Last accessed: April 2014) Available at: www.test.org/doe/.

[56] Yang, H., Osterweil, E., Massey, D., Lu, S., Zhang, L.: Deploying cryptography
in internet-scale systems: A case study on dnssec. IEEE Trans. Dependable Sec.
Comput. 8(5) (2011) 656–669

[57] Letouzey, P.: A New Extraction for Coq. In Geuvers, H., Wiedijk, F., eds.:
Types for Proofs and Programs, Second International Workshop, TYPES 2002,
Berg en Dal, The Netherlands, April 24-28, 2002. Volume 2646 of Lecture Notes
in Computer Science., Springer-Verlag (2003)

[58] Letouzey, P.: Programmation fonctionnelle certifiée – L’extraction de programmes
dans l’assistant Coq. PhD thesis, Université Paris-Sud (2004)

BIBLIOGRAPHY 109

[59] Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52 (2009)
107–115

[60] Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based
cryptographic proofs. SIGPLAN Not. 44(1) (2009) 90–101

[61] Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76(2-3)
(1988) 95–120

[62] Coquand, T., Paulin-Mohring, C.: Inductively defined types. In Martin-Löf,
P., Mints, G., eds.: COLOG-88, International Conference on Computer Logic,
Tallinn, USSR, December 1988. Volume 417 of Lecture Notes in Computer Sci-
ence., Springer-Verlag (1990) 50–66

[63] Paulin-Mohring, C.: Inductive definitions in the system coq - rules and properties.
In Bezem, M., Groote, J.F., eds.: 1st Int. Conf. on Typed Lambda Calculi and
Applications. Volume 664 of LNCS., Springer-Verlag (1993) 328–345

[64] Housley, R., Ford, W., Polk, W., Solo, D.: Internet X.509 Public Key Infrastruc-
ture Certificate and CRL Profile (1999)

[65] Zanella Béguelin, S., Betarte, G., Luna, C.: A formal specification of the MIDP 2.0
security model. In: 4th International workshop on Formal Aspects in Security and
Trust, FAST 2006. Volume 4691 of Lecture Notes in Computer Science., Springer
(2006) 220–234

[66] Roushani Oskui, R., Betarte, G., Luna, C.: A certified access controller for jme-
midp 2.0 enabled mobile devices. In: 2009 International Conference of the Chilean
Computer Science Society, SCCC 2009, Los Alamitos, CA, USA, IEEE Computer
Society (2009) 51–58

[67] Mazeikis, G., Betarte, G., Luna, C.: Formal specification and analysis of the MIDP
3.0 security model. In: 2009 International Conference of the Chilean Computer
Science Society, SCCC 2009, Los Alamitos, CA, USA, IEEE Computer Society
(2009) 59–66

[68] Crespo, J., Betarte, G., Luna, C.: A framework for the analysis of access control
models for interactive mobile devices. In: Types for Proofs and Programs, Inter-
national Conference, TYPES 2008. Volume 5497 of Lecture Notes in Computer
Science., Springer (2009) 49–63

[69] Spivey, J.M.: The Z notation: a reference manual. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA (1989)

[70] Back, R.J., Wright, J.: Refinement Calculus: A Systematic Introduction (Texts
in Computer Science). Springer (1998)

[71] Morgan, C.: Programming from specifications. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA (1990)

[72] Roushani Oskui, R.: Especificación formal en coq del módulo de control de acceso
de MIDP 2.0 para dispositivos móviles interactivos. Technical report, Master’s
thesis, Universidad Nacional de Rosario (2008)

110 BIBLIOGRAPHY

[73] Mazeikis, G., Luna, C.: Autorización de acceso en midp 3.0. In: V Congreso
Iberoamericano de Seguridad Informática, CIBSI 2009. (2009) 283–297

[74] Forte, J.: Formalización del protocolo de comunicación entre aplicaciones para dis-
positivos móviles java. Master’s thesis, FCEIA, Universidad Nacional de Rosario,
Argentina (2013)

[75] Prince, C.: Análisis formal de la instalación de aplicaciones en midp 3.0. Master’s
thesis, FCEIA, Universidad Nacional de Rosario, Argentina (2014)

[76] Jensen, T., Métayer, D.L., Thorn, T.: Verification of control flow based security
properties. In: Proc. of the 20th IEEE Symp. on Security and Privacy, New York:
IEEE Computer Society (1999) 89–103

[77] Besson, F., Jensen, T., Le Métayer, D., Thorn, T.: Model checking security
properties of control flow graphs. J. Comput. Secur. 9 (2001) 217–250

[78] Bartoletti, M., Degano, P., Ferrari, G.: Static analysis for stack inspection. In:
Proceedings of International Workshop on Concurrency and Coordination, Elec-
tronic Notes in Theoretical Computer Science. Volume 54., Elsevier (2001) 2001

[79] Kolsi, O.: Midp 2.0 security enhancements. In: In Proceedings of the 37th Annual
Hawaii International Conference on System Sciences (HICSS04) - Track 9 - Volume
9. (2004) 287–294

[80] Mohamed, M.D., Saleh, M., Talhi, C., Zhioua, S.: Security analysis of wireless
java. In: In Proceedings of the 3rd Annual Conference on Privacy, Security and
Trust, PST05. (2005) 1–11

[81] Fournet, C., Gordon, A.D.: Stack inspection: Theory and variants. ACM Trans.
Program. Lang. Syst. 25 (2003) 360–399

[82] mo Chang, B.: Static check analysis for java stack inspection. ACM SIGPLAN
Notices 41 (2006)

[83] Besson, F., Dufay, G., Jensen, T., Pichardie, D.: Verifying resource access control
on mobile interactive devices. J. Comput. Secur. 18 (2010) 971–998

[84] Shin, W., Kiyomoto, S., Fukushima, K., Tanaka, T.: Towards formal analysis
of the permission-based security model for android. In: Proceedings of the 2009
Fifth International Conference on Wireless and Mobile Communications. ICWMC
’09, Washington, DC, USA, IEEE Computer Society (2009) 87–92

[85] Shin, W., Kiyomoto, S., Fukushima, K., Tanaka, T.: A formal model to analyze
the permission authorization and enforcement in the Android framework. In: 2010
IEEE 2nd International Conference on Social Computing, Los Alamitos, CA, USA,
IEEE Computer Society (2010) 944–951

[86] Open Handset Alliance: Android developers. (Last accessed: April 2014) Available
at: developer.android.com/index.html.

BIBLIOGRAPHY 111

[87] Chaudhuri, A.: Language-based security on android. In: Proceedings of the
ACM SIGPLAN Fourth Workshop on Programming Languages and Analysis for
Security. PLAS ’09, New York, NY, USA, ACM (2009) 1–7

[88] Romano, A., Luna, C.: Descripción y análisis del modelo de seguridad de Android.
Technical Report RT 13-08, PEDECIBA Informática (2013)

[89] Igarashi, A., Kobayashi, N.: Resource usage analysis. ACM Trans. Program.
Lang. Syst. 27(2) (2005) 264–313

[90] Bartoletti, M., Degano, P., Ferrari, G.L.: History-based access control with local
policies. In: In Proceedings of FOSSACS 2005, Springer (2005) 316–332

[91] Chander, A., Espinosa, D., Islam, N., Lee, P., Necula, G.C.: Enforcing resource
bounds via static verification of dynamic checks. ACM Trans. Program. Lang.
Syst. 29 (2007)

[92] Goldberg, R.P.: Survey of virtual machine research. IEEE Computer Magazine 7
(1974) 34–45

[93] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP ’03:
Proceedings of the nineteenth ACM symposium on Operating systems principles,
New York, NY, USA, ACM Press (2003) 164–177

[94] Barthe, G., Betarte, G., Campo, J., Luna, C.: Formally verifying isolation and
availability in an idealized model of virtualization. In Butler, M., Schulte, W.,
eds.: Formal Methods. Volume 6664 of LNCS., Springer-Verlag (2011)

[95] Barthe, G., Betarte, G., Campo, J.D., Chimento, J.M., Luna, C.: Formally Veri-
fied Implementation of an Idealized Model of Virtualization. In Matthes, R., Schu-
bert, A., eds.: 19th International Conference on Types for Proofs and Programs
(TYPES 2013). Volume 26 of Leibniz International Proceedings in Informatics
(LIPIcs)., Dagstuhl, Germany, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik
(2014) 45–63

[96] Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using
branching-time temporal logic. In: Logic of Programs, Workshop, London, UK,
Springer-Verlag (1982) 52–71

[97] van Leeuwen, J., ed.: Handbook of Theoretical Computer Science, Volume B:
Formal Models and Semantics. Elsevier and MIT Press (1990)

[98] Luna, C.: Computation tree logic for reactive systems and timed computation
tree logic for real time systems. Contributions to the Coq system, Universidad de
la República, Uruguay (2000)

[99] Oheimb, D.v., Lotz, V., Walter, G.: Analyzing SLE 88 memory management
security using Interacting State Machines. International Journal of Information
Security 4(3) (2005) 155–171

112 BIBLIOGRAPHY

[100] Banerjee, A., Naumann, D.: Stack-based access control for secure information
flow. Journal of Functional Programming 15 (2005) 131–177 Special Issue on
Language-Based Security.

[101] Rushby, J.M.: Noninterference, Transitivity, and Channel-Control Security Poli-
cies. Technical Report CSL-92-02, SRI International (1992)

[102] Barthe, G., Betarte, G., Campo, J., Luna, C.: Cache-Leakage Resilient OS Iso-
lation in an Idealized Model of Virtualization. In: IEEE 25th Computer Security
Foundations Symposium (CSF). (2012) 186–197

[103] Hwang, J.Y., Suh, S.B., Heo, S.K., Park, C.J., Ryu, J.M., Park, S.Y., Kim, C.R.:
Xen on arm: System virtualization using xen hypervisor for arm-based secure
mobile phones. In: 5th IEEE Consumer and Communications Networking Con-
ference. (2008)

[104] The VirtualCert project: Supporting Coq formalization (2013) Available at: www.
fing.edu.uy/inco/grupos/gsi/proyectos/virtualcert.php.

[105] Klein, G.: Operating system verification – an overview. Sādhanā 34(1) (2009)
27–69

[106] Shao, Z.: Certified software. Commun. ACM 53(12) (2010) 56–66

[107] Alkassar, E., Hillebrand, M., Paul, W., Petrova, E.: Automated verification of
a small hypervisor. In Leavens, G., OHearn, P., Rajamani, S., eds.: Verified
Software: Theories, Tools, Experiments. Volume 6217 of LNCS. Springer (2010)
40–54

[108] Alkassar, E., Cohen, E., Hillebrand, M., Kovalev, M., Paul, W.: Verifying shadow
page table algorithms. In Bloem, R., Sharygina, N., eds.: Formal Methods in
Computer-Aided Design, 10th International Conference (FMCAD’10), Switzer-
land, IEEE CS (2010)

[109] Alkassar, E., Paul, W., Starostin, A., Tsyban, A.: Pervasive verification of an os
microkernel: Inline assembly, memory consumption, concurrent devices. In: Third
International Conference on Verified Software: Theories, Tools, and Experiments
(VSTTE’10). Volume 6217 of LNCS., Edinburgh, Springer (2010) 71–85

[110] Elkaduwe, D., Klein, G., Elphinstone, K.: Verified protection model of the sel4
microkernel. In: Proceedings of the 2nd international conference on Verified Soft-
ware: Theories, Tools, Experiments. VSTTE ’08, Springer (2008) 99–114

[111] Yang, J., Hawblitzel, C.: Safe to the last instruction: automated verification of a
type-safe operating system. Commun. ACM 54(12) (2011) 123–131

[112] Tews, H., Weber, T., Poll, E., Eekelen, M.v.: Formal Nova interface specifica-
tion. Technical Report ICIS–R08011, Radboud University Nijmegen (2008) Robin
deliverable D12.

[113] Heitmeyer, C.L., Archer, M., Leonard, E.I., McLean, J.: Formal specification
and verification of data separation in a separation kernel for an embedded system.

BIBLIOGRAPHY 113

In: Proceedings of the 13th ACM conference on Computer and communications
security. CCS ’06, NY, USA, ACM (2006) 346–355

[114] Greve, D., Wilding, M., Eet, W.M.V.: A separation kernel formal security policy.
In: Proc. Fourth International Workshop on the ACL2 Theorem Prover and Its
Applications. (2003)

[115] Martin, W., White, P., Taylor, F., Goldberg, A.: Formal construction of the
mathematically analyzed separation kernel. In: The Fifteenth IEEE International
Conference on Automated Software Engineering. (2000)

[116] Andronick, J., Chetali, B., Ly, O.: Using Coq to Verify Java Card Applet Isolation
Properties. In Basin, D.A., Wolff, B., eds.: International Conference on Theorem
Proving in Higher Order Logics (TPHOLs’03). Volume 2758 of LNCS., Springer-
Verlag (2003) 335–351

[117] Tollitte, P.N., Delahaye, D., Dubois, C.: Producing certified functional code from
inductive specifications. In Hawblitzel, C., Miller, D., eds.: CPP. Volume 7679 of
LNCS., Springer (2012) 76–91

[118] Berghofer, S., Bulwahn, L., Haftmann, F.: Turning inductive into equational spec-
ifications. In Berghofer, S., Nipkow, T., Urban, C., Wenzel, M., eds.: TPHOLs.
Volume 5674 of LNCS., Springer (2009) 131–146

[119] Balaa, A., Bertot, Y.: Fix-point equations for well-founded recursion in type
theory. In Aagaard, M., Harrison, J., eds.: TPHOLs. Volume 1869 of Lecture
Notes in Computer Science., Springer (2000) 1–16

[120] Barthe, G., Forest, J., Pichardie, D., Rusu, V.: Defining and reasoning about
recursive functions: A practical tool for the coq proof assistant. In Hagiya, M.,
Wadler, P., eds.: FLOPS. Volume 3945 of LNCS., Springer (2006) 114–129

[121] Liu, C., Albitz, P.: DNS and BIND - help for system administrators: covers BIND
9.3 (5. ed.). O’Reilly (2006)

[122] Cheung, S., Levitt, K.N.: A formal-specification based approach for protecting
the domain name system. In: Proceedings of the IEEE International Conference
on Dependable Systems and Networks. (2000) 25–28

[123] Eixarch, E.B., Betarte, G., Luna, C.D.: A formal specification of the dnssec
model. ECEASST 48 (2011)

[124] Bau, J., Mitchell, J.C.: A security evaluation of dnssec with nsec3. IACR Cryp-
tology ePrint Archive 2010 (2010) 115

[125] Shin, W., Kiyomoto, S., Fukushima, K., Tanaka, T.: A formal model to ana-
lyze the permission authorization and enforcement in the android framework. In:
Proceedings of the 2010 IEEE Second International Conference on Social Compu-
ting. SOCIALCOM ’10, Washington, DC, USA, IEEE Computer Society (2010)
944–951

114 BIBLIOGRAPHY

[126] May, M.J., Bhargavan, K.: Towards unified authorization for android. In: Pro-
ceedings of the 5th International Conference on Engineering Secure Software and
Systems. ESSoS’13, Berlin, Heidelberg, Springer-Verlag (2013) 42–57

[127] Fragkaki, E., Bauer, L., Jia, L., Swasey, D.: Modeling and enhancing android’s
permission system. In Foresti, S., Yung, M., Martinelli, F., eds.: ESORICS.
Volume 7459 of Lecture Notes in Computer Science., Springer (2012) 1–18

[128] Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-
delegation: Attacks and defenses. In: Proceedings of the 20th USENIX Conference
on Security. SEC’11, Berkeley, CA, USA, USENIX Association (2011) 22–22

[129] Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions
demystified. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security. CCS ’11, New York, NY, USA, ACM (2011) 627–638

[130] Davi, L., Dmitrienko, A., Sadeghi, A.R., Winandy, M.: Privilege escalation attacks
on android. In: Proceedings of the 13th International Conference on Information
Security. ISC’10, Berlin, Heidelberg, Springer-Verlag (2011) 346–360

[131] Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application
communication in android. In: Proceedings of the 9th International Conference
on Mobile Systems, Applications, and Services. MobiSys ’11, New York, NY, USA,
ACM (2011) 239–252

[132] Bugliesi, M., Calzavara, S., Spanò, A.: Lintent: Towards security type-checking of
android applications. In Beyer, D., Boreale, M., eds.: FMOODS/FORTE. Volume
7892 of Lecture Notes in Computer Science., Springer (2013) 289–304

[133] Armando, A., Costa, G., Merlo, A.: Formal modeling and reasoning about the an-
droid security framework. In Palamidessi, C., Ryan, M., eds.: TGC’12: 7th Inter-
national Symposium on Trustworthy Global Computing. Volume 8191 of Lecture
Notes in Computer Science., Springer Berlin Heidelberg (2013) 64–81

[134] Romano, A.: Descripción y análisis formal del modelo de seguridad de an-
droid. Technical report, Master’s thesis, Universidad Nacional de Rosario
(2014) Available at: www.fing.edu.uy/inco/grupos/gsi/index.php?page=

proygrado&locale=es.

[135] Weiler, S., Ihren, J.: Minimally Covering NSEC Records and DNSSEC On-line
Signing. RFC 4470 (Proposed Standard) (2006)

