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Abstract

The Internet has become an essential part of our daily lives. This became even more
clear during the COVID-19 pandemic when suddenly our interaction with others
moved almost entirely online. This also meant, that it became more important than
ever that the Internet worked reliably.

The Internet consists of a number of core components. One of these core com-
ponents is the Domain Name System (DNS). The DNS is responsible for translating
names like www. rivm.nl, the domain name of the Dutch National Institute for Pub-
lic Health, to computer readable IP addresses, like 131.224.245. 84. Virtually every
time users want to visit www.rivm.nl, or any other domain name, their computer
looks up an IP address in the DNS.

The DNS protocol was not developed with security in mind. An attacker can
manipulate information in the DNS such that a domain name would direct users to
a malicious website, instead of the website they wanted to visit in the first place.
There, the attacker could, for example, try to infect the users’ computers.

The DNS Security Extensions (DNSSEC) address this vulnerability at its core.
With DNSSEC, owners of domain names can digitally sign the information attached
to their domain names. Everyone receiving this information can validate that it is
correct with the help of the signature and a public key. In the example above, we
can be sure that 131.224.245.84 is actually the IP address of www.rivm.nl, thanks
to DNSSEC.

DNSSEC relies on public key cryptography algorithms. Using insecure algorithms
could allow attackers to forge signatures and thus manipulate information in the
DNS unnoticed. This means that we could not trust any DNS message anymore.

Unfortunately, every algorithm, currently used in DNSSEC, can be broken by a
technological development which has gained more traction in the last years: quantum
computers. These computers have the potential to calculate some mathematical
problems faster than the computers we use today. Two of those mathematical prob-
lems lay the foundation of every cryptographic algorithm used in DNSSEC. These
cryptographic algorithms are effectively broken as soon as a powerful enough quantum
computer exists, thereby rendering DNSSEC useless. Luckily, the cryptographic
community is currently working on cryptographic algorithms that can neither be
broken by current computers nor by quantum computers, so called quantum-safe
algorithms.

In this thesis, we take the first steps to prepare DNSSEC for the threat posed
by quantum computers. Only when DNSSEC is able to transition to quantum-safe
algorithms, we can trust the DNS, and consequentially the Internet, in the future.
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More concretely, we study which problems the DNS faces when introducing new
algorithms in general and quantum-safe algorithms in particular. Then, we propose
and evaluate solutions that makes it easier to replace algorithms in DNSSEC. Even
though quantum computers might still be decades away, we show in this thesis
that we need to start understanding and preparing the transition to quantum-safe
algorithms now.

In our first contribution we take a look back studying the replacement of al-
gorithms in DNSSEC in the past. This allows us to identify major problems that slow
down the wider deployment of more secure algorithms. Here, one problem stands
out. Domain name operators shun away from the seemingly complex process of
replacing one algorithm with another. This process is called an algorithm rollover
and if it is not carried out correctly, domain names can become unreachable. We
can only transition to quantum-safe algorithms if operators feel comfortable with
the different stages of algorithm rollovers.

As our second contribution, we reduce the complexity of algorithm rollovers, by
giving operators more insight into the process and thus addressing one of the main
reasons for not rolling an algorithm. Before we can reduce the complexity, we study
which aspects of the DNS make algorithm rollovers complex. We find that uncer-
tainties when timing the algorithm rollovers and the lack of insight into the impact
on users is holding operators back. In order to address this, we develop a measure-
ment method to monitor all stages of an algorithm rollover from the perspective
of their clients and end users. Then, we evaluate our method during the first al-
gorithm rollover of the Swedish Country Code Top Level Domain (ccTLD) . se. The
operators of .se confirmed that the insights, gained through our measurements,
gave them more confidence throughout the rollover. The operators of the ccTLDs
of Brazil (.br) and Denmark (. dk) applied our method as well.

Then, we shift our attention to a special component of the DNS. The DNS is a
tree-like naming system, starting at the root, with Top-Level-Domains (TLDs) (e.g.
.com and .nl) as branches of the root and second level domains (e.g. rivm.nl or
sidnlabs.nl) as the branches of TLDs. The root acts as a starting point for lookups
in the DNS. This special role also means that the security of each domain name in
the DNS relies on the security of the root. So it is crucial that the root can transition
to quantum-safe algorithms as well.

As our third contribution, we show that the root is, in principle, ready to roll to
more secure algorithms as well. We demonstrate this by measuring a key rollover
—a prerequisite for an algorithm rollover. Replacing the key at the root, and thus
also the algorithm, is in particular complex and was carried out only once until
now. During such a rollover, millions of recursive resolvers could potentially fail to
retrieve information from the DNS if they would not be able to update their local
copy of the new key. As a consequence, large parts of the Internet would become
unreachable. In this thesis, we show that the key was replaced successfully at the
root and at most resolvers. At the same time, we found several issues during the
key rollover that could complicate future algorithm rollovers as well and discuss
possible solutions. We published parts of our measurement results live during the
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key-replacement process, which were followed by the DNS community and main
stakeholders of the root closely. After the key rollover, we published our findings at
a scientific conference for which we received the distinguished paper award.

In our fourth and last contribution we look ahead, with the threat of quantum-
computers appearing on the horizon. We show that quantum-safe algorithms are
suitable for DNSSEC as well, but with significant caveats. These algorithms, which
are currently being assessed, have larger keys, larger signatures, or both. In this
thesis, we demonstrate that these attributes can be a challenge for DNS and DNSSEC.
For example, the DNS cannot accommodate the cryptographic keys of some of the
quantum-safe algorithms. We propose measures to address this and other problems.
Also, we share our findings with the DNS and operator community, raising aware-
ness of this issue as one of the first.

Through these contributions, we make DNSSEC more future proof. Thereby,
DNSSEC is more prepared to protect the information in the DNS, and sub-sequentially
the users on the Internet, against the threats to come.






Samenvatting

Het internet is een essentieel onderdeel van ons dagelijks leven. Dit werd nog duide-
lijker tijdens de coronapandemie, toen we opeens alleen nog online contact konden
houden met vrienden, familie en collega’s. Dit betekent ook dat het nog belangrijker
is geworden dat het internet altijd betrouwbaar en goed functioneert.

Het internet bestaat uit een aantal belangrijke onderdelen. Een van deze on-
derdelen is het Domain Name System (DNS). Het DNS is verantwoordelijk voor het
vertalen van namen zoals www. rivm.nl, de domeinnaam van het Nederlandse Rijks-
instituut voor Volksgezondheid en Milieu, naar een voor een computer leesbaar IP-
adres, zoals 131.224.245.84. In principe wordt elke keer dat iemand de website
van het RIVM bezoekt een IP-adres in het DNS opgevraagd.

Toen het DNS protocol ontwikkeld werd speelde veiligheid nog geen grote rol.
Dit betekent dat een aanvaller informatie in het DNS kan manipuleren. Een eind-
gebruiker kan daardoor bijvoorbeeld omgeleid worden naar een malafide website,
waar dan de computer met een virus geinfecteerd kan worden.

De DNS Security Extensions (DNSSEC) adresseren deze kwetsbaarheid. Met
DNSSEC kunnen eigenaren van domeinnamen hun domeinnamen digitaal onder-
tekenen. Iedereen die vervolgens het IP-adres van de domeinnaam in het DNS op-
vraagt, kan met hulp van de handtekening en een publieke sleutel controleren of
deze correct is. In het voorbeeld van www.rivm.nl kunnen we dankzij DNSSEC
zeker zijn dat het bijpbehorende IP-adres ook daadwerkelijk 131.224.245.84 is.

DNSSEC maakt hiervoor gebruik van asymmetrische encryptiealgoritmen. Een
kwetsbaarheid in een algoritme zou als gevolg hebben dat aanvallers handtekenin-
gen zouden kunnen vervalsen. Hierdoor kan informatie in het DNS toch onopge-
merkt gemanipuleerd worden.

Helaas is er een ontwikkeling die mogelijk alle algoritmen die we in DNSSEC
gebruiken kwetsbaar kan maken: kwantumcomputers. Een toekomstige kwantum-
computer kan sommige wiskundige problemen veel sneller oplossen dan computers
die we op dit moment gebruiken. Twee van deze problemen zijn de basis voor de
encryptiealgoritmen in DNSSEC. Zodra er een kwantumcomputer bestaat die sterk
genoeg is om de onderliggende wiskundige problemen op te lossen, worden deze
algoritmen kwetsbaar, en daarmee dus ook DNSSEC. Als oplossing worden op dit
moment algoritmen ontwikkeld die ook veilig zijn voor kwantumcomputers. Deze
algoritmen worden ook kwantumveilige algoritmen genoemd.

In dit proefschrift nemen we de eerste stappen om DNSSEC voor te bereiden
op het gevaar van kwantumcomputers. Alleen als DNSSEC van kwantumveilige
algoritmen gebruik kan maken kunnen we de informatie in het DNS, en daarmee
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het internet, vertrouwen. We onderzoeken welke problemen er zijn die het intro-
duceren van nieuwe algoritmen in het algemeen, en kwantumveilige algoritmen in
het bijzonder, kunnen tegenhouden. Op basis hiervan ontwikkelen en evalueren we
oplossingen die het makkelijker maken om de huidige algoritmen door kwantum-
veilige algoritmen te vervangen. Het zou nog tientallen jaren kunnen duren voordat
er kwantumcomputers gemaakt worden die sterk genoeg zijn om de tot nu toe ge-
bruikte algoritmen te breken. We laten zien dat het desondanks nu al nodig is de om
de transitie naar kwantumveilige algoritmen voor te bereiden.

In onze eerste bijdrage van dit proefschrift blikken we daarom eerst terug en
onderzoeken we hoe onveilige algoritmen in DNSSEC in het verleden zijn vervan-
gen. Hierbij identificeren we problemen die het toepassen van veiligere algoritmen,
op grotere schaal, hebben tegengehouden. Eén probleem valt vooral op: beheer-
ders van domeinnamen zijn terughoudend om een algoritme te vervangen vanwege
de hiermee geassocieerde risico’s. Het vervangen van een algoritme wordt algorit-
merollover genoemd en een fout tijdens zo’n rollover kan als gevolg hebben dat een
domeinnaam onbereikbaar wordt. Beheerders van domeinnamen moeten voldoende
vertrouwen in de procedures hebben voordat ze naar kwantumveilige algoritmen
durven over te stappen.

In de tweede bijdrage van dit proefschrift geven we domeinnaambeheerders meer
inzicht in het proces van een algoritmerollover. Daardoor zullen zij in de toekomst
eerder geneigd zijn om over te stappen naar veiligere algoritmen. Hiervoor onder-
zoeken we eerst waarom algoritmerollovers complex en riskant zijn. We laten zien,
dat beheerders vaak onzeker zijn hoe ze algoritmerollovers moeten timen en dat
ze niet genoeg zicht hebben op het gevolg van de rollover op hun eindgebruikers.
Daarom ontwikkelen we een meetmethode waarmee domeinnaambeheerders elke
stap van hun algoritmerollover vanuit het perspectief van de eindgebruikers kunnen
controleren. We evalueren onze meetmethode tijdens de eerste algoritmerollover
van de Zweedse Country Code Top Level Domain (ccTLD) . se. De beheerders van
.se hebben bevestigd dat onze meetmethode hun meer vertrouwen heeft gegeven tij-
dens de rollover. Na . se hebben ook de ccTLDs van Brazilié (.br) en Denemarken
(.dk) onze methode toegepast.

Vervolgens verschuiven we onze aandacht naar een bijzonder onderdeel van het
DNS. Het DNS is opgebouwd als een boom die begint bij de root (wortel). Top-
Level-Domains (TLDs) (b.v. .com en .nl) zijn de takken van de root en second level
domeinnamen (b.v. rivm.nl of sidnlabs.nl) zijn takken van de TLDs. De root is
het startpunt voor aanvragen in het DNS en speelt ook voor DNSSEC een belang-
rijke rol. Hierdoor hangt de veiligheid van elke domeinnaam af van de veiligheid
van de root en het is daarom van cruciaal belang dat ook de root in toekomst naar
kwantumveilige algoritmen kan overstappen.

In de derde bijdrage laten we zien dat de root, in principe, ook klaar is voor een
algoritmerollover. Hiervoor meten we de eerste sleutelrollover van de root. Een
sleutelrollover is een voorwaarde voor een algoritmerollover. Een sleutelrollover
van de root is bijzonder complex en is tot nu toe slechts een keer uitgevoerd. Tij-
dens dit soort rollovers bestaat de kans dat miljoenen recursive resolvers geen in-
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formatie meer van het DNS kunnen opvragen als zij niet op tijd hun lokale kopie
van de root sleutel vervangen. Hierdoor zouden grote delen van het internet onbe-
reikbaar kunnen worden. In dit proefschrift laten we zien dat de sleutel van de root,
grotendeels, succesvol is vervangen. Tevens hebben we meerdere complicaties kun-
nen identificeren, die bij een toekomstige algoritmerollover tot problemen zouden
kunnen leiden. Daarom laten we ook zien hoe deze problemen aangepakt zouden
kunnen worden. We hebben onze bevindingen gedeeltelijk tijdens de sleutelrollover
gepubliceerd. De DNS-gemeenschap heeft deze metingen live kunnen volgen. Na
de rollover hebben we onze resultaten bij een academische conferentie gepubliceerd
waarvoor we de “Distinguished paper” prijs hebben ontvangen.

In onze vierde en laatste bijdrage van dit proefschrift kijken we vooruit. We laten
zien dat we, in principe, kwantumveilige algoritmen in DNSSEC kunnen toepassen,
dit echter wel met een aantal kanttekeningen. De kwantumveilige algoritmen die
op dit moment worden ontwikkeld hebben vaak grotere sleutels, grotere handteke-
ningen, of allebei. In dit proefschrift laten we zien dat deze kenmerken een grote
uitdaging zijn voor het DNS en DNSSEC. Het is ruimtetechnisch bijvoorbeeld niet
mogelijk om de sleutels van sommige algoritmen in een DNS bericht te versturen.
We stellen daarom verschillende oplossingen voor die het alsnog mogelijk maken
om kwantumveilige algoritmen in DNSSEC toe te passen. We delen onze bevindin-
gen met de DNS- en beheerdersgemeenschap, en vragen, als een van de eersten,
aandacht voor deze problemen.

Door deze bijdragen maken we DNSSEC toekomstbestendiger, en zijn we beter
voorbereid om het DNS, en daarmee het internet in zijn geheel, tegen toekomstige
gevaren te beschermen.
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CHAPTER 1

Introduction

The worldwide COVID-19 pandemic not only caused a sudden increase in the de-
mand for toilet paper [1] but also made many realize the importance of the Inter-
net. For example, many people worked remotely from home for the first time [2],
which often was for companies the only possibility to keep their business running.
At the same time, the Internet became for many of us the only medium to stay in
touch with friends and family [3].

Already before the SARS-CoV-2 outbreak, the Internet was an important tool
in our daily lives. The crisis, however made it clear also to people not working in
the field of Computer Science, that the Internet has become essential. Our reliance
on the Internet during the pandemic even went so far that some feared [4] that
restricted Internet access could directly harm people’s health and lives.

These examples show that it is crucial that the Internet works reliably more than
ever. This not only includes that services on the Internet must be reachable all the
time but also that the requested service has not been manipulated. For example,
users that would like to visit a website need to be sure that they are directed to
the site they were expecting. Especially websites of health authorities became often
frequented sources of information during the crisis. For example, the number of
requests for the website of the RIVM (the Dutch National Institute for Public Health
and the Environment)! increased five times during the first COVID-19 wave, as can
be seen in Figure 1.1.

After typing the domain name of the RIVMs’s website www.rivm.nl into their
browser, users need to be sure that they are actually directed to the correct website. If
not, users could, for example, get served with false information about the pandemic,
or their computer could get infected with malicious software.

1.1 THE DNS AND ITS SECURITY EXTENSIONS

The security protocol ensuring that users can be certain that they are actually visit-
ing the website they requested is the main subject of this thesis. Before the browser
can retrieve the content for www.rivm.nl it first needs to look up the Internet Pro-
tocol (IP) address with which the domain name is associated. At the IP address,

ISimilar to the Robert Koch Institute (RKI) in Germany or the Centers for Disease Control and Pre-
vention (CDC) in the U.S.
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Figure 1.1: DNS queries per day to rivm.nl, observed at the operator of .nl

131.224.245.84 in case of www.rivm.nl, the browser can fetch the website’s con-
tent. If this lookup is manipulated in some way, the browser might receive the wrong
IP address and could, in turn, fetch a potentially malicious website.

This lookup is made possible by the Domain Name System (DNS). The DNS is
the naming system of the Internet and translating domain names into IP addresses is
its main capacity. Virtually any time a user wants to visit a website or opens an app
on her phone, the browser or her phone looks up one or more domain names in the
DNS. Moreover, with the rise of the “Internet of Things”, more and more physical
devices rely on the DNS as well [5]. Only with the help of the DNS, they can connect
to their manufacturer to fetch updates, and even in some cases, can be controlled by
their user [6].

Unfortunately, the DNS was not designed with security in mind. This became
especially clear when Dan Kaminsky [7] found a severe flaw in the design of the
DNS. This flaw allows attackers to manipulate certain components in DNS, such that
the answers from the DNS could not be trusted anymore. This attack and attacks
that followed [8] [9] made it clear that this vulnerability cannot be fixed with small
patches here and there but needed a new solution to tackle this problem from the
ground up. Also other protocols like Transport Layer Security (TLS), responsible for
the padlock in the browser’s address bar, cannot protect users from such attacks.

This is when the DNS Security Extensions (DNSSEC) entered the stage. DNSSEC
has the goal to enable anyone who requests information from the DNS to verify
whether the received information is correct. In case of the example above this
means that anyone who looks up the IP address of www.rivm.nl can be sure that
131.224.245.84 is correct.

This is achieved with public key cryptography. With DNSSEC, operators can
cryptographically sign information they publish at their domain name. Everyone
who fetches this information can receive a public key and a signature. With their
help, the receiver then can verify whether the received information has not been
manipulated and that the information was actually published by the domain name
operator. Thereby, DNSSEC adds message integrity and authenticity to the DNS.

DNSSEC was standardized in its current form already in 2005 [10], but was not
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widely deployed. In 2010, adoption of DNSSEC increased, after the most crucial
part of the DNS, the root, got protected with DNSSEC. This made it easier to deploy
DNSSEC at other parts of the DNS as well. Today, more than 50% of all domain
names are protected with DNSSEC in some parts of the world and numbers are still
rising.?

1.2 NEW THREATS TO DNSSEC

Now, ten years later and at the time of writing this thesis, it is time to look ahead.
DNSSEC has proven to successfully protect the DNS in the past, but ten years is a
long time in computer science. Computers are getting faster and especially one tech-
nological development that sounded like science fiction some years ago is getting
closer to becoming reality: the quantum computer. Such a computer can calculate
some mathematical problems more efficiently than computers that we use today
and thereby threaten the security of the public-key cryptographic algorithms used
in DNSSEC. This means in the context of the DNS and DNSSEC that an attacker
could manipulate a DNS message without the receiver noticing. As a consequence,
not a single answer from the DNS could be trusted anymore.

We believe that it is important to prepare for this threat now already. Also in
the past, security experts have found vulnerabilities in some of the algorithms used
in DNSSEC, which can be exploited without a quantum computer. The replacement
of these algorithms is taking years, as we will show in this thesis. At the same time,
quantum computers are evolving fast [11], [12]. A quantum computer, powerful
enough to break current algorithms, could exist in around 15 years, according to the
Dutch research organization TNO [13].

1.3 OBJECTIVE, RESEARCH QUESTIONS AND APPROACH

From the observations of the previous section we can see that we need to under-
stand how we can transition to algorithms that can withstand attacks of quantum
computers as early as possible. We argue that only if this is achieved, DNSSEC can
provide integrity to DNS messages also in the next 20 to 30 years.

1.3.1 Objective

In this thesis we want to contribute to a future-proof DNSSEC and thus define the
following objective:

to prepare DNSSEC for quantum computing, by identifying problems when
introducing new cryptographic algorithms and developing and evaluating
solutions to address them.

To achieve this goal we have identified five research questions. We list them in the
section below and describe for each how we address them.

Zhttp://www.secspider.net/
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1.3.2 Research Questions and Approach

The goal of our research can only be achieved if every component of the DNS is able
to use and understand cryptographic signing algorithms that cannot be broken by
quantum computers. In DNSSEC, the replacement of an old algorithm with a new
one is called an algorithm rollover. Our overarching question is:

Main RQ—Is the DNS ecosystem ready for algorithm rollovers?

To answer this question, we need to answer four sub research questions that look at
different aspects of the complexity of algorithm transition.

First, we need to understand if it is actually challenging to introduce new al-
gorithms and thus ask:

RQ 1—What are the complexities when introducing new algorithms in
DNSSEC?

We address this research question in Chapter 3 and Chapter 4.

ApproachtoRQ1 We use two complementary studies to approach RQ1. First, we
study the life cycle of DNSSEC signing algorithms, using passive and active meas-
urements, surveys, and anecdotal evidence at Top Level Domains (TLDs) and second
level domain names. For the passive measurements, we relied on data covering 5
TLDs (.com, .net, .org, .nl and . se) over a period of more than 5 years. For the
active measurements, we relied on more than 11,000 Vantage Points (VPs). These
measurements give us insight into the barriers of algorithm deployment, during
standardization, when being deployed in software, and during their roll-out in op-
erations.

Second, we study the first ever replacement of the root’s main signing key. The
security of the root is crucial for the security of the DNS. An attacker able to ma-
nipulate information from the root can spoof any information in the DNS. Thus, the
root must be signed with a secure algorithm at any time. A prerequisite for exchan-
ging the signing algorithm in the root zone is the possibility to replace the DNSSEC
trust anchor. The trust anchor is a copy of the root public key (also called Key Sign-
ing Key (KSK)) which is locally configured by each DNSSEC validating party. We
monitor the first, and up to now only replacement of this trust anchor, the so-called
root KSK rollover. This helps us to understand which barriers we may face when
transitioning to another algorithm at the root. Also in this study, we rely on a com-
bination of active and passive measurements, now additionally including data from
the root servers themselves and a larger set of VPs (more than 50,000 in total). This
allows us to study the rollover from all relevant perspectives.

While answering RQ1 we find that one of the main barriers is the complex pro-
cess of replacing one algorithm with another at domain names already secured with
DNSSEC. If this algorithm rollover is not carried out carefully, a domain name could
become unreachable for millions of users. At the same time, however, it is crucial
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for the security of a domain name that operators feel comfortable transitioning to
another algorithm if necessary. Thus, it is clear that we need to help operators with
this predicament, but in order to do so we first need to know:

RQ 2—What makes algorithm rollovers complex?

We address this research question in Chapters 4, 5, and 6.

Approach to RQ2 The complexity of algorithm rollovers depends on where we
carry it out. Due to its unique position in the DNS we find that algorithm rollovers
at the root have different challenges than algorithm rollovers at lower levels on the
DNS hierarchy. For this reason, we revisit the study in which we measure the first
KSK rollover at the root. Then, we shift our attention towards algorithm rollovers at
TLDs and second-level domain names. With the help of a literature study and act-
ive measurements, mapping the prevalence of certain resolver behavior and testing
different failure scenarios in the wild, we show which aspects of the rollover are the
most challenging.

One of the challenges has its origin in the behavior of recursive resolvers. In a
separate study, we actively and passively measure name server selection behavior
of recursive resolvers and discuss its effect on algorithm rollovers. Here, we rely on
more than 9,000 active VPs and data from the root servers and from a TLD.

We will show that timing is the most critical aspect of an algorithm rollover. For
domain name operators in the process of an algorithm rollover, this means that they
need to know when their name servers serve the same keys and signatures. Only
then operators can be certain that resolvers get all the necessary information to keep
successfully resolving the domain name and can proceed with the algorithm rollover.
If operators would proceed too early, their domain name can become unreachable
for some resolvers. This leads us to the question:

RQ 3—What can we do to reduce the complexity of algorithm rollovers?

The research question RQ3 is answered in Chapter 4 and Chapter 5.

Approach to RQ3 First, we focus on the root. In Chapter 4, we discuss how we
can optimize the distribution of the DNSSEC trust anchor. This can also reduce the
chance of validation errors during algorithm rollovers at the root. We base our pro-
posed improvements on the insights we derived from our own measurements of the
root KSK rollover. Then, in Chapter 5, we propose a method to monitor algorithm
rollovers, especially for TLDs and second-level domain names. Our goal is to give
operators more confidence when timing the different stages of the rollover and to be
able to detect issues early. To qualitatively evaluate whether our method reduces the
complexity we apply our method during the first algorithm rollover of the Swedish
Country Code Top Level Domain (ccTLD) . se.
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Figure 1.2: Thesis outline

The barriers and solutions discussed up till now can make the transition to new
algorithms easier, including new quantum-safe algorithms. These algorithms, how-
ever, also have different characteristics than algorithms currently standardized for
DNSSEC, stretching the boundaries of current DNS deployments. Thus, before we
can transition to these algorithms we need to understand:

RQ 4—Are there quantum-safe algorithms suitable for DNSSEC?

We address this research question in Chapter 7.

Approach to RQ4 We examine the properties of quantum-safe algorithms that
have a high chance of being standardized in the future. Here, we combine a lit-
erature study of the documents describing the algorithms with active performance
measurements in a test bed using their optimized implementations. Then, we com-
pare whether their properties differ significantly from those of algorithms currently
used in DNSSEC. We rely on existing literature, operational experience, and our own
measurements of DNSSEC usage in the wild to identify problems that can hinder the
deployment of quantum-safe algorithms in DNSSEC and propose workarounds.

1.4 ORGANIZATION AND MAIN CONTRIBUTIONS

The remainder of this thesis is divided into eight chapters, and Figure 1.2 shows them
in a schematic overview. In this section we briefly highlight the main contributions
of each chapter.

Contributions Chapter 2: Background

In this chapter we provide background on the DNS and DNSSEC. We mainly focus
on the aspects relevant for the research in this thesis. Additionally, to further mo-
tivate our research, we provide the reader with a short introduction on quantum
computing and the threat quantum computers pose to the security of DNSSEC.
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Contributions Chapter 3: Algorithm Deployment Barriers

The goal of this chapter is to identify the main problems we face when deploying
new algorithms in DNSSEC. To do so, we analyze the life cycle of a cryptographic
signing algorithm used in DNSSEC. This life cycle consists of four stages: (i) the
standardization of the algorithm in the Internet Engineering Task Force (IETF), (ii)
the implementation of the algorithm in DNSSEC software and in the domain name
registration channel, (iii) the deployment of the new algorithm at domain names
and the deployment of the updated software, and finally (iv) the replacement of old
algorithms with new ones. At each stage of this chapter we discuss which prob-
lems hindered algorithm deployment in the past, but also how each stage could be
accelerated.
The main contributions of this chapter are:

« Providing the first complete analysis of the DNSSEC algorithm life cycle;

+ Quantifying the time it took for the algorithm ECDSAP256 to gain wider de-
ployment, taking the whole life cycle into account;

« Identifying at each stage of the life cycle barriers that slow down or hinder
algorithm deployment;

« Discussing measures to accelerate each stage of algorithm deployment;

« Showing that an algorithm rollover is the major problem hindering the de-
ployment of new algorithms.

This chapter is based on the following peer-reviewed publication:

« Moritz Miiller, Willem Toorop, Taejoong Chung, Jelte Jansen, and Roland van
Rijswijk-Deij. 2020. The Reality of Algorithm Agility: Studying the DNSSEC
Algorithm Life-Cycle. In Proceedings of the ACM Internet Measurement Con-
ference (IMC *20). Association for Computing Machinery, New York, NY, USA,
295-308. [14]

Contributions Chapter 4: Key Exchange at the Root

Where Chapter 3 discusses the replacement of an algorithm at TLDs (like . com and
.nl) and at second level domain names (like example. com), this chapter analyzes the
root, studying its first ever KSK rollover. A successful root KSK rollover is a require-
ment for replacing the algorithm at the top of the DNSSEC hierarchy. While we have
shown in the previous chapter that algorithm rollovers at TLDs and second level do-
main names are a significant problem for introducing a new algorithm, we want to
understand in this chapter whether this is also the case for algorithm rollovers at
the root. Therefore, we measure the preparation for the first ever root KSK rollover
in October 2018, the rollover itself, and the subsequent maintenance from differ-
ent vantage points in the DNS. The contributions in this chapter are twofold. It
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highlights problems that could hinder future algorithm rollovers but also proposes
solutions. In particular, the contributions are:

« Validating independently the success of the first ever root KSK rollover;

« Identifying issues when introducing a new root KSK at validating resolvers
that can slow down the introduction of a new algorithm;

« Demonstrating that almost all root servers experienced an unexpected and
worrisome increase in DNSSEC-related queries after the revocation of the old
key;

« Finding software bugs in implementation of DNS resolvers that lead to the
worrisome increase of DNSSEC-related queries;

« Proposing central key management by operating systems, thereby improving
the distribution of a new key and reducing the barrier for introducing a key
with a new algorithm.

Already during the rollover, we shared live updates of our measurement. The
DNS community and the operators responsible for carrying out the rollover fol-
lowed them closely. For the accompanying paper, we received the Distinguished
Paper Award at the Internet Measurement Conference 2019. The award committee
appreciated the timeliness of our paper and acknowledged its good execution. Fur-
thermore, we presented our research at several venues in front of DNS operators
and the management team of the root.

This chapter is based on the following peer-reviewed publication:

« Moritz Miiller, Matthew Thomas, Duane Wessels, Wes Hardaker, Taejoong
Chung, Willem Toorop, and Roland van Rijswijk-Deij. 2019. Roll, Roll, Roll
your Root: A Comprehensive Analysis of the First Ever DNSSEC Root KSK
Rollover. In Proceedings of the Internet Measurement Conference (IMC ’19).
Association for Computing Machinery, New York, NY, USA, 1-14. [15]

Contributions Chapter 5:
The Complexity of Algorithm Rollovers

This chapter dives deeper into the complexity of algorithm rollovers. Here, we
mainly focus on TLDs and second level domain names but some of our observations
apply to the root as well. Algorithm rollovers are considered complex and risky be-
cause they can render domain names unavailable for resolvers if they are not carried
out correctly. The main reason is that validating resolvers, which cache information
about domain names, can have mismatching information about a domain’s keys and
signatures, leading to validation failures. Guidelines [16], [17] explain how operat-
ors should time their rollover, but do not go in depth about why timing is import-
ant. Also, these guidelines do not take real world deployment into account. In this
chapter our contributions are twofold, discussing problems of algorithm rollovers
and providing solutions:
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« Demonstrating the risk of wrongly timed algorithm rollovers through meas-
urements with more than ten thousand vantage points;

« Identifying non standards conforming resolver behavior, which could cause
outages if not taken into account;

« Showing that the number of resolvers that follow a strict interpretation of
DNSSEC standards is small. This finding can speed up the algorithm rollover
process;

« Developing a monitoring method to give domain operators more insight into
the rollover process and thereby more control;

« Publishing software that allows operators to easily monitor a rollover them-
selves.

The proposed monitoring method was applied during the first ever algorithm
rollover of the Swedish ccTLD . se. They confirmed that the monitoring gave them
more confidence during the rollover, demonstrating that this can reduce the barrier
for future algorithm rollovers. The operators of . br (Brazil) relied on our monitoring
method as well. At each stage of the rollover, they used the gained insights to decide
when it was safe to proceed [18]. Also . dk (Denmark) monitored their rollover with
our method. The chapter is based on the following peer-reviewed publication:

« Moritz Miiller, Taejoong Chung, Alan Mislove and Roland van Rijswijk-Deij,
“Rolling With Confidence: Managing the Complexity of DNSSEC Operations,”
in IEEE Transactions on Network and Service Management, vol. 16, no. 3, pp.
1199-1211, Sept. 2019 [19]

Contributions Chapter 6: The Role of Resolvers

Certain behavior of recursive resolvers contributes to the complexity of algorithm
rollovers. For example, caching speeds up responses to clients, reduces the query
load at authoritative name servers but also slows down algorithm rollovers. An-
other measure, affecting the timing of algorithm rollovers, is the fact that resolvers
distribute their queries across authoritative name servers. This is especially crit-
ical if resolvers follow a “strict” interpretation of DNSSEC standards. Only from the
moment when all authoritative name servers serve the cryptographic keys and sig-
natures can an operator be sure that these resolvers do not fail to validate signatures.
In this chapter, we measure name server selection strategies of resolvers. Our main
contributions are:

« Analyzing name server selection strategies of recursive resolvers, for the first
time “in the wild”;

« Quantifying the share of resolvers that query two or more authoritative name
servers, highlighting that it is important that operators take the publication
delay into account during rollovers.
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Besides the effect on algorithm rollovers, name server selection strategies can
also negatively affect lookup performance. In this chapter, we also recommended
the deployment of anycast at all name servers, with similar coverage of all name
servers. Anycast is a technique to replicate a name server in different locations. By
following our recommendations, resolvers reach a name servers as close as possible,
independent of which they query. This recommendation was followed by the oper-
ators of the Dutch c¢cTLD .nl, who upgraded their name server setup accordingly.
The findings of this chapter are based on the following peer-reviewed publication:

« Moritz Miller, Giovane C. M. Moura, Ricardo de O. Schmidt, and John Heidemann.
2017. Recursives in the Wild: Engineering Authoritative DNS Servers. In Pro-
ceedings of the 2017 Internet Measurement Conference (IMC "17). Association
for Computing Machinery, New York, NY, USA, 489-495. [20]

Contributions Chapter 7:
Preparing DNSSEC for Quantum-Safe Cryptography

Finally, in this chapter we discuss if we can also deploy algorithms in DNSSEC that
can withstand attacks of a quantum computer. A powerful quantum computer could
break all algorithms currently standardized for DNSSEC in polynomial time, render-
ing DNSSEC useless. At the time of writing this thesis, the US National Institute of
Standards and Technology (NIST) is assessing algorithms that promise to withstand
attacks from current as well as quantum computers. All of these algorithms have
in common that they have larger keys, larger signatures, or both, compared to al-
gorithms currently used in DNSSEC. DNS and its underlying transport protocol are
sensitive to message size and therefore large signatures or keys could negatively
affect transmission. In this chapter, we study if these attributes can hinder the de-
ployment of quantum-safe algorithms in DNSSEC. The main contributions are:

« Assessing the applicability of quantum-safe algorithms in DNSSEC;

« Defining critical requirements that quantum-safe algorithms need to fulfill if
they should be used in DNSSEC;

« Selecting candidate quantum-safe algorithms, most suitable for DNSSEC;

« Proposing measures to work around limitations that some of the quantum-
safe algorithms face when getting deployed in DNSSEC.

This chapter is based on the following peer-reviewed publication:

« Moritz Miiller, Jins de Jong, Maran van Heesch, Benno Overeinder, and Roland
van Rijswijk-Deij. 2020. Retrofitting Post-Quantum Cryptography in Internet
Protocols: A Case Study of DNSSEC. SIGCOMM Computer Communication
Review 50, 4 (October 2020), 49-57. [21].
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Contributions Chapter 8: Conclusions

In the last chapter of this thesis we revisit the research goal and draw overall con-
clusions. Here, we also discuss potential future research directions.
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In this chapter we explain the basic principles of the DNS and DNSSEC. These lay
the foundations for the following chapters. First, we describe the components of
the DNS relevant to this thesis. Then, we explain the goal of DNSSEC, how it ex-
tends the DNS, and how it affects DNS operations. Last, we give an introduction

to quantum computing and how quantum computers could threaten the security
of the DNS. We describe the background specific to individual studies in the cor-
responding chapters of this thesis.
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Figure 2.1: Rise of registered domain names from 2010 to 2020 [22]

2.1 THE DOMAIN NAME SYSTEM

First, we start by giving some context in which the DNS was developed initially and
the scale in which the DNS is used today.

The Domain Name System was first introduced in 1983 [23]. Back then, it had
the goal to simplify the mapping of names and addresses in the Advanced Research
Projects Agency Network (ARPANET), the predecessor of the Internet. Before the
introduction of the DNS, the mappings between names and addresses was managed
and published centrally in the HOST.TXT file. Hosts in the ARPANET would then
fetch the file on a regular basis. The network grew and the costs for distributing
the HOST.TXT became too large and the central management of the file too inflex-
ible. The DNS addresses both problems by distributing the management of the name
space and its access. Eventually, the ARPANET evolved into the Internet as we know
it today and also there the DNS remains the main naming system where it proved
to be very scalable. Whereas in 1987, the DNS contained only 20,000 names, it now
contains more than 350 million registered domain names (see also Figure 2.1). Al-
most every connection setup on the Internet is preceded by a lookup of one of the
domain names in the DNS, making it an indispensable core component of today’s
Internet.

2.1.1 Name Space

The name space of the DNS is hierarchical and distributed, as shown in Figure 2.2.
This separation also has an influence on how DNSSEC is deployed and managed, as
we will show below.

In this figure, example. comis at the 2nd level of DNS name space. The first level
is . com and at the top of the hierarchy is the root (sometimes represented as a dot ).
Domains like . com or .org are called top-level-domains (TLD). If they represent a
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root
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Figure 2.2: The hierarchy of the DNS name space

country, e.g. .nl for the Netherlands, they are called country-code TLDs (ccTLDs).
Domain names lower on the hierarchy are called by the depth of their level respect-
ively (e.g. 3rd level, in case of www.example.com in Figure 2.2). Domain names on
different levels on the hierarchy are in a parent-child relationship. A domain name
higher in the hierarchy is the parent of the domain name one level lower in the
hierarchy. This lower domain name is, in turn, the child.

Each name on each level can be managed by a different entity. For example, the
entity authoritative (responsible) for example. com is a different entity than the one
authoritative for . com.

2.1.2 DNS Components
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Figure 2.3: DNS components and example lookup of the A Resource Record (RR) for
www.example.com

The DNS introduces three active components to manage the DNS name space
and to retrieve information from it. These components enable the DNS to distribute
data and access. Figure 2.3 shows their relationship.
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Type Description

_ A IPv4 Address
S AAAA IPv6 Address
§ NS Domain name of the Authoritative Name Server
TXT Can hold text strings, used for different purposes
9 DNSKEY Public Key (ZSK and KSK)
A RRSIG Digital signature, covering another RR
% DS Delegation Signer, indicates that a delegated zone is signed

Table 2.1: Relevant Resource Records

« Authoritative Name Server @ Authoritative name servers hold the inform-
ation in the DNS. Information can include, for example, the mapping of a do-
main name to an IP address or information about the domain’s mail server. A
name server can be authoritative for parts of the name space, like . com. It can
also delegate authority to its children, like example.com. Then, the author-
itative name server holds information about the child’s name server as well.
A domain name can have multiple authoritative name servers. This increases
resilience and distributes load, but can also complicate zone management, as
we will show in Chapter 6.

« Recursive Resolvers \ Recursive resolvers query authoritative resolvers to
look up the information requested by their clients. They follow delegations of
authoritative name servers recursively until the sought information is found
or another condition is met that ends the lookup. Recursive resolvers also
have a cache to store results temporarily. We explain the details of the lookup
below.

Stub Resolvers © Stub resolvers run on the computer of the clients, request-
ing information in the DNS. Stub resolvers are, typically, directly implemented
by the operating system, or by an application like a browser. They do not per-
form a recursive DNS lookup themselves but employ recursive resolvers to
do so. Clients can have multiple recursive resolvers at their disposal, e.g. to
increase resilience against outages.

2.1.3 Storing, Retrieving, and Transporting Data in the DNS

Now, we explain how information in the DNS is stored, how the information is
retrieved, and how it is transported between the different DNS components.

Storing data In the DNS, data is directly attached to a domain name. The data
is structured in Resource Records (RR). Data can be, for example, an IP address (of
RRs type A for an IPv4 and AAAA for an IPv6 address), the name of an authoritative
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name server (of RR type NS), or strings of text (of RR type TXT). Table 2.1 lists the
most relevant RR types for this thesis (we explain RRs related to DNSSEC below).
Multiple RRs are combined in a zone file, which is then published by the authoritative
name server.

Every RR has the same basic structure and consists of 6 fields.

+« NAME contains the domain name to which the RR is attached, e.g.
www . example. com.

« TYPE defines the record type, e.g. A or NS.

« CLASS is a remnant from the early days of the DNS and is almost always set
to IN (for the Internet system).

« TTL Time-To-Live, defines the maximum time a resolver can cache an RR in
seconds before it should be discarded — more details in the next section.

« RDLENGTH contains the length of the RDATA field.

« RDATA contains the actually data attached to the domain name, e.g. an IPv4
address in case of an A RR. This field is of variable length, but originally limited
to 512 bytes [24].

Retrieving data In order to lookup data attached to a domain name, clients em-
ploy resolvers. Typically, this is a stub resolver, running directly on the computer
or mobile phone. The stub resolver forwards the query to a recursive resolver that
traverses the name space in order to retrieve the requested data. To illustrate this
process, we explain the lookup for the A record of www.example. com in Figure 2.3.
Here, @ a freshly installed recursive resolver receives a query from the stub resolver
of one of its clients. At this point, the resolver does not have any information stored
in its cache, but only knows the IP addresses of the root servers. @ As a consequence,
the resolver will start the recursive lookup by asking the authoritative name servers
of the root for the A record of www.example.com. ® The root, not knowing the an-
swer to this query, will refer the recursive resolvers to its child - the authoritative
name servers of .com. @ The recursive resolver selects one of the provided author-
itative name servers to send the query. ® The selected authoritative name server
will, again, not know the answer but refer the recursive resolver downwards to the
authoritative name servers of example.com. ® Finally, these name servers are au-
thoritative for the data of www. example. com and @ respond to the recursive resolver
with the corresponding A record. ® The recursive resolver returns the answer to the
client.

Now, the recursive resolver also caches the received information from the au-
thoritative name servers. How long resolvers should cache the data is defined by
the Time To Live (TTL) field in the RR. This enables the resolver to respond to fu-
ture queries for the same data faster and reduces the load at the authoritative name
servers.
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Root Letter ~ Operator

Verisign, Inc.

Réseaux IP Européens Network Coordination Centre (RIPE NCC)
Internet Corporation for Assigned Names and Numbers (ICANN)
WIDE Project

A Verisign, Inc.

B University of Southern California, Information Sciences Institute
C Cogent Communications

D University of Maryland

E NASA (Ames Research Center)

F Internet Systems Consortium, Inc.
G US Department of Defense (NIC)
H US Army (Research Lab)

I Netnod

J

K

L

M

Table 2.2: Root servers and their operators [25]

Transporting data By default, DNS messages are transmitted via the User Data-
gram Protocol (UDP). If the authoritative name server has reason to believe that a
DNS message is too large to fit in a single datagram then it signals this to recurs-
ive resolvers by setting a special flag (TC — Truncation) in the response. This flag
instructs the recursive resolver to retry, but using the Transport Control Protocol
(TCP) instead.

Originally, the maximum size of a DNS message was limited to 512 bytes [24].
The Extension Mechanisms for DNS (EDNS0) addresses this limitation. With EDNS,
resolvers can indicate that they support a larger DNS message size, up to 64 kB. If
the response fits within the limit signaled by the resolver, then it does not need to
fall back to TCP but will receive the response directly via UDP.

This is, for example, necessary for zones where DNSSEC is deployed. DNSSEC
adds additional information to a response, often causing messages to be larger than
512 bytes (see also Section 2.2). EDNS introduces an additional pseudo RR (OPT),
which can be added by a resolver to a DNS query. The format of the pseudo OPT
RR is the same as the format of regular RRs but repurposes some of its fields. For
example, the CLASS field now encodes the supported message size and the TTL allows
the encoding of new flags.

2.1.4 Ecosystem

One of the main design goals of the DNS was to let operators maintain their own
part of the name space [23]. As a consequence, the DNS ecosystem has developed
in a way in which it involves multiple stakeholders that are all connected and that
need to collaborate. This interaction has an influence on how the DNS is managed
and how information in the DNS is accessed. In this section, we introduce the most
important roles in the ecosystem of relevance to this thesis.
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Root servers The root servers are at the top of the DNS name space. Currently,
13 root servers exist, named with the letters A to M [25]. The 13 root servers are
operated by 12 different organizations, listed in Table 2.2. The root servers are au-
thoritative for the root zone. This zone file contains all delegated top level domains
and their corresponding authoritative name servers, and is managed by ICANN.!

A new installation of a recursive resolver has only the IP addresses of the 13
root servers pre-configured. A recursive resolver sends a query to one of the root
servers for every domain name that is not cached and for which it does not know
its authoritative name servers.

Top Level Domains and registries Currently, 1,589 TLDs are delegated in the
root zone file.? We differentiate between two types of TLDs: TLDs for generic pur-
posed (like .com, .net, .org) and ccTLDs established for countries or territories
(like .nl or .de). Each TLD is managed by a registry operator. The registry operator
(or just registry) keeps track of the registrations of 2nd level domain names under the
TLD and generates the zone file. In case of . com the registry is Verisign and in case
of .nl the registry is the Stichting Internet Domeinregistratie Nederland (SIDN).

Registrars and DNS providers Everyone can register a 2nd level domain name
at a registrar. When a new domain name is added, changed or removed, the registrar
communicates this change to the registry. Then, the corresponding registry updates
the zone file. The registrar also informs the registry of the authoritative name serv-
ers of the domain name. The owner of a domain name is referred to as a registrant.
The relationship between registry, registrar and registrar is sometimes abbreviated
to RRR.

Recursiveresolvers Traditionally, an organization would run a recursive resolver
in their own network. Then, clients in the same network can benefit from the
shared cache of the recursive resolver. Alternatively, Internet Service Providers
(ISPs) provide a recursive resolver for their customers. Even though both setups
are still common today, clients now also often rely on public DNS services, provided
by third parties on the Internet. These parties, like Google or Cloudflare run large
scale resolver networks that promise high performance and high availability [26].3
Some estimate that around 15% of the Internet’s population is relying on such public
DNS services [27].

2.2 THE DNS SECURITY EXTENSIONS

By design, the DNS is insecure, since security was not very relevant in the early
days of the ARPANET. In practice, this means that neither the content of the mes-
sages sent is confidential, nor is the authenticity of the sender or the integrity of

INot directly, but through PTI, an ICANN affiliate https://pti.icann.org/.
2A full list can be found here https://www.iana.org/domains/root/db.
3Probably best known by their respective IPv4 addresses 8.8.8.8 and 1.1.1.1.
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the message guaranteed. To many, this became painfully clear when Dan Kamin-
sky [7] found a severe flaw in the design of the DNS in 2008. This cache poisoning
attack allows an off-path attacker to inject false DNS responses into the cache of a
recursive resolver. As a consequence an attacker could, for example, direct users to
a malicious website.

DNSSEC can prevent such an attack but was not widely deployed at the time
when the attack was published. After Kaminsky’s finding, DNSSEC gained more
traction and even though it is still far from being deployed universally, DNSSEC
now secures millions of domain names and users.*

Additionally, DNSSEC has laid the foundation for other security protocols. For
example, DNS-based Authentication of Named Entities (DANE) relies on the security
guarantees of DNSSEC to publish digital certificates in the DNS. These certificates
are used, among others, to protect the communication between mail servers. Mail
servers use the certificates, published in the DNS to set up authenticated and encryp-
ted connections with each other. DNSSEC guarantees that the published certificate
is correct.

In this section, we explain in more detail how the DNS is vulnerable to attacks.
Then, we describe how DNSSEC can render such attacks futile. To achieve this,
DNSSEC extends the DNS with new record types and adds new principles, like the
chain of trust. This also affects the way in which zones are managed and requires
modifications of recursive resolvers. We explain the main aspects below.

2.2.1 Attacking the DNS

In the original design of the DNS, a recursive resolver cannot verify if a received
message actually originated from the queried authoritative name server. Also a re-
solver cannot verify whether or not a message has been tampered with on its way.
Upon receiving a DNS response, the recursive resolver only checks the following
parameters:

a) Every DNS query contains a random query ID. Does the response contain the
same ID?

b) Does the response arrive at the same port from which the query was sent?

c) Does the response come from the same IP address to which the query was
sent?

If every check passes, the resolver caches the responses for the time defined by the
TTL.

To demonstrate an attack, we revisit the example lookup shown in Figure 2.3.
Imagine now that an attacker wants to spoof the answer to the query for the A
record of www.example. com. As soon as the resolver has issued its query (step ® in

4Current deployment at domain names (http://www.secspider.net/) and recursive resolv-
ers(https://stats.labs.apnic.net/dnssec/).
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Figure 2.3), an attacker starts trying to construct a DNS response that also fits the
three criteria above. Only with one important difference: Her response contains an
A record that points to a malicious website.

For a successful attack she has to guess the following parameters of the response:
a) The query ID is a random number between 0 and 65,535. Since DNS relies on
UDP by default, the attacker can send thousands of DNS messages at a low cost in
a short time, guessing the correct query ID by brute force. b) The port number can
take values between 0 and 65,535, but starts in practice at 1,024.° The attacker can
also guess this number by brute force. Additionally, techniques exist to reduce the
search space and to speed up the attack [9]. ¢) Since the IP address of the queried
authoritative name server is public, the attacker can pretend to send her response
from the same IP address as well. Many networks still allow sending spoofed IP
packets® which also enable this DNS cache poisoning attack.

For the attack to be successful, an attacker needs to make sure that her fake
response arrives at the recursive resolver before the legitimate response (step @ in
Figure 2.3). If this is the case and all three parameters are correct, the recursive
resolver accepts the response, returns it to the client, and caches the malicious A
record for the time set by the attacker.

Also here, an attacker can use additional techniques to increase the chance that
her fake response arrives before the legitimate response. Using these techniques,
Man et al. [9] demonstrated that they could successfully spoof a DNS response in
less than 10 minutes.

As a reaction to the Kaminsky attack, stop-gap measures have been proposed
to decrease the impact, but these leave the DNS still vulnerable and do not address
the vulnerability by its roots.” At the same time, new methods have been found to
circumvent the proposed measures, increase the success rate of an attack [9], or find
other vulnerabilities in resolvers that make cache poisoning possible [8].

2.2.2 Protecting the DNS

DNSSEC addresses the issues that make DNS vulnerable to the described attacks
at their core. With DNSSEC, everyone who looks up information in the DNS can
validate whether the received information is correct or not. A fake response sent by
an attacker would not pass the validation, preventing the attacker from poisoning
the cache.

DNSSEC achieves this with the help of public key cryptography. With DNSSEC,
domain name operators can cryptographically sign their DNS zone. Then, recursive
resolvers, requesting data of the domain name, can validate whether the received
response is correct. Invalid messages are discarded.

SThe first 1,024 port are reserved for specific purposes.

®https://spoofer.caida.org/summary.php

"For example, the port from which the resolver would send a query was usually was not chosen at
random before the publication of the Kaminsky attack.
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Signing

DNSSEC requires modifications at the side of authoritative name server and at the
recursive resolvers. At the authoritative name server, DNSSEC introduces three
components: i) the private key, which signs the RRs in the zone. ii) the signatures,
created by the private key, and published with the signed RRs in the zone. iii) the
public key, used by recursive resolvers to validate the signatures.

The private key is kept secret, but the signature and the public key are published
in new RRs in the zone file. The signature is published in an RRSIG RR and the public
key in a DNSKEY RR.

Algorithm  Original TTL
Type Covered Labels l Signature Signature
\

Y Expiration Inception Key Tag
example.com. 86400 IN RRSIG A 8 2 86400 (
* A A * 202160331231559 20210310192537 45150 example.com.
NAME TTL CLASS TYPE 1b2G4fUKStNQ1qoSYFrS3tGmR3eBpOswMall8MGESQIR

rZtod036ceacMkLowYhK5F3ZaTc2yMijFx0ighM= )

Signature

Figure 2.4: Example of a signature covering the A record of example.com

The signature The signature is returned by the authoritative name server to-
gether with the signed RRs. Figure 2.4 shows an example of an RRSIG covering the
A record of example.com. The data field in the RRSIG RR contains the following
information:

« Type Covered signals the RR type the signature covers, A in case of the ex-
ample in Figure 2.4.

« Algorithm indicates the cryptographic signing algorithm used to create the
signature, RSASHA256 in case of the example. RSASHA256 is identified by the
number 8 (Table 3.1 in Chapter 3 lists all algorithms standardized for DNSSEC
and their identifiers).

« Labels the number of labels of the covered domain name, two in the example
in Figure 2.4. Necessary for validating wildcard records [28].

« Original TTL the TTL of the covered RR. The signature is calculated also
over the TTL of the original RR, which might not be known to the recursive
resolver. For this reason, the original TTL is also included in the RRSIG RR.

« Signature Expiration and Inception the period in which the signature should
be considered valid.

 Key Tag hint to the public key with which the signature was created.

« Signature the actual signature.
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Protocol
Flags i Algorithm
Y \J

example.com. 3600 IN DNSKEY 256 3 8 (
A A A A AwEAAa79LdJazZfIxVzyjq4H7yB4VqT/rireB+NOjija+

NAME TTL CLASS TYPE
4cV0zLnJ+0KOOW1Scly5SXLDmmWPbIM2LvayR2U4UAQZZ )

A
Public Key

Figure 2.5: Example of a DNSKEY RR of example.com

The public key The public key records are requested by validating resolvers in a
separate lookup. Figure 2.5 shows an example of a DNSKEY RR of example.com.
The fields in the DNSKEY RR contain the following information:

« Flags indicate the purpose of the key. Bit 7 of the flags field indicates whether
the public key can be used to validate signatures and is always set for active
keys. Bit 15 indicates whether the key acts as a secure entry point. We explain
the difference below. In the example in Figure 2.5, the key does not have bit
15 set (ergo 256).

« Protocol currently always set to 3.

+ Algorithm indicates the cryptographic signing algorithm used to create the
key. See again Table 3.1, Chapter 3 for all standardized algorithms.

« Public Key holds the public key material.

Often, one public-private key pair is used to sign and validate the records that
contain the actual information in the zone (e.g. the A or NS record). This key is called
the Zone Signing Key (ZSK) (flag 7 set, ergo 256). Then, another public-private key
pair is used to sign every DNSKEY in the zone. This, so called, KSK simplifies some
of the operational challenges DNSSEC introduces, which are explained below. The
KSK usually also has bit 15 in the flag field set (flag 7 and 15 set, ergo 257).

Validation

A resolver that uses DNSSEC to verify whether a message is correct is called a val-
idating resolver. When such a resolver queries for the A RR of www. example. com, it
signals to the authoritative name server that it also wants to receive the accompa-
nying signatures. The resolver does this by setting the DO flag in the DNS query.
If the record is signed, the authoritative name server responds with the signature
along with the requested A record. To validate the signature, the validating resolver
then also queries the authoritative name server for the DNSKEY records.

When the DNS message is valid, the recursive resolver returns the response to
the client initiating the query. Additionally, it sets the AD (Authenticated Data) flag
in the response, indicating that the message has been validated. If the message could
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Figure 2.6: DNSSEC Trust Chain

not be validated, the recursive resolver responds with an empty response, only con-
taining the error code SERVFAIL. In DNSSEC, we consider an invalid message bogus,
a message with valid signatures secure, and an unsigned message insecure.

DNSSEC trust chain

At this point, the validating resolver has the key and signature of example.com.
With only these records, however, the validating resolver still cannot be sure that
the received A record is actually correct since an attacker could have spoofed the
signature and key as well.

To address this problem, DNSSEC introduces the concept of a chain of trust.
In such a chain, every level of a domain name, from the root, the TLD .com, to
example.com needs to be signed. Then, the ZSK of the parent authenticates the
KSK of its children by linking them together. For this purpose, DNSSEC introduces
the Delegation Signer (DS) RR. The DS records contains a hash of the KSK of the
child. Then, the DS is signed by the ZSK of the parent, which again is signed by its
KSK. These steps are continued until the root zone. As a consequence, the security
of the chain of trust ultimately relies on the KSK of the root zone, which is called
the trust anchor. Figure 2.6 visualizes this chain with the example of example.com.

Now, the recursive resolver only needs to securely receive the trust anchor, in-
stead of the KSKs of every signed zone. Typically, recursive resolvers have the trust
anchor pre-configured at the time they are installed. Validating resolvers need to
update their configuration only when the KSK of the root is replaced. We analyze
this process in Chapter 4.

Example of a signed zone

Example 1 brings the introduced new RRs together, showing a schematic overview
of a signed zone file. In this example, lines 1, 3, and 4 show the RRs that the zone
file already contains before DNSSEC is deployed. When the zone is signed, the sig-
natures are added as well (lines 2, 5, and 8). Also the public keys are added (lines 6
and 7).
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In this example, two public keys are added. One signs the DNSKEY RRs (the KSK,
line 6). This key also acts as the secure entry point and is marked with the number
257 in the data field (bit 7 and bit 15 set in the flag field). The secure entry point is
linked with the parent’s zone, as described in Section 2.2.2. The other signs every
other record (the ZSK, line 7) and is marked with number 256 (bit 7 set in the flag
field). The introduction of two separate keys can, in some cases, simplify zone man-
agement, as we will show later in this section.

domain name TTL type value

1 example.com. 86400 A 93.184.216.34

2 example.com. 86400  RRSIG A 8 2 86400 . . .

3 example.com. 86400 NS a.iana-servers.net.
4 example.com. 86400 NS b.iana-servers.net.
5 example.com. 86400  RRSIG NS 8 2 86400 . . .

6 example.com. 3600  DNSKEY 257 3 8 AwEAAZ@a. . .
7 example.com. 3600 DNSKEY 256 3 8 AwEAAa79. . .
8 example.com. 3600 RRSIG DNSKEY 8 2 3600 . . .

Example 1: Schematic view of a DNSSEC-signed zone snippet for example. com

2.2.3 Defending the DNS Against Cache Poisoning

By allowing operators to sign their zone, and resolvers to validate the signatures,
DNSSEC can effectively protect against cache poisoning attacks. To demonstrate
this, we revisit the attack described in Section 2.2.1 where an attacker tries to spoof
the answer for the A record of www.example. com.

Imagine that the attacker, again, has successfully guessed the query ID and port
number, and made sure that her fake response arrived before the legitimate one.
Only this time the A record of www.example. com is signed with DNSSEC.

In such a scenario, the validating resolver knows already that example.com is
secured with DNSSEC. This was signaled by the DS record, which is now also re-
turned by the . com name servers when delegating the resolver to the name servers
of example.com. As a consequence, the validating resolver will discard the un-
signed, fake response sent by the attacker. The resolver has successfully parried the
cache poisoning attack.

If the attacker tries to inject a record in a resolver’s cache she now must also be
able to forge the signatures. In turn, that means that the security of the signatures
relies heavily on the security of the cryptographic algorithms used to create the keys
and signatures. If an attacker would be able use a vulnerability in an algorithm to
recreate the private key, she could create legitimate looking signatures. Thus, only
if the used algorithms are secure, also the created signatures can be trusted. This is
the reason why we need to make sure that we can transition to secure algorithms
in DNSSEC efficiently.
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2.2.4 DNSSEC Operations

DNSSEC can protect against attacks on the DNS but also adds complexity to opera-
tions. Most relevant to this thesis is the fact that operators of a signed zone need to
make sure that the chain of trust between their zone and the root zone is intact. If
not, resolvers might not be able to successfully validate information in the operator’s
zone anymore, rendering it effectively offline.

During normal operations the chain between the child and the parent stays un-
touched. However, if the used algorithm at the child is not considered secure any-
more, then the KSK needs to be replaced. As a consequence, also the DS record,
containing a hash of the old KSK, at the parent needs to be updated. This, so called,
algorithm rollover requires careful timing and good communication between the
child and the parent. If not, the chain of trust might become incomplete for some
validating resolvers, leading to validation errors. Clients of resolvers would then
only receive an error message. In case of the example in Figure 2.3, a client would
not be able to visit the website of www.example.com until the misconfiguration is
resolved.

Such a misconfiguration is especially risky when the root replaces its KSK. Since
the root’s KSK is the trust anchor of the whole trust chain, a misconfiguration affects
the whole DNS hierarchy. We explain the details of this operational challenge in
more detail in Chapter 4 and Chapter 5.

Other events that require the replacement of the KSK are, for example, in case of
a key compromise or when it is required by a key-management policy demanding
regular rollovers.

2.2.5 Other DNS Security and Privacy Protocols

Besides DNSSEC, other protocols and extensions exist that have the goal to secure
the DNS. We briefly discuss the most relevant protocols in order to give the reader
a better picture of the security landscape in which DNSSEC is being deployed. The
protocols discussed can be deployed complementary with DNSSEC.

Confidentiality DNS-over-TLS (DoT) [29] and DNS-over-HTTPS (DoH) [30] add
confidentiality to DNS messages. In case of DoT, DNS messages are encrypted dir-
ectly on the transport layer, whereas in case of DoH, DNS messages are wrapped in
the Hypertext Transfer Protocol (HTTP) protocol. Both protocols encrypt the mes-
sages between a client, sending a DNS query, and a server, sending the response.

Especially DoH gained wider deployment. Among others, Google’s Chrome
browsers has enabled DoH for some of their users [31]. The browsers of these users
now send encrypted DNS queries to the resolver if the resolver supports DoH and
is trusted by Google.

Privacy DNS queries can contain sensitive information [32]. In case of DoT and
DoH, a recursive resolver or a name server can still see the full content of a query,
but this is not always necessary. In the past, queries from recursive resolvers to
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the root would contain the full query name (e.g. www.example.com), even though
a query containing only the TLD would have been sufficient for the root servers
to redirect the recursive resolver. Query Name Minimisation [33] addresses this
potential privacy issue. Recursive resolvers applying Query Name Minimisation
only query for the part of the domain name necessary for the recursive lookup,
reducing the leakage of information.

Recursive resolvers, however, would still see the query name and could link the
domain name with the IP address of its client. A new proposal, called Oblivious
DNS Over HTTPS [34], has the goal to address this issue, by chaining two recursive
resolvers. Here, the query is encrypted between the client and a target resolver.
An intermediary resolver, between the client and the target, acts as a proxy. In
this setup, the proxy knows the client but not the content of the query, and the
target knows the content of the query but not the client. If both resolvers are run by
independent parties, the privacy of the client and the DNS message is guaranteed.

2.3 QUANTUM COMPUTING

Quantum computers are computers that have the potential to threaten the security
of many protocols we use today. In comparison with current computers, quantum
computers use quantum mechanics for computations. Thereby, they can calculate
some mathematical problems significantly faster than current computers.

Two of these problems lay the foundation for many cryptographic algorithms
used in today’s Internet protocols, including TLS and DNSSEC. An attacker with a
powerful quantum computer at her disposal could, in case of DNSSEC, forge signa-
tures, thereby undermining DNSSEC. Currently, no quantum computer exists that is
powerful enough to break current algorithms, but progress is being made. The goal
of this section is to give the reader an intuition into why quantum computers might
pose a threat to cryptography and therefore also to DNSSEC. We also explain how
it could impact DNSSEC, which developments are needed before this threat could
become reality, and how much time we still may have to make the DNS quantum-
safe.

2.3.1 Attacking Public Key Cryptography

The security of the cryptographic signing algorithms used in DNSSEC is based on
mathematical problems that are hard to solve by computers that we have today (cur-
rent computers). Such problems have in common that they are easy to solve in one
direction but hard to solve in the reverse direction and they are often referred to
as trapdoor functions. Common problems are calculating the discrete logarithm,
on which among others the algorithms of DSA and ECDSA rely, and the factoriza-
tion of an integer, on which Rivest-Shamir-Adleman (RSA) relies. As an example,
we describe how quantum computers can be used to solve the problem of integer
factorization efficiently.
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Figure 2.7: Runtime of current and quantum factoring algorithms [35]

Basically, the problem is that given an integer n it is hard to factorize it into its
prime factors p and g, such that:

prq=n

Going into the opposite direction, multiplying both factors p and q is easy for
computers, even with large numbers. The exact details are out of scope, but this
principle allows the construction of a private key, used to sign a message, and a
public key used to validate the message. In RSA, n is the public key, known to
anyone. The private key is derived from p and g, and thus both are kept secret.

A naive approach to reconstruct p and g from n, and consequentially the private
key, would be to take all known prime numbers smaller than n and test whether they
are an integer factor of n. This approach, however is slow (exponential runtime), es-
pecially when applied on numbers with 300 or more digits as used in the RSA sign-
ing algorithms. Algorithms that can run on current computers exist that can solve
this problem faster (faster than exponential runtime but slower than polynomial
runtime), but still not fast enough to efficiently attack public-key cryptography [36].

There, however, does exist a more efficient algorithm that runs only on quantum
computers. In 1994, mathematician Peter Shor published a description of an al-
gorithm that can factor integers in polynomial time [37]. As shown in Figure 2.7,
Shor’s algorithm significantly outperforms the most efficient current algorithm (a
Number Field Sieve) when factorizing large numbers. This means that Shor’s al-
gorithm could make finding private keys feasible in practice, breaking all public-key
signing algorithms currently used in DNSSEC.

There is only one crucial requirement: we first need quantum computers, and
they need to be powerful enough to execute Shor’s algorithm.
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2.3.2 Principles of Quantum Computers and Shor’s Algorithm

Quantum computers are computers that rely on quantum mechanics for calcula-
tions. Current computers, in contrast, rely on classical mechanics. In practice, this
means that current computers calculate with bits which can either take the state of
0 or 1. In contrast, quantum computers calculate with qubits. Also qubits, when
measured, take either the state 0 or 1, but with one important difference: before we
measure the state of a qubit it has both values at the same time with some prob-
ability. This state is called superposition. This makes it possible to run algorithms
on quantum computers that cannot run on current computers and is one of the two
attributes of qubits that could make quantum computers a threat to many crypto-
graphic algorithms. We go into more detail about qubits in Explainer 1 below.

The other principle is entanglement. Here, the states of two or more qubits are
highly correlated in a way such that the measured state of the second qubit is always
the same as the measured state of the first qubit. This attribute allows quantum
computers to work highly parallel by design. Both, superposition and entanglement
allow quantum computers to vastly outperform current computers in some cases.

Shor’s algorithm makes use of both features. The algorithm consists of a “clas-
sical” part which runs on current computers, and a “quantum” part, running on
quantum computers. In the latter part lays the speed up when solving the factoriz-
ation problem, shown in Figure 2.7. In the first part of the algorithm, we can reduce
the problem of factorization to the problem of order-finding, using a “classical" com-
puter. Then, we can solve the problem of finding the order of a group with the help
of a quantum computer, using the quantum Fourier transformation. Finally, we can
use the found order to calculate the factor. The last parts runs again on a current
computer.

2.3.3 Impact on DNSSEC

This shows that quantum computers applying Shor’s algorithm can, in theory, solve
the problems underlying many algorithms significantly faster than today’s com-
puters. This makes it possible to forge the secret keys of these algorithms efficiently.
If the secret key was used to encrypt a message, then an attacker could decrypt the
cipher text, revealing the secret. In case the secret key is used to sign a message then
an attacker can use the forged key to impersonate the signer. DNSSEC relies on the
latter application.

In this section, we show how a quantum computer and Shor’s algorithm can
be used to perform an attack on the DNS and discuss its impact. Furthermore, we
describe what is needed to carry out such an attack in practice. Last, we explain
why it is important to studying quantum-safe algorithms for DNSSEC already now.

Attacking DNSSEC with a quantum computer We can use Shor’s algorithm to
attack DNSSEC such that a validating resolver cannot differentiate anymore between
signatures created by the domain operator and signatures created by an attacker. Ef-
fectively, this means that message authenticity and integrity could not be guaranteed
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Figure 2.8: Mosca’s quantum risk model

anymore.

In such an attack, the attacker would use a quantum computer and Shor’s al-
gorithm to reconstruct the private key of the zone operator. Then, the attacker can
use the reconstructed private key to sign arbitrary records. The rest of the attack
follows the same steps as attacks against zones not signed with DNSSEC. If the
attacker has the position of a Man-in-the-middle (MITM) between the authoritat-
ive name server of the impersonated domain name and the recursive resolver, then
the attacker can insert her forged records and signatures directly into the network
stream. If the attacker is off-path, then she would need to carry out a cache poison-
ing attack, as described by Kaminsky [7].

The impact of a successful attack against a signed message would be even more
devastating than the one of a cache poisoning attack against an unsigned message.
In the latter case, a recursive resolver needs to treat an unsigned message in the DNS
as potentially insecure anyways. In the former case, however, a validating resolver
has successfully validated the forged signature, assuming that the message must be
correct. This gives the client of a validating resolver with a false sense of security.
Additionally, other protocols rely on the security guarantees of a valid DNSSEC
signature (see Section 2.2). Since these guarantees would not hold anymore, also
the security of these protocols would be undermined unnoticed.

When do we need to act? To answer this question, we apply Mosca’s quantum
risk model [38]. This simple model can help answering the question, at what point
in time quantum computers can become a threat for systems relying on potentially
vulnerable cryptographic algorithms. It consists of three variables:

x Security Shelf Time - The time that information needs to be kept secure or
the authenticity of a signature needs to be guaranteed.

y Migration Time - The time it takes for the system migrate to quantum-safe
algorithms.

z Collapse Time — The time it takes until quantum computers can attack the
current system.

The reasoning behind the model is that the security guarantees of a system hold as
long as:
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Physical and logical qubits

The implementation of qubits in quantum computers is error prone. This is why
we need to differentiate between physical qubits, implemented in a quantum com-
puter, and logical qubits, with which we can actually implement algorithms. Due
to their sensitivity to errors, physical qubits cannot be directly used for calcula-
tions. Instead, a quantum error correcting code is applied to multiple physical
qubits. The result of the error correcting code is one logical qubit with which we
then can perform operations. Currently, estimates are that hundreds of physical
qubits are needed to encode one logical qubit [42].

xX+y<z

Meaning, we can consider a system secure as long as the time it takes for a system
to migrate to a quantum safe algorithms plus the time the security guarantees of the
system must hold is smaller than the time it takes until a powerful enough quantum
computer becomes available. Figure 2.8 visualizes the relationship between these
variables.

Status of quantum computer development Applying this formula to DNSSEC,
we first look at the time it takes until quantum computers could attack the al-
gorithms used in DNSSEC (collapse time z). This is hard to estimate. Estimates are
that in order to factor an n-bit number a circuit with 2n + 3 logical qubits would be
required [39]. For a 2048 bit RSA number, this translates to 4,099 logical qubits. In
practice, the number of physical qubits is significantly higher (see Explainer 1 for
the difference between physical and logical qubits). Looking at the current state of
research, one paper claims that factorizing a 2048 bit RSA integer in 8 hours would
require 20 million physical qubits [40]. Others [41] estimate that about 1 million
physical qubits and 100 days would be required for the same attack. In comparison,
the largest quantum computers have around physical 50 qubits [41], as of writing
this thesis.

This shows that current quantum computers are not a threat yet, but there is
good reason to believe that quantum computers can become more powerful. A study
by the German Federal Office for Information Security (BSI) from 2020 [41] dis-
cusses the progress of the development of quantum computers. Here, they find that
the developments of the last years demonstrate that the system integrations chal-
lenge, necessary to scale quantum computers, can be mastered. Also, the research
on quantum computers is taking up pace, now that more private organizations are
getting involved. The authors of the BSI study believe that this can also increase the
chance of ground breaking findings, which could address some of the major road
blocks in scaling quantum computers. The Dutch research organization TNO tried
to estimate how long it might take until a quantum computer, powerful enough to
break current algorithms, will be developed [13]. In their most optimistic estimation
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they expect that such computers exists in around 15 years. It might take twice as
long according to their more pessimistic estimation.®

At the same time, research of quantum computers still faces setbacks frequently.
For example, a technology that promised to address some of the major challenges of
scaling quantum computers got set back several years after doubts about the legit-
imacy of previous research results were raised [43].

Because of these uncertainties, it is important to know how fast we need to
transition to quantum-safe algorithms when the first promising quantum computers
appear on the horizon. We could still take measures on time if we would understand
which factors influence the length of the transition beforehand. For this reason, we
first look at the time the security guarantees of DNSSEC need to hold (Security Shelf
Time x).

Attack time window In DNSSEC, the Security Shelf Time is the time recursive
resolvers trust the public key. An attacker that has replicated a private key of a TLD
or of a domain lower on the hierarchy, can successfully spoof responses until the
attacked recursive resolver drops the compromised public key from its cache. This
happens either when the TTL of the public key, or the signature of the public key has
expired. For the signed domain names of .com, the median TTL of DNSKEY records
is 1 hour. Signatures are valid longer, their median life time is 21 days [21].

In case of the KSK of the root the attack window is the time it takes until the
trust anchor is replaced at validating resolvers. This time can vary greatly, since it
is dependent on software vendors shipping upgrades or operators replacing the key
manually. We describe this process in more detail in Chapter 4. In case resolvers
implement protocols to update trust anchors automatically, it would take 30 days
before a new key is accepted if the root KSK would be broken today.

Applying both considerations to Mosca’s risk model, the Security Shelf Time x
for DNSSEC ranges between a couple of hours and multiple days. This, however,
is relatively short in comparison to the time it takes to move the complete DNS
ecosystem to a quantum-safe algorithm.

Migration time The time it takes until the DNS ecosystem has fully migrated to
quantum-safe algorithms (Migration Time y) is the second variable influencing the
point in time at which the security of the DNS is at risk. None of the Internet pro-
tocols, currently more widely used, have transitioned to quantum-safe algorithms
yet, but experience from the past indicates that such a process may take years. For
example, in TLS current broken cryptographic algorithms were replaced with more
secure ones, but this process took more than 10 years [44].

Also in DNSSEC some algorithms used in the early days are not considered se-
cure anymore and are getting replaced. In Chapter 3 of this thesis, we analyze how
long this transition is taking and show that also for DNSSEC this transition takes 10
years or more. Since quantum-safe algorithms are not standardized yet and, as we

8In their optimistic scenario, the authors assume that the number of physical qubits would double
every year, but only every second year in their more pessimistic scenario.
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show in Chapter 7, their deployment might require some more drastic measures, the
Migration Time of DNSSEC to quantum-safe algorithms will likely take more than a
decade.

Adding up the Security Shelf Time x and the Migration Time y of DNSSEC it be-
comes clear, that quantum computers do not pose a threat yet. It does, however, also
show that studying the transition to more secure algorithms in DNSSEC is neces-
sary already today. In the next chapters, of this thesis we take the first steps in this
direction.
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In this chapter, we study the main barriers for introducing a new algorithm in
DNSSEC. The goal is to answer the question if DNSSEC has achieved algorithm
agility. A protocol has achieved algorithm agility if it is possible to replace al-
gorithms easily, according to RFC 7696 [45]. If this would be the case for DNSSEC,
it would have already taken the first step to move to more secure algorithms fast
in the future. To achieve algorithm agility, each stage of algorithm deployment
should be free of major barriers. In this chapter, we look at the deployment of
new algorithms in DNSSEC in the past. This allows us to identify barriers that
hold back algorithm deployment and which should be addressed before we can
easiliy transition to more secure algorithms in the future. The study discussed
in this chapter was carried out in 2020 and published as a research paper at an
academic conference [14]. The results were also presented at an ICANN DNSSEC
workshop [46].
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3.1 INTRODUCTION

In the previous chapter we have shown that the security of DNSSEC relies heavily
on the security of the underlying algorithms. When DNSSEC was standardized, op-
erators had the choice of just three algorithms to sign their domain names. Over
the past 15 years, 9 new algorithms were added and 5 were deprecated [47]. New
algorithms were introduced that were more secure or that had more attractive at-
tributes, like smaller keys and signatures.

As shown in the previous chapter, quantum computers could threaten the se-
curity of all algorithms standardized for DNSSEC. There, we have also shown that
we need to understand how fast we can transition to secure algorithms before the
threat of quantum computers becomes more imminent.

In this chapter we study if it was possible to replace algorithms easily in the past.
We study how long this process took and which problems occurred. These insights
help us to understand when quantum computers might become a threat to DNSSEC.

In DNSSEC, introducing new algorithms and replacing existing ones is a four-
stage process and we explain it in more detail in Section 3.2: (1) standardization
at the Internet Engineering Task Force (IETF), (2) implementation in software and
at entities responsible for registering and publishing domain names, (3) deploying
algorithms at domain names and rolling out validating resolvers, and (4) deprecating
insecure algorithms.

We analyze the full algorithm life cycle to answer the question: Has DNSSEC
achieved algorithm agility? If, this would be the case, then DNSSEC would have
taken the first step to easily transition to quantum-safe algorithms in the future. We
find both barriers, which make algorithm adoption harder and drivers, that make it
easier to adopt new algorithms. Using a mix of passive and active measurements,
and anecdotal evidence we show that:

(i) Standardizing new algorithms typically takes several years.

(if) Support (1) in software of new algorithms is often held back by the lack of
support in cryptographic libraries or their distribution in operating systems;
and (2) registries and registrars can have a positive impact on algorithm de-
ployment.

(iii) Deployment of new algorithms (1) on authoritative servers (i.e., signing DNS
records) is mainly driven by domain names that have not deployed DNSSEC
before, rolling from a deprecated to a new algorithm happens rarely; and (2)
on resolvers (i.e., validating DNS records) is mainly driven by large providers.

(iv) Deprecation and Replacement of insecure algorithms at domains and resolvers
is a multi-year effort.

In the remainder of this chapter we first introduce the algorithms currently
standardized for DNSSEC and the algorithm life cycle in more detail (Section 3.2).
Section 3.3 discusses related work. We describe our data sets in Section 3.4. Then,
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Figure 3.1: Signed domains per algorithm and TLD

our analysis is split into four parts. First, we analyze the process for standardizing
new algorithms in Section 3.5. Next, we describe, how well software, registries and
registrars support algorithms (Section 3.6). Then, we analyze their deployment at
domain names (Section 3.7.1), and at resolvers (Section 3.7.2). Finally, we analyze
the deprecation and replacement of algorithms in Section 3.8. To conclude, we dis-
cuss to what extent DNSSEC has achieved algorithm agility and which are the most
pressing problems when transitioning to a new algorithm (Section 3.9).

3.2 DNSSEC ALGORITHMS AND LIFE CYCLE

ID  Algorithm First Draft ~ Standardized Days DNSSEC Signing DNSSEC Validation
1 RSAMDS [48] Aug. 2000  May 2001 273 MUST NOT MUST NOT
3 DSA [49]t Sep. 1997  May 2004 546 MUST NOT MUST NOT

w 5 RSASHA1 [48]t Aug. 2000  May 2001 273 NOT RECOMMEN- MUST

E DED

'é 6 DSA-NSEC3-SHA1 [50]t Jan. 2005 Mar. 2008 1520 MUST NOT MUST NOT

%0 7 RSASHA1-NSEC3-SHAL1 [50]t  Jan. 2005 Mar. 2008 1520 NOT RECOMMEN- MUST

P DED

g RSASHA256 [51] Feb. 2006  Oct. 2009 1338 MUST MUST

2 10 RSASHAS512 [51] Feb. 2006  Oct. 2009 1338 NOT RECOMMEN- MUST

= DED
12 ECC-GOST [52]t Apr. 2009 Jul. 2010 456 MUST NOT MAY
13 ECDSAP256SHA256 [53] Jan. 2011 Apr. 2012 456 MUST MUST
14 ECDSAP384SHA384 [53] Jan. 2011 Apr. 2012 456 MAY RECOMMENDED
15 ED25519 [54] Jul. 2015 Apr. 2017 581 RECOMMENDED RECOMMENDED
16  ED448 [54] Jul. 2015 Apr. 2017 581 MAY RECOMMENDED

o1 SHA-1 [55] May 2001 Dec. 2003 944 MUST NOT MUST

3 SHA-256 [56] Nov. 2005  May 2006 181 MUST MUST

8 3 GOST R 34.11-94 [52] Apr. 2009 Jun. 2010 456 MUST NOT MAY
4 SHA-384[53] Jan. 2011 Apr. 2012 456 MAY RECOMMENDED

Table 3.1: Algorithms standardized for the use in DNSSEC. Recommendations from
RFC 8624 [47]. Algorithms marked with 1 are not recommended or strongly not
recommend since 2019-06-11.

DNS operators can currently choose between 12 different algorithms to sign their
domain names (top of Table 3.1), and 4 hashing algorithms are standardized to cal-
culate the hash of the key in the DS record (bottom). Algorithms are identified (left
column) by a number, which is used by DNS software in DNSSEC-specific resource
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records. Throughout this chapter, we use names to refer to an algorithm. To en-
sure interoperability, RFC 8624 [47] specifies which algorithms software needs to
support. The document differentiates between signing and validation and currently
gives guidelines ranging from MUST NOT, NOT RECOMMENDED, MAY, RECOMMENDED to
MUST. Table 3.1 lists these as well. In case a resolver does not support an algorithm,
it should treat the RR as insecure [57]. Figure 3.1 shows a breakdown of the signing
algorithms used in the five TLDs we analyse in this study for May 2020. This reveals
that some algorithms are preferentially used and the usages also differ across TLDs.
We will dig deeper and attempt to explain these phenomena in the remainder of this
chapter.
The life cycle of DNSSEC algorithms consists of:

(i) Standardization: An Internet Draft needs to be standardized in the IETF. It
specifies parameters and RR format to be used as well as the algorithm iden-
tifier.

(ii) Support: Software, responsible for signing RRs must support the new algorithm
and resolvers need to be able to validate the signatures. Also, the new signa-
tures and keys need to be published at the name servers of the domain itself
and a DS record needs to be published at the parent domain (. com in case of
example. com).

(iii) Deployment: When the software and the registration channels support the
new algorithms, domain names can be signed. Resolvers that have been up-
dated will then also treat the new signatures as secure.

(iv) Deprecation and Replacement: Algorithms are deprecated because they are not
considered secure enough. RFC 8624 [47] defines which algorithms should
not be used anymore. DNS operators that still rely on deprecated algorithms
for signing should replace these. This algorithm rollover needs to be carried
out carefully. If not, resolvers could fail to validate the signatures and could
consider the RR bogus [16], [19].

3.3 RELATED WORK

York et al. [58] were the first to look at algorithm agility in DNSSEC and worked on
an informational draft in the IETF where they identify aspects of DNS infrastruc-
ture that need to be upgraded to cope with new algorithms. Chung et al. [59] look
at the influence of registrars on DNSSEC deployment in general. They find that a
few registrars are responsible for driving DNSSEC deployment but can also create
barriers. Le et al. [60] analyze the quality of DNSSEC deployments. They find that
often insecure algorithms are deployed. A 2016 study by Van Rijswijk-Deij et al. [61]
analyses early deployment of ECDSA. Finally, in recent work Miiller et al. [21] per-
form a case study of the feasibility of using quantum-safe cryptographic algorithms
in DNSSEC. This study also forms Chapter 7 of this thesis.
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In this study we are the first to look at the complete life cycle of DNSSEC al-
gorithms. We look at the aspects of algorithm deployment, as identified by York et
al. [58], and extend this work by analyzing real world data. Like Van Rijswijk-Deij
et al. [61], we rely on data collected by the OpenINTEL DNS measurement plat-
form [62], which now covers more than five years (see Section 3.4). This allows us
to study the adoption and deprecation of additional algorithms compared to [61].
We carry out additional active measurements, providing a new perspective on al-
gorithm deployment. Thereby, our study has a similar focus as work by Kotzias
et al. [44]. They show how TLS deployments and cipher suites have changed over
several years. In Section 3.9, we compare their findings in TLS with our findings in
DNSSEC.

3.4 DATASETS

In this study, we rely on active and passive measurements as well as qualitative
studies, which we discuss below:

Standardization We study IETF mailing lists [63], combined with first-hand ex-
perience [64]. Our goal is to find anecdotal evidence that allows us to identify
success-factors for, and barriers to algorithm deployment.

Support We analyze the algorithm support of DNS software of eight signers, au-
thoritative name servers and recursive resolvers (see Table 3.2). All of them are open
source, which allows us to study release notes and change logs. The most popular
of them, BIND, has a market share of more than 50% according to some reports [65].
We further assess the algorithm support for 20 registrars by registering a domain
ourselves. For the support at registries, we carry out a survey among registries of
(European) country code TLDs, responsible for managing 15 different TLDs. The
survey can be found here [66].

Signing To study the deployment of algorithms at domain names we rely on the
daily, active, DNS measurements of OpenINTEL [62]. Among others, OpenINTEL
queries daily for DNSKEY and DS RRs of all .com, .net and .org domains from
March 2015 and .nl and .se from mid 2016. Together, these cover 6.7M signed
domain names and roughly 45% of domains overall [22]. We focus on these TLDs
because we measure them for up to 5 years and because the ccTLDs .nl and .se
have the highest share of signed domain names. Additionally, we rely on archives
of the root zone. From 2010 to 2014, we study our own daily copies, from the end of
2014 we rely on a public archive [67].

Validation We measure the uptake of DNSSEC validation with RIPE Atlas [69],
querying domain names under our control using their pre-configured resolvers. See
Explainer 2 for more details on RIPE Atlas. For our measurements, we rely on over
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RIPE Atlas

is a global Internet measurement network. By 2021, the network consists out of
more than 11,000 nodes located in 176 different countries.® In principle, everyone
can use RIPE Atlas to execute measurements on the Internet. These include basic
Ping measurements, e.g. to measure the reachability and responsiveness of IP ad-
dresses, but also more advanced HTTP measurements to measure web servers. In
our studies, we mostly relied on DNS measurements, with which we can, among
others, initiate nodes to lookup records of domain names. For these measurements,
we can instruct nodes to send DNS queries directly to authoritative name servers,
or to employ a recursive resolver, set by the owner of the node.

Volunteers run the nodes and the RIPE NCC (the regional Internet registry for
Europe, West Asia, and the former USSR) operates the platform that coordinates
the measurements and collects and processes the measurement results. Nodes
fall into two categories: probes and anchors. Probes are lightweight measurement
nodes which can be hosted by anyone. For this reason, they might not be available
all the time or attributes assigned to the probe, like its geographical location, might
be incorrect.? Anchors, in contrast, are more powerful instances, usually managed
by organization and have higher availability. The majority of probes are dedicated
physical machines, but since 2020 the RIPE NCC made it possible to run software
probes as well, for example on a virtual machine.

We rely on RIPE Atlas in every study of this thesis. Some measurements were
carried out in cooperation with the RIPE NCC, allowing us to run measurements
with every available probe and with high frequency. In each chapter, we describe
in more detail the individual RIPE Atlas measurements and the number of involved
probes. The results of our RIPE Atlas measurements are publicly available for
reproducibility. At the end of this thesis, in Appendix A, we list the individual
measurements.

Despite the large number of probes and their distribution across thousands of net-
works (3,699 IPv4 Autonomous Systems (ASs) and 1,620 IPv6 ASs), RIPE Atlas does
not reflect the general Internet population. For example, RIPE Atlas probes are still
underrepresented in countries on the African and the South American continent.
Software probes have the goal to address this issue since they can be deployed
more easily in hard-to-reach locations [68].

%https://atlas.ripe.net/results/maps/network-coverage/
bThe status and other attributes of a probe are published on an individual website,
provided by the RIPE NCC, e.g.: https://atlas.ripe.net/probes/33302/.

11,000 vantage points, spread across around 9,000 Autonomous Systems. Our do-
mains are signed with different algorithms and depending on the response we re-
ceive from the resolver we can determine the algorithms it supports. We receive
responses from more than 20,000 unique IP addresses. Our measurements start in
April 2017 and run every hour. We describe the details of our measurements in
Section 3.7.2.
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Ethical considerations Our data sets do not contain personal information. Our
active measurements are carried out in cooperation with RIPE and are in line with
their ethical guidelines [70]. Furthermore, rather than performing our own meas-
urements, we re-use data collected by the OpenINTEL project [62].

3.5 ALGORITHM STANDARDIZATION

We begin our study of the algorithm life-cycle by looking at the standardization of
new algorithms. Most notably, we discuss the reasons why certain algorithms were
standardized and others were not, by looking at several proposals for standardiza-
tion and their outcome. This provides additional insight into the potential barriers
new algorithm proposals may encounter in the standardization process. The general
process of standardization is explained in more detail in [71].

3.5.1 Process

The choice of introducing a new DNSSEC algorithm falls to the relevant IETF Work-
ing Group, and is determined by consensus. This process is started by a working
group member submitting a proposal for standardization, in the form of an Internet
Draft with an initial specification of how to use the new algorithm. Working group
members then discuss the proposal and determine whether it will be adopted by the
working group.

After adoption, the details of the draft are discussed. If working group consensus
is reached, a working group last call is issued. If no issues are raised during a last
call, a formal request for publication of the draft is made. After that, the document is
evaluated by an IETF Area Director, sent out for another last call in the wider IETF
community, and reviewed by the IESG. Finally, the proposal is reviewed by the RFC
Editor for wording and consistency, and after that, is published as an RFC [72].

3.5.2 Barriers

This process usually takes around one year and Table 3.1 shows the duration for
standardized algorithms. In some cases, however, algorithms never get standardized
or standardization takes several years. This is caused by several barriers.

National cryptographic algorithms Some proposed algorithms are developed
by nation-states. For example, the GOST standards have their origin in the Soviet
Union. A proposal to standardize the GOST algorithm for DNSSEC was adopted
despite known theoretical attacks [73], [74], and despite the fact that at that time,
the only available specification was in Russian. The consensus of the working group
was that, as an important national cryptographic algorithm, the use of GOST should
be standardized. An English translation was published during the standardization
process, and the requirement in the proposal was changed from 'RECOMMENDED
(to implement)’ to "MAY (optional)’ [64].
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Necessity and support Algorithms that should get standardized for DNSSEC
need to be an improvement to existing ones and supported in software. In 2019,
a year after the deprecation of GOST, a proposal was submitted to update the use of
GOST to the revised GOST-2012. The draft update has been adopted by the working
group but controversies are under discussion at the time of conducting this study.
For example, missing software support and the fact that it does not outperform ex-
isting algorithms (e.g. in terms of signing speed or signature size) is criticized [75].
As another example, DSA-SHA2 was not adopted by the working group since there
was little interest, as the existing DSA was not used much. The working group mem-
bers preferred to either use RSA or work on ECDSA. The proposal expired without
much further discussion [76].

Timing Even though an algorithm can be widely used outside of DNSSEC, the
working group might still not adopt it due to different priorities. At the time of its
initial proposal, SHA256 itself was widely available, so implementation would not be
a blocking issue for adoption. However, the question was raised whether it was the
right time to add additional algorithms to DNSSEC. The consensus of the working
group was to suspend work on the standardization of SHA256, and first focus on
other DNSSEC-related work [77]. The initial proposal expired on September 30,
2006.

Unrelated design choices The standardization of algorithms can also be blocked
by issues unrelated to the algorithm itself. A second proposal to standardize SHA256
was submitted in December 2007. Over the year that followed, most of the discussion
was not centered on RSA or SHA256 itself, but on a new method to prove denial-
of-existence (NSEC3 [50]). Due to historic reasons, whether or not NSEC3 is used
in a zone was signaled by using a separate DNSSEC algorithm identifier until that
point, such as 7 for RSA-SHA1 with NSEC3 (as opposed to 5 for RSA-SHA1 with
NSEC). After much discussion, the consensus of the working group was that support
for RSA-SHA256 —and subsequent new algorithms— would also imply support for
NSEC3, meaning that NSEC3 could be used in a zone without separate signaling.
This historical anecdote also explains the two missing algorithm identifiers, 9 and
11, in Table 3.1; because at first SHA256/SHA512 with NSEC3 required a separate
identifier, algorithm numbers 9 and 11 are marked as reserved [78] to this day.

Takeaways for future algorithms Every algorithm is different, which makes
it hard to draw general conclusions. Still, from our observations we see that al-
gorithms that do not outperform existing ones, e.g. in terms of signature size or
better security, have a harder time getting standardized. Sufficient software support
is recommended and national algorithms are met with some skepticism. Meanwhile,
DNSSEC itself has matured such that changes in the design of the protocol are likely
not a barrier for algorithm standardization anymore.
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Software OpenSSL  GnuTLS  Libsodium Libdecaf Botan Task ECDSAP256 (Days) ED25519
BIND 9 v SV 2012-10-09 (179) 2018-01-23
(343)
Knot Resolver v Vv (at release 2016-05- 2017-09-29
30) (227)
Knot DNS v S (at release 2016-05- 2017-09-29
30) (227)
LDNS v S 2012-05-21 (38) 2019-07-26
(892)
OpenDNSSEC s e s 2017-02-22 (1,776) -
PowerDNS Auth. Server v* v v S 2016-07-11 (1,550) 2017-06-23
(129)
PowerDNS Recursor v v v \%4 2017-11-27 (2,054) 2017-06-13
(119)
Unbound v 14 2012-04-13 (0) 2017-05-30

(105)

Table 3.2: Popular software used for signing (S) and validation (V), their supported
cryptographic libraries (*Default) and their support of ECDSAP256 and ED25519
(days after standardization).

3.6 ALGORITHM SUPPORT

After standardization of an algorithm, the software responsible for creating and val-
idating signatures must adopt the algorithm. Also, the entities responsible for regis-
tering domain names and propagating key material must be able to process the new
keys and signatures. In this section, we show how both affect algorithm adoption.

3.6.1 Software

Three different requirements need to be met such that an algorithm is fully suppor-
ted in software: (i) the DNS software, used to create and validate signatures, needs
to support the algorithm, (ii) cryptographic libraries must support the algorithm,
and (iii) it must be possible to install both components (signer software and cryp-
tographic library) on an operating system. We discuss how long it took until each
of these three components supported the algorithms ECDSAP256 and ECDSAP384,
and ED25519 and ED448. Also, we show if deprecated algorithms are still supported.

DNS software

DNS software usually is either responsible for signing, and possibly serving DNS
zone files, or for resolving domain names and validating the signatures. Authorit-
ative name servers, in principle only need to publish a record, and do not need an
understanding of the underlying cryptographic functions. Table 3.2 lists 8 common
open source DNS implementations and the tasks they fulfill.

Unbound and LDNS supported ECDSAP256 within a few weeks and BIND9 fol-
lowed within a few months, but for other software it took up to 5 years. In the
former case, Unbound already provided running code during the algorithm stand-
ardization process [79] and one of the developers co-authored the standard [53].
This could have sped up its support. The resolver PowerDNS did support ECDSA
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before 2017 but relied on a cryptographic library which had to be installed manually.
When PowerDNS Authoritative Server added support for ECDSA out of the box it
also started using ECDSAP256 for signing by default [80].

By May 2020, all but one signer implementation support ED25519. All popular
resolvers added support within a year after standardization. Even though every
implementation supports the stronger version of ECDSAP256 (ECDSAP384), the
stronger version of ED25519 (ED448) is not supported by Knot and PowerDNS re-
quires an additional library. Software vendors might skip implementation of ED448
since it is expected that ED25519 will become the recommended default [47].

Support of deprecated algorithms varies between DNS software. Unbound ad-
ded the option to treat SHA-1 based algorithms as insecure in 2017 [79]. BIND9 and
the name server of PowerDNS removed support for GOST in 2019 and 2020 respect-
ively [81], [82]. BIND9Y additionally removed support for DSA and DSA-NSEC3-
SHA1 in the same version. From then on, the software treats these algorithms as
insecure. From our own experience! we know that support in libraries and RFC re-
commendations play an important role when deciding which algorithm should be
supported.

Cryptographic libraries

Algorithm support in DNS software relies on the use of cryptographic libraries. The
majority of DNS implementations automatically uses OpenSSL for cryptographic
operations if detected (see Table 3.2). Libraries such as libsodium and libdecaf provide
additional algorithm support for some software.

Libraries do not need to support new algorithms in order for them to be stand-
ardized for DNSSEC or vice versa. Whereas all major libraries supported ECDSA
already before it was standardized for DNSSEC, ED25519 and ED448 were only sup-
ported after the RFC was published. Also, OpenSSL stopped supporting GOST two
years prior to its deprecation in the IETF, but GnuTLS only started supporting GOST
one year before its deprecation.

In case of ED25519 end ED448, libraries that supported these algorithms did exist
prior to standardization. The initial releases of libdecaf and libsodium were in 2013
and 2014 respectively [83], [84]. Both of these libraries, however, typically need to
be installed manually by operators (i.e., are not part of default OS installations).

Operating systems

The software and libraries discussed above can be installed manually or can be
downloaded as a package. Since the latter approach is much more convenient, we
assume most operators prefer it to manually compiling and installing DNS software.
To understand how long it takes until operating systems provide DNS software sup-
porting the different algorithms of-the-shelf, we look at two popular operating sys-
tems with different software management approaches: Ubuntu and OpenBSD.

1Some of our authors work for NLnet Labs, the developers of Unbound and NSD.
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The versions of software shipped with a particular Ubuntu release is not usually
updated [85] and for stability reasons, operators prefer releases with long-term sup-
port (LTS). In case of ED25519, this meant that even though all popular DNS software
in Ubuntu 18.04 LTS already supported the algorithm, the OpenSSL version did not.
It required a stable release update for OpenSSL late 2019 for full algorithm support
— more than 2.5 years after standardization.

In contrast, in OpenBSD new software releases are added when the correspond-
ing package is updated by its maintainer [86]. Therefore, OpenBSD users generally
receive software updates faster, including support for new algorithms.

3.6.2 Registration Ecosystem

Besides DNS software, the parties involved in publishing the DNSSEC records must
also support new algorithms. The registrar needs to be able to upload the DNSKEY
record or the DS record to the registry and the registry must be able to publish the
DS record.

Registrar

Registrars play a critical role in deploying DNSSEC; they have an almost exclusive
role creating a chain of trust by uploading a DS record for a domain name to the re-
gistry.? It is thus crucial to understand how their signing algorithms are chosen and
what other algorithms are supported. Moreover, earlier work by Chung et al. [59]
showed that 20 out of 31 DNS operators that manage at least 54.3% of . com, .net, and
.org domains are registrarsS, which indicates that default authoritative nameservers
provided by registrars contribute significantly to the DNS and DNSSEC ecosystem.

Registrants usually have two options for deploying DNSSEC: they can use the
default name servers provided by the registrar (thus, the owner does not have any
control over choosing algorithms) or external name servers such as the ones man-
aged by the domain owner or a third-party operator such as Cloudflare. For the
latter, the owners can freely choose an algorithm to sign their DNS records, but still
need to communicate with their registrar to build a chain of trust by uploading a DS
record through a web interface on the registrar website or via an e-mail; the owners
convey four fields of the DS record to the registrar: (1) the hashing algorithm of the
DS record (i.e., the digest type of the linked KSK), (2) the digest (hash of the linked
KSK), (3) the key tag of the linked KSK, (4) algorithm number of the linked KSK.
In principle, registrants can upload any DS record regardless of which algorithm was
used for their KSK to their registrar because (1) the key tag and algorithm number of
the linked KSK are just hints for resolvers to quickly identify the KSK when multiple

2The CDS and CDNSKEY protocols [87], [88] allow DNS operators to upload their DS records directly to
the registry; however, even after three years since their standardization, only the .cz and . ch registries
have deployed it.

3The other 11 DNS operators are third-party DNS operators and domain parking services, but only
one DNS operator (Cloudflare) among them supports DNSSEC.
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GoDaddy (domaincontrol. com) 13 Web ® 6 6 6 o6 o o o o o o X Xx o o
NameCheap (r. . .-servers.com) 13 Web ® X ® & X o o o o o o x x o o
Google (googledomains. com) 8 Web X X ® @& o o o o o o o o o x [
OVH (ovh.net) 7 Web X X X @ X e e o x o o x x x X
1AND1 (1and1) 8 X X X X X X X X X X x X X X X X
Network Solution (worldnic.com) X Email e 6 6 ¢ ¢ o6 o o6 o o o o o o o
NameBright (namebrightdns. com) X Email e 6 6 6 o6 o ¢ o o o o o o o o
register.com (register.com) X Email e 6 6 6 o6 o o o o o o o o o o
Amazon (aws-dns) X Web e 6 6 o o o6 o o o o o x x o o
DreamHost (dreamhost . com) X Email ® 6 ¢ o o o o o 6 O O Xx x X X
Rightside (name . com) X Web X X ®© @& o o o o o o o oo o x [
eNom (name-services. com) X Email X X @@ @ & o o o x x x x Xx x X
123-reg (123-reg.co.uk) X Email X X ®© @ x o o o o o o x x x X
HostGator (hostgator . com) X Email X X X @ x X e e x e o x x x KX
Bluehost (bluehost . com) X Email X X X Xx X X @ e e o o x x x [k
WIX (wixdns.net) X X X X X X X X X X X x X X X X X
WordPress (wordpress. com) X X X X X X X X Xx X x X X x X x X
Yahoo (yahoo. com) X X X X X X X X X X Xx x X X X X X
Xinnet (xincache. com) X X X X X X X X X X X x X X X X X

Table 3.3: Table showing the results of our study of algorithm support for popular 20 registrars; only 6 registrars support DNSSEC
on their nameservers with 3 different algorithms, five of which (except 1AND1) also support DNSSEC when the owner is the DNS
operator by allowing the registrant to upload a DS record. 15 registrars support DNSSEC for external nameservers but only 4 of them
support all signing algorithms.
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KSKs are presented and (2) the uploaded DS records will be stored in the database of
the registry, thus the registrar does not need to store them in their name servers.*

To understand how popular registrars support DNSSEC algorithms, we first re-
gister a .com domain via the top 20 popular registrars (the same list as used by
Chung et al. [59], where 50% of all domains are registered) and examine their al-
gorithm support both when the registrar is the DNS operator and when the owner
is the DNS operator; Table 3.3 summarizes the results of this experiment.

There, we find that six registrars support DNSSEC on their default name server,
four more than reported by Chung et al. in 2017 [59]. When focusing on default
algorithms that they support on their name servers, we observe that three registrars
(Alibaba, GoDaddy, NameCheap) use ECDSAP256 and two registrars use RSASHA256,
both of which are “must implement” per the best current practice [47]. However, we
also notice that OVH still uses RSASHA1-NSEC3-SHA1, which is known to be vul-
nerable to a hash collision attack, thus not recommended for signing.

Surprisingly, when the owner is the DNS operator, we find that not all registrars
allow owners to choose any algorithm to sign their records; only four registrars
(Alibaba, Network Solutions, Namebright, and Register.com) support all algorithms.
They even support algorithms 253 (PRIVATEDNS) and 254 (PRIVATEOID), which
are the numbers for private algorithms and will never be assigned to a specific al-
gorithm.

However, the other 11 registrars partially support specific algorithms, which
ultimately restricts the set of algorithms that the domain name owners can use to
sign their DNS records: considering that an algorithm number in a DS record has to
be matched with the algorithm number of the corresponding KSK, limiting the pool
of algorithm numbers of a DS record can have a side effect; domain owners may not
able to freely choose an algorithm for their DNSKEY even if they manage their own
DNS authoritative servers; for example, domain name owners who purchase domains
from eNom cannot sign their DNS records with ECDSA algorithms (i.e, ECDSAP256
or ECDSAP384).°

We also observe that relatively new signing algorithms are rarely supported;
for example, we find that only six registrars among 15 registrars support external
DS records support algorithms based on EADSA (ED25519 and ED448), which were
standardized in April 2017. Overall, these results signify that registrars also have a
key role for a broader adoption of newer signing algorithms.

Registry

To understand if registries have an influence on the deployment of algorithms, we
asked the members of the association of European country code top-level domain
registries, CENTR [90], which algorithms they support. We received responses for

4Registrars may want to check the validity of the uploaded DS record before forwarding it to the
registry, but a previous study showed that registrars rarely do so [59].

SDomain name owners may be able to deploy ZSKs with ECDSA algorithms, and choose a different
algorithm for the KSK; however, this trick is prohibited by RFC 6840 and often causes resolvers to fail
validation [89].
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15 different TLDs, operated by 13 different registries. Additionally, we know that
.com and . net do not restrict the choice of algorithms.

Combining the results, four TLDs support all algorithms. One only denies DS re-
cords with algorithm numbers 252-255, reserved for private algorithms or for other
purposes. Seven TLDs support all recommended algorithms but not all deprecated
algorithms. Five TLDs do not support the latest algorithms ED25519 and ED448 and
one does not support algorithm ED448. Registries that limit the number of suppor-
ted algorithms, always deny GOST. Nine TLDs also do not support algorithms DSA
and DSA-NSEC3-SHA1 and three TLDs do not support RSASHA1 and RSASHA1-
NSEC3-SHAL.

Five registries that do not support ED25519 plan to support it by the end of
2021. One registry stated the lack of debugging tools as a reason why ED448 is not
supported. This likely refers to DNSViz, a popular tool to visualize and test DNSSEC
deployments which did not support ED448 at the time of this study (May 2020) [91].
By the time of writing this thesis (March 2021), DNSViz now supports ED448 as well.

Three registries do not support some of the deprecated algorithms because of
security concerns. Others actively promote the use of certain algorithms. . se gives
financial incentives for signing with algorithms RSASHA256, RSASHA512, ECD-
SAP256, ECDSAP384, ED25519 and ED448 [92] and .nl followed later the same
year. One other registry is promoting the use of algorithms ECDSAP256 and ECD-
SAP384 but is not handing out incentives. Of the operators that allow all algorithms,
one of them has a very liberal policy for what they accept in their zone and thus also
do not want to restrict the selection of algorithms [93].

Takeaways for future algorithms Since all studied DNS software relies on ad-
ditional libraries for cryptographic functions, algorithm support in those libraries is
crucial. OpenSSL and GnuTLS are most used and new algorithms should get imple-
mented in both libraries to become widely supported. Registrars and registries often
are slow when adding support for new algorithms. Operators that want to deploy a
new algorithm should bring their intention forward to encourage registrars and re-
gistries to add support. Both also play a major role when deploying new algorithms,
which we show in the next section.

3.7 ALGORITHM DEPLOYMENT

After software, registrars and registries support an algorithm, it can be deployed at
(i) domain names and (ii) validating resolvers.

3.7.1 Signing

For signing, we focus on the ECDSA-based algorithm ECDSAP256 since it is widely
deployed and our data sets cover its rollout almost entirely. ECDSA algorithms with
curve P-256 and P-384 were already standardized for DNSSEC in 2012. ECDSA has
smaller signatures and keys compared to RSA while achieving a similar security
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Figure 3.2: Domains signed with ECDSA256 and resolvers able validating this al-
gorithm

level. It is less prone to issues during transport and makes DNSSEC less attractive
for Denial of Service Attacks [94].

Slow uptake

Even though signers BIND9 and LDNS already supported ECDSAP256 in 2012, we
only see 21 domains signed in Figure 3.2 in 2015. By the end of 2015, 11K domain
names were signed with ECDSAP256, 98% of them operated by Cloudflare. This
can be explained by the fact that in September that year, Cloudflare started a pub-
lic beta, allowing their customers to enable DNSSEC for their domain names using
ECDSAP256 [95]. In 2016, Knot and the authoritative name server of PowerDNS
started supporting ECDSA as well. Shortly after, the number of ECDSAP256 do-
mains in .com rises significantly, which can be attributed to domains operated by
domainnameshop. com.

Of the domains that were signed with ECDSAP256 by the end of 2015 and still
registered by the end of 2016, 82% were still signed with the same algorithm. Still
in 2014, reports discouraged operators from signing with ECDSAP256 because of
issues with validating resolvers [96]. The fact that the majority of domains did not
move away from this algorithm shows these issues did not affect signed domains in
2015 anymore.

In the same year . nl started supporting ECDSA, but initial uptake was lackluster.
By the end of 2016, ECDSAP256 accounted for just 0.2% of signed . n1 domain names
whereas by the end of 2015, already 1.5% of signed domains at . com, .net, .orgused
ECDSAP256. The most likely explanation for the slow uptake in . nl is that operators
that already had DNSSEC enabled (at that time almost half of domains in .nl) saw
no good reason to switch to a different signing algorithm.

From 2019, ECDSAP256 domains in .com grew three times and .se even 12
times. First, 100K domains get signed with ECDSAP256 at once in January. The
vast majority (99%) of those domain names are operated by Binero, a Swedish re-
gistrar. Also the number of ECDSAP256 domains at . com increases by 26K - also
caused by Binero. The second jump occurs in June. Also in this case, one single
operator is responsible for 99% of new signatures (One.com). These jumps correlate
with the adjustment of the DNSSEC incentives by the Swedish registry. Registrars
already received discounts for DNSSEC deployment [60]. But in November 2018
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Figure 3.3: Share of . se and .nl domains signed with ECDSAP256, by provider size

.se announced that they would adjust their incentives, requiring that domains are
signed with either ECDSAP256 based algorithms, Edward Curve based algorithms
or with RSASHA256 and RSASHA512 (with an adequate key length) [92]. On July 1,
2019, the new incentives came into force.

Large operators

From the preceding analysis, it appears that DNS providers (registrars or third-party
operators) drive adoption. We verify this by grouping domain names by DNS pro-
vider, using the MNAME in the SOA record (previously applied in [60]). Then, we sort
the providers by size in descending order and label the first providers that together
are responsible for 80% of the signed domains as large, the others as small.

In absolute numbers, the large majority of domains are indeed administered by
large providers (90% by the end of April 2020). If we look at the share of domains
per provider group in Figure 3.3, then 52% of signed domains by large providers use
ECDSAP256, compared to 45% by small providers. Small providers, however, adopt
ECDSAP256 faster than large providers. Only after the . se registry changed its in-
centives, large providers caught up. This is also true for .nl, where 20% of signed
domain names at small providers use ECDSAP256, compared to 10% at larger pro-
viders. At .com, .net and .org, ECDSAP256 adoption at small and large providers
have reached similar levels, with a difference of 3% and 1%. The drop in Figure 3.3 in
May 2018 is caused by one provider signing 99K domains with RSASHA256, grow-
ing the total number of signed domains significantly and thus reducing the share of
ECDSAP256 domains.

Algorithm rollovers

For a protocol to achieve algorithm agility it is necessary that deployments can easily
roll from one algorithm to another. To understand if this is also the case in DNSSEC
we check for each day in our data set (a) which domain names are now signed with
ECDSA and not registered a week before (newly registered domains), (b) which were
registered a week before but not signed (newly signed domains) and (c), which do-
mains were signed the day before, but with a different algorithm (rolled domains).
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Figure 3.4: Newly signed with ECDSA per week

Figure 3.4 show that only a minority of domains deploying ECDSA were signed
before. The majority of domains are newly registered or not signed before (69% and
24% of all domains). Occasionally large numbers of domain names roll to ECDSA.
For example, domainnameshop. com rolled 10K domain names from RSASHA256 to
ECDSAP256 in October 2016, and in July 2019 one. com did the same for more than
80K domain names. Algorithm rollovers can cause outages if they are not carried out
correctly and operators might stop signing their domains before moving to ECDSA.
For example, before Binero started signing its . se domains with ECDSA in January
2019, they stopped signing them for more than one month. We see their return in
Figure 3.4 (center) as a spike in newly registered domain names.

Newly signed domains often get signed after changing their DNS operator. We
compared the operator on the day a domain was signed with ECDSA with the op-
erator a week before for domains of .net. 33% of newly signed domains changed
DNS operator just before ECDSA signing was enabled. Operator-change rarely leads
to an upgrade to ECDSA. In less than 1% of all algorithm rollovers operators were
changed at the same time.

Transition at the root

The root zone was signed in July 2010 and two months later 35 TLDs were signed.
From that point on RSASHA256 (8) was the most used signing algorithm and still
is today (Figure 3.5). In October 2013, the first new Generic Top Level Domains
(gTLDs) were delegated [97]. For new gTLDs, DNSSEC deployment is mandat-
ory [98] and the majority choose RSASHA256. In 2018 we see the first TLD signed
with ECDSA, three years after we see the first second level domain signed with this
algorithm. Today, only 14 TLDs rely on ECDSA making it the least used algorithm
at TLDs.

All of the TLDs that are now signed with ECDSA are country code TLDs (ccTLD).
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Figure 3.6: Overall progression of DNSKEY algorithm support in DNSSEC validating
resolvers, measured via RIPE Atlas

Eight ccTLDs rolled from RSASHA256, even though that algorithm is still considered
secure. Two TLDs rolled from algorithms that are not recommended anymore. This
indicates that security has only played a minor role when moving to ECDSA.

The main barrier to adoption of ECDSA for TLDs is likely the complexity of
algorithm rollovers. Since April 2017, more than 90% of TLDs are signed and since
the total number of TLDs did not increase since then, the only way of adopting
ECDSA is by algorithm rollover. Since 2010, however, only 68 algorithm rollovers
were carried out in total, demonstrating reluctance at TLD operators.

3.7.2 Resolver Validation

We test resolver validation support for DNSKEY algorithms using RIPE Atlas, by send-
ing two DNS queries for each DNSKEY algorithm: one for a validly signed domain
name and one with a broken signature. A resolver is considered as validating a cer-
tain algorithm when an answer is returned for the validly signed name (return code
0) and an error response for the invalid name. If responses containing an answer are
received for both names, the resolver is considered not validating. All other com-
binations are considered resolver failures for the specific algorithm. At the time of
writing only two resolvers have this failure; Google Public DNS resolver [99] and
the OpenDNS resolver fail on RSA-MD5 (1).

The DNS zones for all the DNSKEY algorithms are subzones of the domain name
rootcanary.net [100]. The DS record for . net uses DS algorithm SHA-256 which
resolvers minimally need to support to be able to validate any of our subzones for
the DNSKEY algorithms. Therefore all subzones for the DNSKEY algorithms, as
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Figure 3.7: Validation at internal, forwarding and external resolvers

well as the rootcanary.net domain, also use DS algorithm SHA-256 in the secure
delegation.

Likewise, the root and .net (and rootcanary.net) are signed with DNSKEY al-
gorithm RSA-SHA256 which thus needs to be minimally supported to validate any
of our subzones. We measure DS algorithm support by testing for DNSKEY algorithm
RSA-SHA256 in subzones using the different DS algorithms in the secure delega-
tion. According to [57] (section 5.2) unsupported DS algorithms should be treated
as non-existent, so if an otherwise validating DNSSEC resolver is detected to be not
validating with a zone which uses a specific DS algorithm, than that resolver is con-
sidered to not support that DS algorithm. This does not work perfectly; The Google
Public DNS Resolver validates a zone for which it supports the DNSKEY algorithm
and for which it detects a DS record in the parent with a corresponding keytag, even
when it does not support the DS algorithm.

DNSKEY algorithm support in validating resolvers

Figure 3.6 shows the overall progression of DNSKEY algorithm support in DNSSEC
validating resolvers measured via RIPE Atlas. The amount of support per algorithm
is relative to the number of resolvers capable of validating RSA-SHA256; the DNSKEY
algorithm which needs to be supported minimally for DNSSEC validation. A few al-
gorithms are left out as they have largely the same progression as algorithms which
are shown; DSA-NSEC3-SHA1 support is identical to DSA; RSASHA1-NSEC3-SHA1
support is identical to RSASHA1; RSASHA512 support is identical to RSASHA256 at
100% throughout the measurement period; ECDSAP384SHA384 support is identical
to ECDSAP256SHA256.

The dent in ED25519 support and the slight bumps in RSAMD5, DSA and ECC-
GOST support are due to a bug in Cloudflare’s DNSSEC validation which was dis-
abled for all (freshly signed) domains in August 2018. The erratic progression in
April 2019 was due to DNSSEC issues with DNSSEC validation in Google Public
DNS resolvers. This impacted our measurements more severely than real users ex-
perienced, as Google monitored and debugged their DNSSEC validation with the
help of our domains and measurement results, where they had mitigations for other
domains. The decrease of ED25519 support in March 2020 is relative. At that time
there was an increase of new RIPE Atlas probes with DNSSEC validating resolvers,
however without ED25519 support.

Figure 3.6 also has vertical markers indicating when algorithm ED25519 and
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ED448 gained support in software, libraries and distributions. This allows us to
determine which support in software, library or distribution caused which uptake
of DNSSEC validation.

The uptake of ED25519 and ED448
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Figure 3.8: Uptake of ED25519 and ED448 validation

At the time of writing, on RIPE Atlas, almost 70% of the DNSSEC validating
resolvers support ED25519, and almost 17% supports ED448. To understand who
supported these algorithms first, we also run measurements exposing the IP address
seen at the authoritative (0-o.myaddr.1.google.com TXT and whoami . akamai.net
A amongst others [101]). Those measurements are also scheduled for all resolvers on
all RIPE Atlas probes and anchors, for every hour. This allows us to identify resolvers
located in the same network as the probe (internal), resolvers that are in the same
network but forward their queries (forwarding) and resolvers that are located in a
different network (external). Whereas internal resolvers are mostly resolvers of local
networks or ISPs, external resolvers are the ones run by large DNS providers like
Google or Cloudflare.

In Figure 3.7 (left) we can see that internal resolvers adopt ED25519 slower than
external resolvers (Figure 3.7 right). We therefore zoom in on external resolvers.

Figure 3.8 shows the top Autonomous System Number (ASN) associated with
those IP addresses as seen at the authoritative for resolvers that support validating
ED25519 and ED448 respectively. Looking at top ASNs, we notice that the resolv-
ers within ASNs that support ED448, do also support ED25519, but not vice versa.
Moreover, except for AS42 (PCH/Quad9), all other top ASNs that support ED448
started supporting both Edwards-Curves simultaneously. The simultaneous sup-
port of ED25519 and ED448 might indicate software using cryptographic libraries
that support both, such as OpenSSL since September 2018 or GnuTLS since Feb-
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ruary 2020 (used by Unbound and Knot Resolver and optionally with PowerDNS)
opposed to crypto libraries that support only one of them, such as libsodium and
libcafe (used with PowerDNS).

AS42 (Quad9) is the only one that supported ED25519 first (already noticeable
since January 2018) and later gained support for ED448 (in May 2019). We know
from private communication that AS42 uses a mix of PowerDNS and Unbound. This
suggests a deployment of PowerDNS linked against libsodium and Unbound linked
against a recent OpenSSL since May 2019. The number of resolvers from AS42 on
RIPE Atlas supporting both algorithms is twice the amount of the ones supporting
only ED25519, suggesting that on RIPE Atlas we hit about 50% PowerDNS and 50%
Unbound instances.

Takeaways for future algorithms Operators only move to a new algorithm if
there is an incentive, e.g. a smaller signatures or a financial reward. Security threats
encourage a rollover only if the threat is imminent. This is the most important
takeaway if new algorithms should be supported widely. Algorithm rollovers are
still perceived as dangerous. If not only new domains should deploy a new algorithm
but also already signed domains, then their operators need to have tools and docu-
mentation at hand to have the confidence to carry out such an algorithm rollover.
The number of resolvers validating a new algorithm rises gradually with every OS
upgrade if a new algorithm is implemented in the standard cryptographic librar-
ies and resolvers. However, if a new algorithm should gain wide support fast, then
operators of large resolving services can speed up its adoption.

3.8 ALGORITHM DEPRECATION AND REPLACEMENT

DNSSEC algorithms can also be deprecated. This happens when the IETF publishes
a new standard, advising against the use of an algorithm [47]. In practice, zones
should not sign with an algorithm that is not recommended, but a resolver should
still treat signatures as secure. Only if an algorithm must not be used anymore,
validating resolvers must treat signed RRs as unsigned.

Since the standardization of DNSSEC, three algorithms must not be used to sign
zones anymore: DSA, DSA-NSEC3-SHA1 and ECC-GOST. For security reasons, two
more are not recommended for signing anymore: RSASHA1 and RSASHA1-NSEC3-
SHA1. Additionally, SHA-1 and GOST should not be used when creating DS records.

3.8.1 Signing

The cryptographic hash function SHA-1 is part of four algorithms standardized for
DNSSEC. DSA/SHA-1 and RSASHAT1 are part of the original DNSSEC specifica-
tions [102], DSA-NSEC3-SHA1 and RSASHA1-NSEC3-SHA 1 were standardized three
years after. Since 2010, NIST disallows use of SHA-1 for governmental agencies [103].
Attacks in 2015 [104] (referred to as SHAppening), 2017 [105] (SHAttered) and 2019 [106]
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Figure 3.9: Deployment of deprecated algorithms

(Birthday Attack) undermined its security further. Also in 2019, RFC 8624[47] ad-
vised against using DSA/SHA1 and DSA-NSEC3-SHA1 for signing and validation
and recommends against signing with RSASHA1 and RSASHA1-NSEC3-SHA1. Re-
solvers should still validate the latter. RFC 8624 now also strongly advises against
using SHA-1 for creating DS records. In January 2020, ICANN also asked operators
to no longer use SHA-1 based signing algorithms [107].

We analyze the effect of the attacks on SHA-1 and the official deprecation of re-
lated algorithms. Already in 2015 and at the beginning of our measurements, fewer
than 400 domain names in our data set were signed with DSA and DSA-NSEC3-
SHA1 and this halved by May 2020. We therefore focus on signing algorithms
RSASHA1 and RSASHA1-NSEC3-SHA1 (not recommended) and DS algorithm SHA-
1 (must not be used).

Second level domain names

Figures 3.9a and 3.9b show the number of domains using DSA and DSA-NSEC3-
SHA1. RSASHAI1 is the less common algorithm of the two, and at the beginning
of our measurements 27K domain names in .com, .net or .org used it for signing.
The impact of the published attacks is visible. After SHAppening, the total number of
domains signed decreased by 6% within one year and after SHA#tered by another 20%
. End of January 2019, however, RSASHA1 sees a revival. In April the same year,
another attack was announced and in June RFC 8624 recommends against using
RSASHAT1 for signing. Half a year later the share of domains decreased again by
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25%. Since end January 2020, however, the total number of domains is rising again.
More than 99% of these domains are operated by NameBright, which seem to add
the same DNSKEY with this algorithm to each domain by default without actually
signing the other records.

In contrast RSASHA1-NSEC3-SHA1 still remains popular. The number of do-
mains signed with RSASHA1-NSEC3-SHA1 is increasing in absolute numbers in the
first 3 years of our measurements. At its peak in May 2019, 500K .com domain
names are signed, a growth of 50% since the beginning of our measurements. In
relative numbers, however, the share of signed domains decreases by 37%. In June
2019, RFC 8624 was published and until ICANN’s announcement not to use SHA-1
anymore, the usage decreases by 18%. Since the announcement, the share dropped
by another 8%. By May 2020, 25% of signed domains rely on RSASHA1-NSEC3-
SHA1. For 90% of these domains, only three providers are responsible: ovh.net,
transip.net and anycast.me.

Of the domains that were signed with RSASHA1-NSEC3-SHA1 at its peak and
that were still registered one year later, 93% were still signed with the same al-
gorithm. 6% were unsigned and only 1% were signed with a different one. For do-
mains signed with RSASHA1, 36% are unsigned and only 10% of the signed domains
have rolled to another algorithm a year after its high. This indicates that the decline
of both algorithms can be linked more to canceled domains or domains that turned
off DNSSEC than to algorithm rollovers.

TLDs

Early deployments at TLDs preferred mostly RSASHA1 but RSASHA1-NSEC3-SHA1
and especially RSA/SHA-256 gained ground fast (see Figure 3.5). RSASHA1-NSEC3-
SHAT1 reached its highest deployment in February 2018 and shrinks continuously
since then. Although hardly visible, in April 2020, 16 TLDs moved away from sign-
ing with RSASHA1-NSEC3-SHA1. These, however, all belong to the same provider.

DS algorithms

SHA-1 is also used to create DS records that link the KSK of the child with the ZSK
of the parent. Operators can choose between four different hash algorithms (see
Table 3.1). At .nl, DS records are created by the registry, resulting in SHA-256 DS
records only. At the other TLDs all four algorithms are seen.

Figure 3.10a shows the number of domains that publish a DS with SHA-1 only.
Right after the attack on SHA-1 end of 2015, the number of domains in . com using a
SHA-1 DS halves. This was caused by domains operated by OVH transitioning from
SHA-1 to SHA-256. By May 2020, domains in .com, .net and .org mostly moved
away from SHA-1 - more than 75% publish a SHA-256 DS only. At . se, 60% publish
both. 80% of . com domains that also publish DS records with SHA-1 belong to only
5 operators.

At the root only SHA-1 and SHA-256 are supported [108]. Figure 3.10b shows,
only in the first days of DNSSEC deployment SHA-1 was more often used than SHA-
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Figure 3.10: DS digest algorithm

256. After new gTLDs are added, TLDs only publishing a DS with SHA-256 become
the majority. In June 2015, this changes after TLD operator AriDNS carries out a
KSK rollover for its new gTLDs and additionally adds a DS record with SHA-1. From
then on, the majority of TLDs have DS records with both algorithms. In 2019, and
around the time another attack against SHA-1 was published, one operator removed
additional SHA-1 DS records. By the end of May 2020, 59% of TLDs still have a DS
record with SHA-1 published in the root.

3.8.2 Resolver Validation

Algorithms RSAMDS5, DSA and DSA-NSEC3-SHA1 must not be considered secure
by resolvers [47]. GOST may still be validated.

Figure 3.6 shows support for algorithms RSAMDS5 and DSA is declining even be-
fore they were officially obsoleted in June 2019. Support declines more rapidly after
publication of the RFC. Internal resolvers deprecated algorithms slower than for-
warding and external ones, but they are catching up (Figure 3.7a). At the beginning
of our measurement 60% still supported RSAMDS5, three years later this is only 36%.
Only very few domains are affected: already at the beginning of our active measure-
ments in 2015, only 300 domains were signed with these algorithms. By May 2020,
only 180 are left.

Support for ECC-GOST, although marked as ‘MAY’ in RFC 8624 for DNSSEC
Validation, is also declining and is currently the least supported DNSKEY algorithm
on RIPE Atlas. Also here, the publication of RFC 8624 [47] accelerates deprecation
further. Only 23 domain names in our data set are signed with GOST, and will now
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be considered insecure by the vast majority of resolvers.

RSASHA1-NSEC3-SHAL1 is deprecated for signing but not for validation and re-
solvers must still be able to validate it. Figure 3.6 shows that 96% of resolvers in our
data set still do so.

Implications for future algorithms If in the future insecure algorithms should
be deprecated fast then DNS software and registration channels need to remove
support as well. Removing support at signers makes it harder for operators to sign
their domains with deprecated algorithms. Also, if resolvers stop validating these
algorithms, operators do not have an incentive to use them for signing. At the same
time, operators, again, should be confident rolling their algorithm. Only then, the
insecure algorithm is actually replaced with a more secure one.

3.9 CONCLUDING REMARKS

At the start of this chapter, we asked: Has DNSSEC achieved algorithm agility? Based
on our analysis, we conclude, rather unsatisfactorily: only partially. The introduc-
tion of ECDSA has shown that new algorithms can get standardized, gain wide
support in software, registrars and registries, resolvers and get deployed at domain
names. But only over the better part of a decade. The example of ECDSA, but also
of other algorithms, show that the DNSSEC protocol itself is rarely the obstacle but
rather the slow adoption at registrars, lacking of-the-shelf software support, and
hesitant DNS operators. Financial incentives may help, though.

However, when replacing a deprecated algorithm with a new one the DNSSEC
protocol appears to be a barrier. Algorithm rollovers are still rarely carried out, likely
because of their complexity, but also because of lacking incentives. Most used al-
gorithms are still secure enough. On the upside, TLD operators slowly seem to ex-
ercise algorithm rollovers more often. On the down side, the root zone only carried
out its first KSK rollover in 2018 [15], with no algorithm rollover in sight.

We can also see similarities with TLS. Kotzias et al. [44] showed that also in TLS,
transition to more secure versions takes time. TLS 1.0 was used for more than 10
years, even though alternatives existed. Also insecure ciphers are still very common,
having the goal to preserve backwards compatibility. This has not been an issue in
DNSSEC so far, since only few deployed algorithms have been deprecated. This may,
however, become a challenge in the future. In TLS, large operators (browser vendors
in this case) play an even bigger role and have drastically reduced the time for new
algorithms to be deployed. A more centralized DNS could have a positive impact on
algorithm transition as well, but with the downside of more concentration of power
in the hands of a few big cloud-based operators. Finally, as in TLS, the publication of
new attacks can influence algorithm transition, but their impact varies and cannot
be predicted.

Looking into the future, the threat of quantum computers and Shor’s algorithm
appear on the horizon [37]. Based on our observations we conclude that quantum-
safe algorithms will only be deployed widely, (i) if they are well supported in soft-
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ware and the registration channel, (ii) operators actually feel the need to move (e.g.
because current algorithms are broken or through financial incentives), and (iii) al-
gorithm rollovers can be carried out easily. In any case, our results show that we
need to starting thinking about the transition to algorithms that can withstand the
threat of quantum computers now, as the introduction of new algorithms in DNSSEC
takes years.

In the next chapter, we study one main component of the DNS that we left out so
far: the root. We study the first ever root KSK rollover - a prerequisite for algorithm
rollovers at the root.
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In the previous chapter, we discussed the main problems when deploying new al-
gorithms at TLDs and second-level domain names. There, we found that algorithm
rollovers are one of the main challenges that hinder the deployment of new al-
gorithms. In this chapter, we turn our attention to the root. Here, we study the first
ever root KSK rollover. A KSK rollover is a prerequisite for rolling the algorithm at
the root. A successful root KSK rollover would show that the DNS ecosystem would
have reached an important milestone on its way to deploying a new algorithm at
the root as well. In this chapter, we identify which barriers still exist and propose
measures to improve future KSK and algorithm rollovers. The root rolled its KSK
in 2018 and we published our study covering this event at an academic conference
in 2019 [15]. There, it also received the Distinguished paper award. Furthermore,
some of the measurements of this study were published live during the rollover it-
self. After the rollover, we presented our results also at other venues (RIPE 79 [109]
and NLUUG [110]).
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4.1 INTRODUCTION

In the previous chapter, we have identified algorithm rollovers as one of the major
barriers for moving to new algorithms in DNSSEC. Since the security of DNSSEC
relies heavily on the security of the root it is very important that also the root can
transition to more secure algorithms in the future.

Since 2010, the root of the DNS is secured with DNSSEC. As of writing this thesis,
the root is still signed with the same algorithm with which it was signed more than
10 years ago: RSASHA256. This also means that we cannot observe the effects of an
algorithm rollover directly.

However, in 2018 and eight years after the root was secured with DNSSEC the
KSK was replaced for the first time, following established policy that requires regular
rollovers of the root KSK [111]. The steps necessary to replace an algorithm are
similar to the steps necessary to replace the KSK at the root. If the replacement
of the KSK would fail, then likely an algorithm rollover would fail as well. In this
chapter, we measure the root KSK rollover, assessing whether it was a success or
not.

The Root KSK Rollover (hereafter “the rollover”), required years of preparation
and was considered risky. Stakeholders expected, in the worst case, millions of In-
ternet users (up to 13%) to become unable to resolve a domain name [112].

The Internet Corporation for Assigned Names and Numbers (ICANN), the or-
ganization responsible for coordinating and rolling the key, collected feedback from
the community before the rollover. Two risks were most feared: (i) resolvers that
would not update their local copy of the key [112] and (ii) resolvers that could not
retrieve the key material from the root because it might exceed a packet size that
cannot be safely handled by some networks (we explain these two risks in more
detail in Section 4.2).

Leading up to the initially scheduled date of the rollover in October 2017, ICANN
and its stakeholders carried out measurements to estimate the potential impact of
both risks and considered the former acceptable. The actual impact of the former,
however, was still hard to estimate. One of the reasons was the introduction of a
new protocol that enabled resolvers to signal their configured key to the root server
operators (RFC 8145 [113], we explain the protocol in more detail in Section 4.3.1).
This protocol signaled that a significant number of resolvers only had the old key
configured and this led to the decision to postpone the rollover [114]. Rescheduling
the rollover gave researchers the opportunity to understand which resolvers sent
this signal and estimations were that only a few users would be negatively affected
by the rollover [115]. This gave ICANN the confidence to move forward with the
rollover. The actual rollover was carried out on October 11, 2018. In their March
2019 review of the rollover, ICANN concluded that “there were no significant outages”
and that the rollover “was an overwhelming success” [116].

In this chapter we provide a comprehensive analysis of the rollover, starting
from the publication of the new key in July 2017 until the removal of the old key in
March 2019. We use data that was actively and passively collected at key points in
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Figure 4.1: Time-line of the Root KSK rollover

the DNS ecosystem over the entire duration of the rollover. We, as members of the
DNS community, actively supported the rollover process with timely data analyses.
This provides us with a unique perspective that covers multiple vantage points of
the rollover.

The main contributions of this chapter are that we:

(i) Provide the first in-depth analysis of the root KSK rollover, a unique event
with an impact on the global Internet;

(if) Cover the event from multiple perspectives, that of root operators, of resolver
operators, and end users;

(iii) Validate ICANN’s conclusion that the event was a success and show that,
while this conclusion generally holds for end users, there are observable chal-
lenges at all stages of the rollover;

(iv) Perform an in-depth analysis of the causes of the challenges seen at all stages
of the rollover;

(v) Give recommendations for improving telemetry, processes for root key man-
agement and future rollovers.

In the remainder of the chapter, we outline the stages of the root rollover and the
risks involved (Section 4.2). Next, we introduce our measurement methods and data
(Section 4.3). Then, we split the analysis of the rollover into three sections, before,
during and after the rollover (Section 4.4). In Section 4.5 we discuss related work
and in Section 4.6 we provide recommendations for better telemetry and rollover
process improvements based on our analysis. In this section, we also discuss the
implications of our findings on a future algorithm rollover. We conclude the chapter
in Section 4.7. Here, we also discuss what our results mean for future algorithm
rollovers at the root.

4.2 THE ROOT KSK ROLLOVER

It is considered good operational practice that operators of zones signed with DNSSEC
be able to periodically change, or “roll,” the zone’s cryptographic keys. A rollover
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might be necessary in case of a security breach, in case operators want to upgrade
to a new algorithm, or because they follow a key management policy [117]. The
root zone’s ZSKs are rolled every calendar quarter [118]. When the root zone was
first signed in 2010, it was generally accepted that the KSK would be rolled after a
period of 5 years [111]. The parties involved in operating the root zone began dis-
cussing and planning a KSK rollover in 2013, but this work was put on hold when
the NTIA announced its intention to transition oversight of the Internet Assigned
Numbers Authority (IANA) functions to the Internet community [119]. Work on
the rollover resumed in 2015, culminating in a 2016 Rollover Design Team report
[112]. ICANN and Verisign, in their respective roles as the IANA Functions Oper-
ator and Root Zone Maintainer, used the design team report to develop a final set
of operational plans [120]. These plans describe the process for replacing the old
KSK, further referred to as KSK-2010, with a new KSK, now referred to as KSK-2017.
Figure 4.1 shows a timeline of each of the phases of the rollover as described in the
operational plan. We have highlighted six key events in red labeled I - VI. These six
events are the focus of this study. In the rest of this section, we explain the risks as
identified in the design team report and specific considerations that stem from the
special role of the root’s KSK as a trust anchor.

Risks during the rollover

The design team report [112] identifies two major risks: validating resolvers that
are unable to configure the new KSK as a trust anchor, and the increase in response
size of the DNSKEY RRset at certain stages of the rollover process.

DNSKEY RRset changes Resolvers need a copy or a hash of the root KSK, and
to configure it as a trust anchor. Some modern resolvers, e.g. BIND, ship with the
current root KSK configured as a trust anchor. Thus, resolvers shipped with only
KSK-2010 need a mechanism to fetch KSK-2017 before the rollover. If this does not
occur, these resolvers fail validation as soon as they need to validate a signature
signed with KSK-2017, when the root zone is published with its DNSKEY RRset signed
by KSK-2017 (IV in Figure 4.1).

Resolvers that receive a DNSKEY RRset without a key that matches their trust
anchor may start sending extra DNSKEY queries to the root. There are two reasons
for this: First, some resolver implementations are designed to retry failures, includ-
ing validation failures, at some or all of the available authoritative name servers.
Second, resolvers typically cache such a failure for a short time only (so-called neg-
ative caching). Once the cached failure expires, the process starts anew. Negative
caching times are typically much shorter than the TTL of the root DNSKEY RRset
(currently 48 hours).

Clients relying on resolvers with an incorrectly configured trust anchor may
receive responses with the SERVFAIL error code because the resolver failed to per-
form DNSSEC validation. ICANN’s KSK rollover design team expected the number
of resolvers that could not update their trust anchor to be low [112]. This degree of
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Figure 4.2: DNSKEY response sizes during the rollover

confidence was based on the RFC 5011 mechanism implemented by most resolvers
and that we describe in the next section. In Section 4.4.2, we measure the actual
impact of the rollover on resolvers and clients.

Response size changes Due to the KSK/ZSK split, the size of most responses re-
mains the same during the KSK rollover. Only the size of a DNSKEY response changes.
Figure 4.2 illustrates the sizes of various DNSKEY responses that occur throughout
the rollover process, varying from 864 to 1,425 octets. The sizes shown in the figure
include the question and standard EDNSO data. Some root servers have deployed
DNS cookies, which adds another 28 octets to the sizes shown. These response sizes
can exceed the Maximum Transmission Unit (MTU) of some networks, which can
cause fragmentation of UDP packets. Firewalls and other middle-boxes sometimes
block fragmented packets [121], [122], which can hinder resolvers when trying to
receive the DNSKEY record set and thus make it impossible for them to validate sig-
natures. The measurements carried out by ICANN and the community leading up to
the rollover indicated up to 6% of resolvers could be affected by this problem. These
serve less than 1% of users and most do not perform DNSSEC validation [112]. Root
servers may also receive an increased number of ICMP packets signaling the packet
size exceeds the network’s MTU. Clients relying on these resolvers could experi-
ence an increased response time or receive a DNS SERVFAIL response. We study the
impact of increased response sizes during the revocation in Section 4.4.3, when the
highest packet size during the rollover process occurred.

Updating trust anchors

DNSSEC allows validators to automatically update their trust anchors through an
in-band mechanism in the DNS, known as RFC 5011 [123], which works as follows.
At the start of a rollover, the new key (KSK-2017, introduced at I) is added to the
DNSKEY RRset, but the RRset is only signed with the then current trust anchor (KSK-
2010). This signals to resolvers that support RFC 5011 that they should start the
process of accepting the newly introduced key as a trust anchor. Acceptance is not
effective immediately; instead, a hold-down timer starts, lasting 30 days. Only if the
resolver has seen the new key consistently throughout the hold-down period will
it accept the new key. This prevents malicious actors who have gained access to a
trust anchor from instantly injecting a new trust anchor. Once the new trust an-
chor comes into effect, the old one may be revoked. In RFC 5011 this is achieved
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by publishing a DNSKEY RRset in which the old key is marked with a revocation flag
(at V). Again, after a 30-day hold-down the trust anchor is then removed by resolv-
ers. Most resolver software (e.g. BIND, Unbound and Knot) supports RFC 5011 and
among popular implementations, only PowerDNS lacks support. The widespread
support of RFC 5011 gave the Rollover Design Team confidence that most resolvers
would pick up the new key on time [112].

This KSK rollover was the first real test of RFC 5011. Since the publication of
RFC 5011 in 2007, new technologies have been introduced that were not considered
back then. This includes widespread use of virtual machines and containers, config-
uration management tools such as Puppet and Ansible, and DNS resolvers running
on inexpensive, and hard-to-update home and small office routers.

Where RFC 5011 specifies an in-band approach, an out-of-band approach is dis-
cussed in RFC 7958 [124]. In this approach, resolvers and other applications can re-
trieve keys and/or hashes directly from the website of IANA as an XML document.
Applications can use various approaches to validate correctness of this information,
e.g., trusting protections provided by TLS or a digital (PGP) signature file, published
separately. The Unbound resolver software uses this mechanism in situations when
updates via RFC 5011 fail [125].

With both mechanisms, it is not possible for third parties to determine which re-
solvers have configured KSK-2017. To address this, new resolver software supports
protocols that try to provide this insight. We use these protocols to measure the de-
ployment of KSK-2017 in Sections 4.4.1 and 4.4.3 and discuss their use in Section 4.6.

4.3 DATASETS AND METHODOLOGY

We use a broad set of passive and active measurements at different vantage points
in the DNS hierarchy to cover the most critical phases of the rollover. We discuss
these datasets and how we use them to analyse the rollover below. We also make
the processed data sets and the accompanying scripts for each figure available [126].

4.3.1 Passive Measurements

The DNS root system has 13 root server identities, each of which is run by one
operator (see for a full list Table 2.2 in Chapter 2) [25]. At various stages of the
rollover, we use passive datasets from select root servers or aggregate data for all
of the root servers from a public repository. More specifically, we use the following
datasets:

Root queries The Domain Name System Operations Analysis and Research Cen-
ter (DNS-OARC) collects DNS traces from various name servers including the root
system. This includes their well-known annual Day-in-the-Life (DITL) datasets [127].
Given the significance of the KSK rollover, DNS-OARC co-ordinated a DITL data
collection from root operators spanning an 82-hour window around the dates of
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the actual rollover. We utilized this data, available to researchers and DNS-OARC
members, to provide a holistic view of root query traffic during the rollover.

Our analysis, however, extends to well before and after the rollover. To sup-
port this, we make use of query datasets collected at three root servers, A, B and J.
This non-public longitudinal data, spanning 2017-2019, was made available by Ver-
isign (A/J Root) and the University of Southern California’s Information Sciences
Institute (B Root). These datasets are used throughout the analysis in Section 4.4
whenever we require detailed information about specific resolvers that exhibit an-
omalous behavior. Note, however, that other root servers might show different
query patterns [128].

RSSAC measurements The ICANN Root Server System Advisory Committee
(RSSAC) [129] advises ICANN about operational matters relating to the DNS root
system. RSSAC defined a set of metrics that all root server operators are expected to
publish on a daily basis [130]. The resulting data is published as YAML files, access-
ible through a public GitHub repository [131], with data going back to 2013. In this
paper, we make use of the RSSAC002 data on traffic sizes to the root, as a proxy for
DNSKEY queries in Section 4.4.3 and to estimate the impact of the increased DNSKEY
RRset size in Section 4.4.3. The data is available for all root servers, except G Root.

Trust anchor signals RFC 8145 [113] describes a protocol allowing DNSSEC val-
idators to signal the keys in their trust anchor set. RFC 8145 signals are 16-bit “key
tags,” encoded as hexadecimal values in DNS queries. KSK-2010 has key tag 19036,
or 4a5c in hexadecimal. KSK-2017 has keytag 20326, or 4f66 in hexadecimal. A val-
idator that implements RFC 8145 periodically sends a query whose first label starts
with the string “_ta-" followed by a hyphen-separated list of hexadecimal key tag
values. It then appends the name of the zone to which the keys belong.! Table 4.1
shows root zone trust anchor signal strings and their meanings.

In this paper we use two RFC 8145 data sets: (i) all trust anchor signals received
by A, B and J Root from up to 100,000 distinct IP addresses daily, and (ii) trust anchor
signals provided to ICANN by most of the root server operators from up to 200,000
distinct IP addresses daily; ICANN provided us with a subset of this data covering
February 1% to March 29, 2018.

4.3.2 Active measurements

Resolver state By using only data collected at the root, we miss the perspective
of the client. To add this perspective, we rely on public measurements [100], that
make use of the RIPE Atlas measurement network [69] (see for more details on RIPE
Atlas Explainer 2). We send our measurements through the probes’ recursive resolv-
ers, pre-configured by the probe owner or learned through DHCP. This allows us
to observe the transition from KSK-2010 to KSK-2017 (event IV) and the revocation

n case of the root zone there is nothing to append. An example non-root zone trust anchor signal
with appended zone is _ta-4b61.dlv.isc.org.



68 KEY EXCHANGE AT THE ROOT

Query String Which trust anchor(s)?

_ta-4abc Only KSK-2010

_ta-4a5c-4f66 Both KSK-2010 and KSK-2017

_ta-3039 Has a non-IANA trust anchor

_ta-4a5c-4f66-8235 KSK-2010 & -2017 and a non-IANA trust an-
chor

Table 4.1: Root zone RFC 8145 trust anchor signals

DNS response code State
Valid Signature = Bogus Signature
NOERROR NOERROR insecure
NOERROR SERVFAIL secure
SERVFAIL other bogus

Table 4.2: Combination of response codes indicating the state of the measured re-
solver

of KSK-2010 (event V) from the perspective of resolvers and measure whether they
continue to validate DNSSEC signatures successfully. The public measurements we
leverage consist of two queries sent every hour and check whether resolvers val-
idate correctly. The first query asks for the A record of a domain with a valid sig-
nature, the second for a domain with a bogus signature. The response codes of
both measurements can be combined (see Table 4.2) to establish if a resolver (i) does
not validate DNSSEC signatures (state insecure), (ii) validates signatures correctly
(state secure) or (iii) fails to validate (state bogus). Secure resolvers changing state
to insecure or bogus at any stage of the rollover may be indicative of that resolver
experiencing problems. In addition to the public measurements, we schedule our
own measurement which queries each resolver for the DNSKEY RRset of the root, to
measure uptake of KSK-2017 during the rollover.

Using 10,004 RIPE Atlas probes (all probes available at the time of our meas-
urement) and their recursive resolvers gives 18,277 vantage points (VPs), located in
3,647 autonomous systems (ASs). To find how many resolvers these VPs cover, we
send hourly queries for a domain under our control, using the probe ID and a random
string as a sub-label to avoid caching. Our authoritative name server responds with
the IP address of the resolver that served the query. Using this method, we observe
35,719 upstream IPs located in 3,141 ASs over the period in which we conducted the
measurement.

Root sentinel As discussed, RFC 8145 allows resolvers to signal which trust an-
chors it uses to upstream authoritative name servers. What was lacking, however,
is a way for resolver users and other third parties to actively ask resolvers which
trust anchors they use. This led to the introduction of RFC 8509, the so-called “Root
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Query String Is <KEY-TAG> a trust anchor?
Yes No

root-key-sentinel-is-ta-<KEY-TAG>  Valid response SERVFAIL
root-key-sentinel-not-ta-<KEY-TAG> SERVFAIL Valid response

Table 4.3: RFC 8509 Root Sentinel queries

Sentinel” [132]. Given that the specification was only finalized in December 2018, it
could not reliably be used to monitor the root KSK rollover (although we do observe
early implementations). We do, however, include Root Sentinel measurements to
study adoption of this new form of telemetry and to observe the revocation of KSK-
2010 in 2019 from the perspective of resolvers.

The Root Sentinel is an active measurement mechanism. A client can send two
special queries to resolvers to ask what trust anchors they currently have to validate
DNSSEC responses. The first query type allows a client to ask if a DNSKEY with a
certain key tag is a trust anchor, the second type allows a client to ask the inverse
(whether a specific DNSKEY is not a trust anchor). The resolver returns a valid re-
sponse to the first type if the specified key is a trust anchor, and a SERVFAIL error if
it is not. For the second query type, the opposite behavior applies. Table 4.3 shows
what the queries look like. Note, while RFC 8145 uses hexadecimally encoded key
tags, RFC 8509 uses decimal key tags. Thus, to query for the presence of KSK-2010
and KSK-2017, ...-is-ta-19036 and ...-is-ta-20326 are used.

Our goal is to examine (i) how many resolvers support Root Sentinel queries, and
for those that do, (ii) if they correctly have the new key (KSK-2017) and remove the
old key (KSK-2010) when it is revoked (event V). To do so, we set up a domain under
our control. The name server for this domain is configured to return a DNSSEC-
signed A record for Root Sentinel queries. We then use RIPE Atlas to issue four
Root Sentinel queries (i.e., each of the two Root Sentinel queries for the old and
new key) under our test domain. For this measurement, we extended our coverage
of the global resolver population by including additional measurements using the
Luminati proxy network [133]. This gives us more visibility in residential networks.
Luminati is a paid HTTP/S proxy service enabling clients to route traffic via the
Hola Unblocker Network. Luminati currently provides over 187 million potential
exit nodes. When receiving an HTTP request, exit nodes send a DNS request to
their resolver and then issue the HTTP/S request. This allows us to measure resolver
behavior. For more details on using Luminati for network and DNS measurements,
we refer to Chung et al. [134], [135].

4.3.3 Ethical Considerations

The measurement data collected at the root of the DNS consists of aggregate data
(RSSACO002), telemetry signals (RFC 8145), DNSKEY queries and aggregates of popular
queries for telemetry sources identified as showing non-standard behavior. Only
in rare cases do we identify specific resolver operators (not end users) so we can
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contact them in order to gain an understanding of unexpected resolver behavior
(Section 4.4.3).

Most of our active measurements leverage well-established public measurement
platforms, such as RIPE Atlas, where strict guidelines exist. The exception to this
are our Luminati measurements. To use the Luminati service, we first note that we
paid the operators of Luminati for access, and strictly follow their License Agree-
ment [136]. The owners of exit nodes agreed to route Luminati traffic through their
hosts. Furthermore, we took great care to ensure that all traffic only flowed toward
domains under the authors’ control, which serve empty web pages. Given that we
are only interested in information about the RFC 8509 behavior of DNS resolvers,
we discard any end user IP addresses from our logs.

4.4 ANALYSIS

The next sections discuss the most relevant events of the rollover (I - VI in Fig-
ure 4.1), starting before the rollover (I - III) in Section 4.4.1, followed by the rollover
itself (IV) in Section 4.4.2 and ending after the rollover (V — VI) in Section 4.4.3.

4.4.1 Before the Roll

Early RFC 8145 data

RFC 8145, published April 2017, was quickly adopted by open source resolver imple-
menters. BIND supports it from mid-2016 with the functionality enabled by default,
Unbound since April 2017, enabling it by default in October 2017, and Knot since
November 2017, again enabled by default.

We began looking for evidence of RFC 8145 signals in A/] Root data from May 2017.
By September 2017 we see trust anchor signals from approximately 1,300 unique
source IPs per day. Figure 4.3 shows these early trust anchor signals. The KSK-2010
line shows what fraction of RFC 8145 sources sends signals for the old trust an-
chor, and the KSK-2017 line shows signals for the new trust anchor. Note that these
signals are independent; in other words: a single source may send signals for both
KSK-2010 and KSK-2017.

As Figure 4.3 shows, initially almost all sources had only KSK-2010. There is
some slight increase in uptake of KSK-2017 starting in June, before KSK-2017 was
published in the root zone. This increase can be explained by installations that re-
ceived the new trust anchor as part of a software update, or from those where an
administrator manually added it. ISC, for example, added the new key to BIND’s
code repository on the same day it was made operational and published by IJANA
(February 2", 2017).

When KSK-2017 is published in the root zone on July 11*h, 2017, validators that
implement RFC 5011 begin the process of accepting the new key. After seeing the
key published (and correctly signed) for 30 continuous days (the RFC 5011 Add Hold-
Down Time), a validator adds the new key to its trust anchor set. Thus, from August
10'h, we observe a rapid rise in signalers reporting KSK-2017 over the two days after
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the hold-down period ends. Because the TTL of the DNSKEY record set is 48 hours,
the shift is not immediate.

After the 30-day hold-down ends, some 8% of signalers still do not report having
KSK-2017. Operators watching this data hoped this population would continue to
shrink. However, it remained at this level through the end of September. This is the
primary reason why, on September 27% 2017, ICANN made the difficult decision
to postpone the rollover [114]. As late as August 2019, around 1% of signalers still
report only having KSK-2010.

Unusual KSK-2010 RFC 8145 signalers

During continued monitoring of the RFC 8145 signals, ICANN began observing two
unusual artifacts: (i) a large fraction of resolvers failed to pick up and trust KSK-
2017, as measured by resolvers sending only RFC 8145 KSK-2010 signals and seen
in Figure 4.5, and (ii) many of the data points came from IP addresses sending only
small numbers of queries, as seen in Figure 4.4. Note that the fraction of resolvers
not trusting KSK-2017 actually got worse, not better, between the end of Figure 4.3
and the beginning of Figure 4.5. These artifacts led to the question “Why do so many
new addresses appear that send RFC 8145 signals indicating they only trust KSK-2010?”

To answer this question, we compare the RFC 8145 signal data from ICANN to
all DNS queries arriving at B Root over a four week period from March 15t-29",
2018. We focus this analysis on B Root, because unlike the data from ICANN which
only contains RFC 8145 signals, for B Root we have full access to all queries received.
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Description Count
A Unique sources in ICANN data 1,206,840
B Sources from A signaling KSK-2010 508,533
C Sources from B sending only one signal 310,839
D  Unique Sources in ICANN data to B Root 309,140
E Sources from D signaling KSK-2010 113,467
F Sources from E signaling just once 16,403
G Sources from F sending 1-9 queries 6,702

Table 4.4: Narrowing the observed data

We narrow the data to those addresses that behave unexpectedly: they send a single
signal for KSK-2010 to B Root, and send only 1-9 other queries to B Root in the period
covered. The narrowing down of the full list of IP addresses ICANN observed to just
these anomalously behaving addresses is shown in Table 4.4.

To test if there is any commonality in other query names sent by these sources,
we extract and correlate the top query names sent by these addresses (shown in
Table 4.5). Beyond the RFC 8145 signals (“_ta-4a5c”) and queries for root-zone
data (“.” (period)), the next highest two requested names are a Virtual Private Net-
work (VPN) provider’s primary and secondary domain (anonymized in Table 4.5).
This commonality in top queries strongly indicates the discovery of a likely cause
of KSK-2010 signals from sources sending otherwise low-volume traffic. Searching
the VPN provider’s software, taken from their Android release, revealed an embed-

Query-Name Count
_ta-4ab5c 15,447
. 9,182
VPN-PROVIDER. com 3,156
VPN-PROVIDER-ALTERNATE. com 415
_sip._udp.0THER-DOMAIN. com 86

Table 4.5: Top query names from anomalous sources
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ded “root.key” file containing just KSK-2010 and not KSK-2017. The embedded
libraries found in the software also revealed a library name matching the Unbound
project [137], a popular DNSSEC-validating resolver.

We contacted the VPN provider on April 17, 2018. They confirmed our find-
ings and indicated that multiple products were affected. Subsequently, they released
updated versions of their product to address the issue, as marked in Figure 4.5. The
desktop software update had the most dramatic impact, significantly decreasing the
number of KSK-2010 signals seen at the root. The first mobile update with the new
key set also showed a small dip in KSK-2010 signals, though the second mobile up-
date exhibited a less visible impact.

Key takeaway before the roll A single application can significantly influence
trust anchor signaling, and the fact that it was an end-user application is largely re-
sponsible for the high number of signals. Given that DNSSEC validation in end-user
applications will become more common in the future, this needs to be considered
for future rollovers.

4.4.2 During the Roll

As KSK-2010 signals returned to the 8% range by mid-2018, ICANN revised its plans
for the rollover [138]. After community feedback on these plans, ICANN proceeded
with the rollover [139]. On October 11, 2018, at 16:00h UTC the KSK is rolled
(event IV). From then on, root servers return a DNSKEY RRset signed with KSK-2017.
In this section we show how resolvers picked up the new RRset. We then examine
what happens to resolvers that do not have KSK-2017 as a trust anchor, and how
operators solve the problems this causes.

The key transition

To measure the transition from the old to the new RRset, we use RIPE Atlas probes
(see Section 4.3.2) to send DNSKEY queries and then analyzed the results. Figure 4.6
shows when resolvers drop the old RRset from their cache and query the root for
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the new one. 2 Right after the new key is published, resolvers begin showing cached
signatures from KSK-2017. Within the first hour 7% of the resolvers have the new
RRset. Sixteen hours later over 50% of resolvers have the new RRset. At 48 hours
after the roll, the old RRset should have been removed from the caches of all resolv-
ers; 99.5% of our vantage points return KSK-2017 signatures at that point. After 11
more days, the last “lagging" vantage points pick up the new RRset (not shown in
Figure 4.6).

Because the root DNSKEY RRset has a TTL of 48 hours, we expected half of vant-
age points to have the new RRset after 24 hours. As Figure 4.6 shows, however, this
point is already reached after just 16 hours. In Figure 4.7 we plot the TTLs for the
root DNSKEY RRset as reported by each vantage point when it receives the new RRset
for the first time. More than 20% of vantage points report a TTL that is lower than 1
day, and around 10% even report a TTL lower than three hours. This indicates that
some resolvers cut the TTL to a value lower than 48 hours, also explaining why the
new RRset was picked up earlier than expected.®> What this also means is that had
a failure occurred during the rollover, we would likely have seen this sooner than
intuitively expected, which is important to consider for future rollovers.

Another thing that stands out in Figure 4.6, are sudden “jumps” in the adoption
of KSK-2017 (marked @-®). We correlate these jumps with adoption at resolvers
often used by RIPE Atlas probes in Figure 4.8. The jumps respectively correspond
to adoption of the new RRset by Cloudflare (®), a German ISP (@) and Google (®).
Operators of the Cloudflare resolvers publicly commented that someone used their
web interface to purge the DNSKEY RRset of the root from the cache right after the
rollover [141]. This explains why the resolvers fetched the new RRset soon after the
roll. This spurred us to check if other operators purposely flushed their caches before
or after the rollover to either keep the old status for as long as possible, or force the
new situation as soon as possible. To find evidence, we looked for vantage points
that report a TTL close to 48 hours just before or after the rollover. We find three
resolvers that fetched the keyset just before the roll (effectively locking in the old
situation for almost 48 hours). A large European ISP privately confirmed they did
this to avoid problems right after the rollover, allowing them to monitor the news
from other operators after the roll [142].

Impact on validating resolvers

Now that we know how resolvers picked up the new RRset, we check if they exper-
ience any problems once they have the new RRset. For resolvers that do experience
problems, we expect them to either fail validating signatures (become bogus) or turn
off validation altogether (become insecure). We use RIPE Atlas measurements (see
Section 4.3.2) to identify resolvers that were continuously secure 88 hours before the
roll but turned bogus or insecure at any point within 56 hours after the roll.

2We published updates of this figure on social media and on the website of NLnet Labs to give the
community insight into the progress of the roll.
3E.g., Unbound caches RRsets for a maximum of 24 hours by default [140].
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Figure 4.9: DNSKEY queries from ISP “EIR” to A/J Root

We summarize resolver behavior observed through RIPE Atlas in Table 4.6. Row
A shows the total number of resolvers observed during the rollover. Of these, 1,717
(B+C) always validate signatures correctly before the roll but 970 (2.7%) turn bogus
and 747 (2.1%) insecure some time after. We check how often problematic resolv-
ers query for the DNSKEY of the root, using DNS-OARC DITL data collected during
the rollover (see Section 4.3.1). If a resolver changes state and sends more DNSKEY-
queries, we conclude that this change is caused by problems with the rollover. We
see DNSKEY queries from 519 sources at the root (D). Of these, 509 (E) send more
DNSKEY queries after than before the roll. For 359 resolvers, the increase in DNSKEY
queries exceeds 1.5 times (F). The majority, 342 resolvers (G), return to their normal
DNSKEY query pattern within an hour. We assume operators intervened and fixed
these resolvers. For 138 resolvers (H) we keep observing unusually high numbers
of DNSKEY queries for over an hour. They only return to their normal behavior after
a median of more than 39 hours. Only three resolvers (I) continue sending unusu-
ally high numbers of queries throughout the entire measurement period. The fact
that more than 60% of the resolvers get fixed within one hour is a strong sign that
resolvers in our data set are used actively and that operators noticed issues during
the rollover relatively quickly. We discuss resolvers that send excessive numbers of
DNSKEY queries in more detail in Section 4.4.3.

Upstream Resolvers Count
A Unique sources in RIPE Atlas data 35,719
B L from A always secure before and bogus after 970
C b from A always secure before and insecure after 747
D b from B and C sending DNSKEY queries 519
E L from D reach maximum DNSKEY queries after 509
F L from E w. 1.5x DNSKEY queries after 359
G b from F fixed within 1h 218
H b from F fixed after 1h 138
I b from F that did not get fixed 3

Table 4.6: Data of RIPE Atlas measurements
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The user’s perspective

From the analysis above, we cannot gauge the actual impact on end users. During
our measurements, 175 RIPE Atlas probes (1% of all vantage points) relied exclus-
ively on one of the bogus resolvers (set B in Table 4.6), thus were not able to receive
any valid response at some point after the rollover. More than 70% of these probes,
however, suffered problems only an hour or less. 166 probes could rely on at least
one other resolver to serve their queries and were not affected by the failing resolver.

Other work [143] shows users move to public DNS providers in case of issues
with the resolver of their ISP. Therefore, we analyzed if vantage points change to
the public resolvers of Google, Cloudflare or OpenDNS. We found only two vantage
points. One of these used the resolver of the Irish ISP EIR. This ISP experienced
a well-publicized DNS outage [144] during the rollover, and the DNS community
speculated this outage was caused by EIR’s resolvers failing validation. Using the
RIPE Atlas measurements, we identify the IP addresses of EIR’s resolvers. Then,
we count how many DNSKEY queries these resolvers send to A/J Root per day (see
Figure 4.9). Starting from October 12', queries increase, reaching a peak one day
after the roll and returning to normal after 3 days. Keeping in mind that RIPE Atlas
probes actively switched resolvers at the same time, this is a strong sign that the
outage of EIR was indeed caused by validation errors. Note, Figure 4.9 shows the
number of DNSKEY queries from EIR rising again after removal of KSK-2010. We
discuss this increase Section 4.4.3.

Key takeaways during the roll We observed few resolvers with serious prob-
lems. Where such problems occurred, they were solved promptly by operators. Less
than 0.01% of the resolvers we monitored during the rollover experienced problems
that lasted beyond our observation window.

4.4.3 After the Roll

We now discuss what happened after the rollover, from the point when all resolvers
should have a DNSKEY RRset signed by KSK-2017, to the removal of KSK-2010 from
the root zone.

Revocation of KSK-2010

As discussed in Section 4.3.2, the Root Sentinel standard (RFC 8509) was published
too late to be useful for the actual rollover. We can, however, study revocation of
KSK-2010 with resolvers that adopted this protocol. Using all RIPE Atlas probes, we
send out Root Sentinel queries from August 2018 to August 2019. Figure 4.10 shows
the Root Sentinel signals observed over this period. As the figure shows, overall, the
number of resolvers supporting Root Sentinel queries steadily increases to 2,419 re-
solvers in 720 ASs by the middle of August 2019. This is encouraging given the early
stage of deployment of the protocol. After the revocation of the old key (event V),
the number of resolvers with KSK-2010 drops to almost zero while the number of
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Figure 4.10: Root Sentinel observations with RIPE Atlas
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Figure 4.11: Top 9 ASs supporting Root Sentinel queries observed through RIPE
Atlas

resolvers with KSK-2017 keeps increasing. Interestingly, some 20 resolvers continue
to signal having KSK-2010 in their trust anchor store. This implies either a manually
configured trust anchor, or a failure in their RFC 5011 processing. Then, from the
middle of June 2019, KSK-2010 starts making a surprising comeback. We explain
why further down in Section 4.4.3.

As RIPE Atlas provides a limited view, we also used Luminati to measure a total
of 52,378 resolvers serving 589,928 exit nodes — from 210 countries and 7,867 ASs
— over a period of 14 days from March 28" 2019. From these, we select resolv-
ers on which we were able to test all four combinations of Root Sentinel queries
(Table 4.3). This leaves 21,563 resolvers, to which 385,520 exit nodes sent queries at
least once. We further split these into resolvers that support Root Sentinel queries
and ones that do not.* We finally determine which trust anchor(s) resolvers that
support the Root Sentinel signal as present in their trust store. The vast majority —
21,056 (97.63%) resolvers from 5,311 ASs — do not support RFC 8509. These resolv-
ers cover 330,891 (85.8%) exit nodes. Only 468 (2.2%) resolvers from 164 ASs support
Root Sentinel queries and have only KSK-2017; these resolvers cover 33,266 (8.6%)
exit nodes indicating that a few large ASs support RFC 8509 queries, including Tel-
enor (Norway), Bezeq (Israel) and Meo (South Africa). We also note that 39 resolvers
(0.19%) still signal they have KSK-2010 configured.

Finally, we compare our observations through RIPE Atlas and Luminati. Fig-

“Note: a resolver that supports RFC 8509 correctly will return a valid response to only one of the two
queries with the same key tag.
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Figure 4.12: DNSKEY queries to A/J Root after the rollover

ure 4.11 shows the top 9 ASs with resolvers supporting RFC 8509 in our RIPE Atlas
measurements. Comparing this to Luminati, we find that 43 resolvers from AS2119
(Telenor), 10 from AS16276 (OVH), 10 from AS6830 (Liberty Global), and 2 from
AS7922 (Comcast), are observed in the same state through both RIPE Atlas and Lu-
minati. Figure 4.11 also shows a surprising increase of KSK-2010 from June 2019, we
explain why in Figure 4.4.3.

Increase in DNSKEY queries

As mentioned at the end of Section 4.4.2, we observed an increase in DNSKEY queries
from certain resolvers at various stages of the roll. We analyse this phenomenon
in more detail here, especially because of the sharp increase in queries after the
revocation of KSK-2010 to the extent that at some point a worrying amount — up to
10% — of traffic to the root consisted of DNSKEY queries.

We start by analyzing the total amount of DNSKEY queries to the root. DNSSEC
validators must regularly verify their locally configured trust anchor(s) against the
zone’s published DNSKEY records. In other words: validators periodically issue DNSKEY
queries for the root zone. Due to the retry behavior of implementations, a validator
with an out-of-date trust anchor is likely to send more than the normal amount of
DNSKEY queries. This behavior was already observed in 2009 — before the root zone
was signed — during a KSK rollover for an in-addr.arpa zone operated by RIPE.
The group investigating that incident called it “rollover and die” [145].

Just after the root KSK rollover on October 11th, 2018, root name servers ob-
served an increase in DNSKEY queries. Figure 4.12 shows the query rate for A/J Root.
The increase was gradual, ramping up over the course of two days as the DNSKEY
RRset timed out from resolver caches. Pre-rollover the rate was around 15 million
queries per day. Post-rollover it increased five-fold, to 75 million (®). An even more
dramatic increase occurred when KSK-2010 was revoked (Event V in Figure 4.1). Im-
mediately after the revocation, A/J Root see a sudden spike in DNSKEY queries (®),
jumping from 75 million to over 200 million queries per day within 24 hours. The
DNSKEY query rate continued to climb over the following weeks and months, exceed-
ing one billion per day in March 2019 (®). At this point, DNSKEY queries comprised
7% of the total traffic received at A/J Root. The final phase of the rollover sees KSK-
2010 removed from the root zone on March 22", 2019. To everyone’s surprise, the
DNSKEY query rate dropped dramatically immediately after KSK-2010 was removed.
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Figure 4.14: AS DNSKEY query patterns to A/J Root

As Figure 4.12 shows (@), the rate dropped and slowly crept back up to post-rollover
levels as seen in October, November, and December 2018.

Figure 4.12 only shows data for A/J Root. To confirm similar increases at other
root servers, we use the RSSAC002 data (see Section 4.3.1). The RSSAC002 data does
not have a dataset specifically identifying DNSKEY queries, however we can infer the
presence of such queries by examining the response size dataset. Figure 4.13 shows
the percent of responses between 1232-1472 bytes as solid lines. The dashed lines
— marked A* and J* — are actual A/J Root traffic and show a strong correlation. Not
all root servers saw the same increase in queries, but we currently lack sufficient
information to explain this.

Deeper inspection of the A/J Root traffic shows vastly differing DNSKEY query
patterns on a per AS basis. Figure 4.14 shows the average of multiple ASs whose
DNSKEY queries exhibit distinct patterns at different times throughout the rollover.
Some ASs expressed a systemic trend of increased DNSKEY queries post-rollover and
even higher rates post-revocation (ASs-A). Other ASs only exhibited an increase in
DNSKEY queries after the removal of KSK-2010 (ASs-B). Likewise, some ASs show
increased rates post-rollover until revocation (ASs-D) and again after removal (ASs-
C). To better profile these resolvers, we issued version.bind queries to IP ad-
dresses expressing the various behaviors. While the response rate was low (4.3%
of +18K resolvers), the majority returned older versions of BIND (45% BIND 9.9.x,
34% BIND 9.8.x, and 13% BIND 9.10.x).
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Explaining the increase in DNSKEY queries To find the cause of the increased
query rates, we studied traffic coming from individual, high-volume sources. Out-
reach efforts at a global DNS scale are challenging, but we were able to contact
multiple operators willing to help diagnose the DNSKEY query increase. One oper-
ator (a large French cloud hoster), stated their servers were running BIND 9.8.2 on
CentOS 6.7 and the logs contained large numbers of validation errors. Another set
of sources identified as sending excessive DNSKEY queries to the root, came from
8 addresses in a single subnet at a large midwestern university. Their staff quickly
identified a DNS lab exercise that had been left running inside virtual machines
(VMs). After shutting down the VMs, we confirmed that the excess DNSKEY traffic
had stopped. From the university’s class instructions, we hypothesized that the
DNSKEY query spikes were the result of ISC’s BIND software running in a specific
state: (i) the DNSSEC managed keys did not contain KSK-2017, but did contain KSK-
2010; (ii) the dnssec-enable flag was set to false; and (iii) the dnssec-validation
flag was unset, leaving it in its default state of yes.

To verify this hypothesis, we performed experiments to test for bugs related to
BIND’s behavior in the absence of a valid trust anchor. We set up a BIND 9.11.5-P4
resolver (the oldest supported release at the time), configuring it as per the univer-
sity’s class instructions. We also ensured that BIND’s managed keys file contained
only KSK-2010. Then, we ran 20 experiments in which we started a fresh copy of
BIND configured as specified above. In each run, we sent ten sets of queries to BIND
for test domains in seven TLDs at 30-second intervals, recording DNSKEY queries sent
by the resolver, along with timestamps. Figure 4.15 shows the results. Each experi-
ment start time was normalized to zero and overlayed in Figure 4.16, showing highly
variable query patterns in each run (note experiments 7, 13 and 17).

Both plots show wide variations in behavior of the resolver under test. At times
it behaves as expected, sending only a few DNSKEY queries after initializing. At other
times, the resolver seems stuck in a state where every incoming request causes the
resolver to send out a flurry of DNSKEY queries.

From the analysis of events V and VI, and the corresponding DNSKEY loads seen
at the root (Figure 4.12 and Figure 4.13) we conclude there are likely two different
bugs causing the increase in queries. One bug is likely the cause of the increase in
DNSKEY queries shortly after the rollover (event IV) and after KSK-2010 is removed
(event VI). Another bug is likely the cause of the extreme query loads seen in 4.13,
when KSK-2010 was present but with the revoke bit set. We have reached out to the
developers of BIND to confirm our hypotheses, but have not received any feedback
as of September 13%, 2019. What remains unclear is why operators have not noticed
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Figure 4.16: Time-normalized graph of experiments

this broken resolver behavior, as we expect these resolvers to return SERVFAIL errors
to every query. We speculate only one resolver in a group is failing, with an alternate
succeeding on behalf of their clients. This behavior is a well-known fact from other
work [146].

To facilitate reproducibility, we published experiment configurations and scripts
in a public GitHub repository [147].

Increased response size

Another potential risk during the rollover, identified in the 2016 Rollover Design
Team report [112], was the increase in size of the DNSKEY RRset (see Section 4.2).
When KSK-2010 was revoked, this size reached its maximum value of 1,425 bytes.
We analyzed if this increase hindered resolvers fetching the record set and, as a res-
ult, caused validation errors. While there are other moments during the rollover at
which the response size is significantly higher than usual, we focus on the revoca-
tion event since that is when the maximum size was reached.

The first sign we expected to see if resolvers experience problems is an increase
in fallback to TCP. We studied the RSSAC002 data concerning traffic types, and
found no evidence of such an increase during revocation. Note, however, this data
does not contain information on individual query types such as DNSKEY. If resolvers
are also unable to fall back to TCP, then they may become unable to fetch the DNSKEY
RRset altogether. We use the measurements from RIPE Atlas to detect whether any
vantage points were unable to retrieve the DNSKEY RRset from the root after the
increase in size. Resolvers are marked as unable to retrieve the DNSKEY RRset if they
cannot fetch the RRset within 5 seconds.

Out of 17,925 vantage points, 1,975 (11%) are able to fetch the DNSKEY RRset
before revocation, but fail to fetch it at least once 48 hours after the revocation.
Only 67 of these (0.4%) never manage to fetch the key set after the revocation. Even
though the IPv6 minimum MTU is 1,280 bytes, vantage points that contact resolvers
via IPv6 did not fail more often than those using IPv4. We also found no resolvers
that turned bogus after the revocation. This leads us to conclude that the increased
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response size during revocation only caused problems for a few resolvers and did
not impact validators. This was also expected by the KSK rollover design team [112].

The return of KSK-2010

We end this section with a surprising comeback. As mentioned in Section 4.4.3, the
number of resolvers that signal support for KSK-2010 is on the rise again since its re-
moval from the root zone DNSKEY RRset. This increase is also visible in the RFC 8145
signals sent to root servers. Figure 4.17 shows that by the end of July 2019 almost 39%
of signalers again report having KSK-2010 in their trust anchor set. This, of course,
raises the question why a retired trust anchor is making this comeback. While it
is impossible to attribute the observed rise to a single source, we have convincing
evidence of the most likely cause: DNS resolver software shipping with built-in or
pre-configured trust anchors.

First, we note that the current long-term supported version of Ubuntu (18.04 LTS)
ships with Unbound version 1.6.7, which supports RFC 8145. In addition, Ubuntu
also includes a pre-configured trust anchor package that includes both KSK-2010
and KSK-2017, and enables DNSSEC validation by default. We verified that, upon
startup, Unbound loads both trust anchors, marks KSK-2010 as “missing”, but as the
trust anchor is still configured, Unbound signals its presence in its RFC 8145 tele-
metry. Any installation of Ubuntu 18.04 LTS with Unbound that was running for
at least 30 days® when KSK-2010 was published as revoked will have cleaned up
the old trust anchor. However, any installation (or re-installation) after February
20, 2019 could not complete RFC 5011 revocation and retained KSK-2010 as a trust
anchor. We also verified the behavior of another popular open source DNS resolver
implementation on the same OS. Ubuntu 18.04 LTS ships with BIND version 9.11.3,
which includes both KSK-2010 and KSK-2017 as built-in trust anchors. By default,
the Ubuntu package for BIND is configured to perform DNSSEC validation using the
built-in trust anchors. Upon startup, however, if BIND does not find a configured
trust anchor in the DNSKEY RRset returned by the root servers, it will not signal this
trust anchor in its RFC 8145 telemetry. This does not mean, however that the trust

>The RFC 5011 Remove Hold-down Time.
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anchor is removed. We verified that BIND retains KSK-2010 in its trust anchor file
on disk, so if the key were ever to return in the root DNSKEY RRset we expect BIND
to accept it as a valid trust anchor again.

Second, as mentioned previously, Figure 4.11 shows an increase in KSK-2010 be-
ginning in the middle of June 2019 from a single network, AS7342. As it happens,
this is the origin AS for Verisign’s public DNS service.® The rise in KSK-2010 sig-
nalers corresponds to an upgrade of the software used on the public DNS resolver.
The newly deployed version supports the Root Sentinel (RFC 8509) and is packaged
with a configuration that includes both KSK-2010 and KSK-2017 as trust anchors.

The two examples above explain most of the return of KSK-2010 in Figure 4.11
and at least some of the return in Figure 4.17. They are illustrative of software
still shipping with KSK-2010 as trust anchor. This does not mean that these are
the only examples, though, there are likely other packages with similar behavior.
One question we have not discussed yet is whether the comeback of KSK-2010 can
be considered problematic. We discuss this in more detail in Section 4.6.

Key takeways after the roll The biggest problem during the whole process, ar-
guably, occurred after the roll with the significant increase in DNSKEY queries. This
problem was not foreseen in the design report [112], underlining the importance of
independent studies of such major events on the Internet and confirming the need
for meaningful telemetry. Additionally, it is clear trust anchor management is com-
plex and that shipping trust anchors with software has long-lasting effects. We come
back to this in Section 4.6.

4.5 RELATED WORK

As we discussed in the introduction, the root DNSSEC KSK rollover is a first-of-
its-kind event. Thus, our discussion of related work will focus on earlier studies
that have looked at the operation of the DNS root server system and the impact of
DNSSEC on the performance of DNS resolvers. Huston [148] independently con-
firms our finding that the Irish ISP EIR suffered outages but does not provide a more
thorough analysis.

The earliest work to study DNS traffic to root servers by Danzig et al. [149] dates
back to 1992, five years after DNS was adopted as the Internet’s naming system [150].
This study illustrates that software bugs that cause excessive traffic are a problem of
all ages, as they find multiple bugs in algorithms meant to improve DNS resilience.
In 2001, Brownlee et al. [151] study almost two weeks of traffic to F Root. Again,
they find a surprising amount of problematic traffic to the root, with 14% of queries
consisting of malformed address (A) queries. In 2003, Wessels et al. [152] studied 24
hours of F Root traffic and concluded an astonishing 98% of queries were malformed
or unnecessary. Since 2006, DNS-OARC collects so-called Day-in-the-Life (DITL)
datasets [127], which typically includes traffic to most root servers. In 2008, Castro

®https://www.verisign.com/en_US/security-services/public-dns/index.xhtml
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et al. [128] analyzed three years of DITL data to characterize root server traffic and
also found that 98% of queries were unnecessary.

Apart from studying traffic at the root, past work also looked at operational
changes to the root system. A particularly impactful event is the change of the IP
address of a root server. Since resolvers have to be configured a priori with the IP
addresses of root servers to bootstrap DNS resolution, such events have a major im-
pact. Many root servers have undergone such changes, and Lentz et al. [153] study
one such change for D Root in an academic paper in 2013. This study concludes that
such address changes take a long time to propagate to the global resolver popula-
tion, with the old address still seeing significant amounts of traffic months after the
change. The authors suggest that such IP address changes may actually be benefi-
cial, as they serve as some form of a “garbage collection” for old implementations.
A similar notion could be said to apply to rollovers of the root KSK. In 2015, Wessels
et al. [154] show how the aftereffects of an address change linger, finding that the
old IP address for J Root still receives on average 400 queries per second from some
130,000 sources thirteen years after the address change.

The effects of the root KSK rollover on resolvers studied in this paper are part of
the impact of DNSSEC on resolvers. Earlier work studies other aspects of the impact
of DNSSEC, including the performance impact of DNSSEC validation [155]-[158]
and the risks, in terms of availability and security, of packet fragmentation of large
DNSSEC responses [8], [121]. Even though [121] conclude that up to 10% of resolvers
could have problems handling larger DNSSEC responses, we did not observe failures
when the DNSKEY response size increased. Other popular DNSSEC signed zones
have served records larger than 1,425 bytes and validating resolvers probably took
measures to handle large responses already. Finally, the way DNSSEC is organized
as a Public Key Infrastructure is highly relevant for the root KSK rollover studied
in this paper. Yang et al. provide a detailed overview of why the DNSSEC PKI is
organized the way it is today [159].

4.6 DISCUSSION AND RECOMMENDATIONS

Improving telemetry A key challenge faced during the KSK rollover was sparse
and distorted telemetry from resolvers. Ideally, those responsible for the rollover
would want to know both the exact state of resolvers (in terms of DNSSEC val-
idation) and how important these resolvers are (in terms of the number of clients
relying on them). This provides actionable intelligence that allows prioritization of
“important” resolvers (serving millions of users).

Clearly, during the root KSK rollover discussed in this paper such comprehensive
telemetry was not available. While RFC 8145 saw significant deployment before the
rollover, it was difficult to interpret its signals. This was mostly due to four reasons:
first, RFC 8145 only allows for passive observations by — in this case root — DNS
operators. Thus, in case of problems, it is impossible to query resolvers for further
state information. Second, there is no telemetry on the query volume a resolver
processes, making it hard to judge how relevant or risky a resolver with problems is.
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RFC 8145 RFC 8509
Signaling Automatic Requires query
Which TAs are revealed All configured Only those queried
Supports non-root TAs Yes No
Collection method Passive Active
Vulnerable to manipulation Yes Only to on-path attackers

Table 4.7: Supported features of existing telemetry

Third, RFC 8145 may propagate through upstream systems (NATs, DNS forwarders,
caches and other middle-boxes), leading to distorted signals and hiding systems with
actual problems. Fourth, although we have not seen any evidence of tampering, an
attacker could artificially inflate the number of resolvers that have not acquired the
new key by spoofing RFC 8145 telemetry signals. Such an attack could adversely
influence the decision-making process around whether or not to proceed with a
planned rollover. Despite the limitations of RFC 8145, however, without it ICANN
and the DNS community would have been completely blind and some problems were
actually solved due to RFC 8145 telemetry.

The Root Sentinel (RFC 8509) addresses the first limitation of RFC 8145. It uses
active measurements from the client perspective to establish the DNSSEC trust an-
chors configured on a resolver. While standardized too late to be of use during
the current rollover, our analysis shows RFC 8509 is seeing rapid deployment and
provides useful signals as of September 13, 2019. Nevertheless, RFC 8509 also suf-
fers from the second and third limitations discussed for RFC 8145 albeit with dif-
ferent signal distortion (e.g. assuming a Root Sentinel query is sent to resolvers at
a large ISP while it is actually handled by a local forwarder). Table 4.7 summarizes
the supported features of the existing telemetry protocols.

Based on our analysis of the current rollover, we recommend exploring incre-
mental improvements to both RFC 8145 and RFC 8509. The quality of such signaling
would be greatly improved if it were possible to identify true signal sources, identify
cases where signals are forwarded, and estimate the number of users being serviced.
We recognize that there are serious concerns around such detailed signaling. Weigh-
ing the tradeoffs requires further thought and debate in the community.

Another issue compounding the difficulties of interpreting resolver validation
problems is the ambiguity of the SERVFAIL error code validators send upon failure.
Effectively only by combining results from different measurements (Table 4.2) can
we be reasonably confident that a resolver has issues with DNSSEC validation. We
therefore strongly support a draft under review in the IETF that proposes to send
extended error codes for DNSSEC failures [160].

Introducing a standby key There is an ongoing debate in the DNS community
about introducing a KSK standby key in the root zone by default [161]. Effectively,
because the rollover was postponed by a year, this has already been tested for a
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single standby key, without leading to issues with, e.g., response sizes. We therefore
think it safe to introduce such a standby key as multiple community members have
suggested. An immediate benefit of this is that resolvers are much more likely to pick
up the new key if it is pre-published for a longer period. Given the rollover policy
of the root [111], such a standby key could even be published years in advance.

Trust anchor distribution The 2018 KSK rollover was the first time a large pop-
ulation of DNSSEC validators needed to update their trust anchor. At the start of the
process, the design team expected RFC 5011 to be the main means through which
validators keep their trust anchors up to date [112]. Our observations suggest that
where RFC 5011 was used, it generally worked as intended. In the few instances
where problems did occur, this was either due to validators lacking permission to
persist state to disk, or loss of state due to, e.g. container or virtual machine teardown
and reinitialization. The latter issue has the potential to become a bigger problem
moving forward, as the proliferation of container technologies was not envisioned
when RFC 5011 was authored 11 years ago. Lastly, we are also beginning to see
DNSSEC validation in end user applications (e.g. the VPN client from Section 4.4.1),
often with hard-coded trust anchors (a search on GitHub yields thousands of ex-
amples of this). This raises the question if in-band updates through RFC 5011 remain
the main means for trust anchor management going forward.

As noted earlier, some resolver implementations distribute trust anchors in their
software packages (thus these get refreshed with software updates). While this
works to some extent, it does not scale to encompass applications performing valid-
ation. Additionally, we observed that there may be significant delays when retiring
trust anchors, as evidenced by the surprising comeback of KSK-2010.

Based on these results, we advocate that the preferred method to distribute trust
anchors should be with operating systems out-of-band. Some distributions (e.g.
Debian Linux) have already started doing so. Applications can then rely on the OS
and we strongly urge against hard-coding of trust anchors. In addition to this, OS
distributors should tightly manage these trust anchors when they are replaced. In
Section 4.4.3, we ended with the question if the retention of the retired KSK-2010 was
problematic. On the face of it, the answer to this question is “No”, since the key was
retired according to a schedule, and all copies of the key have now been destroyed.
Consider, however, two scenarios, one in which a key is revoked because it has been
compromised, and one in which the algorithm for the key has been compromised.
It is evident that a speedy retraction of such a key as a trust anchor is imperative,
and it is also evident that the current practice we observed does not suffice. Given
the inertia of solving this issue Internet-wide, we would recommend an additional
security practice: if a key needs to be revoked, then the root DNSKEY RRset should
include the revocation signal until there is a reasonable certainty that systems have
been updated to remove the trust anchor. This practice guarantees that software
that correctly implements RFC 5011 will not use the compromised key as a trust
anchor.



4.7. CONCLUDING REMARKS 87

Relevance for algorithm rollovers We have shown that, despite some prob-
lems, the root KSK rollover was a success. We can now ask ourselves: What are the
implications of this finding for a future root algorithm rollover?

We argue that the root is also ready for an algorithm rollover. The process of
rolling the algorithm is the same as for rolling the KSK, aside from two aspects.

First, it is not only important that validating resolvers replace their trust anchor
but also that they support the new algorithm. Measurements, like the active meas-
urements conducted in Section 3.7.2 of the previous chapter can help to estimate
algorithm support. For example, if we would roll to ECDSAP256 today, then around
4% of resolvers in our data set would not be able to validate the signatures anymore,
causing them to turn insecure. These resolvers would still be able to resolve domain
names, but will not benefit from the protection provided by DNSSEC anymore. In
the end, the question remains how many resolvers or users can be left behind when
rolling to a new algorithm. This question is not trivial, and similar to questions
raised before the root KSK rollover. Then, it was unclear how many resolvers must
signal support for KSK-2017 before continuing with the rollover. In the end it was up
to ICANN and the community to find the right threshold. This will also be necessary
when rolling to a new algorithm.

Second, algorithm rollovers might require two additional stages, which are not
necessary during a KSK rollover. Before publishing a new key, the root zone operat-
ors first need to sign the zone with the new key, but publish only the signatures. This
is necessary because some validating resolvers expect signatures for every signing
algorithm for which a key is published. If the root zone operators would not pub-
lish these new signatures in advance, some validating resolvers would consider the
root zone bogus. We describe the details of algorithm rollovers, and of this issue in
particular in Section 5.3.2 of the next chapter. This additional stage slows down the
rollover process slightly’, but also increases the response size of responses from the
root and the root zone overall®. Whereas the increased response size is likely not a
problem with current algorithms like ECDSAP256, it might become a problem with
quantum-safe algorithms, which we discuss in more detail in Chapter 7. These al-
gorithms can have significantly larger signatures, which can cause problems during
transmission as described in Section 4.2.

Besides these two aspects, an algorithm rollover would face the same problems
as the next root KSK rollover. Thus, an algorithm rollover would benefit from the
proposed measures in this section (improved telemetry, introduction of a standby
key, central trust anchor distribution) as well.

4.7 CONCLUDING REMARKS

In this chapter we provide a comprehensive analysis of the very first DNSSEC Root
KSK Rollover. We show the rollover did not pass without problems: hundreds of act-
ively used resolvers failed to validate signatures at some point during the rollover.

"Depending on the TTL, and at least 48 hours in case of the root.
8Depending on the chosen algorithm, e.g. 64 bytes for every added ECDSAP256 signature.
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Nevertheless, this is only a minute share of the total resolver population and most
problems were fixed quickly. Additionally, thousands of resolvers exhibit anomal-
ous behavior during the rollover process, though it remains unclear if this caused
problems for end users. The significant traffic increase to root servers, seen after
the revocation of KSK-2010 requires attention from the DNS community with future
rollovers in mind. We demonstrated that at least some of these queries can likely be
attributed to bugs in resolver software.

We also demonstrate that telemetry, used to measure deployment of new keys,
was significantly distorted by a single application (a VPN client). We analyzed a
complementary protocol, which while potentially a valuable addition, still has draw-
backs. Based on our experiences, we provide recommendations for incremental im-
provements to both protocols. In addition to this, we observe that trust anchor dis-
tribution — which the rollover design team expected to happen mostly in-band —
requires attention for future rollovers, and provide recommendations for alternat-
ives.

While, of course, our work focused heavily on anomalies, our analysis supports
ICANN’s conclusion that the rollover was indeed an overall success. As with earlier
changes to the root system, some systems will fail and this study shows that the
Root KSK rollover was no different. These failures, however, were limited to a very
small set of resolvers and got fixed fast, limiting the impact. This gives us confidence
that this first ever rollover certainly should not be the last.

Because of this success, we also argue that the root is, in principle, ready for
an algorithm rollover. Nevertheless, some aspects, like additional timing considera-
tions can complicate algorithm rollovers and additional questions, e.g regarding the
readiness of resolvers, need to be answered.

In the next chapter, we dive deeper in the aspects that complicate algorithm
rollovers, including the root, but also propose and assess measures to address them.
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In Chapter 3, we have shown that the complexity of rollovers is one of the ma-
jor problems when transitioning to a new algorithm. We have found that many
operators shun away from algorithm rollovers. In this chapter, we study in more
detail why algorithm rollovers are complex. Then, we propose measures to reduce
the complexity. Concretely, we develop a measurement method that allows oper-
ators to spot issues during a rollover early and help them to time their rollover
correctly. Our goal is to reduce the complexity of algorithm rollovers, addressing
one of the major barriers when maintaining a secure DNS. We applied our mon-
itoring method during the first algorithm rollover of the Swedish ccTLD .se. The
operators of .se confirmed that the insights gained through our measurements
gave them confidence in their procedures during their rollover. After .se, .br
(Brazil) and . dk (Denmark) applied our monitoring method as well. We published
the study on which this chapter is based in a scientific journal [19] and a tool, al-
lowing operators to monitor their own rollover, as open source [162]. Additionally,
we presented our work to a broader operator community at a RIPE meeting [163].
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5.1 INTRODUCTION

We have shown in Chapter 3 that algorithm rollovers are a major barrier for trans-
itioning to more secure algorithms at TLDs and second level domain names. We
have observed that only a small number of domain names, that have already de-
ployed DNSSEC, roll to a new algorithm. Also, in the rare cases that operators roll
an algorithm it is often not carried out according to best practices.

If a rollover goes wrong, it can gravely impact the reachability of a domain and
its children. Resolvers may fail validation and render the domain unreachable for
hours. This has even happened to large zones, such as the Dutch country code top-
level domain (ccTLD) .nl [164]. This incident not only affected the TLD itself but
also the over 5 million domains that were registered under .nl at that time.

Timing issues during the rollover are one of the major reasons for failures. DNS
resolvers cache records to reduce response times. This makes it hard for operators
to know which information is held by resolvers and when it is safe to add or with-
draw keys. Best common practices give guidelines at which stage to introduce and
withdraw keys and signatures but do not give strong recommendations and leave it
entirely up to the operators to make the right decisions at the right wall clock time.
Thus, operators that perform a rollover want to know: (i) when is it safe to add new
keys and signatures and withdraw old ones? and (ii) is my zone secure at all times
during a rollover?

Our contributions in this chapter are threefold: (i) We propose a new measure-
ment technique with which operators can answer both questions above so they can
roll their keys with confidence. They know when it is safe to add and withdraw
the keys and can monitor every stage of the rollover from the perspective of their
clients. Thereby, we mitigate one of the biggest dangers during rollovers, in turn re-
ducing one of the barriers to transition to a new algorithm, and thus increasing the
overall security of the DNS on the long term. Further, (ii) we carry out comprehens-
ive measurements of the most complex type of rollover: a live algorithm rollover
on a production zone, specifically the .se ccTLD. These measurements were per-
formed upon request of, and in collaboration with the .se ccTLD operator IIS [165].
The .se ccTLD has a high DNSSEC penetration, with over half of all domains being
signed [166], including domains for banks, government and other services. Equally,
DNSSEC validation is common in Sweden, with over 70% of users using validating
DNS resolvers [167]. Consequently, a failure during the rollover would have dis-
astrous consequences for Swedish society. To the best of our knowledge, this is the
first time that an algorithm rollover was monitored from start to finish. These meas-
urements provide insight into behavior of resolvers and authoritative name servers
and allow operators to plan their rollovers accordingly. The measurement results
are publicly available.! Last, (iii) we develop and publish an open source tool with
which operators can easily monitor their rollover themselves.? The registries of the
Brazilian ccTLD .br and of the Danish ccTLD .dk used this tool to monitor their

Ihttps://www.simpleweb.org/wiki/index.php/Traces
2https://github.com/SIDN/rollover-mon
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Figure 5.1: Stages of an algorithm rollover (as in RFC 6781 [16]), the expected re-
cords in each stage in the zone of the parent and of the child, and accompanying
measurements to monitor the rollover. Records in bold mark their first appearance
in during the rollover.

algorithm rollover [18], [168], following our method.

The remainder of the chapter is organized as follows: Section 5.2 discusses the
stages of key rollovers. Next, Section 5.3 describes in detail what can go wrong dur-
ing a rollover and why. Then, we propose our method in Section 5.4 and validate
each stage of the method with the algorithm rollover of .se in Section 5.5. Related
work is discussed in Section 5.6. Finally, we summarize our conclusions in Sec-
tion 5.7.

5.2 KEY ROLLOVERS

Operators that deploy DNSSEC need to roll their keys. A rollover might be necessary
in case of a security breach, because they follow a key management policy, or in case
operators want to upgrade to a new algorithm [117].

In general, rollovers fall into three categories and vary in complexity: ZSK rollovers,
KSK rollovers and rollovers in which the signature algorithms are changed - so-
called algorithm rollovers. Depending on the category, operators need to follow
different procedures described in detail in RFC 6781 [16]. In all cases, the goal is to
keep the chain of trust between the zone, for which the keys are rolled, and the root
zone intact.

If operators want to roll their ZSK, only the key itself and the related signa-
tures are replaced, but the KSK stays unchanged. Operators can either have the new
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ZSK already published in their zone before the start of the rollover (pre-publish key
rollover) or sign their zone with the old and the new key at the same time during
the rollover (so called double-signature key rollover) [16]. In contrast, during a KSK
rollover operators need to change the KSK, the signatures and ask the parent to
update the DS (single-type rollover). Here, the ZSK stays unchanged. In case of an
algorithm rollover the cryptographic algorithm of both the KSK and ZSK is changed.
Therefore, both keys need to be replaced. Because the KSK is replaced, the DS at the
parent needs to be updated as well.

Any key rollover is carried out in multiple stages in which new signatures and
keys are added or withdrawn. Between each stage, the operator needs to leave
enough time such that resolvers can receive the new records. If not done correctly,
caching resolvers might not be able to validate signatures. Figure 5.1 shows the
stages of an algorithm rollover over time and we describe the stages in more detail
in Section 5.4.

ZSK rollovers are the simplest form of a rollover. Operators do not have to in-
volve a third-party and thus have full control over when to add and withdraw the
necessary records. KSK and algorithm rollovers usually require that the DS at the
parent is updated and therefore make it more difficult for operators to define the
right timing. We explain this and other issue in more detail in Section 5.3 and dis-
cuss which factors have an influence on the timing of the stages.

A special kind of rollover has occurred in October 2018, where the KSK of the
root zone was replaced and which we studied in the previous chapter. Even though
the rollover at the root shares stages of rollovers described in this paper, rolling the
root KSK is even more challenging and monitoring required additional measure-
ments.

5.3 ROLLOVER FAILURE MODES

We first explain why the right timing is crucial for a successful rollover and provide
a concrete example. Then, we discuss why some resolvers require additional stages
during algorithm rollovers.

5.3.1 Timing of Rollovers

The factor that has the biggest impact on the success of a rollover is correct timing.
At any point in time during the rollover, resolvers need to have access to the keys
and signatures that are necessary to validate the records in their cache. If not, the
resolver cannot validate these signatures anymore.

For example, if an operator withdraws the old key too soon from its authoritative
name servers, resolvers that still have old signatures but no key in their cache will
fail to validate them. This makes them consider the operator’s zone “bogus”.

Therefore, rollovers are carried out in multiple stages; Figure 5.1 shows a time-
line for each stage of an algorithm rollover. The goal of each stage is to make sure
that resolvers have enough time to pick up the new signatures and keys before the
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Figure 5.2: Publication and propagation delay. Each resource record consists of the
domain (example.com), the TTL (300 seconds = 5 minutes), the record type (SOA or
A) and the content. Changes highlighted in bold.

old ones are removed. Thereby, resolvers always have access to the records that they
need to validate the signatures in their cache. For example, assume that in Stage IV
in Figure 5.1 the operator of the parent zone replaces the DS even though resolvers
have not yet picked up the new key from Stage III. Then, these resolvers could not
establish a chain of trust between the parent and the child and would fail to validate
any signature of the latter.

The correct timing is influenced by two factors: (i) the time it takes before a new
version of a zone becomes available at every authoritative name server (publication
delay) and (ii) the time it takes that resolvers pick up the changed records (propaga-
tion delay).

Publication delay

When operators publish a new record in their zone, it takes time until it is distrib-
uted to every authoritative name server. Usually, the zone is updated at one central
point and then distributed to the name servers. This creates a period in which the
name servers are not in sync and do not serve the same content. Depending on how
operators distribute the changes, this publication delay might vary from seconds (in-
cremental zone transfers), to minutes (full zone transfers) or even hours (zone trans-
fer upon expired refresh timer). Only after the publication delay has expired and the



94 THE COMPLEXITY OF ALGORITHM ROLLOVERS

name servers are in sync again, operators can be certain that every incoming query
from resolvers will receive the new record.

Propagation delay

Resolvers do not query for the new record before their local copy of the record has
expired in the cache. Until then, resolvers still serve the old record to their clients.
This delay is typically referred to as the propagation delay.

Records in the zone of an operator can have different TTLs. The record with the
highest configured TTL defines the propagation delay during the rollover. Only after
this TTL has expired, operators can assume that none of their records are cached
anymore. Resolvers that strictly follow RFC 1035 [169] should not have a propaga-
tion delay longer than the original TTL of the record. In practice, operators use
TTLs that vary from a few minutes, to hours or even days, depending on the use
case and resource record. For example, the most common TTL for A records of 2nd
level . se domains is 1 hour (41% of the domains), followed by 5 minutes (13%) and
1 day (12%) [170].

Figure 5.2 visualizes a general example of publication and propagation delay. ®
At t0, the operator changes the A record and updates the zone at name server A. @
49 seconds later, at $49, the resolver queries name server B, which is in not in sync
yet, for the A record and stores it in its cache. @ Right after, at 50, name server B also
receives the new version of the record. The servers are in sync and the publication
delay of the new record has passed. @ Another 299 seconds later, the TTL of the A
record in the cache of the resolver has also expired and thus, the propagation delay
for the resolver has also passed. It will fetch the new A record of example.com after
it has received a new query for this record.

This example shows, that the maximum time it takes for recursive resolvers to
drop an old A record after its initial introduction at name server A at t0 is roughly
350 seconds. Summarizing: operators must assume that changes to a zone only
become visible to every recursive resolver after their publication delay and their
propagation delay have expired.

Impact when disregarding timing

These delays play a significant role when rolling keys; operators need to ensure that
any combination of cached records will still validate at all times. This is especially
the case when signatures and keys are obtained independent from another.

For example, some resolvers do not query authoritative name servers directly,
but instead rely on an upstream resolver to handle their queries. Figure 5.3 de-
scribes such a situation. Here, an upstream resolver (R1) has cached the A record of
example. com signed with the old key DNSKEY_1. At the same moment, the operator
of example.com rolls its keys.

@ Then, a forwarding, validating resolver (R2) queries R1 for the A record. @ R2
receives the A record together with its signature and wants to validate it. @ Because
R2 has not cached DNSKEY_1, the old ZSK of example.com, it queries R1 again. @



5.3. ROLLOVER FAILURE MODES 95

R2 R1 AT
-
()@ et con 7
I
- _J
= =
43200 A 128.66.0.1 43200 A 128.66.0.1
43200 RRSIG A DNSKEY_1 43200 RRSIG A DNSKEY_1
S

‘ 3600  DNSKEY_2 j; @
7

Figure 5.3: Ignoring publication delay causes validation error at forwarding and
validating recursive resolver

3600  DNSKEY_ 2
86400 A 128.66.0.1

3600  SOA example.com
84000 RRSIG A DNSKEY_2

R1 does not have DNSKEY_1 cached either and it therefore has to query the name
server (AT). The operator of AT is in the middle of a key rollover and has already
deleted the old ZSK from its zone. ® Thus, R1 only receives the new key, DNSKEY_2,
from AT and forwards it to the validating resolver R2. ® R2 cannot validate the old
signature with the new key and returns an error to the querying client.

This is only one scenario in which validation failures can occur during a rollover,
because an operator does not wait before the publication delay and propagation
delay have expired. Only after both have expired, the operator can be confident that
no old signatures are still cached and can safely remove the old key. While this may
seem like a far-fetched corner case, we have performed measurements that show
that this situation can actually occur in practice in Section 5.5.2.

5.3.2 Downgrade Attack

Operators that carry out an algorithm rollover not only have to take propagation and
publication delays into account but also face the challenge of resolvers implementing
RFCs differently. This is the case with some older versions of resolvers that follow a
strict interpretation of RFC 4035, which states that “there MUST be an RRSIG for each
RRset using at least one DNSKEY of each algorithm in the [...] DNSKEY RRset" [57]. If
not, these resolvers suspect an algorithm downgrade attack and consider the record
bogus. In a downgrade attack, an attacker attempts to force a validator to accept
signatures made with a weaker algorithm, e.g. for which the attacker is capable of
forging signatures.

As a consequence, these resolvers expect that every record has a signature for
every algorithm used for the DNSKEYs in the zone [171]. RFC 6781 recommends
adding the new signatures before adding the keys which results in two additional
stages (Il and VI in Figure 5.1) when carrying out the algorithm rollover [16]. Thereby,
resolvers have the signatures of both keys in their cache already when the new key is
added to the zone. If an algorithm rollover skips these additional stages, it is referred
to as a liberal algorithm rollover.
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Monitor  Trust Chain new RRSIG new DNSKEY new DS  DNSKEY removal RRSIG removal

with Measurement msm_I msm_II msm_IIT msm_IV msm_V msm_VI
7SK Pre-Publish [ J [} [} X [ ] X

Double-Signature [ ] X [ ] X [ ] X
KSK Single-Type [ X [ ([ ] [ ] X

Algorithm o o [ [ ] o o

Table 5.1: Rollover types and necessary monitoring measurements. @marks stages
that need to be monitored with the according measurement.

5.4 MONITORING METHOD

The previous section shows that it is crucial for operators to respect the timing of
rollovers. If not, resolvers can fail to validate records. The timing is influenced by the
propagation delay and publication delay. We have shown that it is not straightfor-
ward to respect these delays and that caching resolvers can threaten the availability
of a zone.

In this section we propose a novel measurement method, with which operators
can prevent these issues. Operators who follow our measurement method can de-
termine with confidence when it is safe to withdraw old keys and signatures, and
can monitor the trust chain from the point of view of their clients.

The method consists of three measurement types that accompany each stage of
the rollover. At each stage, operators want to know (i) when is it safe to add new keys
and signatures and withdraw old ones? and (ii) is my zone secure from the perspective
of resolvers?

Our first two measurement types monitor the propagation delay and publication
delay (see 5.5.2). Thereby, operators know when a stage of a rollover has successfully
finished and when they can proceed to the next one. The third measurement type
acts as a “canary in the coal mine”; it monitors the trust chain and signals if the
rolled zone becomes bogus at any stage of the rollover.

We develop our method to monitor the most complicated rollover type: the con-
servative algorithm rollover. Still, the measurement can be applied to other types
of rollovers as well, which will be discussed in the following sections. 5.1 describes
which measurements each type of rollover requires.

In the next sections, we first describe which vantage points are necessary to
monitor the rollover thoroughly. Then, we describe each stage of the method in
more detail. Finally, we describe how operators can use our method to define when
it is safe to move to the next stage of the rollover. We validate the method with the
rollover at the Swedish ccTLD .se in 5.5.

5.4.1 Selecting Vantage Points

For measuring the rollover during each stage we require two types of VPs: (i) VPs to
measure the deployment of the necessary records at the authoritative name servers
directly (VPs-direct) and (ii) VPs to monitor the propagation of records in resolver’s
caches and to verify these resolvers validate signatures successfully (VPs-indirect)
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(see Figure 5.4). With VPs-direct, operators make sure that the new RRset is available
at every name server. This is a precondition for resolvers to pick up the new RRset
and only when all resolvers have picked up the new RRset it is safe to move to the
next stage.

To cover different resolver setups and implementations, and to get a realistic
view of the clients, we prefer a wide range of VPs that are located in as many different
networks and employ as many different recursive resolvers as possible. Thereby, we
have a higher chance to discover failures earlier and also cover corner cases, such
as strict resolvers (see Section 5.3.2).

Direct VPs must be able to send queries directly to authoritative name servers.
The responses must not originate from a cache but must be answered directly from
these authoritative name servers. Only then are we able to monitor the current state
of the zone at the different servers in real time. In contrast, indirect VPs reflect the
“state” of the recursive resolvers. Thus, they must be able to send queries to recursive
resolvers that answer their query from cache or query the name servers for them.

VPs that validate the correct publication and propagation of the keys and signa-
tures rely on both VPs-indirect and VPs-direct. VPs-direct query the servers directly
and monitor the publication delay. VPs-indirect measure which records a resolver
has cached and thereby monitor the propagation delay.

VPs that monitor the trust chain reflect the view of end users and we therefore
rely on VPs-indirect. They should cover a broad range of resolvers and networks,
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DNS response code State
msm_I_secure msm_I_bogus
NOERROR NOERROR insecure
NOERROR SERVFAIL secure
SERVFAIL other bogus

Table 5.2: The combination of the response codes of msm_I_secure and
msm_I_bogus indicates if the trust chain of the rolled domain is intact

such that we can also cover corner cases. Also, it is preferable to select indirect
VPs that are behind validating recursive resolvers because they are most likely to
be affected by failures during a rollover. The more recursive resolvers we cover, the
more our measurements reflect the experience of most clients on the Internet.

In contrast, we typically only need one VP of VPs-direct for each authoritative
name server of the child and the parent. The exception to this is the situation in
which multiple servers are located behind one address. This is for example the case
when a load balancer is used or one name server is replicated to multiple sites using
anycast [172]. In this case, a VP can receive different responses, depending on which
server its query reaches.

For our measurements, operators can deploy their own VPs, but can also use ex-
isting public measurement platforms. In Section 5.5.1, we discuss two of these plat-
forms, RIPE Atlas and Luminati, that when combined provide over 45,000 VPs [69].

5.4.2 The Rollover Stages

After selecting vantage points we must schedule measurements. The measurements
are scheduled in parallel to the stages of the rollover and depending on the stage, we
monitor either the introduction or withdrawal of a signature (RRSIG), key (DNSKEY)
or DS record.

The conservative algorithm rollover consists of 6 stages (see Figure 5.1). We
briefly describe each of them and refer the reader to RFC 6781 [16] for the details:

I: initial Start of the rollover. Every key in the zone has the same algorithm.

« II: new RRSIGs New signatures made with the new key and algorithm are
added, but not the new key itself. This is necessary to prevent errors with
older, strict, resolvers (see Section 5.3.2).

« III: new DNSKEY After the new signatures are published at the name servers
and have propagated to the resolvers, the new key can be added.

« IV: new DS After the new key has propagated to resolvers, the old DS can be
replaced by the new one at the parent.
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« V:remove DNSKEY The new DS has propagated to resolvers, they should now
be able to establish a trust chain with the new key. The old key can be re-
moved.

+ VI: remove RRSIGs After the old DNSKEY has been dropped from the caches
and only the new key is cached, strict resolvers are satisfied as well. The old
RRSIGs can be removed, which concludes the rollover.

In the bottom part of Figure 5.1 we show the necessary measurements that ac-
company each stage. At each stage a different record is added or withdrawn, and
because we measure the publication delay and propagation delay independent of
each other, we have to schedule new measurements for each stage. The measure-
ments to monitor the trust chain are independent from the changed records and can
therefore be scheduled once and can run throughout the rollover.

5.4.3 Define the Right Timing

We now discuss the two measurements that help operators to decide whether a stage
has finished successfully and when it is safe to move on with the next stage of the
rollover.

The actual algorithm rollover starts in Stage II, when the new signatures are
added to the zone and is thus the first stage we monitor. The rollover ends after Stage
VI, when the old signatures are removed and also concludes the last measurements.

Monitor the publication delay

In each of the stages, we monitor the publication delay by measuring the introduc-
tion of the new RRs and the withdrawal of the old ones. Therefore, we query the
servers directly with VPs-direct (msm_II_pub — msm_IV_pub in Figure 5.1).

We start the measurement a few minutes before the zone is updated at the first
name server. This creates a baseline and allows us to detect, when the zone has
changed at each name server. The publication delay has passed as soon as every
VP receives the expected record set from the name servers. From then on, queries
towards any name server are responded to with the new record set. Figure 5.1 shows
the expected record sets of the child and the parent (SOA_@ — SOA_1 of the parent
and SOA_Q — SOA_4 of the child).

Because this should only take a couple of minutes we query the name servers
from each VP as frequently as possible. We stop the measurement after every VP-
direct receives the expected records from the name servers.

Monitor the propagation delay

We employ VPs-indirect in order to monitor the time it takes until the new state of
the zone propagates to resolvers (msm_II_prop — msm_IV_prop in Figure 5.1).

A few minutes before the zone of the child or parent changes, we configure VPs-
indirect to query for the record that is supposed to be added or withdrawn next. This
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Domain Name TTL class type value

secure.example.com 600 IN TXT some string

secure.example.com 600 IN RRSIG RRSIG TXT 8 3 600 (tFzgUjaql...]ABEbA=) «Valid Signature
bogus.example.com 600 IN TXT some string

bogus.example.com 600 IN RRSIG RRSIG TXT 8 3 600 (123456) « Bogus Signature

Table 5.3: Examples of two test records, used to validate the trust chain.
msm_I_secure and msm_I_bogus query the respective records.

creates a baseline. We continue querying for the record from each VP periodically.
The periodicity depends on the TTL of the changed record. The shorter the TTL
the faster resolvers drop the old record from their cache and the more frequently
the operators should monitor this transition. As a minimum, each VP should query
for the new record (i) before the new record set is introduced, (ii) before the TTL
has expired and (iii) after the TTL expires. This ensures the whole transition can be
monitored.

As soon as the zone is updated at the first name server we expect to see more
and more resolvers dropping the old records from their cache, querying for the new
record and returning the new record to our VPs. The propagation of the new zone
state is successful when every VP receives the new state of the zone from their
recursive resolvers. This should take at least the TTL of the added or removed record.
Then, we can stop the measurements with VPs-indirect and the operator can safely
move to the next stage of the rollover.

5.4.4 Monitor the Trust Chain

Operators want to make sure that their zone stays secure during each stage of the
rollover. Therefore, we monitor the chain of trust. This measurement acts as a
“canary in the coal mine” and relies on VPs-indirect.

The goal is to measure if resolvers can still resolve and validate signed records
of the rolled domain or its delegated domains. Resolvers that were able to resolve
and validate the records before but suddenly stop validating or even stop resolving
during the rollover are a strong signal that something went wrong.

We start this measurement in Stage I of the rollover to establish the baseline
state of our VPs. Resolvers can either be successfully validating the signatures of
the rolled zone (secure), not validating but successfully resolving (insecure), or not
resolving at all (bogus). A deviation from this baseline at any point in time during
the rollover signals a failure as described in Section 5.3.

We establish the baseline with the help of two additional RRs (e.g. two arbit-
rary TXT records that contain a random string). We can include the RRs either dir-
ectly in the monitored zone or in the zone of one of its children. The first RR has
a valid RRSIG and every resolver that operates correctly should be able to resolve
the record. Table 5.3 shows the two records, one with a valid, one with a bogus
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Measurement VP Start and End Date ~ Responses
Timing Issues Atlas 2018-01-18 19,501
Downgrade Attack ~ Atlas 2018-01-12 19,648
Publication Delay Atlas 2017-12-14 —22 22,059,735
Propagation Delay ~ Atlas 2017-12-14 —22 2,978,366
Trust Chain Atlas 2017-12-14 —22 16,861,137
Trust Chain Luminati  2017-11-29 —12-20 1,696,262

Table 5.4: Measurements to evaluate failure scenarios (Section 5.5.2) and stage IV of
the .se rollover (Section 5.5.3)

signature.> The second RR has an RRSIG which is bogus, and therefore validating
resolvers should not validate the signature successfully. Not-validating resolvers
should resolve the bogus record without any issues. We query both RRs from each
VP-indirect (msm_I_secure and msm_I_bogus in Figure 5.1).

By combining the outcome of the measurements of the secure and bogus re-
cords we can determine whether a resolver is (i) a secure resolver and validates the
records correctly, (ii) an insecure resolver, or (iii) a resolver that fails to validate
the correct signature. Secure resolvers resolve the secure record correctly (response
code NOERROR) and return with the response code SERVFAIL when querying for
the bogus record. Insecure resolvers return for both records the response code NO-
ERROR. Failing resolvers return at least an error for the secure record but might fail
resolving the bogus record as well (see Table 5.2).

We start the measurements in Stage I and stop them when the rollover concludes.
Each VP should query for the test records once per TTL to detect failures as fast as
possible. Resolvers that change their state, or an increase in bogus resolvers are a
strong signal for rollover issues. Operators can debug these issues with msm_II_pub
—-msm_IV_pub and msm_II_prop - msm_IV_prop. Thereby they will know whether
their servers serve the expected records or if resolvers miss necessary records for
validation.

5.5 ROLLOVER VALIDATION AND APPLICATION

In this section we validate our measurement method. We replicate failure modes de-
scribed in Section 5.3 and measure how likely these failures are to occur at resolvers
in the wild. Then, we apply our method to the algorithm rollover of the Swedish
ccTLD .se. Table 5.4 provides an overview of the measurements analyzed in this
section.

5.5.1 Selecting Vantage Points (VPs)

To monitor the DNS, and the algorithm rollover in particular, we need the right
measurement platform. For our measurements we rely on the vantage points of

3The operator should create the signatures with an algorithm that is widely supported by validating
resolvers.
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Figure 5.6: Timeline of a request in Luminati: the measurement client sends a HTTP
request to the super proxy @; the super proxy makes a DNS request to the Google
Public DNS server @; once the DNS request succeeds, it forwards the HT TP request
to one of the exit nodes @; the exit node makes a DNS request to its DNS resolver
@, then requests the HTTP content ®. The HTTP response is then returned to the
super proxy ®, then to the client @.

RIPE Atlas and Luminati. For replicating the failure modes we only rely on VPs of
RIPE Atlas. In this section we discuss the costs and benefits of these platforms.

RIPE Atlas

As described in Explainer 2, a RIPE Atlas probe is a hardware device that actively
measures Internet connectivity. An Atlas probe is able to act as a VP for direct and
indirect measurements (see Figure 5.4). It can either send queries through its pre-
configured resolvers or can send queries directly to authoritative name servers. If
multiple resolvers are configured, then the probes send queries to all of them.

The Regional Internet Registry RIPE regulates the usage of its measurement plat-
form with the help of credits [69]. Users can earn credits, e.g. by hosting their own
VP or by sponsoring RIPE. Further, by default RIPE limits the number of measure-
ment results a user can create and the number of simultaneous VPs that can be used
at any time. Upon individual request, RIPE may relax these limits but even with
them in place, RIPE Atlas is still a useful platform to monitor a rollover.

Instead of using every available VP, operators can only use probes that reflect
their client base. For example, the RIPE Atlas API allows users to select probes loc-
ated only in a certain country or in a certain network. To limit the use of cred-
its, operators can, for example, start monitoring the trust chain (msm_I_secure,
msm_I_bogus) just before the next stage of a rollover and stop it when a stage has
finished successful.
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Luminati

Luminati [133] is a paid HTTP/S proxy service that enables clients to route traffic
via the Hola Unblocker Network. Hola Unblocker allows users to route their traffic
via a large number of proxies. It is available on multiple platforms such as Windows,
Mac, and browser extensions and has been installed by more than 149 million users
around the world. Luminati uses machines that installed the Hola Unblocker to
allow its customers to route their traffic via the machines.

To route HTTP/S traffic via the Luminati network, a client first sends the request
to one of the Luminati servers (called the super proxy). Then, the super proxy looks
up the destination domain using Google Public DNS and forwards the HTTP/S re-
quest to one of their Hola clients (called the exit node) if it is a valid domain name.*
An exit node makes a DNS request to its name server, and then makes the HTTP/S
request. Once the response comes back from the destination, the exit node will for-
ward the response back to the super proxy, which also forwards it back to the client.
Figure 5.6 shows this process schematically. For more details on using Luminati for
network measurements, we refer the reader to the study by Chung et al. [134].

Application

We use the VPs from RIPE Atlas to evaluate the failure modes and both platforms
to monitor the rollover of .se; we obtained more than 9,500 VPs from RIPE Atlas
and 36,000 VPs from Luminati. RIPE Atlas allows us to send DNS queries directly
to the name servers or via the pre-configured recursive resolver, thus acting as VP-
indirect when relying on their resolvers and acting as VP-direct when querying the
name servers directly. Luminati, in contrast, only allows us to send HTTP requests
via the exit nodes, which makes these exit nodes send DNS queries via recursive re-
solvers [134]. Hence, RIPE Atlas probes act as both the VPs-direct and VPs-indirect,
but Luminati only as the latter.

Probes of RIPE Atlas are very often located behind validating resolvers (see Fig-
ure 5.5), which is useful to monitor the chain of trust, but also are often not located
in residential networks [173]. The opposite is the case for clients of Luminati; the
large majority is located in residential networks but only around 12% use validating
resolvers [135]. As shown in Figure 5.5, these two platforms cover a very different
set of networks, such that by combining these two different approaches they allow
us to have a more comprehensive view on resolvers around the world.

5.5.2 Evaluate Failure Modes

In this section, we demonstrate that the issues described in Section 5.3 are not only
theoretical. We show that operators should indeed monitor rollovers thoroughly,
and algorithm rollovers especially, using our method. We use our own second level

4Google’s DNS servers will return a SERVFAIL response to the super proxy if DNSSEC validation
fails.
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test domain name (ourtestdomain.nl.) and the VPs of RIPE Atlas to replicate
different failure modes.

Timing issues

As explained previously in Section 5.3.1, especially interlinked caches can lead to
validation failures during rollovers that are not carried out correctly. We replicate
the situation in Section 5.3.1, in which a forwarding resolver fails validation, with
RIPE Atlas probes and a domain under our control.

Our zone consists of one signed TXT test record with a TTL of 24 hours and the
accompanying key material, with a TTL of 1 hour. Then, we query for the test record
from each RIPE Atlas probe, using its pre-configured resolvers. Thereby, validating
resolvers query for the test record, its signature and the keys and store them in their
cache. Then, we carry out a ZSK rollover and remove the old key from the zone.
An hour later, the DNSKEY record should have expired from the cache, but the test
record should still be cached. Then we query for the test record again.

Forwarding resolvers that do not have the TXT test record cached (e.g. because
they do not have a cache implemented) now need to query their upstream resolvers
again for the TXT record and the key. The upstream resolvers should not have the
old DNSKEY record in their cache anymore but only the TXT record and old signa-
ture. Therefore, they need to query our name servers for the key again which now
respond with the new key. Forwarding resolvers cannot validate the old signature
with the new key and therefore fail validation.

Out of 10,155 VPs, at least 38 use a validating forwarding resolver and return an
error. This is just one of many scenarios where not respecting the publication and
propagation delay leads to failures and shows that respecting these delays is crucial
when carrying out a rollover

Downgrade attack

A failure mode that applies to algorithm rollovers, and thus, also to the rollover of
. se are resolvers that expect signatures with each of the algorithms in the DNSKEY
RRset of a zone. We use every available RIPE Atlas probe to measure in the wild
how many resolvers follow this strict interpretation.

Out of 10,952 probe-resolver pairs, 6 fail for zones that do not provide signatures
for every available algorithm. Thus, operators that do not follow the conservative
interpretation of RFC 4035 can expect a small number of resolvers to fail validating
their zone during the rollover.

5.5.3 The .se Use Case

After we have shown that it is indeed necessary to respect the timing during rollovers
we now apply our method on the algorithm rollover of . se.

In December 2017, the Swedish ccTLD .se carried out their first ever algorithm
rollover, moving from the RSA/SHA-1 to the RSA/SHA-256 signing algorithm. The
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Figure 5.8: Share of resolvers that see the new DS, 24 hours after its introduction

.se ccTLD was the first ccTLD to deploy DNSSEC [174] in 2005, well before the
root zone got signed in 2010. At the time of the rollover, .se had more than 1.4
million registered domain names and more than half of the them were signed with
DNSSEC [166]. Furthermore, more than 70% of Swedish Internet users rely on val-
idating resolvers [167] to resolve these domains. If the algorithm rollover of .se
would fail, the impact on Swedish society would be devastating: the majority of cli-
ents that rely on . se domains would likely not be able to reach . se domain names
for minutes or even hours.

Therefore, it is crucial for the operator of . se that the rollover succeeds. We ap-
ply and validate our method based on this event and demonstrate how it supported
the operators of . se during their rollover. During the rollover, we provided the oper-
ators of . se insights into their rollover in real-time by processing the measurements
and visualizing the results on a dashboard.

In the remainder of this section we rely on the replacement of the DS in Stage IV
as a use case. It is one of the most crucial stages in the rollover for two reasons. First,
it involves interaction with the parent, which is only partially under the control of
the operator. Second, whereas the previous stages could only have a direct impact on
resolvers that follow the conservative approach (see Section 5.3.2), this is the first
stage where a failure would affect every record in the zone and every validating
resolver.
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Monitor the publication delay

Using VPs-indirect of RIPE Atlas, we measure when every server of the root serves
the new DS (msm_IV_pub in Figure 5.1).

The DS of .se is replaced at around 18:30 UTC. The first probe observes the
new DS at 18:30:25 at J-root and 32 seconds later every root server has the new DS
deployed on at least one of their sites. After 5 more minutes, over 99% of the probes
receive the new DS (see Figure 5.7). Note that some root server letters need more
time to distribute the new zone to their slaves than others: only after 10 minutes
every probe receives the new DS. From this point on, the operator can expect that
every resolver will receive the new DS from the root.

The root servers are heavily replicated using anycast. Root servers with many
sites, however, do not necessarily distribute the new DS across their sites slower
than root servers with fewer sites. D-root with more than 120 sites have their sites
in sync almost as fast as C-root with only 10 sites. Note that, because of external
factors such as network congestion, the publication delay can vary every time a new
version of the zone is distributed. A full study of the reasons for propagation delays
at root operators is outside the scope of this paper and we suggest to study this
phenomenon in future work.

Monitor the propagation delay

In contrast to the publication delay, the propagation delay, measured with msm_IV_prop

in Figure 5.1, is significantly longer. Most of the resolvers of VPs-indirect (RIPE At-

las only) pick up the keys within 1 day (see Figure 5.8). This is expected since the

TTL of the DS is 24 hours. A small share of resolvers (less than 1%) still have the old

DS in their cache 48 hours after its withdrawal and only after 50 more hours the last

VP has dropped the old DS. This is likely caused by resolvers that ignore the TTL or

do not forward queries to one of the official root servers (see Figure 5.9) [175].
Operators should validate whether these lagging resolvers send a significant

share of queries to their authoritative name servers. If so, they might want to try to

contact the operators of the resolver to fix this issue before moving on to the next
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stage. If not, they can safely move on to the next stage and neglect these lagging
resolvers.

Based on these measurements, the operators of . se know that they have to wait
at least the publication delay of 10 minutes and the propagation delay of 48 hours
before moving on to Stage V. Then, they can withdraw the old DNSKEY from their
zone safely.

Monitor the trust chain

For the entire duration of the rollover, we monitor the trust chain of . se from the
perspective of a second-level . se domain (msm_I_secure and msm_I_bogus in Fig-
ure 5.1).

A caching resolver can only detect a failure in the trust chain if the record that
caused the failure has expired from cache. In . se, the TTL of the DS is 1 hour. As a
consequence, we can detect failures for . se or the root with one second-level domain
only once per hour.

To address this shortcoming, we create five second-level test domains with one
validly signed and one bogus signed record each. From each VP-indirect we query
the records of every domain once per hour. We schedule the measurements such
that each VP spreads its queries to the domains equally. Thus, within an hour a VP
sends 5 queries to a bogus record and 5 queries to a secure one. By combining the
response codes of the queries to the same domains, we can detect a failing resolver
of a VP at least every 12 minutes.

We again monitor Stage IV, in which the DS is replaced at the root. Because the
TTL of the DS at the root is 24 hours we would not see the impact of this failure
immediately. Figure 5.10 shows the VPs- indirect (RIPE Atlas and Luminati) that are
secure, insecure or bogus before and after the DS is replaced. We do not observe
an increase in bogus resolvers and the number of secure resolvers also stays stable.
This shows that . se remains secure during the rollover and, very likely, also end
users do not experience issues. In fact, our measurements show that . se is secure
during every stage of the rollover. This is the desired result for its operator and thus,
the rollover is carried out successfully.

Lessons learned and other use cases

In this use case, we used all available RIPE Atlas and Luminati VPs. In order to
reduce cost and the impact of the measurements on network resources, operators
can select VPs that reflect their actual client base. For example, by selecting VPs that
are located in the network of their local ISPs and VPs that make use of large public
DNS providers such as Google, operators can likely cover most resolvers that their
clients rely on [143]. In order to cover corner cases, operators should still employ
as many VPs as possible. Only then, also forwarding resolvers or resolvers behind
load balancers are covered.

After applying our method to . se we also supported the operators of the Brazilian
ccTLD . br in applying our method to their algorithm rollover [18]. In October 2018,
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Figure 5.10: State of VPs that successfully validated signed . se domains before and
after the new DS was introduced

they rolled the keys from RSA-SHA1 to the new elliptic curve algorithm ECDSA-
P256-SHA256 and decided to follow the liberal approach for the rollover. Again, the
operators relied on every available VP of RIPE Atlas and Luminati. As with .se,
their rollover was carried out successfully and the measurements, set up according
to our method described in this paper, did not show any significant failures [176].
This also demonstrates that the number of resolvers that follow the strict approach
for the rollover (as described in Section 5.5.2) was not significant enough to jeopard-
ize a liberal rollover. In 2020, also the operators of the Danish ccTLD . dk switched
to ECDSA-P256 [168]. Also they relied on our measurement method, using it mostly
to monitor the trust chain.

5.6 RELATED WORK

Operators have multiple tools at hand that allow them to debug errors in DNSSEC
and automate rollovers and can rely on rough guidelines on how to roll their keys.
In comparison to the method described in this paper, all of these tools, however, lack
concrete recommendations about the correct timing during the roll.

5.6.1 Challenges of DNSSEC Rollovers

The particular risks of DNSSEC KSK rollovers have been described in academic lit-
erature multiple times in the past. In 2007, Ariyapperuma et al. note that DNSSEC
rollovers are a risk which has not been addressed at the operational level and Yang et
al. particularly describe how the effects of caching can break the chain of trust [159],
[177].

Chung et al. measure DNSSEC rollovers on second level domains in . com, .net
and .org over a period of 21 months [135]. During that time, only 30% of the signed
domains carried out a KSK rollover, which suggests that operators consider KSK
rollovers too risky. Of the domains that rolled their keys, 7% of them did not respect
the propagation delay of the keys, which may have caused validation errors.
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Besides caching, an increased response size for DNSKEY queries can also cause
a risk during a rollover. This increase may cause packets to be fragmented and
possibly blocked on their way to the resolvers. Van Rijswijk et al. describe this risk
and analyze how elliptic curve cryptography can address this [94].

5.6.2 Rollover Guidelines

Because of the added complexity of DNSSEC rollovers, three informational guidelines
have been published in the IETF intended to help operators roll their keys cor-
rectly. RFC 4641 [178] is now considered obsolete and is updated by RFC 6781 [16].
RFC 6781 describes the different rollover types in detail and explains each step an op-
erator has to carry out. The document, however, does not give concrete guidelines,
when to proceed from one step of the rollover to another. RFC 7583 [17] makes
more concrete recommendations about the timing of a rollover, but because the ac-
tual time it takes for records to propagate across the DNS can differ from expected
behavior, just following these recommendations is likely not sufficient to achieve a
flawless rollover.

5.6.3 Debugging DNSSEC

Open source tools such as DNSViz and Zonemaster can debug the configuration of
a zone, including DNSSEC records and the chain of trust [91], [179]. Operators can
use these tools to check the publication of records at their name servers. They are
not suitable for monitoring the propagation of records. Also, these tools were not
developed for continuous monitoring and are thus not suited to monitoring a longer
running process such as a rollover. With our methodology on the other hand we
can measure the propagation and publication continuously throughout the whole
process.

The measurement platform of APNIC continuously measures the number of cli-
ents that rely on validating resolvers. However, the platform is not public and does
not focus on the validity of individual domain names [167].

5.6.4 Automating Rollovers

In the early days of DNSSEC deployment, operators had to create, introduce and re-
move keys and signatures manually. This requires many manual steps and, like most
manual processes, is prone to errors. Today, tools exist to mostly automate rollovers
and are implemented either directly in the name server software, are exclusively
developed to manage DNSSEC of a zone, or support decision making during the
roll.

For example, since version 9.7, BIND can automate the process of creating new
keys and adding them to the zone [180]. In case of a KSK or algorithm rollover,
however, operators need to withdraw old keys manually from the zone. Also, the
interaction with the parent needs to be done manually. With our method, oper-
ators know when they can safely remove the DS records from parent. The name
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server software Knot DNS can also carry out rollovers automatically, including al-
gorithm rollovers [181]. If configured, Knot DNS will check automatically at the
parent whether the new key is updated and waits an additional TTL before remov-
ing the old key. As shown in Section 5.5.3, waiting one TTL might be not long
enough for every resolver to drop the old keys and signature from cache. Operators
who follow our method will have more confidence when it is safe to remove the old
key and can manually instruct Knot DNS to do so.

OpenDNSSEC is a tool that automatically keeps track of DNSSEC keys and handles
DNSSEC signing [182]. It can also automate rollovers to some extent. If operators
pre-configure their publication and propagation delays, OpenDNSSEC can carry out
ZSK rollovers fully automated. KSK and algorithm rollovers, however, still require
manual work. OpenDNSSEC uses fixed timers and cannot detect when the DS record
at the parent is published and has propagated. Thus, operators still have to mon-
itor the publication and propagation themselves and communicate the state of the
DS to OpenDNSSEC. Our method allows operators to do so which lets them safely
continue with the rollover. Other commercial tools exist but they invariably require
some manual interaction of the operators as well [183].

An attempt to automate the interaction with the parent is described in RFC 7344.
This standard introduces CDS (Child DS) and CDNSKEY (Child DNSKEY) records with
which operators can signal to their parent zone that they want to add, roll, or delete
their DS [87]. DNS provider Cloudflare supports CDS and CDNSKEY and also the TLDs
.ch, .1i and . cz update the DS if they detect a CDS or CDNSKEY record at one of their
child domains but overall, the adoption of this standard is low [59], [184]-[186].

Still, none of the tools can say with confidence when the keys and signatures
have propagated to the resolvers and thus, active monitoring is still necessary. Our
method describes how operators should actively monitor their rollovers and gives
them the confidence when the required records are public and have propagated.

5.7 CONCLUDING REMARKS

In this chapter, we have demonstrated the complexity of DNSSEC rollovers and al-
gorithm rollovers in particular and how to address them, using our novel measure-
ment method. We have shown that issues with timing and legacy resolver software
during the rollover are not only theoretical and can have a severe impact on the
availability of a zone.

Because failure is not an option for operators, we contributed a measurement
method to prevent failures from happening. With the help of our method, operators
know when it is safe to proceed in each stage of a rollover. In addition to this, our
method allows them to confirm that their clients can validate their zone at any point
in time during the rollover.

We demonstrated this by applying our method to the algorithm rollover of the
Swedish ccTLD . se and we showed that the rollover of . se was carried out without
issues for clients. The operators, however, reported small issues, especially during
the creation of their new keys. Because our approach provided them with insight
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into their rollover they had the confidence to continue the rollover regardless of
these problems [165].

Our method provides the final link to fully automate DNSSEC rollovers. As
shown in Section 5.6, tools and protocols exist to automatically create and publish
new keys and signal to the parent that they should be updated. With our method,
operators now also know exactly when it is safe to withdraw old keys and signa-
tures. We publish our tool as open source software, so any operator can set up the
measurements necessary to implement this method themselves, using the vantage
points of RIPE Atlas.> Our command-line tool, implemented in Python, first sched-
ules every measurement described in this article for a zone defined by the operator
using the RIPE Atlas APL It then processes the measurement results at a config-
urable interval. Finally, it gives as output the current state of the publication and
propagation of the changed records. Operators can use the output to identify lag-
ging name server instances or resolvers and to decide when to move to the next
stage of the rollover. In the future, the output of this tool can also be used as an in-
put for software such as OpenDNSSEC, Knot DNS or other DNSSEC signer software.
For example, these signer implementations could automatically withdraw old keys,
if the new key has propagated to at least 99% of the vantage points. Thereby, we
close the last gap of fully automating rollovers, reduce their risks and address one of
the barriers when deploying DNSSEC. This paves the way for more DNSSEC-signed
zones in the future, which would increase the security of the DNS overall. The tool
was also applied by the operators of .br and . dk.

The provided tool, but also the fact that the algorithm rollovers of all three
ccTLDs were a success, should give operators of other signed zones also the con-
fidence to roll to a more secure algorithm. Only then, DNSSEC can provide security
for the DNS also on the long term.

Before we look forward, with the threat of quantum computers on the horizon,
we first dive deeper into one aspect that affects the timing of rollovers also: the way
resolver select authoritative name servers.

3Source code and documentation available here: https://github.com/SIDN/rollover-mon
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In the previous chapter, we have shown that timing is crucial when it comes to car-
rying out algorithm rollovers. This is especially the case for some “strict” resolvers
that require an additional stage during the rollover. In this chapter, we show how
resolver behavior, not related with DNSSEC operations at first sight, can complic-
ate algorithm rollovers. The root cause lays in the way resolvers choose between
authoritative name servers when sending their queries. In our study, we measure
this behavior “in the wild”. The results have been first published as a paper in a
peer-reviewed conference [20].
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Figure 6.1: Scenario of an algorithm rollover in which out of sync authoritative name
servers can lead to validation failures at “strict” validating resolvers

6.1 INTRODUCTION

In the previous chapter, we have discussed the complexities of algorithm rollovers.
There, we have also explained that algorithm rollovers require two additional stages
in comparison to “regular” KSK rollovers. This is necessary because some resolvers
expect a signature with each algorithm occurring in the DNSKEY set [57]. If this is
not the case, these resolvers may consider the zone bogus, as missing signatures for
certain algorithms is seen as a downgrade attack.

If an operator decides to skip the two additional stages, these strict resolvers
can encounter a mismatch between published algorithms and signatures in some
situations. For example, strict resolvers might be forwarding their queries to two
different recursive resolvers (similar to the situation in Figure 5.3 of Chapter 5).
A strict resolver might fail validation if it fetches the key set from one recursive
resolver, already serving the new version of the zone, but the signature from the
other recursive resolver. If the latter resolver still has the old version of the zone
cached then the strict, forwarding resolver, might end up with two keys with two
different algorithms, but with only one signature, leading to a validation failure.

In another example, a strict resolver sends its queries to different name servers
which are not in sync yet, as described in Figure 6.1. In the previous chapter, we
have shown that it takes time before different authoritative name servers, and their
anycast instances, serve the same content of the zone. Imagine now, that the strict
resolver receives only the signature of the old algorithm from the lagging name
server (O and @ in Figure 6.1). Then, ® it queries the second authoritative name
server for the keys. If this name server already serves the new version of the zone,
it returns two keys with two different algorithms, again leading to a validation fail-
ure @.

In this chapter we want to understand, how often recursive resolver spread their
queries across multiple authoritative name servers, potentially causing validation
failures as described above. There are many different implementations of recursive
resolvers with a multitude of software releases. It is not defined how they select
between authoritative servers, and we cannot determine which implementations
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run where, nor how many of each exist. Early work [187] shows that the behavior
across different recursive resolvers is diverse, with some making intentional choices
and others alternating across all NSes for a service. While this result has been re-
confirmed, to our knowledge, there is no public study on how this interacts with
different design choices of name server deployments, nor how it should influence
its design.

The first contribution of this chapter is to re-evaluate how recursive resolvers select
authoritative name servers (Section 6.4), but in the wild, with the goal of learning
from the aggregate behavior in order to better engineer authoritative deployments.
We answer this question with a controlled study of an experimental, worldwide,
name server deployment using Amazon Web Services (AWS) coupled with global
data from the Root DNS servers and the .nl TLD (Section 6.5).

Our key results are that most recursive resolvers check all authoritative name
servers over time (Section 6.4.1), about half of recursive resolvers show a preference
based on latency (Section 6.4.2), and that these preferences are most significant when
authoritative name servers have large differences in latency (Section 6.4.3).

These findings also demonstrate that one certain behavior of resolvers, unrelated
to DNSSEC at first sight, can complicate DNSSEC operations. Thereby, we show
once more how easily DNSSEC can lead to errors if operators are not careful.

Our second contribution, is not directly related to DNSSEC, but to DNS perform-
ance. Based on our findings in this study we suggest how DNS operators can optimize
a DNS service to reduce latency for diverse clients (Section 6.7). In order to achieve
optimal performance we conclude that all NSes need to be equally strong and there-
fore recommend to use anycast at all of them. This new recommendation augments
existing practices about operation of individual anycast services [172], [188], with
advice about DNS services that employ multiple NSes.

6.2 MODERN DNS SETUP

Figure 6.2 shows, as an example, how the components of the DNS are deployed in
the wild today. Here, zones are distributed across multiple name servers (AT). These
name servers in turn, are sometimes distributed even further, using anycast. With
anycast, multiple name server that share the same IP address are placed in differ-
ent locations. Then, the routing protocol of the Internet makes sure that queries,
directed towards the IP address arrives at the anycast site, closest to the recursive
resolver.! For more details on Internet routing and BGP we refer the reader to Moura
et al. [189].

By the time of this study in 2017, most of TLDs within the root zone use 4
NSes, but some use up to 13, and each of these NSes can be replicated and glob-
ally distributed using IP anycast and load balancers [189]. Second level domains like
example.com under TLDs like .com, .net and .org have a median of 2 NS records
(mean of 2.3, 2.4, and 2.4) and the domain names of .nl have a median of 3 NS
records (mean of 2.6 as of 2017-08-01).

IClosest in the view of the routing system, not necessarily closest geographically
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Recursive resolvers (R in Figure 6.2), receiving a query from their clients (CL in
Figure 6.2) and that cannot find the answer in their local cache then have the choice
of multiple authoritative name server to send their query to.

Besides the local cache with information on DNS records, many resolvers also
keep an infrastructure cache with information on the latency (Round-Trip Time (RTT))
of each queried authoritative server, grouped by IP address. The infrastructure cache
is used to make informed choices among multiple authoritative name servers for a
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ID locations (airport code) VPs
2A  GRU (Sao Paulo, BR), NRT (Tokyo, JP) 8,702
2B DUB (Dublin, IE), FRA (Frankfurt, DE) 8,685

2C  FRA, SYD (Sydney, AU) 8,658
3A  GRU, NRT, SYD 8,684
3B DUB, FRA, IAD (Washington, US) 8,693
4A  GRU, NRT, SYD, DUB 8,702

4B DUB, FRA, IAD, SFO (San Francisco, US) 8,689

Table 6.1: Combinations of authoritative name servers we deploy and the number
of VPs they see

given zone. For example, Unbound [190] implements a smoothed RTT (SRTT), and
BIND [191] an SRTT with a decaying factor. Some implementations of recursive
resolvers, particularly those for embedded devices like home routers, may omit the
infrastructure cache.

6.3 MEASUREMENTS AND DATASETS

Next we describe how we measure the way recursive resolvers choose authoritative
servers, using both active measurements and passive observations of production
DNS at the root and .nl. Our work focuses on measurements from the field, so
that we capture the actual range of current behavior, and to evaluate all currently
used resolvers. Our work therefore complements prior studies that examine specific
implementations in testbeds [187]. Their work are definite about why a recursive
makes a choice, but not on how many such resolvers are in use.
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6.3.1 Measurement Design

To observe recursive-to-authoritative mapping on the Internet, we deploy author-
itative servers for a test domain (ourtestdomain.nl) in 7 different datacenters, all
reachable by a distinct IPv4 unicast address. Sites are hosted by Amazon, using NSD
4.1.7 running on Ubuntu Linux on AWS EC2 virtual machines.

We then resolve names serviced by this test domain from about 9,700 vantage
points (VPs) distributed over 3,300 Autonomous Systems (ASes) (of which 1,040 ASes
host 2 or more probes), all the RIPE Atlas probes that are active when we take each
measurement [69] (see Explainer 2 for more details on RIPE Atlas). Each VP is a
DNS client (a CL in Figure 6.2) that queries for a DNS TXT resource record using an
IPv4 address.

Each VP uses whatever their local configured recursive is. Those recursive re-
solvers are determined by the individual or ISP hosting each VP. Overall, we observe
over 11,000 unique IP addresses of upstream recursive resolvers at our authoritative
name servers, located in over 2,500 ASes.

To determine which authoritative NS the VP reaches, we configure each NS with
a different response for the same DNS TXT resource. While most studies of anycast
catchment use DNS CHAOS-class queries, where a query on the hostname.bind
or id.server identifies a specific authoritative [192], CHAOS queries would be
answered directly by the configured recursive server. We use Internet-class quer-
ies that pass through a recursive to the authoritative. The resulting dataset from
the processing described is publicly available at our website [193] and at RIPE At-
las [194].

Cold caches. DNS responses are extensively cached [195]. We insure that
caches do not interfere with our measurements in several ways: our authoritative
name servers are used only for our test domain, we set the time-to-live (TTL) [150]
of the TXT record to 5 seconds, use unique labels for each query, and run separate
measurements with a break of at least 4 hours, giving recursive resolvers ample time
to drop the IP addresses of the authoritative name servers from their infrastructure
caches.

Name servers location. We deploy 7 combinations of authoritative servers
located around the globe (Table 6.1).

We identify each by the number of sites (2 to 4) and a variation (A, B, or C). The
combinations vary geographic proximity, with the authoritative name servers close
to each other (2B, 3B, 4B) or farther apart (2A, 2C, 3A, 4A). For each combination
we determine the recursive-to-authoritative mapping with RIPE Atlas, querying the
TXT record of the domain name every 2 minutes for 1 hour. We choose 2 to 4 name
servers because it reflects the most common name server deployments and is enough
to provide geographic diversity. While we consider “only” one hour of data, it seems
unlikely that authoritative selection is strongly affected by diurnal factors.

Measurement challenges and considerations. We consider several chal-
lenges that might interfere with our measurements.

Atlas probes might be configured to use multiple recursive resolvers and, there-
fore, in our analysis we consider unique combinations of probe ID and recursive IP
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as a single VP (or client, in Figure 6.2);

Middleboxes (load balancers, DNS forwarders) between VPs and recursive re-
solvers (MI in Figure 6.2) or recursive resolvers which use anycast may interfere,
causing queries to go to different recursive resolvers or to warm up a cache. Full
studies of DNS resolution are quite involved [26] and outside the scope of this pa-
per. We confirm that middleboxes have only minor effects on our data by comparing
client and authoritative data. Specifically, we compare Figure 6.5 to the same plot
using data collected at the authoritative name servers for all recursive resolvers that
send at least five queries during one measurement.

The two graphs are basically equivalent, suggesting that middleboxes do not
significantly distort what we see at the clients.

Because of the use of these middleboxes we refrain from trying to identify the
implementations of the recursive resolvers directly. Our VPs (RIPE Atlas probes) are
unevenly distributed around the globe, with far more in Europe than elsewhere [173],
[196], [197].

To take this uneven distribution into account when we study geographic effects,
we group probes by continent and analyze them individually in most research ques-
tions.

We focus on UDP DNS for IPv4, not TCP or IPv6. The majority of our VPs
have IPv4 connectivity only [173] (69%) and so fully study of IPv6 does not make
sense. However, we verify that our results apply to IPv6 by repeating a subset of our
measurements there. We use the VPs capable of IPv6 to query authoritative name
servers reachable only via IPv6 addresses and we confirm that, overall, recursive
resolvers follow the same strategy when querying via IPvé.

We focus on DNS over UDP because it is by far the dominant transport protocol
today (more than 97% of connections for . n1 [198] and most Root DNS servers [130]).

Finally, our results are based on one service, the country-code (ccTLD) for the
Netherlands (.nl). Our results are about recursive and authoritative resolvers and
are not specific to this domain. We believe our results generalize to other domains
(both ccTLDs and general TLDs), but additional study is needed.

6.3.2 Root DNS and TLD Data

We use passive measurements from the DITL (Day In The Life of the Internet) [199],
collected on 2017-04-12 at 10 Root DNS letters (B, G and L are missing). We look at
the one-hour sample from 12:00 to 13:00 (UTC), since that duration is sufficient to
evaluate our claims. By default, most implementations of recursive resolvers do not
treat Root DNS servers different from other authoritative name servers.

We also use traffic collected at 4 authoritative servers of the .nl ¢cTLD [200].
For consistency, we use .nl traces from the same time slot as of DITL data. We use
these data sets to validate our observations from Section 6.3.1. Note that we cannot
enforce a cold cache condition in these passive measurements such that a recursive
could already prefer an authoritative, and RTT data is not available.
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Figure 6.5: Recursive queries distribution for name server combinations 2A (top), 2B
(center) and 2C (bottom). Solid and dotted horizontal lines mark VPs with weak and
strong preference towards an authoritative.

6.4 ANALYSIS OF RECURSIVE RESOLVER BEHAVIOR

6.4.1 Do recursive resolvers query all name servers?

Our first question is to understand how many recursive resolvers query all avail-
able authoritative servers. Figure 6.3 shows how many queries, after the very first
one, it takes for a recursive to probe all available authoritative name servers (2 to 4
depending on the configuration from Table 6.1).

The percentage of recursive resolvers that query all available authoritative name
servers is given in the x-axis labels of Figure 6.3. Most recursive resolvers query all
authoritative name servers (75 to 96%), and with two authoritative name servers (24,
2B, 2C) half the recursive resolvers probe the second authoritative already on their
second query; but with four authoritative name servers (4A, 4B) it takes a median of
up to 7 queries for the recursive resolvers to query them all. Operators can conclude
that all their authoritative name servers are visible to most recursive resolvers.

6.4.2 How are queries distributed per name server over time?

Since most recursive resolvers query all available authoritative servers relatively
quickly, we next look at how queries are spread over multiple authoritative name
servers, and if this is affected by RTT. Here, our analysis starts once each recursive
reaches a hot-cache condition by querying all authoritative name servers at least
once.

Figure 6.4 compares the fraction of queries (bottom) received by each authorit-
ative with the median RTT (top) from the recursive resolvers to that authoritative.
We see that authoritative name servers with lower RTTs are often favored; e.g., FRA
has the lowest latency (51 ms) and always sees most queries overall.
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When running multiple authoritative servers, the operator should expect an un-
even distribution of queries among them. Servers to which clients see shorter RTT
will likely receive most queries.

Our findings in this section, and in Section 6.4.1, confirm those of previous work
by Yu et al. [187], in which authors show that 3 out of 6 recursive implementations
are strongly based on RTT. However, unlike the previous work, our conclusions are
drawn from real-world observations instead of experimental setup and predictions
based on algorithms.

6.4.3 How do recursive resolvers distribute queries?

We now look at how individual recursive resolvers in the wild distribute their quer-
ies across multiple options of authoritative name servers.

Figure 6.5 shows the individual preferences of recursive resolvers (VP/recursive
pair, grouped by continent) when having the choice between two authoritative name
servers. The x-axis of Figure 6.5 displays all recursive resolvers, and the y-axis gives
the fraction of queries every recursive sends to each authoritative. Table 6.2 sum-
marizes these results.

In order to quantify how many recursive resolvers are actually RTT based, we
consider only VPs that experience a difference in median RTT of at least 50 ms
between the authoritative name servers.? Based on our observations we define two
thresholds for recursive preference: a weak preference if the recursive sends at least
60% of its queries to one authoritative (solid lines in Figure 6.5), and a strong prefer-
ence if at least 90% of queries go to one authoritative (dotted lines in Figure 6.5).

We see that 61% of recursive resolvers in 2A (top), 59% in 2B (center) and 69% in
2C have at least a weak preference; and 10%, 12% and 37% have a strong preference
in 2A, 2B, and 2C respectively. We show in Figure 6.6 that recursive resolvers with a
weak preference develop a stronger preference the longer they query the authorit-
ative name servers. Here we see that after sending queries for 30 minutes, recursive
resolvers with a weak preference develop an even stronger preference.

The distribution of queries per authoritative is inversely proportional to the median
RTT to each recursive. The bottom plot of Figure 6.5 clearly shows this point, where
there is a strong bias for VPs in Europe (EU): VPs largely prefer FRA (Frankfurt) over
SYD (Sydney); and the opposite for VPs in Oceania (OC): SYD over FRA.

By contrast, when given a choice between two roughly equidistant authoritative
name servers, there is a more even split. We see a roughly even split both when the
recursive resolvers are near, with Europe going to Frankfurt and Dublin (configura-
tion 2B, EU to FRA and DUB), or far, where they go to Brazil and Japan (configuration
2A, EU to GRU and NRT). Some VPs still have a preference; we assume these repres-
ent VPs in Ireland or Germany. Thus, DNS operators can expect that the majority
of recursive resolvers will send most queries to the fastest responding authoritative.

2We think that it is reasonable for a recursive to prefer an authoritative over another when it responds
at least 50 ms faster.
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Figure 6.6: Fraction of recursive resolvers that have a weak (solid line) or a strong
(dotted line) depending on the length of the measurement

config: 2A 2B 2C

cont- | NRT GRU FRA DUB FRA SYD
ient | % RTT % RTT| % RTT % RTT| % RTT % RTT

AF |39 467 61 393 |57 200 43 204 |85 200 15 513

AS 70 130 30 353 |53 241 47 261 |54 200 46 193

EU |37 310 63 248 |65 39 35 53 83 39 17 355

NA |46 190 54 173 |41 162 59 152 |66 149 33 237

OC |74 201 26 363 |46 346 54 335 |22 370 78 48

SA |27 364 73 102 |49 259 51 259 |70 258 30 399
(AF: Africa, AS:Asia, EU: Europe, NA: North America,
OC: Oceania, SA: South America)

Table 6.2: Query distribution and median RTT (ms) for VPs grouped by continent
and three different combinations of authoritatives (Table 6.1).

However, a significant share of recursive resolvers (in case of 2B up to 41%) also send
up to 40% of their queries to the slower responding authoritative.

To expand on this result, Figure 6.7 compares the median RTT between VPs that
go to a given site and the fraction of queries they send to that site, again grouped by
continent. Differences between the two points for each continent indicate a spread
in preference (differences in queries on the y axis) or RTT (differences in the x axis).
We show the results for 2B because in this setup, both authoritative name servers
are located rather close to each other such that the VPs should see a similar RTT for
both of them. We see that recursive resolvers in Europe that prefer Frankfurt do so
because of lower latency (EU VPs that prefer FRA have 13.9 ms lower latency than
DUB). In contrast, recursive resolvers in Asia distribute queries nearly equally, in
spite of a similar difference in latency (AS VPs see 20.3 ms difference). We conclude
that preferences based on RTT decrease when authoritative name servers are far away
(when they have large median RTT, roughly more than 150 ms).
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Figure 6.8: Fraction of queries to FRA (remainder go to SYD, configuration 2C), as
query interval varies from 2 to 30 minutes

As a consequence, DNS operators who operate two authoritative name servers
close to each other can expect a roughly equal distribution from recursive resolvers
further away and a preference from recursive resolvers closer by.

6.4.4 How does query frequency influence selection?

Many recursive resolvers track the latency to authoritative name servers (Section 6.2),
but how long they keep this information varies. By default, BIND [191] caches
latency for 10 minutes, and Unbound caches it for about 15 minutes [190]. In this
section, we measure the influence of frequency of queries in the selection of author-
itative name servers by the recursive resolvers. To do that, we repeat the measure-
ment for configuration 2C. However, instead of a 2-minute interval between queries,
we probe every 5, 10, 15, and 30 minutes. We choose 2C because, in this setup, we
observe the strongest preference for one of the two recursive resolvers.

We show these results in Figure 6.8. We see that preferences for authoritative
name servers are stronger when probing is very frequent, but persist with less frequent
queries, particularly at 2 minute intervals. Beyond 10 minutes, the preferences are
fairly stable, but surprisingly continue. This result suggests that recursive prefer-
ence often persist beyond the nominal 10 or 15 minute timeout in BIND and Un-
bound and therefore, also recursive resolvers that query only occasionally the name
servers of an operator can still benefit from a once learned preference.
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Figure 6.9: Distribution of queries of recursive resolvers with at least 250 queries
across 10 out of 13 Root letters (top) and across 4 out of 8 name servers of .nl
(bottom)

6.5 NAME SERVERS IN PRODUCTION

After analyzing behavior of the recursive resolver for each RIPE Atlas VP in our
measurement (Section 6.4), we now focus on validating the results by looking at
DNS traffic of production deployments of the Root DNS zone and the .nl ccTLD.

Root: We use DITL-2017 [199] traffic from 10 out of 13 Root letters (B, G and L
were missing at the point of our analysis) to analyze queries to the root servers (root
letters). Figure 6.9 (top) shows the distribution of queries of recursive resolvers that
sent at least 250 queries to the root servers in one hour. For each VP, the top color
band represents the letter it queries most, with the next band its second preferred
letter, etc.

While we find that almost all recursive resolvers tend to explore all authoritative
name servers (Section 6.4.1), many recursive resolvers (about 20%) send queries to
only one letter. The remainder tend to query many letters (60% query at least 6), but
only 2% query all 10 authoritative name servers. One reason this analysis of Root
traffic differs from our experiment is that here we cannot “clear” the client caches,
and most recursive resolvers have prior queries to root letters.

The .nl c¢cTLD: the picture slightly changes for queries to a ccTLD. In the bot-
tom plot of Figure 6.9 we plot the distribution of .nl authoritative name servers.
The majority of recursive resolvers query all the authoritative name servers which
confirms our observations from our test deployment. Here, the number of recursive
resolvers that query only authoritative name servers is also smaller than at the Root
servers.

We conclude that recursive behavior at the Root and at a TLD is comparable with
our testbed, except that a much larger fraction of resolvers have a strong preference
for a particular Root letter. The majority of the recursive resolvers send queries to
every available authoritative.
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6.6 RELATED WORK

To the best of our knowledge, this is the first extensive study that investigates
how authoritative server load is affected by the choices recursive resolvers resolvers
make.

The study by Yu et al. [187] considers the closely related question of how differ-
ent recursive resolvers choose authoritative name servers. Their approach is to eval-
uate different implementations of recursive resolvers in a controlled environment,
and they find that half of the implementations choose the authority with lowest
latency, while the others choose randomly (although perhaps biased by latency). Our
study complements theirs by looking at what happens in practice, in effect weigh-
ing their findings by the diverse set of software and latencies seen across the 9,000
vantage points, and by all users of the Root DNS servers and .nl ccTLD.

Kihrer et al. [201] evaluates millions of general open recursive resolvers resolv-
ers. They consider open recursive response authenticity and integrity, distribution
of device types, and their potential role in DNS attacks. Although similar to our
work, they focus on external identification and attacks, not “regular” recursive use.
(Using open recursive resolvers in our study for additional measurements is possible
future work.)

Also close to our work, Ager et al. [202] examine recursive resolution at 50 ISPs
and Google Public DNS and OpenDNS. Our study considers many more recursive
resolvers (more than 9,000 locations in RIPE Atlas), and we focus on the role those
recursive resolvers have in designing an authoritative server system.

Schomp et al. [26] consider the client-side of recursive resolvers. Unlike our
work, they do not discuss implications for DNS operators. In another work, Kor-
czynski et al. [203] have identified second-level domains in the wild whose authorit-
ative DNS servers vulnerable to zone poisoning through dynamic DNS updates [204].
While their work analyzes authoritative servers, it focus on the management of zone
files, while we focus on how recursive resolvers choose authoritative name servers.

Finally, other studies such as Castro et al. [128] have examined DNS traffic at
the Root DNS servers. They often use DITL data (as we do), but typical focus on
client performance and balance of traffic across the Root DNS servers, rather than
the design of a specific server infrastructure.

After we published our study in 2017, Akamai, an operator of a large Content
Delivery Network (CDN), confirmed our results independently [205].

6.7 CONCLUDING REMARKS

In this chapter we have demonstrated that the majority of recursive resolvers dis-
tribute their queries across all available name servers. How queries are distributed
often depends on the time it takes resolvers to reach the individual name servers.

General remarks: For every domain name operator, this means that when op-
timizing user latency, worst-case latency will be limited by the least anycast authorit-
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ative. The implication is that if some authoritative name servers in a server system
are anycast, all should be. We have shown that most recursive resolvers will always
send some queries to all authoritative name servers of a service. Even if one or some
authoritative name servers employ large anycast networks for low latency, recursive
resolvers will still send some queries to the remaining unicast sites, which implies
higher latency. These unicast sites might respond with a short RTT to some clients
nearby, but not to clients that are further away and that could be served by other
(anycast) sites faster.

While it may seem obvious that all authoritative name servers should have equal
capacity, the importance of this relationship is not always clear when making de-
ployment decisions. A DNS operator may seek to improve latency by adding an
additional authoritative provided by a large, third-party DNS provider to their cur-
rent operations, yet not get full value if the two authoritative name servers have
different capacity.

At the time of this study, SIDN operated . n1, and for SIDN this principle sugges-
ted adjusting their architecture. .nl relied on 5 unicast authoritative name servers
in the Netherlands, and three authoritative name servers that were anycast with
sites around the world. Although the anycast authoritative name servers was able
to offer lower latency to users from North America, 23% of incoming queries to
the unicast name servers in the Netherlands were from the U.S. [198], experiencing
worse latency than necessary. Based on our findings, the operators of .nl decided
to move to a setup in which every name server is distributed with anycast.

Remarks on DNSSEC: For domain name operators of signed zones, our findings
show how DNSSEC can be sensitive to factors, seemingly unrelated to DNSSEC
itself. If operators would decide to carry out an algorithm rollover following the
liberal approach®, then the publication delay between different authoritative name
servers can be one of the reasons why “strict” resolvers might fail validating the
zone. This risk is not negligible, considering that the majority of resolvers spread
their queries across multiple name servers.

When following the liberal approach of an algorithm rollover we recommend
operators to keep the publication delay as small as possibles, or, if time allows, to
follow the conservative approach. In both cases, our monitoring method proposed
in Chapter 5 can help operators to assess the impact of their rollover at resolvers
and time their rollover accordingly.

3Thus, publishing the new keys and signatures at the same time.
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In the final study of this thesis we look ahead, with the threat of quantum com-
puters on the horizon. In the previous chapters, we have shown that algorithm
rollovers are complex and one of the major problems that hinder the deployment
of algorithms currently standardized for DNSSEC. Also, we have proposed meas-
ures to simplify algorithm rollovers. Now, the question remains if DNSSEC is
ready to also roll out quantum-safe algorithms. In this chapter, we assess whether
quantum-safe algorithms, that are currently evaluated by the cryptography com-
munity, can be applied in DNSSEC as well. These algorithms have, in general, dif-
ferent attributes than the algorithms we use in DNSSEC at the moment, like larger
keys or signatures. We want to know which problems, besides the rollover itself,
we have to face if we transition to these quantum-safe algorithms and discuss how
we could address them. The study, on which this chapter is based, has been pub-
lished in a peer reviewed journal [21]. Also, we presented our findings at several
conferences and workshops, e.g. to the operator community at DNS-OARC [206]
and the broader DNS community at an ICANN meeting [207].
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7.1 INTRODUCTION

As we describe in Section 2.3 of Chapter 2, quantum computing has the potential to
solve some computational problems that are currently considered infeasible for ex-
isting computers. More concrete, with Shor’s algorithm [37], future quantum com-
puters can break current cryptographic algorithms such as RSA or Elliptic Curve
Cryptography (ECC) in polynomial time, rendering them unusable. Today, many
applications rely on these algorithms to provide message confidentiality and integ-
rity, and authentication of the parties communicating and DNSSEC is one of them.

Although a sufficiently powerful quantum computer that can break current public-
key cryptography is not available yet, the field of quantum computing is evolving
rapidly [11] and quantum algorithms that can be used to break cryptography are also
being improved [40]. Quantum-safe algorithms are expected to neither be broken
efficiently by today’s computers nor by quantum computers. Even though experts
expect it to take at least another 15 to 30 years before the first quantum computers
could break traditional algorithms [13], it is necessary to start transitioning already.
We have shown in Chapter 3, that many years are needed to complete such a trans-
ition. Since it is difficult to estimate the speed at which quantum computers will be
developed, it is prudent to start as early as possible.

The National Institute of Standards and Technology (NIST) has initiated a pro-
cess to test and standardize quantum-safe algorithms. Currently, four key encapsu-
lation and three signing algorithms are evaluated in the third round of the process
and are considered for standardization [208]. NIST expects to select candidates for
standardization by early 2022. These quantum-safe algorithms differ in required
computational resources for key generation, signing and validation, sizes of keys
and signatures, as well as achieved security levels (we list these algorithms and their
attributes in Table 7.3). From this it becomes clear, there will not be a single solu-
tion that fits all applications, establishing a need to examine which quantum-safe
algorithms meet the requirements of existing security protocols.

In this chapter, we discuss parameters to assess the readiness of DNSSEC. DNSSEC
has not been assessed in the context of post-quantum cryptography before and for
which concerns have been raised about the transition to PQC [209].

DNSSEC has strict constraints on (i) message size and (ii) signature validation
and generation throughput, both of which are challenges for many of the proposed
quantum-safe algorithms. We analyze which algorithms could, at least partially,
meet these requirements and propose potential changes to the DNSSEC protocol that
can help find a middle ground between constraints of the quantum safe algorithms
and of the protocol. Thereby, we take the first steps to prepare DNSSEC for post-
quantum cryptography.

These steps could also be applied to protocols with similar constraints and that
rely on the same underlying transport protocol as DNSSEC (e.g. certain encapsula-
tions of the Extensible Authentication Protocol (EAP) [210]).
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7.2 RELATED WORK AND APPROACH

This is the first study that analyses the applicability of quantum-safe algorithms for
protocols with strict constraints on signature length, focusing on message authen-
tication, and the first that studies this for DNSSEC. Related work from Crockett et
al. [211] applies quantum-safe algorithms to TLS and SSH and Heesch et al. [212]
apply them to OpenVPN and HTTPS. None of these protocols, however, have the
same constraints as DNSSEC. Van Rijswijk-Deij et al. [158] evaluate the perform-
ance of Elliptic Curve Cryptography in DNSSEC, but using PQC imposes additional
size-requirements.

For our research, we derive the requirements of DNSSEC from standards [10],
[57], [102], community best practices [213], our own active measurements covering
a daily snapshot of the DNS for a representative set of over 220M domain names [62],
and operational experience from running the Dutch ¢cTLD .nl.

For this study, we consider quantum-safe signing algorithms that are part of the
third round of the NIST standardization process [208]. We consider both finalist
and candidate algorithms — seven in total. Table 7.3 shows the key and signature
sizes for each algorithm with estimated security level I [214, §4.A.5]. We first se-
lect candidate algorithms based on the signature size, meeting the requirements of
DNSSEC explained in Section 7.4. Then, we measure the performance of the se-
lected algorithms, using their optimized implementation as provided on the NIST
website [215]. For each, we measure how many signatures we can create and verify
in 10 seconds for a random message, repeat this 1,000 times, and report the mean
performance. We choose a random 86-byte string as message to sign.! All meas-
ured algorithms rely on current hash functions (SHA256, SHAKE-256 and SHA3) to
transform the signed records into a string with standard length. Therefore, the re-
cord size only affects the performance of the established hash-function and not the
performance of the new signing algorithm itself. We perform the measurement on
a single core of a machine equipped with an Intel Xeon Silver 4110 CPU (2.10GHz),
64GB RAM, running Ubuntu 18.04.3 LTS. In the interest of reproducibility, we make
our measurement code public [216].

Implementations will likely be further optimized. For this reason, the perform-
ance metrics are only a rough estimate. The selection of suitable algorithms for
DNSSEC will therefore mostly be based on key and signature size, which are inher-
ent properties of the algorithms unlikely to change in the future.

We compare the record sizes and performance metrics with current algorithms
that are commonly used or recommended for DNSSEC [47]: RSA-2048 belonging to
the most popular algorithm family in DNSSEC [62], ECDSA-P256, an elliptic curve
algorithm, widely deployed because of its small signatures, and EdDSA-Ed22519 an
algorithm based on Edwards Curves which the IETF expects to become the future re-
commended default for DNSSEC [47]. We benchmark these reference algorithms us-
ing the integrated OpenSSL speed test on the same hardware as the PQC algorithms.

!The median number of bytes covered by an RRSIG [102] of all signed AAAA records of domains in
.com [62].
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7.3 POST-QUANTUM CRYPTOGRAPHY

Post-quantum cryptography (PQC) is the group of algorithms that run on a classical
computer and can withstand both a conventional and a quantum computer’s attack.
The 26 years since the invention of Shor’s algorithm [37] dictate the time scale of
main developments in the field. This is much less time than has been spent, e.g., on
cryptanalysis of conventional public key algorithms such as RSA and ECC. For this
reason, current standardization efforts (such as the NIST competition [208]) focus
on standardizing quantum-safe algorithms based on multiple different mathematical
problems. In this section we summarize some of the different approaches to PQC.
Regarding the security of these algorithms, we note that many factors play a role
in the cryptanalysis of new algorithms and discussing these in detail is out of scope
for this document. Nevertheless, depending on the approach PQC schemes take,
general observations can be made based on the current state of research.

There are currently five classes of PQC algorithms. Three of these (lattice-based,
multivariate and hash-based) are considered for signature schemes in the NIST com-
petition as finalist or alternate candidates [208] and we assess all three (see also
Table 7.3). The specific algorithms chosen are the security level I variants, which
corresponds in strength to a 128-bit classical key search [214]. This is equivalent in
strength to commonly used 256-bit ECC keys and stronger than the current standard
RSA-2048, which measures 112 bits in classical security [217] and is widely used for
DNSSEC.

The multivariate approach (1980s) is based on systems of algebraic quadratic
equations over finite fields. Typically, signature schemes are given by underdefined
systems, meaning that there are several valid signatures for a public key. This is no
problem as long as it is sufficiently difficult to find another valid signature. Although
improvements to several attacks have been found recently [218]-[220], multivariate
schemes have a good security track record. Generally, they have small signatures
with fast verification.

Lattice-based cryptography [221] (1996) builds on the hardness of finding
short vectors in a high-dimensional lattice. It used to be impractical, but provably
secure, or practical but with a security reduction. Newer schemes combine these and
some have submitted provably secure signature schemes to the NIST standardiza-
tion, such as qTesla-p-I. Like many cryptographic algorithms, they are vulnerable to
side-channel attacks [222]-[224]. However, for DNSSEC this is not a major concern,
since these attacks require physical access to signers. In general, lattice-based sys-
tems form good and allround algorithms with relatively small signatures and keys,
combined with fast operations.

Hash-based signature schemes build on the property that it is hard to find
a pre-image (input message) for a certain digest or to find two elements with the
same digest. A large advantage of these schemes is the solid security basis that
only depends on the security of the chosen cryptographic hash function. For this
reason, hash-based schemes are considered extremely conservative alternate can-
didates for standardization [208]. Typically, hash-based signature schemes have
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Response Type RRsinresponse RRsadded by DNSSEC (covered  Alexa 1M median TTL (mean)
RR)

AAAA > 1AAAA 1 RRSIG (AAAA) 5 min (0.6 h)

DNSKEY > 1 DNSKEY 1 RRSIG (DNSKEY) 60 min (8.3 h)

Non-existent domain (with NSEC) SOA 1 RRSIG (SOA) 60 min (2.0 h)

2 NSEC

2 RRSIG (NSEC)
NSEC3 Closest-encloser proof (§5.5 of SOA 1 RRSIG (SOA) 10 min (2.8 h)
[225]) > 3 NSEC3

> 3 RRSIG (NSEC3)

Table 7.1: Records added by DNSSEC and the median time they are cached of the
1M most popular domains [226]

very small keys, large signatures and require significant computational overhead
for signing and verification.

7.4 DNSSEC REQUIREMENTS

In this section we define requirements that modern DNSSEC set-ups demand from
cryptographic algorithms. DNSSEC adds additional payload to DNS messages and
requires additional computational operations. The choice of cryptographic algorithms
has an influence on both.

7.4.1 Additional Payload and Validation Frequency

As described in Section 2.2.2 of Chapter 2, DNSSEC adds a signature to the DNS re-
sponse of the requested record. In some cases even multiple signatures are transmit-
ted: If the requested information does not exist, then DNSSEC-signed zones provide
the resolver with an authenticated denial of existence (NSEC(3)). The details of this
proof are out of scope, but the response can contain three or more signatures [50],
[102] (two bottom rows of Table 7.1).

When an operator uses multiple keys to sign a zone, a signature is attached for
each key. This is for example the case during a key rollover, replacing one key with
another. Also, operators can sign their zone with different algorithms, resulting in
multiple signatures for each used algorithm and two or more DNSKEY records. Also,
since most zones split between a ZSK and a KSK, queries for the public key contain
both keys along with the signature (resulting in large messages).

The result of the validation is cached as defined by the time-to-live (TTL) field in
the signed RR. Only after the TTL has expired, will the results have to be validated
again.

7.4.2 Cryptographic Requirements

The DNSSEC protocol allows adding new cryptographic algorithms relatively easily,
and new algorithms have been proposed and integrated numerous times, as shown
in Chapter 3. All algorithms, however, must adhere to boundaries and requirements
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set by the design and deployment of DNS, DNSSEC and the underlying transport
protocols.

Signature and key size DNS packets are limited, in theory, to 64 kilobytes. Pre-
vious research and operational experience, however, have shown that sending large
DNS packets is often problematic.

First, the maximum transmission unit (MTU) of the underlying networks can
be a limiting factor. Packets larger than the MTU cause fragmentation or trigger
a retransmission via TCP. In the best case, this causes additional round trip time
(RTT) for transmitting the fragments or for establishing the TCP connection. In the
worst case, fragments can never be transmitted and the TCP connection cannot be
established because of interfering middle boxes or lack of support. As a consequence,
end users, for example, are not able to visit their requested website. Van den Broek
et al. [121] have shown that up to 10% of all resolvers might be unable to handle
fragments.

Second, fragmented DNS responses can be misused to spoof the cache of recurs-
ive resolvers [8]. Both two problems, potential packet loss and the susceptibility
to spoofing, encouraged DNS software developers and operators to recommend a
maximum supported message size of 1,232 bytes [227].

Third, DNS is often misused in amplification attacks, where thousands of small
queries from an attacker trigger large responses directed to a victim. The extra
records DNSSEC adds to a response make this attack more effective [228]. With the
introduction of elliptic curve based algorithms in DNSSEC, the signatures can be up
to 64 bytes small, which partially mitigates this problem [94].

These three reasons lead us to conclude that small signatures are also preferred
for quantum-safe algorithms and that signatures should not exceed 1,232 bytes. Sig-
natures are transmitted in every DNSSEC message, for example every time an A or
AAAA record is returned (around 55% of all queries [229]) or in response to a query for
a non-existing record (around 15%). In the latter case, a response will even contain
multiple signatures. Also, they are cached the shortest (see Table 7.1). Therefore,
it is crucial that signatures are transmitted reliably, without the risk of packets be-
ing dropped or retransmitted. Signatures smaller than 1,232 bytes decrease these
risks significantly. Preferably, even, signatures are far below this threshold leaving
room for payload and multiple signatures. Public keys, on the other hand, need to
be transmitted less frequently, so having larger keys may be acceptable. We explore
this in Section 7.6.

Validation Resolvers need to serve their clients as fast as possible. A medium size
resolver today processes a few thousand queries per seconds resulting in a few hun-
dred validations [158]. This is far below their maximum capacity. The underlying
cryptographic libraries can validate thousands of signatures per second of current
algorithms used in DNSSEC (see bottom of Table 7.3). The total number of DNSSEC-
signed domain names is still rising and large resolvers likely need to validate ever
more signatures. Therefore, we expect that at least 1,000 quantum-safe signatures
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Prio Requirement Good Accepted Conditionally
#1 Signature Size -

#2 Validation Speed -

#3 Key Size > 64 kilobytes

#4 Signing Speed -

Table 7.2: Requirements for quantum-safe algorithms

should be validated per second in our evaluation. This is a conservative boundary
and we can expect that future implementations and specialized hardware will also
speed up post-quantum algorithms.

Signing Zone operators sign records on five different occasions: (i) when the zone
is signed for the first time, (ii) when the key is changed (rolled), (iii) when records
change, (iv) when a signature expires or, (v) on-the-fly. The latter, obviously, is the
most time critical. In this approach, signatures are created when a record is queried.
This is for example necessary when records are created dynamically depending on
the querying resolver and requires signing in milliseconds. This setup is usually
only used at CDNs (e.g. Cloudflare [230]); typical operators only re-sign records
when they change or when a key rollover takes place. The frequency depends on the
zone. Zones of top-level-domains like . com and .nl change frequently. E.g. every
time a new domain is registered new records need to be signed. For .nl, zone files
are published every 30 minutes, typically requiring around 11,000 new signatures to
be created.

To support signing of larger zones, frequent zone file publication, and additional
overhead, suitable quantum-safe algorithms must at least be capable of creating 100
signatures per second. Slower algorithms might be acceptable for zones that are
less prone to change. For on-the-fly signing, obviously, higher signing speeds are
required.

Requirements summary The size of signatures is the most important criterion
when selecting an algorithm, followed by the time it takes to validate signatures.
Only if signatures can be transferred reliably between name server and resolver and
the resolvers can validate the signatures timely, the basic protocol of DNSSEC can
stay unchanged. The requirements are summarized in Table 7.2. The third column
shows the requirements that we expect algorithms to fulfill and which are marked
in blue. Under some circumstances or with some modification of the DNS protocol
higher boundaries might be acceptable. These are listed in the last column, marked
in and are discussed in Section 7.6.
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Algorithm NIST Verdict Approach Private Public Signature Sign/s  Verify/s
key

Crystals-Dilithium-II [231] Finalist Lattice 2.8kB

Falcon-512 [232] Finalist Lattice 57kB I

Rainbow-1, [233] Finalist Multivariate  101kB 158kB

RedGeMSS128 [234] Candidate Multivariate 16B 375kB

Sphincs*-Haraka-128s [235]  Candidate Hash 64B

Picnic-L1-FS [236] Candidate Hash 16B

Picnic2-L1-FS [236] Candidate Hash 16B

EdDSA-Ed22519 [237] Elliptic 64B 32B 64B 25,935 7,954
curve

ECDSA-P256 [237] Elliptic 96B 64B 64B 40,509 13,078
curve

RSA-2048 [237] Prime 2kB 0.3kB 0.3kB 1,485 49,367

, others in pink.

Table 7.3: Signature algorithms in round three of the NIST competition [208] (security level I). DNSSEC candidate algorithms are
shaded gray. Attributes meeting DNSSEC’s requirements fully or partially are marked blue or
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7.5 EVALUATING ALGORITHMS

The previous section shows that signature size is the most crucial requirement. We
mark the attributes of algorithms that fully or partially fulfil each requirement in
blue or orange respectively and use this encoding also in Table 7.3. Attributes that
do not fulfil the requirements are marked in pink. We pre-select aspirant algorithms
that create signatures < 1,232 bytes. This leaves us with three algorithms: Falcon-
512, RedGeMSS128, and Rainbow-I, (marked light gray in Table 7.3). For those, we
additionally evaluate signing and validation performance.

The remaining algorithms create signatures larger than 1,232 bytes. Their reli-
able transmission cannot be guaranteed and they make DNSSEC more attractive as
an amplifier in a Distributed Denial of Service (DDoS) attack. For this reason, we do
not consider them for DNSSEC any further.

Falcon-512 Falcon [232] is a signature scheme based on NTRU-lattices [238]. It
stands out as a computationally efficient algorithm, with an optimized implementa-
tion already available. Falcon-512 has the smallest pair of public key and signature,
which is particularly relevant for the DNSSEC case. It is the only algorithm where
both signatures and public keys fall within the size limit, although both keys and
signatures are considerably larger than current non-PQC DNSSEC algorithms. This
may still cause problems during transmission, since it is neither possible to ship
more than one key at a time, nor to ship more than one signature, or even only one
signature and a payload that exceeds 523 bytes. In our test-bed, the performance
of Falcon-512 is closest to the current algorithms and meets the requirements of
DNSSEC. Further performance improvements are possible using a hardware FPU,
AVX2 and FMA opcodes [232].

Its implementation and level-I security strength are delicate; conversely more test-
ing is required to gain trust in its security. NIST currently expects either Falcon
or Crystals-Dilithium to be standardized as the primary post-quantum signature
scheme at the conclusion of the third round [208].

Rainbow-I, Rainbow-I, [239] is a multivariate scheme. It is based on the Un-
balanced Oil and Vinegar (UOV) scheme [240]. The signature size of Rainbow-I,
matches the sizes of current recommended algorithms based on elliptic curves and
is therefore a good fit for DNSSEC. The public keys, however, are significantly lar-
ger and do not fit in DNS packets. As with the signature size, the performance of
Rainbow-I, is comparable to current algorithms and meets the requirements. Its
performance can be improved further with AVX2 instructions. A version with a re-
duced public key size is Cyclic Rainbow, but this comes at the cost of an increase
in computational requirements. We note that the adoption of Rainbow-I, could be
hindered by royalties [241].

RedGeMSS128 GeMSS [242] is a multivariate signature scheme of the Hidden
Field Equation type. RedGeMSS128 produces the smallest signatures in the GeMSS
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family, at security level I even smaller than EdDSA-Ed22519. The public key, how-
ever, exceeds the maximum record size of the DNS. First measurements indicate
GeMSS signs considerably slower than current algorithms. The usage of SSE2, SSE3
and the AVX2 CPU instructions could improve performance [242]. If new insights
show that Rainbow is unacceptable, GeMSS forms an alternate candidate for stand-
ardization [208].

7.6 DISCUSSION

The previous section shows that no algorithm fits all requirements perfectly. Falcon,
Rainbow and GeMSS come closest, but each has shortcomings: Falcon-512 technic-
ally meets all requirements but its larger signatures may cause problems, e.g. dur-
ing rollovers, and make DNSSEC an even more attractive tool for DDoS attacks. In
comparison, signatures of Rainbow-I, and RedGeMSS128 are on par with current re-
commended algorithms, but their public keys go beyond the supported payload size.
All algorithms perform signing and validation fast enough for today’s use cases.

We therefore expect changes to the DNSSEC protocol are required before PQC
algorithms can be deployed. We now sketch what changes may be needed, setting
an agenda for future research.

7.6.1 Increased TCP Support

The greatest bottleneck to deploying Falcon-512 is the large size of keys and signa-
tures. Operators can reduce the size of the key set by relying on CSKs (Combined-
Signing-Key - combining the ZSK and KSK), but signed messages might still exceed
the threshold of 1,232 bytes in case of larger payloads or if multiple algorithms are
used. Nevertheless, keys and signatures could still be safely transmitted using TCP.
Today, not every name server supports TCP: we still observe 11% of name servers
lacking TCP support [62]. Two developments, however, could help decrease this.

DNS Flag Day [213] is a recurring initiative by software vendors and operators.
In 2020, it promotes, among others, the support of TCP. The previous flag day, pro-
moting the support of EDNS, had a positive impact [243], and we expect the same
for the upcoming. Also, encrypted DNS could increase TCP support. DNS-over-TLS
(DoT) [29] and DNS-over-HTTPS (DoH) [30] both rely on TCP as transport and see
some traction already [244]. TCP mitigates the threat of DDoS amplification attacks
but requires more resources at recursive resolvers and name servers and its impact
still needs to be thoroughly measured.

7.6.2 Out-of-band Key Distribution

Increased TCP support is still not sufficient for transmitting the public key of Rain-

bow and GeMSS, since both exceed the maximum DNS payload size of 64 kbytes [245].
This problem can be solved in two ways, both modifying the existing DNSKEY RR.

One approach is to divide the public key into chunks small enough that they can be
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transmitted in one RR. Each chunk is published at a new label of the signed domain
and chained with each other. The initial DNSKEY RR would then refer to the first
chunk of the actual public key. The advantage of this approach is that it can likely be
implemented in a manner that is backward compatible to existing implementations.
The disadvantage, however, is that resolvers would need to send multiple queries to
fetch a key, increasing the risk of transmission failures.

Alternatively, we propose transmitting the key out-of-band. Instead of directly
providing the resolver with the key through a DNS record, name servers could serve
a UR], instructing the resolver to fetch the key from a web server using HTTP. Be-
cause of the chain of trust, resolvers can still use the public key of the root to verify
the key published on the web server. Resolvers not supporting this mechanism
would already today either consider the zone not signed (insecure) or fall back to
a supported algorithm if the zone is signed with multiple algorithms. Because of the
higher TTL (see Table 7.1), an out-of-band transmission of DNSKEY RRs would only
occur occasionally. This approach comes with two caveats: first, resolvers would
need to support HTTP to fetch the key and second, zone-operators would need to
maintain a web server. Whereas the former might be addressed by the rise of DoH
(see previous section), the latter might be an additional barrier for operators rolling
out DNSSEC and could create additional potential points of failure.

7.6.3 Performance

The two aforementioned measures address the challenges of large keys and signa-
tures. If, however, it turns out that the candidate algorithms are not secure and faster
hardware not affordable, then it might be necessary to use algorithms too slow for
current DNSSEC deployments. One workaround might lay in the fact that resolv-
ers only need to validate signatures if the signed record is not cached. If validating
signatures is an expensive operation, decreasing the number of validations may be
a solution. AAAA records of the 1M most popular domain names have a median
TTL of 5 minutes (see Table 7.1). Increasing the TTL of these RRs to 1 hour would
already reduce the workload for resolvers 12 times. Note, however that we expect
that optimized implementations and specialized hardware could improve perform-
ance, rendering higher TTLs unnecessary.

7.6.4 Other Considerations

Algorithms for high-security zones In this paper, we only considered PQC al-
gorithms at security level I (128-bit security). In the future, however, some zones
may have stronger requirements. Consider, for example, the DNS root zone, which
has very long-lived keys — the root KSK was only changed for the first time 8 years
after its introduction [15]. This long lifetime may increase the risk of a successful
attack against the key and may thus require choosing schemes with higher security
levels. Fortunately, the remaining PQC algorithms in the third round of the NIST
competition leave room for this. For example, RedGeMSS256 offers security level V



138 PREPARING DNSSEC FOR QUANTUM-SAFE CRYPTOGRAPHY

with very modest signatures (76B). The public key, however, is significantly larger
at 3135kB making changes to the way keys are distributed in DNSSEC inevitable.

Alternatives to DNSSEC The measures described above show that quantum-safe
algorithms can be applied to DNSSEC, but not without additional effort. Therefore,
one could propose to abandon DNSSEC altogether and to find other solutions to
guarantee authenticity in the DNS. DNS-over-TLS and DNS-over-HTTPS, for ex-
ample, rely on TLS and HTTPS and earlier studies have shown that both can sup-
port quantum-safe algorithms [211], [212]. On the other hand, neither provides a
full replacement for DNSSEC and the trust model is different, making it impossible
to realize some of the newer applications of DNSSEC such as DANE [246]. Other
alternatives, like DNSCrypt, claim to provide quantum-safe implementations [247],
but deployment of DNSCrypt has not gained significant traction, and this seems
unlikely to change in the future as there is not IETF specification for the protocol.

7.6.5 Transitioning to PQC

Especially in the early days of their development, trust in new PQC algorithms may
still be low. Instead of only signing records with a quantum-safe algorithm, a com-
bination of a conventional and a PQC algorithm can be used. This hybrid model [248]
is especially valuable for long-lived signatures and keys, since there is a greater risk
that an attack against one of the algorithms is successful over their lifetime. Our
data [62], shows the average lifetime of a signature is around 34 days (median 21
days), making the risk small. Keys, however, can be much longer lived and replacing
a crucial key, such as the one for the DNS root, is non-trivial and takes time [15].

The problem with a hybrid model is that it requires signing with two algorithms
concurrently. While this is possible within the specifications of the DNSSEC pro-
tocol, it doubles the number of keys and signatures. Realistically, this means that
such a model can only be deployed within the constraints discussed in Section 7.4 if
both the conventional and the PQC algorithm have small signatures. The best com-
bination would in this case be an elliptic curve algorithm (e.g. ECDSA P-256) with
either Rainbow-I, or RedGeMSS128.

7.7 CONCLUDING REMARKS

We have identified three algorithms, currently under evaluation in the NIST com-
petition, that show great potential to be applied in DNSSEC: Falcon 512, Rainbow-I,,
and RedGeMSS128. Falcon, in principle, could even be deployed in DNSSEC without
protocol modifications, but still has the shortcoming of significantly larger keys
and signatures than current algorithms. To address these and other challenges, we
have proposed extensions and modifications that could make DNSSEC ready for
quantum-safe algorithms. These algorithms may also be a fit for protocols with
similar strict requirements on key and signature sizes.
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Nevertheless, we need to keep in mind that standardizing quantum-safe algorithms
for DNSSEC and getting them deployed takes time. If NIST standardizes one or more
algorithms, they still need to be standardized in the IETF for the use in DNSSEC.
As shown in Chapter 3, even for a rather uncontroversial algorithm like EdDSA-
Ed22519, this effort took almost a year [54]. Fourteen months after its standard-
ization we see the first resolvers supporting this algorithm, from roughly 10,000
vantage points [249]. Today, and more than two years later, still 30% of observed
validating resolvers lack support and more than 99% of 7M signed domains do not
use this algorithm [62]. Furthermore, the DNS root is still signed with an algorithm
that was standardized more than 10 years ago, and even though its key has been
successfully replaced for the first time in 2018 (see Chapter 4) it is still not clear
when the algorithm gets updated.

From these experiences we conclude that making DNSSEC fit for quantum-safe
algorithms needs to start as soon as possible; the results in this paper can help make
a start to this process.

We will continue observing the standardization process and adapt our recom-
mendations if necessary. Already during the course of writing this paper new de-
velopments influenced our algorithm selection: the LUOV [250] scheme, which also
creates small signatures suitable for DNSSEC, was considered not secure enough
anymore after an attack was published [251] and dropped out after the second round.
NIST, however, finds its approach still promising and we will assess if future imple-
mentations might be a fit for DNSSEC as well.

Also after the publication of our study the developments in the field of post-
quantum cryptography did not stand still. By the end of 2020, an improved attack
on Rainbow was published [252] reducing the costs of key recovery such that Rain-
bow would not meet the security requirements of NIST anymore. The authors of
Rainbow reject this claim and consider Rainbow still secure enough [253]. After this
attack, NIST also raised concerns regarding the lack of diversity among the finalists
of the competition [254]. They are now considering to accept other quantum-safe
algorithms to the NIST competition as well.

In the next chapter, we conclude this thesis. There, we also discuss potential
future research in the field of applying quantum-safe algorithms to DNSSEC.
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In the final chapter of this thesis, we revisit the research objective and the research
questions we aimed to answer. We discuss, whether we reached our goal and high-
light the main contributions of this thesis. Based on our findings, we finally discuss
future research directions and propose concrete steps forward.
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8.1 MAIN GOAL

The objective of this thesis was:

to prepare DNSSEC for quantum computing, by identifying problems when
introducing new cryptographic algorithms and developing and evaluating
solutions to address them.

We achieved this goal by applying two consecutive approaches.

First, we identified barriers in the DNS and DNSSEC ecosystem that can hinder
the wider deployment of new algorithms. In Chapter 3, we measured the standard-
ization and deployment of new algorithms in DNSSEC in the past. Here, we found
several problems that need to be addressed before new algorithms become widely
deployed and insecure algorithms are replaced. One of the major problems we iden-
tified is the lack of confidence of operators to carry out an algorithm rollover, which
increases their reluctance for rolling. In Chapter 4 we turned our attention to the
root, the top of the DNS hierarchy. Here we found that when replacing the DNSSEC
trust anchor, and consequently also introducing a new algorithm in the future, we
can face problems when validating resolvers need to retrieve the new key. Especially
validating end-user applications and containerized applications were responsible for
some of the observed problems. Since we expect that both will become more com-
mon in the future, they form a particular barrier for future algorithm rollovers at the
root. Before we could develop solutions to address these problems, we first gained
a better understanding of the underlying reasons. In Chapter 5 we showed in more
detail, which aspects of the DNS make an algorithm rollover complex. We demon-
strated that timing is most important and in Chapter 6 we showed the behavior of
recursive resolvers further increases the complexity. Finally, in Chapter 7, we looked
ahead, with the threat of quantum computers on the horizon. Here, we found that
the fact that large messages are often not transmitted reliably in the DNS poses the
biggest problem when introducing quantum-safe algorithms.

Based on these observations, we developed and evaluated solutions. In Chapter 4,
we proposed alternatives for distributing root trust anchors more reliably. We be-
lieve that by applying this alternative key distribution we can reduce the risk of
failing resolvers during a future algorithm rollover at the root. In Chapter 5, we de-
veloped and tested a measurement method that gives domain operators more con-
fidence when rolling to a new algorithm thereby making the introduction of new al-
gorithms easier. Last, in Chapter 7, we assessed quantum-safe algorithms. We found
candidate algorithms and proposed how we can apply these algorithms in DNSSEC.
These measures combined start preparing the way for a secure DNSSEC that can
withstand also future attacks on cryptographic algorithms to provide authenticity
and integrity in the DNS.
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8.2 REVISITING THE RESEARCH QUESTIONS

In this section, we describe in more detail how we have addressed the research ques-
tions defined in Chapter 1.
We aimed to answer four sub-research questions, starting with:

RQ 1—What are the complexities when introducing new algorithms in
DNSSEC?

To answer this research question we carried out two studies. First, in Chapter 3
we analyzed the complete algorithm life cycle of an algorithm in DNSSEC, start-
ing with its standardization in the IETF, continuing with the adoption of a new al-
gorithm in software and in the domain name registration channel, the deployment
at domain names and at resolvers, and their deprecation. Here, we found that stand-
ardization can seriously slow down adoption, which in some cases can take four
years. New algorithms need the support of the community to speed up standard-
ization. Also, important players in the domain registration channel are often slow
supporting new algorithms, hindering their deployment at domain names. Only if
the market demands the support of new algorithms, also registrars will react.

We found, however, that even if these barriers are overcome, one major barrier
remains: the algorithm rollover at a domain name. As an example, at the time of
our study only 17% of all domains signed with the modern ECDSAP256 algorithm
actually rolled their algorithm. The other 83% either were signed for the first time
or were newly registered domain names. Also, we occasionally saw that algorithm
rollovers were not carried out following standard procedure. Both findings indicate
that operators shun algorithm rollovers because of their complexity.

Second, in Chapter 4, we shifted our focus towards the root, which, through its
position at the top of the DNS hierarchy, poses an additional challenge when intro-
ducing new algorithms. Because the root has not rolled its algorithm yet, we studied
the rollover of the KSK, the trust anchor of the DNS, instead. This KSK rollover is a
prerequisite for an algorithm rollover, where millions of validating resolvers need to
replace their local copy of the root KSK. Here, we found that the replacement of the
key at recursive resolvers poses the biggest problem. For example, we found that 8%
of resolvers, which signaled their configured trust anchor to the root, did not fetch
the new KSK on time and that at least 1% of our observed vantage points failed to
validate DNSSEC signatures after the rollover.

From these findings we conclude that the complexity of algorithm rollovers poses
one of the largest barriers we need to overcome. We wanted to address this barrier
but first we needed to understand:

RQ 2—What makes algorithm rollovers complex?

We studied this research question in Chapters 4, 5, and 6. In the first chapter we
analyzed the root and in the second and third we shifted our attention to TLDs and
second-level domain names. Algorithm rollovers at the root are especially complex
due to the role of its KSK as the main trust anchor for DNSSEC. As discussed in
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Chapter 4, a significant number of resolvers did not pick up the new key. In the
same study, we found, that at least 6,000 of them were VPN software which had the
old KSK hard-coded in their source code. This, and other findings highlight that the
replacement of a trust anchor at recursive resolvers is an error-prone process and
needs to be improved.

Then, in Chapters 5 and 6 we studied rollovers especially at TLDs and second-
level domain names. Here, resolvers do not need to configure the new key locally,
but their behavior must still be taken into consideration when carrying out an al-
gorithm rollover. In Chapter 5, we demonstrated in theoretical scenarios that al-
gorithm rollovers, which are not carefully timed, can lead to resolvers being unable
to correctly validate signatures. This exercise was followed by active measurements
of the .se algorithm rollover. Here, we showed that incorrect timing of a rollover
can lead to outages, but that correct timing of an algorithm rollover is complex. For
example, 1% of observed resolvers cache records longer than the recommended TTL
- something which is not visible to operators of a domain name. We therefore asked:

RQ 3—What can we do to reduce the complexity of algorithm rollovers?

The complexity of rollovers at the root and at TLDs has, partially, different root
causes. In Chapter 4, we propose measures to distribute the root trust anchor via
the operating system. This avoids the error prone key distribution via the RFC 5011
protocol and makes the operating system the only place where the new key needs
to be updated (instead of at every application that does DNSSEC validation).

In Chapter 5, we then proposed a measurement method, which gives DNS oper-
ators more insight into the timing of a rollover. Also, operators can spot problems
during the rollover from the perspective of their clients. We tested the method dur-
ing the first algorithm rollover of the ccTLD .se. This rollover was carried out
successfully and the operators of .se confirmed that the insights provided by our
measurements gave them more confidence when rolling the algorithm. We pub-
lished software that helps operators to monitor their rollover themselves and the
operators of the ccTLDs . br (Brazil) and . dk (Denmark) used it to successfully mon-
itor their algorithm rollover.

Both solutions reduced the complexity of rollovers for current signing algorithms.
Quantum-safe algorithms, which can also withstand attacks of a quantum com-
puter, however, have different properties than algorithms currently standardized
for DNSSEC. We thus asked:

RQ 4—Are there quantum-safe algorithms suitable for DNSSEC?

In Chapter 7 we first defined the requirements that every algorithm needs to
fulfill that should be standardized for DNSSEC. Based on earlier studies and our
own measurements, we concluded that especially the size of signatures is crucial.
If signatures become larger than 1,232 bytes the chance of transmission failures in-
creases significantly. Then, we assessed quantum-safe algorithms, that were part
of the third round of the NIST competition and found that especially Rainbow-I,
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and RedGeMSS128 are suitable algorithms for DNSSEC. Both, however, also have
public keys that are too large to be transmitted in a DNS message. To address this
challenge, we discussed the possibility of transmitting public keys out of band.
Now, we have shown that quantum-safe algorithms exist that, with some limit-
ations, are suitable for DNSSEC, and it is time to revisit our main research question:

Main RQ—Is the DNS ecosystem ready for algorithm rollovers?

In this thesis, we have shown that, broadly speaking, the DNS ecosystem is ready
for an algorithm rollover. The first root KSK rollover was a success and lays the
foundation for a successful algorithm rollover as well. The remaining open questions
can be addressed, as we will discuss in Section 8.3.1 below. Here, we recommend
that keys are managed centrally by the Operating System (OS) which can reduce
the remaining issues during key distribution.

Also, the challenges of algorithm rollovers at other parts of the DNS ecosystem
are manageable. By providing a monitoring tool, we have reduced the complexity
of algorithm rollovers. In combination with automated rollovers, which many DNS
software now support, algorithm rollovers can be carried out with less effort than a
decade ago.

Finally, the DNS is also ready for a future where quantum computers threaten
the security of the algorithms currently used in DNSSEC. We have shown that al-
gorithms exist that are quantum-safe and that can be applied in DNSSEC as well.
These new algorithms will not be a drop-in replacement for current algorithms but
the required extensions to the DNS seem feasible. Developing and testing these ex-
tensions is future work, which leads us to the final section of this thesis.

8.3 OUTLOOK AND FUTURE RESEARCH

In the final section of this thesis we propose possible future research directions.
Future research is necessary to achieve the goal of a fully quantum-safe DNS eco-
system. We believe, based on the findings in this thesis, that especially an algorithm
rollover at the root and the implementation of quantum-safe algorithms require
more attention.

8.3.1 Algorithm Rollover at the Root

So far, the root has not rolled its algorithm yet. In Chapter 4, we have shown that
the root is in principle ready to roll to a different algorithm, since also the root KSK
rollover was successful. Despite this, especially two more aspects need our atten-
tion before the DNS community will consider the root to be ready for an algorithm
rollover.

Understanding Algorithm Support at Resolvers Moving to a different algorithm
must not increase the possibility of a successful cache poisoning attack against re-
solvers and their clients. For this reason, we need to understand which algorithms
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are supported by resolvers before deciding when to roll and to which algorithm.
Measurement platforms like RIPE Atlas and ad-based studies only provide a limited
view or are not transparent. Extended resolver telemetry, similar to RFC 8145 [113]
and Root Sentinel [132], where resolvers report algorithm support could provide
more insights. But similar to these approaches, we face the issue that we would
not know which resolver is relevant enough to potentially postpone an algorithm
rollover, and metrics are susceptible to manipulation. An additional metric where
resolvers indicate the population of their client base could help identifying relevant
resolvers.

With these additional metrics, the community and root zone operators could
have enough information to decide when to roll an algorithm, even though we still
might not have the whole picture.

Distributing the DNSSEC Trust Anchor In Chapter 4, we have shown that re-
solvers do not always upgrade to a new trust anchor reliably. This aspect might
also hinder the deployment of a new algorithm at the root. We proposed to dis-
tribute trust anchors through the operating system, instead of relying on software
upgrading their trust anchor individually. Before rolling to a new algorithm, we
need to understand how reliably trust anchors are distributed today, almost three
years after the first Root KSK rollover. We can study this by analyzing software,
operating systems and their deployment. Also, there are no concrete plans for an
algorithm rollover yet [255]. This might give us another opportunity to study trust
anchor deployment during another root KSK rollover, similar to Chapter 4.

8.3.2 Deploying Quantum-Safe Algorithms in DNSSEC

In Chapter 7, we took the first steps to apply quantum-safe algorithms in DNSSEC.
We, however, need to take several more steps before quantum-safe algorithms can
be deployed in DNSSEC on wider scale. To achieve this, especially the following
two areas need more research.

Understanding the practical implications of alternate key distribution For
some quantum-safe algorithms it will be necessary to transfer the public key of a do-
main name differently than we are used to today. In Chapter 7 we proposed to either
split public keys, too large to fit in one resource record, in multiple DNS messages
or to distribute keys out-of-band. Before standardizing one of these approaches we
first need to understand how they would perform in realistic scenarios. This includes
their impact on DNS performance and added overhead for resolvers and name serv-
ers. Also, we need to understand which barriers we might face when rolling out
the approaches on a larger scale. Barriers could include, for example, networks not
permitting out-of-band DNS traffic or the lack of support of unknown or modified
DNS resource records.
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Rethinking DNSSEC Signing Every finalist in round three of the NIST compet-
ition would not change the way DNSSEC signs RRs today. If by the end of the com-
petition none of these algorithms are suitable for DNSSEC, then we might need to
consider algorithms that require more extensive changes to the DNS and DNSSEC.
One of those are hash-based algorithms. Hash-based signing algorithms have
large signatures and a key can only sign a limited number of RRs before it becomes
insecure. At first sight, these properties seem to make hash-based signing algorithms
unsuitable for DNSSEC, but with some modifications this might still be feasible. This
would change the way we sign zones today and also resolvers would need to follow
a different approach to validate records. The feasibility of such a signing schema
needs to be analyzed further, which requires a better understanding of the dynamic
of large zones (e.g. at TLDs), resolver behavior (e.g. their query distribution across
names in a zone), and the operational challenges (e.g. how to keep track of state).

Way Forward Even though the NIST competition and the development of new
quantum-safe algorithms is still ongoing, we can already take concrete steps towards
making DNSSEC quantum-safe. Here, we briefly sketch out a possible way forward.

First, we can model the impact of quantum-safe algorithms on real world traffic.
Van Rijswijk et al. [158] assessed the impact of Elliptic-Curve-Cryptography (ECC)
on validation performance and we can apply a similar approach with different quantum-
safe algorithms as well. As described in Chapter 7, we expect that we cannot trans-
port the signatures of some algorithms reliably and already know that the key size
of other algorithms will be even impossible to transport in a DNS message. In this
thesis we have proposed solutions, like transmitting keys out-of-band. In order to
understand the operational impact and discover not foreseen bottlenecks we pro-
pose to implement the proposed solution as prototypes and deploy them in test-beds.
At the time of writing this thesis a Master student working on this topic under the
supervision of the author of this thesis.

In case the studies above have a positive outcome, we can take the next step
forward, assessing quantum-safe algorithms in the wild. Here, we can take earlier
experiments with TLS as an inspiration. The cloud provider Cloudflare and Google
tested the impact of different quantum-safe Key Encapsulation Mechanisms (KEM)
on the HTTPS traffic between web-servers of Cloudflare and the Chrome browser [256].
To measure the impact on latency they implemented support for different quantum-
safe algorithms in the TLS handshake. We propose to set up a similar experiment
in the DNS as well. Here, we will need to cooperate with large resolver operat-
ors, with presences worldwide. Then, we would need to sign a domain name with
quantum-safe algorithms that seem suitable for DNSSEC from earlier experiments.
If necessary, we implement the alternative key distribution mechanisms as well on
the side of the authoritative name server and the recursive resolver. With this exper-
iment we can measure the impact of quantum-safe algorithms on transport, name
servers and resolvers.

In the meantime, we expect that NIST has standardized one or more quantum-
safe signing algorithms. In case our experiments have shown that one of these al-
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gorithms is suitable, but that deploying them in DNSSEC would require protocol
modifications, we would now propose bringing these protocol modifications for-
ward as an experimental draft in the IETF. This would also give more DNS software
developers the opportunity to provide their feedback and experiment with the im-
plementation. At the same time, other algorithms, not part of the NIST competition
might mature. We will keep a close eye on them to identify possible interesting
candidates for DNSSEC.
We believe that these described steps will help us to prepare DNSSEC for quantum-

safe algorithms on time for the arrival of production scale quantum computers.



APPENDIX A

Open Data Management

In this thesis, we relied on different existing data sets and carried out measurements
ourselves. If possible and relevant, we made the data sets and measurement results
available to the public. Our goal is to allow others to (i) reproduce our results of our
studies, thereby increasing transparency, and also (ii) enable others to build on our
results.

Additionally, we make the source code with which we carried out our measure-
ments available for two studies. This, again, has the goal to increase transparency
and reproducibility, but also to enable a broader community to carry out the meas-
urements themselves.

Chapter Description Type References
Chapter 3 Algorithm deployment at domain names Openlntel ¥ —
P Algorithm deployment at resolvers RIPE Atlas % [101]
Root query data DITL 4 & Operators ¥
Root response size RSSAC %
Chapter 4  RFC 8145 trust anchor signaling Operators & ICANN ¥ [126]
Resolver state monitoring RIPE Atlas %
RFC 8509 sentinel measurements RIPE Atlas ding168 & Luminati ¥
Chanter 6 Active server selection RIPE Atlas % [194]
P Passive server selection DITL 4 & Operators ¥ —

Table A.1: Data sets, created and studied in this thesis. Data sets open (%), available
for members only (#), or private ().

Data Sets Table A.1 lists the data datasets we used or produced in this thesis. We
carried out measurements with the help of RIPE Atlas (see Explainer 2 on page 39
for more details on RIPE Atlas) and Luminati [133]. Additionally, we mainly re-
lied on two data sets, provided to us: First, OpenINTEL [62], which captures daily
snapshots of large parts of the DNS. Second, the Day In The Life of the Internet
(DITL) collection effort, consisting out of traffic captures at the DNS root servers. In
some chapters, we also studied additional data sets, specific to one research, listed
in Table A.1.

We cannot publish all data sets, due to privacy concerns (e.g. because they con-
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tain personal information) or legal restrictions. We, however, made aggregated data
sets publicly available in some cases. We refer the reader to the individual chapters
for more details on each data set.

Source Code For two of our studies, we also made source code available, listed in
Table A.2. In case of Chapter 5, we publish the source code that allows operators to
monitor their algorithm rollovers. The Git repository contains instructions to install
and run the tool as well. For Chapter 7, we publish the software with which we have
measured the performance of quantum-safe algorithms.

Chapter Description References

Chapter 5 Monitoring tool for measuring algorithm https://github.com/SIDN/rollover-mon
rollovers

Chapter 7 Quantum-safe algorithm performance meas- [216]
urements

Table A.2: Public source code


https://github.com/SIDN/rollover-mon

APPENDIX B

Ethical Considerations

The measurements we carried out and the data sets we used in this thesis can, po-
tentially, raise ethical concerns. For example, active measurements impose addi-
tional load on the measured services thereby threatening their availability and pass-
ive measurements can reveal sensitive personal information, like a queried domain
name. Following the guidelines from [257] we explain in this section: (a) how we
designed our measurements such that they did not cause harm to any person’s well
being, and (b) how data provided by third parties is collected. Furthermore, (c) we
describe how we handled the disclosure of issues at third parties, revealed by our
measurements. We discuss ethical issues, specific to individual studies in the re-
spective chapters.

ACTIVE MEASUREMENTS

To carry out active measurements, and as shown in Appendix A, we mostly relied
on the RIPE Atlas measurement platform. RIPE Atlas probes are run by volunteers,
hosted in their own networks. As discussed in [70], we therefore have to pay atten-
tion (i) what we measure, and (ii) how often we measure.

Sending queries to domain names that provide content considered illegal in some
countries, might get the host of the probe into trouble with the local authority. In
our research, we do not send queries to sensitive domain names and thus, they do
not put host of probes at risk. This also applies to measurements carried out with
the Luminati proxy network [133].

Also, we need to consider the measurement frequency. A high frequency might
require too much bandwidth of the probe’s Internet connection, especially in more
remote areas. Moreover, the measured services (e.g. an authoritative name server)
might receive significant number of requests when our measurement relies on thou-
sands of VPs. In some of our studies, we require a high measurement frequency (e.g.
every minute in case of the measurement of the publication delay, see Chapter 5),
but only for a few minutes. There, we also measure services (authoritative name
servers of a TLD and the root) that are well connected, have sufficient capacity, and
where we have the operator’s consent (in case of the measured TLD). We recom-
mend operators that would like to apply our monitor method as well to only select
VPs that reflect their user base. This reduces load on services further.

In other studies, we run measurements infrequent (e.g. every hour), to well
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equipped services (e.g. the authoritative name servers of .nl and the root) or to
services under our control. For long running measurements, or measurements that
involve all available RIPE Atlas probes we asked the RIPE NCC for consent or even
cooperated with them directly.

THIRD PARTY DATA SETS

In our studies, we relied on a number of data sets, provided to us by third parties.
Especially the data sets that contain passive packet traces from authoritative name
servers can contain sensitive information, like IP addresses or domain names. Des-
pite the fact that authoritative name servers usually do not see traffic originating
from end users [32], we still need to handle them with care. Only in very specific
cases, we analyzed queried domain names and IP addresses. These were used to
identify misconfiguration and to reach out to operators in order to inform them
about our observations and to get more details as to why we see certain behavior.
We do not publish individual domain names nor IP addresses in any of our data sets
(see Appendix A).

The data sets, used in this thesis were collected with potential ethical issues in
mind. OpenINTEL follows strict ethical guidelines [62] and also data from the Dutch
ccTLD .nl is collected under a restrictive privacy policy [200]. Traces from the root
servers [127] can only be accessed by OARC members (the organization managing
the data collection).



Glossary

ARPANET Advanced Research Projects Agency Network.
AS Autonomous System.

ASN Autonomous System Number.
BSI Federal Office for Information Security.

ccTLD Country Code Top Level Domain.

CDN Content Delivery Network.

DANE DNS-based Authentication of Named Entities.

DDoS Distributed Denial of Service.

DNS Domain Name System.

DNS-OARC Domain Name System Operations Analysis and Research Center.
DNSSEC DNS Security Extensions.

DoH DNS-over-HTTPS.

DoT DNS-over-TLS.

DS Delegation Signer.

EDNSO Extension Mechanisms for DNS.
gTLD Generic Top Level Domain.
HTTP Hypertext Transfer Protocol.

IANA Internet Assigned Numbers Authority.
ICANN Internet Corporation for Assigned Names and Numbers.

IETF Internet Engineering Task Force.
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IP Internet Protocol.

ISP Internet Service Provider.

KSK Key Signing Key.

MITM Man-in-the-middle.

NIST National Institute of Standards and Technology.

OS Operating System.

RIPE NCC Réseaux IP Européens Network Coordination Centre.

RR Resource Record.
RSA Rivest—-Shamir-Adleman.

RTT Round-Trip Time.
SIDN Stichting Internet Domeinregistratie Nederland.

TCP Transport Control Protocol.
TLD Top Level Domain.
TLS Transport Layer Security.

TTL Time To Live.
UDP User Datagram Protocol.
VP Vantage Point.

ZSK Zone Signing Key.

Glossary
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