
NAT64/DNS64 in the Networks with
DNSSEC

Dissertation

Study programme: P2612 – Electrical Engineering and Informatics
Study branch: 2612V045 – Technical cybernetics

Author: Ing. Bc. Martin Huněk, M.Eng.
Supervisor: prof. Ing. Zdeněk Pĺıva, Ph.D.

Liberec 2021

Declaration

I hereby certify, I, myself, have written my dissertation as an original
and primary work using the literature listed below and consulting
it with my thesis supervisor and my thesis counsellor.

I acknowledge that my dissertation is fully governed by Act
No. 121/2000 Coll., the Copyright Act, in particular Article 60
– School Work.

I acknowledge that the Technical University of Liberec does not
infringe my copyrights by using my dissertation for internal purposes
of the Technical University of Liberec.

I am aware of my obligation to inform the Technical University of
Liberec on having used or granted license to use the results of my
dissertation; in such a case the Technical University of Liberec may
require reimbursement of the costs incurred for creating the result
up to their actual amount.

At the same time, I honestly declare that the text of the printed
version of my dissertation is identical with the text of the electronic
version uploaded into the IS STAG.

I acknowledge that the Technical University of Liberec will make
my dissertation public in accordance with paragraph 47b of Act
No. 111/1998 Coll., on Higher Education Institutions and on Amend-
ment to Other Acts (the Higher Education Act), as amended.

I am aware of the consequences which may under the Higher Edu-
cation Act result from a breach of this declaration.

20. 12. 2021 Ing. Bc. Martin Huněk, M.Eng.

NAT64/DNS64 in the Networks with
DNSSEC

Abstract

The rising number of DNS-over-HTTPS capable resolvers and ap-
plications results in the higher use of third-party DNS resolvers by
clients. Because of that, the currently most deployed method of the
NAT64 prefix detection, the RFC7050[1], fails to detect the NAT64
prefix. As a result, clients using either NAT64/DNS64 or 464XLAT
transition mechanisms fail to detect the NAT64 prefix properly,
making the IPv4-only resources inaccessible. The aim of this thesis
is to develop a new DNS-based detection method that would work
with foreign DNS and utilize added security by the DNS security
extension, the DNSSEC. The thesis describes current methods of
the NAT64 prefix detection, their underlying protocols, and their
limitations in their coexistence with other network protocols. The
developed method uses the SRV record type to transmit the NAT64
prefix in the global DNS tree. Because the proposed method uses
already existing protocols and record types, the method is easily
deployable without any modification of the server or the transport
infrastructure. Due to the global DNS tree usage, the developed
method can utilize the security provided by the DNSSEC and there-
fore shows better security characteristics than previous methods.
This thesis forms the basis for standardization effort in the IETF.

Keywords: IPv6, IPv4aaS, NAT64/DNS64, 464XLAT, DNSSEC,
DoH

3

NAT64/DNS64 v śıt́ıch s DNSSEC

Abstrakt

Zvyšuj́ıćı se pod́ıl resolver̊u a aplikaćı použ́ıvaj́ıćı DNS-over-HTTPS
vede k vyš́ımu pod́ılu klient̊u použ́ıvaj́ıćıch DNS resolvery třet́ıch
stran. Kv̊uli tomu ovšem selhává nejpouž́ıvaněǰśı NAT64 detekčńı
metoda RFC7050[1], což vede u klient̊u použ́ıvaj́ıćıch přechodové
mechanismy NAT64/DNS64 nebo 464XLAT k neschopnosti tyto
přechodové mechanismy správně detekovat, a t́ım k nedostupnosti
obsahu dostupného pouze po IPv4. Ćılem této práce je navrhnout
novou detekčńı metodu postavenou na DNS, která bude pracovat
i s resolvery třet́ıch stran, a bude schopná využ́ıt zabezpečeńı DNS
dat pomoćı technologie DNSSEC. Práce popisuje aktuálně stan-
dardizované metody, protokoly na kterých záviśı, jejich omezeńı
a interakce s ostatńımi metodami. Navrhovaná metoda použ́ıvá SRV
záznamy k přenosu informace o použitém NAT64 prefixu v globálńım
DNS stromu. Protože navržená metoda použ́ıvá již standardizo-
vané protokoly a typy záznamů, je snadno nasaditelná bez nutnosti
modifikovat jak DNS server, tak śıt’ovou infrastrukturu. Protože
metoda použ́ıvá k distribuci informace o použitém prefixu globálńı
DNS strom, umožňuje to metodě použ́ıt k zabezpečeńı technologii
DNSSEC. To této metodě dává lepš́ı bezpečnostńı vlastnosti než
jaké vykazuj́ı předchoźı metody. Tato práce vytvář́ı standardizačńı
bázi pro standardizaci v rámci IETF.

Kĺıčová slova: IPv6, IPv4aaS, NAT64/DNS64, 464XLAT,
DNSSEC, DoH

4

Acknowledgements

I would like to thank my supervisor for his continued support during
my study. I wasn’t certainly easy to handle, especially forcing me
to stop procrastinating couldn’t be an easy job.

I would also like to thank my colleague and friend Jǐŕı Jeńıček for
reviews and remarks to my thesis. He had come to the aid when
it was needed the most. He had helped with the uneasy task of
reading this thesis and providing feedback. For this reason, he has
got my deepest gratitude. Thank you.

I would like to thank the IETF v6ops working group members for
their reviews and insides that helped to shape the proposed method
to the form presented in this thesis.

I would also like to extend my thanks to Miloslav Fǐser, the air boss
at Hodkovice aeroclub, for the crew scheduling that kept me in the
air with reasonable flight time, even when my free time was limited
due to the thesis writing. Because of him, I have managed to keep
my mental health and sanity.

I would also like to thank my friends for their support, and I would
like to apologize for not having so much time for them as they
deserve.

Lastly, I want to thank Pavel Satrapa for tulthesis LATEX class used
to generate this document. Without it, writing a thesis would be
much harder, and the result would be less aesthetically pleasing.

5

Contents

1 Introduction 15

2 Theoretical Background 17
2.1 ISO/OSI Model . 17

2.1.1 Definitions of OSI Model Layers 18
2.1.2 Overlapping of Layers in Protocols 18

2.2 IP . 19
2.2.1 IPv4 . 19
2.2.2 IPv6 . 21
2.2.3 IPv4 and IPv6 Interoperability Issues 23
2.2.4 Reasons for Migration Towards IPv6 26

2.3 NAT . 28
2.3.1 NAT44 . 29
2.3.2 NAT64 . 31
2.3.3 NAT66 . 34

2.4 DNS . 35
2.4.1 DNS Record Types . 37
2.4.2 DNS Protocol . 39
2.4.3 DNS64 . 40

2.5 DNSSEC . 41
2.5.1 DNSSEC Deployment . 46

2.6 DNS over HTTPS . 49
2.7 DNS64 and DoH Interoperability Issues 52
2.8 DNS64 and DNSSEC Interoperability Issues 53

3 Current Solutions 54
3.1 Evaluation of Solutions . 54

3.1.1 Issues According to RFC7051 54
3.1.2 DNS Query for a Well-Known Name 54
3.1.3 EDNS0 Option . 55
3.1.4 EDNS0 Flags . 56
3.1.5 DNS Resource Record for IPv4-Embedded IPv6 Address . . . 56
3.1.6 Detection Using U-NAPTR or TXT Records 56
3.1.7 Detection Using DHCPv6 . 57
3.1.8 Detection Using Router Advertisements 58

6

3.1.9 Detection Using Application-Layer Protocols 58
3.1.10 Detection Using Access-Technology-Specific Methods 59
3.1.11 Issues not Covered by RFC7051 59

3.2 RFC7050 . 60
3.2.1 Node Behavior . 60
3.2.2 Validation of Detected Prefix 61
3.2.3 Connectivity Checks . 62
3.2.4 Message Flow . 62
3.2.5 Security Implications . 63
3.2.6 Why RFC7050 Would not Work Now? 65

3.3 RFC7225 . 66
3.3.1 Principle of Operation . 67
3.3.2 Security . 68
3.3.3 Why RFC7225 is not the Solution? 69

3.4 RFC8115 DHCPv6 Option . 69
3.4.1 Principle of Operation . 70
3.4.2 Security . 72
3.4.3 Is the RFC8115 the Solution? 73

3.5 RFC8781 Pref64 Option . 74
3.5.1 Principle of Operation . 75
3.5.2 Security . 76
3.5.3 Pros and Cons . 77

4 Proposed Solution 79
4.1 Design Goals . 79
4.2 Information Sources . 80
4.3 Node Behavior . 81

4.3.1 Information Gathering . 81
4.3.2 Discovery Phase . 83
4.3.3 Validation Phase . 85
4.3.4 Interactions with Other Methods 86

4.4 Message Flow . 87
4.4.1 DNSSL . 87
4.4.2 PTR . 88
4.4.3 DHCPv6 . 88
4.4.4 Discovery Phase . 89
4.4.5 Validation Phase . 90

4.5 Deployment Scenarios . 90
4.5.1 Topology without User-Controlled Routers 91
4.5.2 Topology with User-Controlled Routers 93

4.6 Comparison with Other Solutions . 94
4.6.1 Evaluation According to RFC7051 94
4.6.2 Evaluation Based on Design Goals 95
4.6.3 SRV versus RFC7050 . 96
4.6.4 SRV versus RFC7225 . 97

7

4.6.5 SRV versus RFC8115 . 98
4.6.6 SRV versus RFC8781 . 99

4.7 Security Considerations . 101
4.8 IANA Considerations . 102
4.9 Configuration . 102

4.9.1 Setting up and Forcing DNSSEC Validation 103
4.9.2 Setting up Synthetic Records 104
4.9.3 Insertion of SRV Records into Zone 106

4.10 Testing . 107
4.10.1 Testing Script . 108

5 Conclusion 110

Appendix 120

A Testing Script 120

8

List of Figures

2.1 IPv6 addressing architecture . 22
2.2 IP headers (source: RIPE NCC, ripe.net) 24
2.3 Number of IPv4 routes before CIDR (source: RFC1519[27]) 27
2.4 Typical deployment of NAT44 in residential customer environment . . 30
2.5 Asymmetric traffic path through CGNAT 31
2.6 NAT64/DNS64 network with IPv6 only customers 32
2.7 Client portion of 464XLAT (CLAT) 33
2.8 Principle of zone delegation in DNS 36
2.9 DNS64 principle of operation . 41
2.10 DNSSEC example with cz. domain 44
2.11 Number of DNSSEC signed TLDs (source: ICANN[51]) 47
2.12 Percentage of DNSSEC signed TLDs (source: ICANN[51]) 48
2.13 Comparison of conventional DNS and DoH query paths 51

3.1 Detection of NAT64 prefix according to RFC 7050[1] 62
3.2 Validation of NAT64 prefix according to RFC 7050[1] 63

4.1 IPv6 autoconfiguration . 88
4.2 PTR query for node’s FQDN . 89
4.3 SRV query for NAT64 prefix . 89
4.4 SRV query for DNS64 service . 90
4.5 Example of flat designed network . 92
4.6 Example of ISP’s network . 93
4.7 Split configuration with several NAT64 prefixes 106

9

List of Tables

1.1 Terminology used in this thesis . 16

2.1 ISO/OSI model . 17
2.2 Class-based IPv4 addressing according to RFC791 [13] 20
2.3 Relevant DNS record types . 37
2.4 Records added by the DNSSEC . 42
2.5 Signaling flags added by the DNSSEC 45
2.6 DNS64 availability based on DNSSSEC flags according to RFC6147[56] 53

4.1 List of relevant DHCPv6 options [85] 82
4.2 Recommended priorities of NAT64 prefix detection methods 86

10

Listings

2.1 IPv4 header according to RFC791 . 20
2.2 IPv6 header according to RFC8200 22
2.3 Configuration of NAT64 on Linux using Jool 32
3.1 Prefix64 PCP Option according to RFC7225 66
3.2 IPv4 Prefix List according to RFC7225 67
3.3 The DHCPv6 Prefix64 option according to RFC8115 70
3.4 The RA NAT64 Prefix option according to RFC8781 74
4.1 Example of NAT64/DNS64 records in operator zone 84
4.2 Captured Router Advertisement packet 88
4.3 DNSSEC related configuration of Knot 3.0.3 104
4.4 Online signing configuration with synthrecord module (Knot 3.0.3) . 105
4.5 Example of simple SRV record setup 106
4.6 Example of records for several NAT64 prefixes 107
4.7 NAT64 detection loop . 108
A.1 Testing script in Python3 - NAT64 detection 120
A.2 Testing script in Python3 - DNS64 detection 121

11

Acronyms

ACL Access Control List. 68, 76
API Application Programming Interface. 57, 58, 80, 96, 98, 111
ARP Address Resolution Protocol. 18, 26, 75
ASN Autonomous System Number. 19, 105

BYOD Bring Your Own Device. 91

CGNAT Carrier-grade Network Address Translation. 29–32, 69
CIDR Classless Inter-Domain Routing. 26, 27, 67
CLAT Customer-side Translator in 464XLAT. 33, 34, 67, 69, 73, 75, 77, 78, 80,

98–100, 108, 111
CPE Customer Premises Equipment. 29, 30, 33, 36, 39, 66, 69, 77, 78, 100

DDNS Dynamic DNS. 82
DHCPv4 Dynamic Host Configuration Protocol version 4. 20, 23, 50, 68, 70, 71,

73, 82, 83
DHCPv6 Dynamic Host Configuration Protocol version 6. 23, 50, 57, 59, 68–76,

80–82, 87, 88, 91–95, 98–100, 102
DNS Domain Name System. 15, 20, 23, 26, 33, 35–42, 45, 46, 49–57, 59–61, 63–65,

71–73, 75, 79–83, 86, 88, 90, 91, 93, 95–104, 107–109, 111
DNS64 Domain Name System 6-to-4. 33, 40, 41, 52–65, 67, 68, 73, 75, 78–81, 83–86,

89, 90, 93–96, 98–100, 102, 108, 110, 111
DNSSEC Domain Name System Security. 15, 40–43, 45–49, 53, 55, 59–61, 63, 64,

72, 80, 83–85, 89, 90, 95, 97, 98, 101–104, 110, 111
DNSSL Domain Name System Search List. 80, 81, 87, 91, 93–95, 97, 111
DoH DNS over HTTPS. 40, 49–52, 65, 68, 74, 78, 80, 84, 96, 101, 107, 110
DoS Denial of Service. 39, 43, 46, 59, 64, 65, 68, 72, 73, 76, 105
DoT DNS over TLS. 40, 46, 49, 51, 101

ECDSA Elliptic Curve Digital Signature Algorithm. 42, 103
EDNS0 Extension Mechanisms for DNS. 55, 56
EUI-64 Extended Unique Identifier 64. 23

FQDN Fully Qualified Domain Name. 61, 62, 81–85, 88, 92, 108, 109
FTP File Transfer Protocol. 35, 57

IANA Internet Assigned Numbers Authority. 21–23, 37, 66, 70, 74
ICMPv6 Internet Control Message Protocol version 6. 74, 75, 87

12

IEN Internet Experiment Note. 19
IETF Internet Engineering Task Force. 21–25, 52, 56, 65, 69, 79, 111
IoT Internet of Things. 80
IP Internet Protocol. 19, 20, 29, 31, 33, 35–38, 41, 50, 58, 80
IPsec Internet Protocol Security. 21, 25, 49, 72
IPv4 Internet Protocol version 4. 19–21, 23–34, 38–41, 50, 56, 58, 62, 67, 70, 74, 75,

77, 84, 85, 90, 102, 105, 107, 108, 110
IPv4aaS Internet Protocol version 4 as a Service. 25, 33, 58, 69, 96
IPv6 Internet Protocol version 6. 21–28, 31–34, 38, 40, 41, 48, 50, 56, 57, 60, 61, 66,

70, 72, 74–77, 80, 82–84, 87, 91, 92, 99–102, 104, 110, 111
ISP Internet Service Provider. 22, 29, 32, 33, 41, 51, 52, 69, 91, 93, 97
ITU-T International Telecommunication Union Telecommunication Standardization

Sector. 17

KSK Key Signing Key. 41–46, 103

LIR Local Internet Registry. 22
LIS Location Information Server. 82

MitM Man in the Middle. 39, 59, 64, 72, 73, 76
MTU Maximum Transmission Unit. 21, 25, 26, 39, 75

NAT Network Address Translation. 22, 27–31, 33–35, 39, 58, 66, 67, 69, 97
NAT44 Network Address Translation 4-to-4. 28, 29, 31, 32, 34, 67
NAT64 Network Address Translation 6-to-4. 31–34, 40, 41, 52–62, 64–75, 77–79,

81–91, 93–103, 106–110
NAT66 Network Address Translation 6-to-6. 34
ND Neighbor Discovery. 74–78, 101
NSP Network Specific Prefix. 52, 54, 55, 57–60, 63, 94

ORO Options Request Option. 71, 88
OSI Open System Interconnection. 17, 18

PCP Port Control Protocol. 58, 66–69, 72, 73, 76, 87, 97–100, 102
PLAT Provider-side Translator in 464XLAT. 33, 34, 110
PPPoE Point to point over Ethernet. 66

RA Router Advertisement. 57–59, 71, 75–77, 79–81, 83, 87, 91–95, 100–102, 111
RDNSS Recursive DNS Server. 82, 83
RIR Regional Internet Registry. 21–23, 27, 29, 81, 103
RS Router Solicitation. 71, 75, 87

SeND Secure Neighbor Discovery. 77, 80, 91
SLAAC Stateless Address Autoconfiguration. 23, 50, 70, 74, 75, 91
STUN Session Traversal Utilities for NAT. 58, 59

TCP Transmission Control Protocol. 18, 19, 39, 84, 90, 105, 109
TLD Top Level Domain. 43–48, 85

13

TTL Time to Live. 35, 38, 43, 61, 95

UDP User Datagram Protocol. 19, 25, 39, 67–70, 84, 90, 105, 109
ULA Unique Local Address. 34
UPnP Universal Plug and Play. 69

WKA Well-Known IPv4 Address. 60–62
WKN Well-Known IPv4-only Name. 59, 60, 62, 64, 65, 110
WKP Well-known Prefix. 32, 54, 55, 60, 62, 63, 65, 95, 106

ZSK Zone Signing Key. 41–44, 46, 103–105

14

1 Introduction

One of the first things network administrators would hear, as a network operator
trying to deploy IPv6 translation mechanisms, would probably be to never mix it
with Domain Name System Security (DNSSEC) validating resolver. This was also
my case when I attended an IPv6 course of RIPE NCC in 2017. Back then, I was
also considering deployment of NAT64/DNS64 translation mechanism in the network
of one Internet Service Provider I am volunteering for, so I started working on the
deployment scenario and was investigating related issues.

I eventually discovered a solution by the RFC7050[1], so the issue seemed to be
solved for the time being. Even though this RFC7050[1] does not solve all the issues
related to discovering a NAT64 prefix, it worked in most common cases and without
the need for modifying underlying protocols or significant administrative effort. The
only major issue left on a device capable of using Domain Name System (DNS) was
an issue of foreign DNS, but back then, it was only caused by user settings, so it was
only self-inflicted. A share of users with such custom settings was supposed to be
marginal, and the issue caused by this could be solved by the helpdesk of ISP by the
simple statement “Use DNS provided by us.”

However, in 2017, the standardization of RFC8484[2] (a DNS-over-HTTPS)
has begun, and in 2018 it was declared a Proposed Standard. As this method of
transporting DNS queries does not have a working detection mechanism, it introduces
foreign DNS to every user of such program which uses this transport method1. This
makes an RFC7050[1] unusable and sends us back to round one of NAT64/DNS64
detection.

In this thesis, I will try to explain the need for a reliable way to securely detect
the NAT64/DNS64 translation mechanism as well as a proposed solution for this
detection.

1There are multiple approaches to this lack of detection method. Some are using third-party
DNS by default, and some are using them as a fallback. However, by introducing a third-party DNS
provider, both approaches can introduce problems to the detection method based on RFC7050.

15

Table 1.1: Terminology used in this thesis
Word Meaning
Client A network device or network capable software consuming network

service.
Node A network device or network capable software.
Operator A physical or legal entity providing Internet access to nodes and users.
Server A network device or network capable software providing network ser-

vice.
User A physical or legal entity other than operator

16

2 Theoretical Background

In this chapter, I will try to explain an underlying technology as well as interoperability
issues between them.

2.1 ISO/OSI Model

The first construct which had to be explained is an ISO/OSI model. The ISO/OSI
standard is defined by a joined effort of ISO/IEC and International Telecommunica-
tion Union Telecommunication Standardization Sector (ITU-T), and as such, it is
defined by two documents ISO/IEC 7498-1:1994[3] and ITU-T X.200[4].

This standard aims to abstract network protocols into layers, allowing easier
coordination of future protocols’ development. This means that an application should
not change the processing of network packets, same as a network layer device should
not change application data, as they are located on a different layer of Open System
Interconnection (OSI) model.

Even that the OSI model is not strictly followed every time, as it provides just a
common basis, it is beneficial to keep the number of layers impacted by protocol to
minimum, as it allows easier compatibility with other protocols.

Table 2.1: An ISO/OSI reference model (source: [5])
Group # Name Protocol unit Function
Host 7 Application Data Application data

6 Presentation Representation of information
5 Session Maintain session information
4 Transport Datagram Provides transport services

Media 3 Network Packet Addressing, routing
2 Data Link Frame Encoding, media access
1 Physical Symbol Physical transport

From previous table 2.1 could be seen what layers are provided by the OSI model.
The layers are referenced by Lx where x is a number corresponding to the layer
number from table 2.1.

17

2.1.1 Definitions of OSI Model Layers

L1 is a Physical Layer; it is responsible for the physical transport of symbols over
media. This includes a definition of symbols, levels, timing, and so on. Its interface
to higher levels is raw bitstream.

L2 is a Data Link Layer. It is usually responsible for access to media, error
detection, correction encapsulation, and upper-layer data identification and provides
a data connection between two or more nodes. To the lower layer, it provides
bitstream, and to the upper one, it provides a link.

L3 as a Network Layer provides a possibility of transferring data (called packets)
across multiple links, establishing wide networks. This includes routing – an ability
to find a route between multiple nodes and signaling of transmission errors. To
lower layer is supplies packets to the specific link; to the upper layer, it provides an
interface to deliver messages to a specific node.

L4 is a Transport Layer. Its responsibility is to provide a socket for transferring
data sequences between services. The OSI model defines five classes of transport
protocols (TP0 – TP4) according to its capabilities like Error recovery, reliable
transport, segmentation, or multiplexing. To the lower layer, it provides packet
payload; to the upper layer, it provides data sockets for transporting data.

L5 as a Session Layer provides sessions. This allows maintaining information
about which connection transmission belongs to and the state in which connection is
right now.

L6 is Presentation Layer; it encodes and decodes data from an application to
transport and vice versa. This might be as simple as changing the names of variables
and character encoding to data encryption.

L7 is an application. It might be a program interacting with a user, as we know
it from personal computers, mobile phones, or a daemon/service running on a server.
Its data are provided to the lower layer for transport.

2.1.2 Overlapping of Layers in Protocols

There are services and protocols which do overlap layers defined in the OSI model.
We may usually see them when an upper layer requires information from a lower
layer of the OSI model. For example, in Address Resolution Protocol (ARP), a table
of MAC addresses and corresponding IP addresses is constructed. As a MAC address
belongs to Data Link Layer (L2), and an IP address belongs to Network Layer (L3),
ARP has to operate across these two layers.

Another example of protocol operating across multiple layers is Transmission
Control Protocol (TCP). TCP as Transport Layer (L4) protocol provides a transmis-
sion channel, but it also provides session information and control. This is, however,
a property of Session Layer (L5). So TCP provides functions of both L4 and L5 even
though it is considered only L4 protocol.

There are more of these examples where the OSI model is not precisely followed.
It is vital to see the OSI model as a good practice, not a dogma, as it is not always
practical and does not cover all the use-cases in networking.

18

2.2 Internet Protocol

Internet Protocol (IP), defined by [6], is a Network Layer protocol. Historically the
IP was developed as a connection-less1 datagram service in 1974 (then as part of
the Transmission Control Program). It has been originally designed as a monolith
protocol covering functions of both L3 and L4 layers. However, it has been lately
split into two protocols, one handling L4 - TCP and one for L3 layer - IP.

The first specifications of IP have been published in the Internet Experiment
Note (IEN) series, namely IEN22 [7], IEN26 [8], IEN28 [9] as of version 2, then the
evolution of Internet Protocol version 4 (IPv4) in documents IEN41 [10], IEN443

[11], IEN54 [12] and final version deployed at current internet RFC791 [13].

2.2.1 Internet Protocol version 4

IPv4, as defined by [13], was the first version of Internet Protocol widely used, and
it is still the dominant version up today. The difference from the original concepts of
the Transmission Control Program is in addressing. IPv4 uses 32b long addresses for
source and destination, and upper-layer protocols TCP and User Datagram Protocol
(UDP) is using another 16b long port number. This limitation to 32b long addresses
has proven to be the most significant limitation of IPv4 and to be the main reason
for migration to newer protocol.

Final IPv4 header is shown in listings 2.1. Version is set to 4, IHL is length of
header in multiplies of 32b (min. 5), Type of Service indicates priority by source,
Total Length is length of packet in bytes. Identification was meant to aid with
reassembly of fragmented packets by adding unique number per source destination
and protocol tuple, however it has been deprecated for non-fragmented packets by
RFC6864 [14]. Flags are also related to fragmentation as it is composed of reserved
flag set to 04, Don’t Fragment flag and More Fragments flag. Fragment Offset is
sequence number used in fragmentation.

Time to Live is the maximum number of hops after which a packet should be
discarded. This works as loop protection. Protocol is a number assigned to the
upper-layer protocol transported in the packet. Header Checksum provides detection
of errors in IPv4 header. After that, there are addresses of source and destination.

Before the final standard of IPv4, it has been split into network address and host
address by fixed ratio 8b to 24b. This would be in line with the statement made in
Transmission Control Program that 256 distinct networks would be enough for the
foreseeable future. Thankfully this has not been placed into the final standard as
we have run out of 16b Autonomous System Number (ASN) so that there are more
than 65 536 distinct networks on the current Internet.

1connection-less means that packets are forwarded based on their headers instead of fixed
connection like in connection-oriented networks, for example, legacy telephone

2IEN2 split Transport Control Program into IP and TCP
3IEN44 uses fixed network mask /8
4This has been suggested to be Evil Bit flag by April fool RFC3514[15] to indicate evil intent

19

The remaining data in the IPv4 header are Options. These are either one octet
long or are having one octet type, one octet length field, and rest for the data itself.
The rest of the header is then padded with zeroes to multiples of 32b.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+−+
| Vers ion | IHL |Type o f Se rv i c e | Total Length |
+−+
| I d e n t i f i c a t i o n | Flags | Fragment Of f s e t |
+−+
| Time to Live | Protoco l | Header Checksum |
+−+
| Source Address |
+−+
| Dest inat ion Address |
+−+
| Options | Padding |
+−+

Listing 2.1: IPv4 header according to RFC791

Addressing in IPv4 as defined in RFC791 [13] is using classes (A, B, C) to
determine locally reachable node as well as the size of the local network prefix. Class
A was defined as the first bit in address equal 0 and then 7b network identifier and
24b for a host address. Class B was starting with 10 and then 14b for network and
16b for a host address. Lastly, class C starting with 110, then 21b for network, and
8b for a host. Table 2.2 shows a theoretical number of networks and addresses in
such networks according to its class. From these numbers, the number of reserved
prefixes and reserved addresses had to be subtracted.

Table 2.2: Class-based IPv4 addressing according to RFC791 [13]
Class # of networks # of hosts
A 128 16 777 216
B 16 384 65 536
C 2 097 152 256

Assignment of IPv4 addresses has been defined by RFC790 [16] and carried out
by Jonathan B. Postel by mail, phone or email. RFC790 already lists 43 of 128 class
A networks assigned and two reserved, as well as every first and last network of each
class. This would mean 721 420 288 addresses already taken, 33 686 016 addresses
reserved in class-based space, and 536 870 912 addresses reserved outside class-based
space. While IPv4 space has only 32b long addresses, it means 232 = 4 294 967 296
possible addresses from which 1 291 977 216 is either reserved or assigned, which
equals roughly 30 % of whole IP space. And it was all in 1981, where RFC790[16]
has been published as well as the final version of IPv4.

IPv4 does not provide any means of autoconfiguration by itself. At the beginning
of IPv4 deployment, all stations had to be configured manually. Current IPv4
autoconfiguration protocol Dynamic Host Configuration Protocol version 4 (DHCPv4)
was introduced by RFC1531[17] in October 1993. The DHCPv4 provides a way to
automatically set up client address, network mask, DNS, and other options.

20

2.2.2 Internet Protocol version 6

Internet Protocol version 6 (IPv6), as currently defined by [18], is an up-to-date
version of Internet Protocol. It is important to realize that IPv6 is not just IPv4 with
longer addresses. The IPv6 has changed many things and models in network designs,
such as the possibility of multiple routers in a single network segment, their role, and
the complexity of network middle-boxes by forbidding packet modification (including
fragmentation)5. Connected with fragmentation, IPv6 introduced the requirement of
a minimum value of MTU at 1500 bytes. This ensures fewer fragmentation-related
errors produced by a network, and the rest is handled by Path MTU Discovery,
which is an integral part of IPv6.

The most obvious change is the IPv6 header together with addressing changes.
Header is shown in listing 2.2, where Version is number 6, Traffic Class is intended
for traffic classification for Differentiated service or network congestion signaling and
it is compatible with IPv4 Type of Service field. The Flow Label is a new field in
IPv6, allowing a grouping of multiple packets into a single flow. This allows multiple
packets of a single flow to be handled in the same matter, even if not all typical flow
classifiers are available (like encapsulated encrypted traffic).

Payload Length contains the length of a payload, including any extension headers
in octets encoded as 16b unsigned integer. Speaking of Extension Headers, next field
called Next Header, represents similar information as IPv4 field Protocol. However, in
IPv6, one packet can contain multiple protocol headers chained one after the other.
This is called Extension Headers, and it is used, for example, by Internet Protocol
Security (IPsec) protocol for packet encryption and/or authentication.

The Hop Limit field works the same way as the Time to Live in IPv4. It is set
by packet source, and then it is decremented by every L3 hop to limit range packet
can travel and mitigate risks of routing loops.

The last two parts of IPv6 header are Source Address and Destination Address.
By first look at packet header it is clearly visible that IPv6 (128 bits) addresses are
fourtimes longer than IPv4 addresses (32 bits). This theoretically allows to address
2128 devices on the Internet6, but instead of giving whole addressing space to Internet
Assigned Numbers Authority (IANA) for alocation like in case of IPv4, IPv6 address
space is mostly reserved for future use by Internet Engineering Task Force (IETF)
and just small portion of it has been made available to IANA and subsequently to
Regional Internet Registries (RIRs).

5When packet size exceeds link Maximum Transmission Unit (MTU) in IPv4, a router will
fragment packet by itself. In IPv6, a router is not allowed to modify packets in such a way as in
IPv4. Instead of packet fragmentation, a router is obligated to discard the packet and produce an
ICMP error message to a sender informing it that MTU has been exceeded. This makes a router’s
job easier, and it follows the so-called Smart host, dumb network principle.

6The 2128 is 340282366920938463463374607431768211456 which is considerably more than
whole IPv4 address space of 232 which is equal just to 4294967296.

21

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+−+
| Vers ion | Tra f f i c Class | Flow Label |
+−+
| Payload Length | Next Header | Hop Limit |
+−+
| |
+ +
| |
+ Source Address +
| |
+ +
| |
+−+
| |
+ +
| |
+ Dest inat ion Address +
| |
+ +
| |
+−+

Listing 2.2: IPv6 header according to RFC8200

The whole IPv6 address space is divided by RFC4291[19] into unspecified ad-
dresses, loopback, multicast addresses, and everything else considered to be unicast
address space. Unicast is then subdivided into Link-local unicast, Unique Local
unicast7, and Global unicast addresses. From that Global unicast space, just a small
fragment of 2000::/3 has been released from IETF to IANA for further assignments.
From this range, the IANA makes assignments to every RIR (typically by /12).
Then RIR, like europian RIPE, makes allocation for Local Internet Registry (LIR)
usually Internet Service Provider (ISP) with a size of /29 without questions or bigger
when justified. From LIR pool are then made assignments to its customers/end
users who could not get bigger than /48 in Europe and Middle-East, and must
not get less than /64 which is one subnet. Recommended assignment sizes depend
on customer network size, ISP pool size, network/routing segmentation, and other
variables, so there is no fixed value that would fit all. Usual values are /48, /56, and
when necessary /60, mask length should be dividable by four as it would be easily
distinguishable in hexadecimal notation.

Figure 2.1: IPv6 addressing architecture

When deciding customer allocation size, an ISP should not assign fewer addresses
than a customer could ever need. There are two reasons for that; one is that there
should never be a reason to use Network Address Translation (NAT) and renumbering

7Not defined in RFC4291[19].

22

of network requires effort from the customer network administrator, which would
not make an impression of good customer service.

All currently allocated addresses from IETF are published in IANA registry[20].
All addresses allocated by RIR are published in respective RIR registry as well as it
should be any address pool assigned to a customer (either individually published or
published in aggregated form – preferred variant).

The big difference in IPv6 addressing is in the number of addresses on a single
interface. In IPv4 world, single network interface usually has one IPv4 address. This
assumption is, however, not true in IPv6. In IPv6, every interface has a Link-Local
address. Then it may have one or more global unicast addresses. It must also be a
member of several multicast groups (all nodes on localhost, all nodes on link, and
multicast for duplicate address detection) and may also be in other multicast groups
depending on a service/role it is running.

This is connected with another difference in addressing: every interface has an
IPv6 address regardless of any other IPv6 equipment present in a network segment.
This address is a so-called Link-Local address, and it is usually computed from
link-layer address (so-called MAC address) to the form of Extended Unique Identifier
64 (EUI-64) appended after the fe80::/10 prefix. This way, every node has a working
address to communicate on, even if it has not been configured yet. Such address is
not usable outside of the local network segment as they are all from a single prefix,
and that unconfigured node has no information about routing. This makes them
only usable on a single segment/link from which its name Link-Local comes. To
be clear, these addresses are not just used for unconfigured nodes; this is just one
possible usage. More often, they are used for routing or other services in a local
network segment.

The autoconfiguration of nodes has also changed tremendously. In IPv4, the
node received all configuration data via DHCPv4 (such as default route, address,
DNS resolver). In IPv6, routing information is provided to a node by means of
Stateless Address Autoconfiguration (SLAAC). Furthermore, this information could
not be provided by Dynamic Host Configuration Protocol version 6 (DHCPv6), so
in order to have working routing, the SLAAC is essential. SLAAC can also provide
a node with a prefix for stateless autoconfiguration of global unicast address and has
been further extended to provide other essential information like address of recursive
DNS resolver or domain search list. This effectively made DHCPv6 superfluous
in cases where predictable or static addresses are not needed. Because of that,
DHCPv6 support is not considered mandatory, and some vendors like Google are
not supporting it.

2.2.3 IPv4 and IPv6 Interoperability Issues

The previous chapter shows that there were many changes made to the Internet
Protocol between its version 4 and version 6. These changes resulted in interoper-
ability issues, at least in combining both address types in a single packet and terms
of packet processing in a single network stack. Changes in packet header format
side-by-side can be seen in figure 2.2. This also shows why these problems occur.

23

Figure 2.2: IP headers (source: RIPE NCC, ripe.net)

This means that in order to process IPv6 packet, every network device running
at L3 and up must contain separate IPv6 network stack capable of processing it.
The existing IPv4 stack would not be able to do that. The same also goes for packet
processing on a hardware level.

The issue with the inability to combine addresses of both versions in a single
packet means that no IPv6-only host can directly communicate with IPv4-only host,
and vice versa. This means that if such communication should take place, either
one version of the protocol must be encapsulated into another, or a packet of one
version has to be translated into another version8. These strategies are generally
called Transition Mechanisms.

Translation Mechanisms could be divided into two main groups. The first uses
packet encapsulation, and the second uses packet translation. Both groups are
intended to smooth down the transition between IPv4 and IPv6 Internet and should
not be considered a permanent part of network design. Rather than that, those
should be viewed as temporary tools or so-called hotfix to legacy equipment, legacy
network design, or the lack of migration in neighboring networks.

Encapsulation, also known as tunneling, is an older method for transition between
protocols. In this case, a complete packet of one version of the Internet protocol is
transported inside a packet of different (or the same) versions. This is done either as
a special payload protocol like ipip and gre. Alternatively, it can be transported as a

8There has also been suggested approach of combining both addresses in a single packet called
IPv10. Even that it might seem reasonable, it would require two new packet formats just to handle
differences in a packet header. Solving differences between rules of packet transport would be an
entirely different thing. These changes would mean inventing an entirely new protocol just to utilize
already assigned IPv4 addresses. Because of that, the IPv10 remains a sort of joke inside IETF.

24

higher-level payload inside a UDP datagram like Teredo.
The main advantage of encapsulation is in early adoption scenarios - like testing

new still mostly unsupported protocols. In such a case, network equipment does
not support tested protocol, so it cannot do routing and other functions needed to
proper connection. So instead of trying to transport tested protocol directly in L2
frames, L3 packet header of already supported protocol is added, and because of that
such packet is then properly routed via existing network. This can also be applied
to the case in which a network operator is not supporting protocol (such as IPv6)
in their network - regardless if caused by network equipment problem or network
policy. For those networks, encapsulation could be the only way how users of such
networks can get working IPv6 (apart of changing a network operator).

However, encapsulation also comes with disadvantages. The most visible one
would be the need for support and addressing both protocols on to the end node.
This means that such an end node would require to talk both protocols and get both
address types. This also means that encapsulated protocol depends on one it is being
carried in. This does not have to be a problem for temporary designs and when
legacy protocol is encapsulated in a protocol that obsoletes it. So it is perfectly fine
to encapsulate IPv4 inside IPv6 to provide Internet Protocol version 4 as a Service
(IPv4aaS), because when IPv4 would no longer be needed, it would not require any
change in network design, nor it would have any effect on IPv6 service.

On the other hand, encapsulation of IPv6 would lead to a dependency of newer
protocol on legacy one, making it impossible to terminate legacy protocol without
a significant redesign of the network in question. This would not be considered
a future-proof network design. Please note that this paragraph does not describe
situations when encapsulation is used for other reasons than a transition between
protocols. It does not cover reasons like encapsulation for security reasons (IPsec).

Encapsulation would also have some additional performance drawbacks as well as
dependency on the third party when using an external tunnel broker. It also limits
link MTU for an encapsulated protocol that might be a reason for an inability to
maintain minimum MTU of 1 500 on links that have MTU 1 500 by themselves.

Examples of transition mechanisms using encapsulation are: 6in4 (RFC4213
[21]), Teredo (RFC4380 [22]) and 6rd (RFC5969 [23]).

The translation uses a different approach. Instead of using both protocols, an
end node uses just one of them, and protocols are translated during transport. This
means that nowhere in the communication chain would be a place in which both
packet headers would be used. Translation of packets from IPv6 host to IPv4 host
is easy and can be stateless. This is due to the size of IPv6 address space which is
bigger than IPv4. This way, by reserving /96 prefix as well-known by IETF or as
globally unique by an operator, every packet with such destination would be mapped
into IPv4 destination address. However, mapping IPv6 address into IPv4 space is
impossible to do both automatically and statelessly. This is due to the fact that
IPv4 address space is smaller than IPv6. Because of that, a translation could be
either automatic but stateful or manual and stateless.

Advantages of translation over tunneling are a single network stack on an end
node, no restriction on MTU, lower overhead in the transport chain, and a more

25

centralized security policy. Also, in some cases, translation mechanisms can work
without initial provisioning and can be configured almost from a single device. This
makes them very easy to configure and to use. Also, because those mechanisms
do not depend on legacy protocol addressing, it makes them ideal for future proof
network designs.

However, due to recent additions to DNS transport protocols and their implemen-
tations, there are some complications to their propper detection (see later). This is
one of the disadvantages; the second one is mostly for testing. Because of translation,
a legacy protocol is not present in its native form. This might not be a problem for a
unicast production environment. However, this can be a limiting factor for another
type of transfer like multicast or underlying protocols like ARP. This can also make
network debugging harder.

Examples of transition mechanisms using translation are: NAT64 (RFC6146 [24])
and 464XLAT (RFC6877 [25]).

To sum up, encapsulation could be a great tool for initial testing of IPv6, in the
case where a network operator does not provide IPv6 connectivity or for bridging part
of the network which does not support IPv6. However, in an ideal world, these cases
should no longer exist. For production, translation seems to be more suited. It does
not add unnecessary dependencies between protocols; it does not limit link MTU;
it is easier to configure, and when properly detected, it just works. Because this
detection can be broken by the latest development around DNS and web browsers,
this thesis aims to address these issues and fix the detection process of translation
transition mechanisms.

2.2.4 Reasons for Migration Towards IPv6

Since RFC1338 [26] from 1992, it has been postulated that IPv4 address space can
be extinguished. Back then, this has been listed as the last possibility and least
problem. In 1992 there was a still class system for address allocation consisting of
class A (/8, approx. 16M of hosts), class B (/16, 65 536 hosts), and class C (/24,
256 hosts). The main concern raised by RFC1338 [26] was an eminent shortage of B
class addresses as for most networks, B class was too big and C class too small. This
leads to networks using just fragments of class B assignment and accelerating class
B depletion and depletion of whole IPv4 address space.

The address space depletion was articulated in RFC1519[27] in the form of the
rising number of routes. The graphical representation of this data is shown in figure
2.3. In this graf, data points represent the number of routes in the global Internet
published in RFC1519[27], and the solid line is extrapolated exponential trend. The
extrapolated trend is there only as a reference for the type of growth, not to represent
the number of routes between data points.

Solution to this class B depletion has been found shortly after in RFC1519[27]
from September 1993 called Classless Inter-Domain Routing (CIDR). This allowed
to distribute IPv4 addresses with network masks different from classful masks /8,
/16, and /24. It slowed down the address depletion rate and removed the problem of
class B address shortage.

26

Figure 2.3: Number of IPv4 routes before CIDR (source: RFC1519[27])

Nevertheless, even with CIDR, it was obvious that IPv4 address space depletion
is imminent and that there is not enough time to invent a new successor of IPv4.
So the second short-term solution has been found called NAT. This method was
established by RFC1631 [28] in 1994. The trick is in using non–unique addresses
inside a local network which are then translated on an edge router into a unique one.
This allowed a huge saving in IPv4 address space and became a norm for almost
every network connected to the Internet. This topic is described in more detail in
section 2.3.1.

So IPv4 address space depletion was avoided, so why should anyone spend their
time and energy to migrate to IPv6, right? Wrong. Even with both CIDR and NAT
the IPv4 address space has been exhausted in 3rd February 2011 [29]. On RIRs
level are addresses exhausted too (or approaching exhaustion in case of AfriNIC). In
Europe and the Middle East, this means that RIR member is no longer guaranteed
to receive IPv4 allocation and could be instead placed on the waiting list. Even when
provided by allocation, an allocation would not be bigger than /24 (256 addresses).
Such small allocation is sufficient only to tiny networks, so NAT has to be used, and
some services requiring public IPv4 address has to be either limited or could not be
provided at all.

The good news is that even in RFC1631 [28] from 1994, which introduced the
concept of NAT, the NAT was called just short term solution. So even in 1994, it
has been thought that such methods like NAT would shift inevitable depletion to the
future, but there would be the need for a new protocol with a larger address space.
Such protocol now exists. It is called IPv6. Due to substantially bigger address space,

27

it mitigates the main disadvantage of IPv4 – lack of addresses. It is not the only
reason why IPv6 should be used, but the lack of addresses in IPv4 is a deal-breaker
for every business based only on IPv4.

The bad news is the prolonged adoption rate of IPv6. We, as network admin-
istrators, got used to IPv4 addresses to the point that we know some of them by
heart. We have got used to designing networks with a single router, with multiple
nested NATs, without end-to-end connectivity, and some even consider NAT and
broken end-to-end connectivity as necessary security element of our network design,
even when it is well known to be false [30]. When we ask why IPv6 failed in broader
and faster adoption, we seem to try to find guilty parties in protocol design or in the
vendor of device we are using. The truth is that IPv6 is in its oldest specification
here since 1995. Since then, we have changed most of our networking equipment
multiple times. So when buying, we should consider IPv6 a long time ago. We,
network administrators, are the guilty party here. It is our mindset which we are
unable to leave behind. It served us well in the IPv4 world, but it will fail us if we
keep it in IPv6 network design.

So why should we migrate to IPv6? In IPv6, we have plenty of addresses, so we
do not have to consider host addresses. We can look at it only as whole network
segments and address those. Also, because of sufficient address space, we can make
a cleaner design. We can, once again, aggregate routes instead of breaking them
into smaller chunks. We can use new approaches like advertising a single network
prefix by multiple routers, and local networks can have multiple gateways to the
Internet. If we want to find a vulnerable device infected by malware, we do not have
to go through NAT logs; we can find it directly by its global address. Every node is
once again able to connect to any other node as end-to-end connectivity is restored.
There is also no more need for expensive carrier-grade NAT boxes as in IPv6. There
is no need for them. Finally, after successful migration, freed IPv4 resources can be
sold before they become worthless.

It is also worth mentioning that IPv4 is not the first protocol used in such
interconnected networks like the current Internet is. And transition between IPv4
and IPv6 is not the first transition between protocols. Such transition between
Network Control Program and TCP/IP has been described by RFC801 [31] and took
a year. In retrospect switching IPv4 off for one whole day (like NCP was) does not
seems to be such a bad idea after all.

2.3 Network Address Translation

As its name implies, Network Address Translation is a technique that allows translat-
ing one network address into another one or even one level-3 protocol into another.
Originally it has been established by RFC1631[28] as a way how to conserve as much
IPv4 space as possible. This is nowadays called Network Address Translation 4-to-4
(NAT44) as it translate one IPv4 address into different one. This is more closely
described in the next subsection 2.3.1.

NAT can also be split into categories by the number of addresses from which

28

translation is done and the number of addresses to which they are translated to.
This is then written as a ratio like “1:1”.

Speaking of “1:1” NAT, it can be used for mapping one network subnet into
another or one IP address directly to another. This NAT is the least intrusive in
terms of end-to-end connectivity. It does not manipulate port numbers, and it is
stateless so that it can be almost transparent for end-to-end connectivity. However,
this type of NAT does not conserve any resources.

Another type of NAT is “1:N” (or one to many). This type of NAT44 allowed
prolonged survival of IPv4 to this day. It allows multiple IP addresses to be translated
as one single address. By this, it has sacrificed end-to-end connectivity for longer
longevity of IPv4 resources. The sharing of a single outside address by several
inside hosts is possible by translating port numbers of the higher protocol. The
translator maintains a translation table that maps outside address, L4 protocol, and
port number with inside address, protocol, and port number. It can be filled either
statically or dynamically. The first one still allows end-to-end connectivity. Later
one requires certain techniques to circumnavigate through NAT.

2.3.1 IPv4 to IPv4 NAT

As already mentioned, this type of NAT, called today also NAT44, is the oldest
variant of NAT. It has been designed as a temporary measure to conserve as much of
IPv4 address space as possible until the switch–over to a more modern protocol could
be made. Instead of that, nowadays, we can see it as an integral part of network
design on both Customer Premises Equipment (CPE) end as well as in the form of
Carrier-grade Network Address Translation (CGNAT).

In the most usual application, the NAT44 is used in “1:N” masking a whole
customer network under one IPv4 address. This address is then aggregated on
CGNAT with other customers to single public IPv4 address. Such deployment is
depicted in the figure 2.4. In this example customer is using private addresses
from private address space according to RFC1918 [32] - 192.168.0.0/24 would be
mostly used. Then an ISP is using a shared address space 100.64.0.0/10 defined
by RFC6598[33]. Finally, several addresses from the shared range are aggregated to
a single address allocated to ISP by RIR and only this address is globally unique.
When there would be a hundred customers sharing a single public address and each
customer would have ten devices connected in their network, this would mean a
thousand devices sharing a single public address. This way NAT44 has saved 999
public addresses just on a single public address.

However, the address-saving property of NAT44 is not unlimited. As NAT44
differentiates connections by port numbers, there is a lower limit of active connections
per public address than without NAT44. As nodes share a public address, they also
share an available port pool of this address. There is also a considerable limitation
of how many active connections each node can have when there is a significant
aggregation. Then the NAT44 box needs to terminate inactive connections, and for
the same reason, nodes must send so-called keepalive traffic through the connection
to keep it active. This keepalive traffic would not be needed otherwise.

29

Figure 2.4: Typical deployment of NAT44 in residential customer environment

The ability to save precious public IPv4 addresses comes with costs. The highest
one that has been already mentioned is the loss of end-to-end connectivity. Without
any “1:N” NAT (and without a stateful firewall), any host on the Internet can
reach any other host directly. It is similar to the ability to call anybody else on the
telephone. Before NAT, any host could “call” any other just by its phone number
(the IPv4 address). After the NAT, the call would look like calling a switchboard
operator that you would like to speak with someone and gave him/her your phone
number and suffix (IPv4 address and port number). Then that someone would have
to call switchboard operator too to get messages. Then the switchboard operator
can either connect these customers together and route all the traffic through the
switchboard or tell the second customer to call a phone number and suffix to exchange
traffic directly without further assistance from the switchboard operator. It can
be seen that it adds quite an enormous complexity to the process of establishing a
connection. From something as simple as dialing a phone number to something as
horrific as dealing with some third party to exchange information needed to make
connection possible or even sending traffic through such third party. Some services
had to be modified to incorporate so-called NAT traversal techniques on endpoints.
Some even require so-called NAT helpers on every NAT box traffic should cross.

The second, not so obvious cost of NAT is the financial cost. On CPE end, a
NAT is included in every recent router even in low-cost spectrum. A decent router
can even perform NAT on a wire speed of 1 Gbps or with minimal performance drop.
However, on the CGNAT side, the cost of a single CGNAT box rated on 20 Gbps
could easily cross 200 000 EUR. Because when CGNAT is used, it is part of essential
network infrastructure, it demands redundancy. Then the purchase price had to be
at least doubled or tripled depending on setup.

30

The third cost of NAT is connected with redundancy. When CGNAT is used
in active-active topology, it needs to be synchronized. Because when a packet
leaves a network by one CGNAT box, but reply enters the network through the
second one (shown in figure 2.5), the second one needs to know this connection to
perform translation correctly. Otherwise, the second CGNAT box would not know a
destination address for an incoming packet and would have to drop the packet. Such
connection would then be either severed or could not be established at all.

Figure 2.5: Asymmetric traffic path through CGNAT

It is a matter of every network administrator’s personal values and preferences
to judge if NAT44 is worth the cost, if it is a necessary evil or brilliant invention.
Nevertheless, the NAT44 is the reality of the IPv4 Internet, and it is broken because
of it. Also, nowadays, any new network operator that wants to provide native IPv4
connectivity to its customers has no other option than to use it as it would not be
able to get sufficient allocation of IPv4 addresses (at least not outside of Africa).

2.3.2 IPv6 to IPv4 NAT

Even that Network Address Translation 6-to-4 (NAT64) uses the same principle
as other types of NAT, but its purpose is different. Its purpose is not to conserve
resources or to translate one address pool into another. It is transition mechanism
between protocols. It allows communication between two hosts where both are using
a different version of IP protocol.

Its typical configuration uses /96 of the IPv6 address space, which leaves 32 bits
for host identifier. Because an IPv4 address is also 32 bits long, it can be embedded
into a host identifier portion of an IPv6 address. This way, the whole IPv4 Internet
is mapped into the IPv6 range, allowing fully automated, almost zero provisioning
translation between protocols. The only thing configured is an IPv6 prefix, which
needs to be routed to the NAT64 box, and IPv4 address or pool to which IPv6
traffic would be translated into (when using a different address than an address of

31

the NAT64 box). When using software implementation on Linux – the Jool[34] with
Well-known Prefix (WKP) of 64:ff9b::/96, the configuration could be as easy as in
listing 2.3.

modprobe j o o l
j o o l i n s tance add ”<instance name>” −−n e t f i l t e r −−pool6 64 : f f 9b : : / 9 6

Listing 2.3: Configuration of NAT64 on Linux using Jool

If only one-way communication would be sufficient, then the NAT64 could be
made stateless. However, due to the need for bidirectional communication, the
NAT64 needs to be stateful with “1:N ” ratio. This brings similar properties as
NAT44. A connection can be initiated only from the IPv6 side of the NAT64,
so end-to-end connectivity is broken in the same matter as in the IPv4 Internet.
Although NAT64 does not need to be accelerated in hardware, such support does
not need to bring additional costs to network operators. As more and more content
providers are deploying IPv6, the significance of NAT64 would become smaller and
smaller, hand to hand with performance requirements. It is also worth mentioning
that some CGNAT boxes integrate NAT64 functionality [35], so a network operator
may already have all the necessary equipment installed.

Figure 2.6: NAT64/DNS64 network with IPv6 only customers

The typical network topology for ISP is shown in figure 2.6. At the top of this
figure, there is the Internet in both versions. Below it, there are two ISP’s routers
which may or may not be a single device. However, two routers represent two router
daemon instances which are usually needed. Then on the IPv4 part, two services are

32

needed for translation - the NAT64 and the Domain Name System 6-to-4 (DNS64).
The DNS64 service works as a pointer that the requested name is reachable through
the NAT64 translation. It is described in detail in section 2.4.3, and without it, a
node would not even try to use the NAT64 service. After the NAT64 box, the whole
infrastructure is IPv6-only, so a customer at the bottom of the picture does not have
native IPv4 connectivity.

Eliminating IPv4 from ISP’s network infrastructure makes it easier to manage as
it does not require setting IPv4-related tasks (such as routing, firewall, NAT). As
long as a customer is using domain names only, instead of hard-coded IPv4 addresses,
and using a recursive DNS server provided by ISP, a customer would not notice that
IPv4 is not provided natively but only in the mode of so-called IPv4aaS. However, if
any of the prerequisites are not fulfilled, the customer may notice some services not
responding as they should 9. An extension has been developed for these instances
that add tunneled IPv4 connections through an IPv6-only network called 464XLAT.

Figure 2.7: Client portion of 464XLAT (CLAT)

In the case of 464XLAT provider end is the same as in the case of NAT64. The
only difference is that there is a different name for the NAT64 box, which is called
Provider-side Translator in 464XLAT (PLAT). What 464XLAT adds is a service
called Customer-side Translator in 464XLAT (CLAT). It can be located inside the
CPE router or even inside the end-host (for example, an Android phone). The later
location is depicted in figure 2.7. However, CLAT in router would look similar only
with physical interfaces on both ends instead of application and IP packets instead
of sockets.

CLAT adds stateless “1:1 ” translation in the reverse direction to PLAT. This
way, it is capable of creating IPv4 connections over the IPv6-only network. Because
an IPv4 source address of the client can be incorporated inside IPv6 address, it is
translated into it. The translation could be entirely stateless on the CLAT side.

9This may include some parts of web pages not loading and some programs with hard-coded
addresses like Skype not working.

33

This makes CLAT part transparent for the client/application and the PLAT part
behaving in a similar matter as NAT44 from an application perspective. 464XLAT
then resembles the behavior of an IPv4 tunnel inside IPv6 packets from an application
point of view. However, it is actually a double translation mechanism rather than
an encapsulation one.

With 464XLAT, applications do have what appears to be a dual-stack internet
connection with IPv4 address from the IPv4-to-IPv6 address space. 464XLAT has
got a positive effect on broken applications that require an IPv4 connection to work
correctly. This is why an Android supports the CLAT part of the 464XLAT since
the version of 4.3 [36]. On the other hand, this is not fixing the problem of broken
applications. This only allows broken applications to run correctly in an IPv6-only
network. For the same reason, Apple did not include CLAT implementation and
instead required developers to fix their applications. Developers cannot use IPv4
literals with a combination of low-level sockets, which caused the problems with
NAT64 and made an application IPv4-only.

2.3.3 IPv6 to IPv6 NAT

For the sake of completeness, it should be mentioned that even an IPv6 can have
NAT. Furthermore, it is possible to make both stateless “1:1 ” and stateful “1:N ”
translations. It should also be noted that the main reason for deploying NAT
is to conserve address space. In IPv4, this concern is valid, but in IPv6, it is
not. In fact, the Best Current Practice BCP204/RFC7934 [37] discourages network
administrators from using Network Address Translation 6-to-6 (NAT66). There is
also an informational RFC5902, [38] which discusses why to use NAT66 and why
not.

The most legitimate reason, according to [38], why to use the NAT66 is network
multihoming. When a network uses more than one network provider, it can either
use provider-independent addresses and announce those to the Internet (typically
bigger networks). Alternatively, it can use provider-aggregated addresses from one
of the providers. However, it would mean announcing small blocks of addresses
instead of one aggregated block when doing so. This would mean that the global
IPv6 routing table would get larger by populating it with smaller blocks. A larger
routing table can lead to the same problems that could be seen in IPv4. To prevent
that, the Internet Architecture Board states that there is no solution to this problem
other than NAT66, and for this specific situation, deploying the NAT66 in the “1:1 ”
configuration is recommended.

There are other reasons, too, like provider-independent addressing. However, in
IPv6 there is another, more fitting solution called Unique Local Addresses (ULAs).
Customer can use those unique addresses inside of its network, and these addresses
would not change regardless of renumbering events produced by the network provider
or by a network provider change. Even when a globally unique address would change,
ULA would not. This would make local network resources stable in addressing
without the need for NAT66.

Also, all other reasons stated in RFC5902 [38] are solvable without using NAT66

34

and are often connected with the common misconception of NAT being a security
solution.

2.4 Domain Name System

Initially defined by RFC882 [39] and RFC883 [40], the DNS is one of the oldest
protocols widely used today. It is also one of the most essential for what we know
today as the Internet. It has been developed to replace of the so-called hosts file
(RFC952 [41]), which has been part of every common operating system for computers
and still is until today.

The predecessor of the DNS, the hosts file, used simple syntax. Every line
represented a single host. It started with an IP address followed by host-name and
optionally its aliases. Before the DNS had been standardized, this was the only way
to resolve hosts names to IP addresses and vice versa. The file has been distributed
via File Transfer Protocol (FTP) from SRI-NIC.ARPA host. Every host on the
network had to download this file and keep it updated to reach other hosts by their
names.

In the context of the year 1974, when the first version of the hosts file had been
standardized, such a solution was sufficient. However, when the network started
its expansion, it was obvious that the requirement for every host on the network
to know by name every other host is no longer feasible and that it does not scale
much. In 1995 the total number of hosts was over 4 500. Today it is unknown how
many hosts are connected to the Internet. However, for the second quarter of 2021,
Verisign estimates over 367.3 million second-level domain registrations. Even having
all those domains in a single file would not be practical, not mentioning all the hosts
which could be there.

The huge problem also connected with the hosts file would be an updating
interval. The hosts file has been updated a few times a year. Compared with the
usual one-hour Time to Live (TTL) in DNS zones, testing of domains record would
be hardly possible, and it would be even harder to fix as there is no guarantee that
all the hosts are using the latest version of the file.

Due to these limitations, a replacement was needed. This was the DNS. The DNS
is a hierarchical yet decentralized database of databases. It is divided into the zones
designated by their domain names. The highest level domain is the root domain.
Every DNS recursive resolver is provided with a list of root zone servers. These
servers are only capable of serving the root domain, and this way, to provide the
resolver with addresses of other, one step lower, so-called top-level domain servers.
From them, a resolver can get information about the second-level domains and
corresponding servers, and so on.

The principle of delegation is shown in figure 2.8. In this picture, the end host
is trying to access the university web server. To open an actual network socket,
the host needs to know the IP address of the server. The process requiring this
connection consults the system stub resolver. If the stub resolver does not have the
record cached or saved in the hosts file, it sends a query to the DNS server known

35

Figure 2.8: Principle of zone delegation in DNS

to it. In this case, it is a so-called forwarding resolver inside of users’ network CPE
(usual setup for small home networks). The forwarding resolver searches its cache
for the answer, and if it cannot be found, it sends the query to its upstream DNS
server. In this example, it is a recursive resolver. Recursive resolver also searches its
cache, and if the answer is not already known, it starts the recursive process. In this
process, it can either sends the whole query to all subsequent authoritative servers,
or it uses so-called Query Name Minimization (RFC7816 [42]) when it asks only for
the minimal name for name resolution to complete each step.

When the recursive resolver asks the authoritative root resolver, it will not get
the answer for its query. The authoritative root resolver does not know the address
of the university webserver, nor could it be bothered to resolve it. However, it knows
the name of the authoritative resolver for the “.cz.” domain and its IP address. So
it provides this NS record in the answer section and AAAA and A records for this
server in the additional section.

When the recursive resolver is supplied with an NS record for the “.cz.” domain,
it sends this server a.ns.nic.cz the same query. The authoritative resolver for the
“.cz.” domain still does not know the answer. However, it knows the domain “.tul.cz.”
and the corresponding authoritative server. So it sends NS record and corresponding
AAAA and A record for “bubo.tul.cz.”.

The exact process would be repeated until the recursive resolver finds some
authoritative server that knows the answer (or at least knows that there is no
answer). Luckily, “bubo.tul.cz.” knows the answer, so it sends AAAA record to the
recursive resolver. Then the recursive resolver caches the reply for other clients and
sends the reply to the client that asks it. In this example, the client is the forwarding
resolver. Forwarding resolver caches the reply and then gives it to stub resolver, and
then it is given to process which wants to make the connection to the webserver.

36

What is important to note is that with the delegation, not only is the responsibility
transferred but the records themselves are also transferred. The upstream/parent
zone has no control or knowledge of the downstream zone records. By using this
principle, the upstream zones could be reasonably small, and by caching responses,
the load on those servers is also decreased. Because, when one client is asking for
a server from the domain “tul.cz.”, there is a chance that another user would ask
for the same domain or that this user would like to connect to a different hostname
inside the same domain. The recursive server then does not have to go through the
whole process of resolution of such a name because it either has the response already
cached or at least knows the nameserver responsible for the domain. So it does not
need to ask the root server nor server responsible for “.cz.” domain.

The last thing that is important to note regarding DNS resolution is that queries
are impossible to reverse. It is possible to ask what is an IP address for a given name.
However, it is not possible to ask for all domain names associated with the given
IP address. There are, of course, reverse records. However, they do not give the
complete answer to this question. Also, a network operator can differ from a forward
zone operator, so the network operator does not know all the domains delegated to
its IP address. This limitation is connected with the decentralized nature of DNS.

2.4.1 DNS Record Types

Speaking of record types, there are 65 536 record types possible as there are rep-
resented by 16b number. Most of them are reserved for future use, and some are
reserved for private use. The complete list of standardized record types is available
from IANA [43]. This list also includes related standards, so it could be used for
getting the whole picture. In this section, only the relevant records for this thesis
will be presented.

Table 2.3: Relevant DNS record types
Type Question Answer
A hostname IPv4 address
AAAA hostname IPv6 address
CNAME hostname hostname
NAPTR pointer URI with regex
NS domain DNS server name
PTR IP address hostname
SOA domain domain information
SRV service service location
TXT hostname arbitrary text

Table 2.3 shows such relevant records. In the first column, there is the name of
the record. In the second column, there is the type of information known to a client
presented in DNS query. In the last column, there is the information requested from
the server provided to a client.

37

The first two record types are used to get an IP address for the given hostname.
These types of records have to be resolved before any application can make a
connection to any domain name, as the destination IP has to be filled into an IP
packet. Today a system resolver starts with AAAA query first to give IPv6 a little
headstart, followed by an A record query to get an IPv4 address too, and this is
called the Happy Eyeballs principle. This gives a slight preference to IPv6 while it
allows a faster fallback when IPv6 connectivity is broken.

The next record type, the CNAME, is an alias. It tells a client that one hostname
is actually another hostname. An authoritative server may even supply the client in
one query with both CNAME and respective AAAA/A records if they are known to
the server. This way, it saves both of them one additional query.

The NAPTR record is quite complex. By using regular expressions, it allows
transforming the requested pointer (any type in DNS tree) into any Uniform Resource
Identifier. This is not limited to just hostnames. It can include, for example, e-mail
addresses, telephone numbers, webpages, or SRV records.

The NS record represents subdomain delegation. It transfers the responsibility
to another server, and this way, it indicates that the requested name is actually
a subdomain. This record must be accompanied by at least one AAAA/A record
in the parent zone to provide a client with a means of contacting the nameserver
responsible for a child zone. These records must be provided in the additional section
of the query reply.

The next record type is the PTR. A PTR represents a question “Who is this
address?”. It is a so-called reverse query that typically gives a client just one
hostname associated with the IP address. It is usually impossible for the network
operator to know all the hostnames associated and it is also not recommended to
provide more than one PTR record for one IP address, as the one chosen by a client
is unpredictable (PTR record does not include priority field).

The SOA represents the start of the zone. It includes a version of the zone file,
an e-mail address of an administrator, and zone timers. This also includes a TTL
timer, which specifies how long the replies from the server are valid.

The SRV record allows locating a host which provides a specific service. In
the query, a client asks for a known service identifier inside a domain. It is then
provided with a hostname that is associated with a given service. The SRV record
also provides a priority field as well as weight field that allows multiple SRV records
for one service as it makes choosing predictable. When asked for an SRV record, an
authoritative resolver may also provide associated AAAA/A records to decrease the
number of queries needed for complete resolution.

The last record type relevant for this thesis is the TXT record. Originally it was
established for transmitting general text over the DNS. However, lately, it has been
used to transport structured data, too, like in the case of the Sender Policy Framework.
The advantage of this record is that it does not require any standardization effort
to transport new types of data. However, all the logic associated with such data
processing must be done at receiving application level. This includes the priority
of the records. Also, being unstructured may produce collisions as well as parsing
errors caused by other TXT records in the same zone.

38

2.4.2 DNS Protocol

The DNS data are transported by the textual, unencrypted, and unauthenticated
protocol specified in RFC883 [40]. The transport layer uses UDP for smaller and
faster data transfers (client queries and responses) and TCP for larger data like zone
transfers or data outside UDP limitations. The initial design of the DNS transport
protocol was limited to 512 bytes of data, after which data had to be truncated. This
limitation was introduced due to the lower reliability of packet switching networks in
that era and no minimal MTU required by IPv4.

The 512-byte limitation has been waived with the first set of DNS extensions
called EDNS0. It added not just longer data support but also several new flags.
The EDNS0 was designed fully backward compatible with both legacy clients and
servers. However, since the so-called DNS flag day 2020 (4th November 2020)[44],
DNS software vendors changed the default buffer size from 512 bytes to 1232 bytes.
This change is incompatible with the original DNS standard. The reason for this
change is to decrease unnecessary fragmentation. Fragmentation increases connection
overhead and introduces the risk of undetected partial manipulation with DNS data
in the reply.

Even today, the main transport method for DNS remains the UDP protocol. The
advantage of UDP over TCP is a smaller overhead and subsequently lower latency.
The drawbacks are security-related, like spoofing of a source address and query
retransmissions due to packet loss. Source address spoofing together with increased
buffer size could lead to attacks from Denial of Service (DoS) or Man in the Middle
(MitM) groups. The first might be done by using the amplification factor of the DNS
(small query results in large reply), by overloading the DNS server itself, or by cache
poisoning - forged reply. The latter would also be done by cache poisoning.

One other drawback of the traditional DNS transport protocol is privacy. As all
the data transported in DNS are unencrypted, they are easy to sniff, process, and
store for further use. Some home CPE may even have modules capable of DNS query
analysis built-in as parental control measures or generally for traffic analysis. This
allows getting every accessed domain name per every host connected to the given
network.

Even though it might seem very privacy-intrusive, it is vital to notice that such
designation between different hosts is possible between the host and its first-hop
resolver. In most cases, this first-hop resolver would be forwarding resolver inside of
clients’ router/CPE. After that, the DNS queries would be aggregated, and some
would be cached, so by every hop, it would be less likely to associate a given host in
the network with a given query. Farther the packet gets captured less information it
would be able to give about its originator.

However, if hosts are using distant DNS resolvers furthermore without NAT, then
their queries would be directly connectable with them for a longer distance, and
both the operator of such first-hop resolver and possible attacker listening on the
line would have domain-wise all the internet history of the host. There are three
takeaways from this.

The first one is to reduce the distance between the host and the first-hop resolver,

39

also serving different hosts. This brings Anonymity of the crowd, making it harder
to distinguish between queries of similar hosts.

The second one is that operator of DNS should be a trustworthy subject, ideally
someone who already has access to the network history of the host, so it would not
get an advantage by getting access to and abusing such data.

The third takeaway is to secure transport protocol and the integrity of data
transmitted inside of it. These are two different problems to cover. The first could
be solved by encrypting the transport protocol. This ensures that it would be
harder to intercept transported data in their clear-text format, and it may provide
authentication of the opposite end. When done correctly, it can ensure that a host
is communicating with the desired counterpart and that no one else knows what
they are talking about. There are currently two competing standards that achieve
this goal. One is DNS over TLS (DoT), and the second one is DNS over HTTPS
(DoH). Both are using encapsulation of DNS but differ in outside protocol. The DoT
uses the exact detection mechanisms that traditional DNS transport protocol, so it
does not cause problems to NAT64/DNS64 like some implementations of DoH do.
This makes the DoT irrelevant to this thesis, even if it is relevant for real use on
the everyday internet. The DoH, on the other hand, can cause problems, so it is
described in section 2.6.

Even when communicating with a trusted resolver privately, how could both host
and resolver know that records served are genuine and not altered? This is solved by
signatures of DNS records called DNSSEC described in section 2.5.

2.4.3 DNS64

The DNS64 is one of two parts constructing the NAT64/DNS64 transition mechanism.
Its job is to perform the record synthesis to provide AAAA records for services with
only the A records. These synthesized AAAA records point to the NAT64 prefix,
effectively routing traffic through the NAT64 box. This way, the node with IPv6-only
connectivity would be able to access service with IPv4-only connectivity.

Figure 2.9 shows steps that DNS64 capable resolver takes in order to perform this
service. In the first step, the node asks for an AAAA for a domain name that only
runs on IPv4. In this example, the requested domain name is ipv4.doesnotwork.eu.
which is part of IPv6 testing web[45] that runs only over the legacy protocol. Node
does not know that the requested domain name is IPv4-only.

The DNS64 capable resolver starts its process by trying to resolve the AAAA
record first. The DNS64 resolver could be a simple forwarding resolver – then it
would just forward the query to its upstream resolver, or it could be a recursive
resolver that will try to resolve a node’s query by itself. Regardless of the resolution
process taken, the DNS64 capable resolver receives a NODATA reply. By this reply,
the resolver knows that the given domain name exists, but it does not have an AAAA
record associated with it. Up until this point, the resolver is doing the same things
that it would do without the DNS64 function.

When a node asks for an AAAA record, and there is some record associated
with the requested name, there is a reasonable assumption that it would be an

40

Figure 2.9: DNS64 principle of operation

A record. So the DNS64 service generates a subsequent query for the A record.
The resolver then receives a reply (in this example, 85.239.227.179). This reply
is then embedded into the NAT64 prefix configured at resolver. In this exam-
ple, the NAT64 prefix is 2001:db8:64:ff9b::/96, so the resulting address would be
2001:db8:64:ff9b::85.239.227.179, equal to 2001:db8:64:ff9b::55ef:e3b3. This synthe-
sized record is then transmitted to the node as a reply to its query.

Then a node is capable of opening a network socket to the address it received from
the resolver. A node would still not know that it is communicating with a service
running only on IPv4 because it communicates with an IPv6 address. However, this
IPv6 address does not belong to the requested service operator but usually to the
node’s ISP.

Suppose a node would not be provided with the DNS64 service, either on a
different device or locally, it would not be able to use NAT64 service, so it would
not be able to access IPv4-only services. Then the DNS64 had to be considered an
integral part of the NAT64/DNS64 transition mechanism whenever domain names
are used.

2.5 Security Extension to DNS

Defined by [46] and [47], the DNSSEC adds asymmetrical cryptography to DNS.
The principle of DNSSEC is simple. As all the IP addresses of DNS root servers are
known to every resolver and are present in their source code, same way the public
key used for checking signatures is also known and encoded to the resolver source
code, making the so-called trust anchor.

With that trust anchor key, also known as root Key Signing Key (KSK), the
root zone operator signs the second key called Zone Signing Key (ZSK). The ZSK
is typically a smaller key designed for record signing and faster rollover. This was

41

essential at the beginning of DNSSEC when the RSA algorithm was used exclusively.
With the RSA, longer is a key; longer is a signature. However, in DNS, the objective
is to have short replies. This means short signatures are desired, especially with the
old 512-byte limitation. But in order to get DNSSEC signatures shorter, when an
RSA key has to be used, a shorter RSA key means a weaker key. This resulted in the
KSK/ZSK concept where the KSK is longer, more stable key (long rollover periods)
and smaller and weaker ZSK that is periodically rolled over so if it got compromised,
the damage would be minimized. Ideally, the key would be rolled over faster than
the ZSK would be cracked.

Even though the root zone uses separate KSK and ZSK, it is also possible to
use a combined key. It is not reasonable, though, with the RSA algorithm due to
the mentioned problems. However, the RSA is not the only algorithm supported
in DNSSEC. For example, the Czech domain registry currently uses the Elliptic
Curve Digital Signature Algorithm (ECDSA) ECDSA-P256-SHA256 (algorithm 13).
When compared with signatures made in the root zone, which uses RSA-SHA256
(algorithm 8) with 2048 bit long ZSK, the signatures in the cz. domain are several
times smaller than in the root zone, while cryptographically, they compare with 3072
bit long RSA key. This makes signatures in cz. domain stronger than signatures
made by root KSK as it is using a 2048 bit long RSA key with signature algorithm
8. Using a strong algorithm while maintaining short signatures gives a possibility of
using a combined key with extended rollover periods.

In order to provide DNS with backward-compatible integration of DNSSEC,
several new record types had to be added. Table 2.4 lists all of those records added
by RFC4034 [47] and NSEC3 related records added later in alphabetical order.

Table 2.4: Records added by the DNSSEC
Type Stores
DNSKEY public key
DS public key hash
NSEC negative answer
NSEC3 negative answer
NSEC3PARAM NSEC3 parameters
RRSIG record signature

The first record type is the DNSKEY. This record type stores the public key in
base64 encoding with flags indicating the key’s role, the algorithm it uses, and its
ID. This record type would theoretically allow storage of any public key. However,
the standard requires the usage of this record to be limited only to the keys directly
related to DNS.

The second record type is the DS. DS stands for Designated Signer, and it works
similarly to the NS record for zone delegation. However, the DS is not delegating the
zone itself. It is delegating trust. With the DS record, the parent zone states: “This
subzone is signed with a public key having this precise hash value.” Alternatively,
in case that subdomain is not secured with DNSSEC, the parent zone would not

42

include DS record; instead, it would have one record of the NSEC types. The DS
record contains the ID of DNSKEY used in the child zone, its algorithm, hash/digest
algorithm, and the hash itself. As the DS record is signed by parent ZSK, it provides
the way how to delegate trust, as only keys properly published and signed can be
used for signatures in the child zone.

Another group of records is the NSEC record group. These records provide
so-called proof of non-existence because it is evenly essential to provide information
securely, that requested record does not exist as securing the existing record. Without
securing a non-existent record, it would still be possible to poison resolvers’ cache by
injecting it with misinformation that some address does not exist even that reality
would be different. Such a poisoned cache would mean a successful DoS attack.
When it would be possible to state that DS record does not exist, it would effectively
disable DNSSEC for a given domain. This makes the NSEC group of records vital
for the DNSSEC.

The difference between NSEC and NSEC3 is that the original version uses non-
hashed proof of non-existence while the NSEC3 version uses cryptographic hashes.
Without them, the DNSSEC could cause zone leakage through so-called zone walking
when using offline signing. In such an instance, an attacker can ask for random
names inside of the domain. If such a record does not exist, the domain using NSEC
with offline signing will provide an attacker with information that there is no record
between two existing domain names. This way, an attacker would be provided with
two existing names, can increment one of them, and ask again. Then it would get
another existing name, and so on, it can “walk” the whole zone. NSEC3, on the
other hand, uses hashes and splits spaces in the zone into more groups, making
walking the zone computationally more difficult.

The NSEC3PARAM is present in the zone for authoritative servers to calculate
NSEC3 records correctly. Parameters it contains are hash algorithm, the number of
iterations used, and cryptographic salt. This record is not used by other resolvers
nor clients.

The last added record type is the RRSIG. The RRSIG is the record containing
cryptographic signatures themselves. It is connected with other record types, so it
cannot stand by itself. It must contain the same name, type, and class as the record
it covers. It also contains other fields: algorithm, labels, original TTL, signature
expiration and interception, key ID, signer’s name, and the signature itself. Every
record in DNSSEC secured zone must be covered by the corresponding RRSIG record.
Also, every key used for making RRSIG records must have an uninterrupted trust
path from it all the way to the known root zone KSK. This makes the zone secured
and protects it from tampering.

How these records work is clearly visible in the real-world example shown in figure
2.10. This figure shows how the Czech Top Level Domain (TLD) is signed. In this
picture, the bold arrow between boxes represents domain delegations, and when an
arrow is a cyan, it represents secure delegation. The narrower cyan arrows connecting
objects inside the boxes represent correct signatures. At the top of the picture, there
is the root zone KSK DNSKEY known to resolvers and clients - its double border
indicates trust anchor. With this key, there are two displayed signatures made. The

43

Figure 2.10: DNSSEC example with cz. domain

root zone KSK is signed by itself, and it also signs root zone ZSK with ID 26838.
The root zone ZSK then signs records in the root zone; one of them is also the DS
record for the cz. zone.

The DS record in the root zone then points to the DNSKEY with ID 20237, the
KSK of the cz. domain. Together these record forms so-called Secure Entry Point
to the cz. domain. This key can sign records in the zone, but instead, it signs the
second DNSKEY in the zone with ID 52720. This key is the ZSK for the cz. domain,
and by this key, the records in the cz. domain are signed.

The situation with delegation can be repeated several times for subdomains. For
example, university domain tul.cz. would have signed DS record in the Czech TLD

44

pointing to corresponding KSK DNSKEY record in its domain. However, for the
sake of simplicity, only the Czech TLD is shown in the picture.

In order for DNSSEC to work, it also needs extended signaling support and a
longer payload. For such signaling and payload, it uses the EDNS0 extension[46]. As
the EDNS0 allows a payload longer than 512 bytes and one of the flags is present in
the EDNS0 pseudo-header, the EDNS0 forms essential dependency for the DNSSEC.
These new flags are shown in table 2.5.

Table 2.5: Signaling flags added by the DNSSEC
Flag Direction Meaning
AD reply Authentic Data: Resolver checked data and are valid
CD both Checking Disabled: Client accepts unauthenticated data
DO query DNSSEC OK: Client wants to receive DNSSEC records

The AD bit flag is located inside the Flags field of the standard DNS reply in the
last but one bit. When it is set to one, it indicates that validating recursive resolver
checked the corresponding signatures for queried record and that signatures are valid
and trusted.

The CD flag is located in the last bit of the Flags field in the DNS reply (before
the reply code) and in the corresponding place in a query. With this bit, a client
indicates that it wants to receive the data that failed the DNSSEC validation. This
effectively disables the DNSSEC validation on the recursive resolver for that specific
query. However, when the validation is not performed, the recursive resolver cannot
cache the reply from authoritative servers as it could be tampered with. When a
recursive resolver sends the reply to its client, it will copy the CD bit from the query.
This way client is informed that the data integrity might be compromised.

Without the CD flag set, even the non-validating client is protected against
tampered records of the DNSSEC secured domain. As a non-validating client, it
cannot check if the reply has not been altered between its recursive resolver and itself.
However, if the DNS data were altered between the validating recursive resolver and
authoritative resolvers, it would be detected, and it would not be sent to the client.
Instead, the resolver would send an empty reply with the SERVFAIL return code.
This may result in a non-accessible service, but the client would not be compromised
with a false reply.

The last flag bit, the DO, uses the EDNS0 extension. When set, it indicates
to resolvers that the client wants to receive all the associated DNSSEC data to
the record it asks for in the query. This may indicate that the client can validate
DNSSEC signatures by itself, so setting this bit makes processing such validation
faster as it receives all the necessary data in one step. Without this flag set, the
recursive resolver serving the client would strip any DNSSEC related data but those
explicitly requested by the client.

The critical takeaway from this section is that with the DNSSEC, tampering
with the DNS data would be detected by the validating resolvers and by validating
clients. It does not change the basic design of the DNS protocol, and it does not add

45

any encryption nor confidentiality. Some attacks possible on classical DNS are still
possible, like distributed DoS[48], which might be even more substantial due to the
higher amplification factor. Others, more severe like cache poisoning, are successfully
mitigated. However, it is vital that for the domain to be protected, it must have
both signatures present in the zone and an appropriate DS record in its parent zone.
Without it, the domain is unprotected, susceptible to hijacking and DoS by cache
poisoning. There is no automatic benefit for such domains because of the signed root
zone.

2.5.1 DNSSEC Deployment

While [48] states that DNSSEC is hard to implement and use, this might be the
case in 2007, but it is not now. The DNSSEC is currently supported in all major
authoritative and recursive resolvers, including Bind, Unbound, PowerDNS, Knot,
and even minimalistic Dnsmasq. Some authoritative resolvers like Knot DNS are
coming with tools for fully automated key management. These include ZSK rollover,
or it might even provide automated KSK rollover when the parent zone supports
it via CDNSKEY/CDS records. With these tools, the administrative requirements
are almost identical to resolvers without DNSSEC turned on. On the contrary, with
the DNSSEC, an administrator does not need to empty the cache because of cache
poisoning.

Support in clients’ stub resolvers is not so bright. In the Linux world, the
validating stub resolver is present in the systemd-resolved package. This resolver is
both DNSSEC aware and validating resolver (although disabled by default). It is also
capable of using DoT. However, this is more the exception than the rule. In Android,
the DNSSEC support does not seem to be even documented, but at least it supports
DoT [49]. The stub resolver in MS Windows seems to be “security-aware” since
version 7 or Server 2008 R2 [50], but it is not validating even in the server edition.
As there is only minimal support on the clients’ stub resolvers, only a fraction of
clients validates DNSSEC signatures themselves.

Regardless of validation support in the client, a client is partially protected by
DNSSEC when using a DNSSEC capable resolver. However, this protection is limited
only to the path between the validating resolver and the rest of the Internet. The
path is not protected from its downstream interface, and other means of securing
the connection must be used here.

Even that software provides tools to deploy the DNSSEC; the actual deployment
is a different matter. It is impossible to know the precise number of records signed
with the DNSSEC and those not. This is since most of the zones are not publicly
available. However, such data are publicly known for the root domain and are
published for some TLDs. Figures 2.11 and 2.12 show the data for the root domain
accessible from the ICANN [51].

Figure 2.11 shows the number of TLDs under the root domain. This figure shows
monthly data first day of the month. Depicted with the yellow line, there is the
total number of TLDs. The blue line represents domains that are signed inside but
missing secure delegation by the DS record in the root domain. These domains are

46

Figure 2.11: Number of DNSSEC signed TLDs (source: ICANN[51])

in some transition state, hopefully, to be fully signed and delegated. Lastly, with the
red line, there is a number of fully secured domains.

From those numbers, it is important to note that there are still over a hundred
TLDs that are not signed by DNSSEC and around ten domains signed but without
DS records in the root zone. For users of domains registered under those TLDs, the
DNSSEC is sadly not available. Before registering a new domain in less developed
countries, it might be helpful to look into ICANN statistics [51] for the list of TLDs
not supporting DNSSEC.

Figure 2.12 uses the same data, but it represents them in percentage rather than
absolute numbers. The colors used are the same as in the previous figure.

In those data, there are a few interesting trends visible. There is an evident rise
around the year 2014. Around this year, the ICANN started accepting the new
generic TLDs. One of the conditions for registering a new TLD was a requirement
to deploy DNSSEC. For this reason, both the absolute and relative number of signed
domains strongly correlates with the increase in the total number of TLDs.

Another visible trend is a gradual increase of signed TLDs. The latest data
shows that almost 92 % of TLDs are fully secured by the DNSSEC. Those not signed
usually belong to less developed countries, smaller territories, or the heavily regulated
telecommunication sector in the Middle East.

The root zone itself does not give a picture of how the DNSSEC is received by
domain operators. It only shows for which TLD the DNSSEC is available and for
which it is not. To obtain such information, the TLD operators’ statistics had to be
used. To the TLD operator, this information is known because the domain either
has only NS record - it is insecurely delegated, or it has both NS and DS records - it
is secured by DNSSEC. Those records are placed in the zone file of the TLD, and,

47

Figure 2.12: Percentage of DNSSEC signed TLDs (source: ICANN[51])

therefore, it is known to its operator.
For example, the Czech TLD operator CZ.NIC is publishing DNSSEC deployment

statistics on its web [52]. The statistics show that around 60 % of domains in the cz.
TLD are currenly secured by the DNSSEC and that 50 % boundary was crossed in
2016.

However, not all TLDs are near the numbers of Czech TLD. For example Verisign’s
(operator of com. and net. domains) statistics about DNSSEC deployment in their
TLDs [53] shows that both mentioned TLDs have DNSSEC deployed only between
2.5 % and 3 %. Despite the low numbers, both domains show a steady increase in
DNSSEC deployment.

There could be several reasons for such a massive difference between CZ.NIC-
managed TLD and TLDs operated by Verisign. One of the reasons could be intense
positive pressure from CZ.NIC on domain registrars to support DNSSEC. The
CZ.NIC maintains a list of registrars where it clearly marks if the registrar supports
DNSSEC and IPv6. The same goes for the certification process of the registrar by the
CZ.NIC with published protocol available to their future customers. By this process,
CZ.NIC uses the pressure of a competitive market to aid DNSSEC deployment.

The second reason might be connected with CDS/CDNSKEY support. In
the Czech TLD, the registry supports automated keyset management via CD-
S/CDNSKEY records. When the domain operator publishes these records, the
registry spots them and keeps track of them. If these records are stable for some
time and there is currently no DS record for such domain, the registry uses the CDS
record data to synthesize the DS record and publishes that. The DS record could
also be computed from the CDNSKEY record. If the DS record is already present in

48

the registry, then CDS/CDNSKEY records could be used to update or delete the DS
record. However, this would be done only if the new CDS/CDNSKEY record would
be signed by the currently valid DNSSEC key. By using these records, the domain
operator can directly control DS records published in the parent domain without the
registrar’s help. This is especially helpful when the registrar requires payment for
keyset management. The CDS/CDNSKEY option is more straightforward and free
of charge, so it may positively impact the DNSSEC deployment.

With the increased security of data stored in the DNS domains, new opportunities
are connected to it. Suddenly, data in the zone might be authenticated with their
own, free of charge, trust chain. There is suddenly no need for a trusted certificate
authority that would require a recurrent payment for its services. It is now possible
to publish data in DNS, sign them by yourself, and the signature would be trusted
automatically. So there are a few ideas on how to use the DNSSEC as an advantage.

One of these advantages is the DANE standard RFC7671[54]. The DANE allows
saving public certificates in DNS. Utilizing the trust chain of the DNSSEC, the
DANE does not need external certification authority to work. The DANE has
been well received in SMTP protocol, where there is no need for a publicly trusted
certificate when using DANE. However, it is not supported in web browsers. The
usual explanation for not supporting DANE is the lack of so-called Certificate
Transparency and usage of weak 1024 bit long RSA keys in the DNSSEC. The latter
has some merit, but the Certificate Transparency is just a hotfix for a broken system
of trusted certification authorities.

Another example of new possibilities brought by the DNSSEC is the SSHFP
record. The SSHFP record allows saving host fingerprints for SSH service. With this
record saved in the DNSSEC protected zone, the SSH client can identify unknown
servers from the DNS rather than asking a user if the server’s fingerprint is valid
(user usually confirms fingerprint without checking it, this is a security breach).

The DNSSEC also allowed the development of other record types like CAA, which
limits certification authorities that can issue certificates for a given domain, or the
IPSECKEY for storing keys for IPsec. This list is not complete, and as the DNSSEC
deployment numbers will rise, there might be some more record types and usage
scenarios coming.

2.6 DNS over HTTPS

Defined by RFC8484[2], the DoH tries to solve the different issues of the DNS than
the DNSSEC. The DNSSEC provides the authenticity of the received data, while the
DoH (and DoT) tries to provide a secure channel between a client and a server. While
plain-text DNS protocol uses unencrypted and unauthenticated channel through port
53, both DoT and DoH use an encrypted channel with server-side authentication.
Both encrypted means of DNS transport uses different encapsulation; the DoT uses
a simple TLS/DTLS layer on port 853 while the DoH uses encapsulation in HTTPS
protocol. Apart from the difference in the outer protocol, the DoH also requires
changes to DNS discovery processes, and the whole concept of using URI instead of

49

IP address also brings new challenges.
In the DoH, a client starts with making an HTTPS connection to a known resolver

URI. It uses either a GET or POST method. With a GET method, it passes a
query in URI encoded with base64url inside of the ?dns variable. If a client uses the
POST method, then after the headers, a standard DNS message is included in HEX
encoding. The response provided by a server is also a standard DNS message in HEX
encoding. The return code 2xx would not indicate that the requested record exists;
it would only indicate that the response includes a reply from the DNS. The return
code of the reply corresponds more to the availability of the DoH service rather than
to DNS data transported through it.

The DoH standard also mentions some challenges to DoH implementations.
Explicitly it mentions interactions of different caches, as HTTP does have its own
caches with different logic to the DNS. Due to the caching in HTTP, it is possible
that some DNS records could be served to a client even where they have already
expired. So the standard has to find a solution how to alter HTTP caching and
depends on caches to honor appropriate headers. It also mentions HTTP-related
issues like a minimum version of the protocol, server Push usage, content types.
What it does not mention at all is how a client even discovers where the DoH is
located.

In conventional DNS, a node receives DNS configuration in the form of two IP
addresses (primary and secondary) via autoconfiguration mechanisms. In the IPv6,
either from SLAAC and/or DHCPv6. In the IPv4 world, it receives it over the
DHCPv4. At the time of writing this thesis, there was no autoconfiguration method
for distributing DoH URI. Distributing just an IP address might not be enough
because the path in URI where the DoH API is located is not standardized either.
In the RFC8484[2], there is a listed path of /dns-query, but the DoH operator may
use a different path. The DoH client can try to use this path with available DNS
servers’ IP addresses. However, this may fail just because of different locations. Also,
redirections by the HTTPS server are explicitly forbidden by the standard.

There is also another problem when using IP addresses instead of domain names.
This is connected with a system of Public Key Infrastructure. The Certificate
Authorities issues certificates only with domain names in the CN field. So, when the
client tries to connect to the DoH server using an IP address, it would not know if
the certificate presented by the server is valid. Similarly, when it is using domain
name only, the client has to somehow get an IP address of the DoH server; otherwise,
it would get in a deadlock situation. To prevent that, a DoH client would either
need to use conventional DNS in its configuration process, or it would have to use
hardcoded resolvers.

The lack of a DoH detection method could even be intentional. As one of
RFC8484[2] the authors declared to work for Mozilla, and Mozilla as one of the
first implementing the DoH in their browser, it is safe to say that implementation
in Firefox could be viewed as a reference how this standard was meant to work.
However, implementation in Firefox is one of the most controversial.

Figure 2.13 shows the usual path for conventional DNS (solid line) and the DoH
path implemented in Firefox (dashed line). In the conventional case, the application

50

Figure 2.13: Comparison of conventional DNS and DoH query paths

asks the operating system stub resolver for name resolution. If the stub resolver
does not have the record in its cache, it asks forwarding resolver (usually CPE). It
can ask recursive resolver provided by ISP that makes the recursive resolution for a
client application.

In the case of DoH, at least in Firefox, the application asks directly some DoH
resolver it knows. The application is completely ignoring stub resolver in the operating
system and its settings and cache. It also does not use cache in forwarding resolver
and recursive resolver. The DoH resolver then sends the query to its recursive resolver
to provide a client application with an answer.

However, when the application directly connects to some third-party resolver, it
exposes the whole browsing history inside the application to the third-party resolver.
So there is a paradoxical situation with the DoH. On the one hand, the DoH hides
DNS queries from a network service provider and nodes connected to the same subnet.
From those subjects capable of getting the information in almost the same accuracy
from the network flow data. However, it gives even more specific, per application
browsing history to the third-party, that would not otherwise have access to it – all
that in the name of privacy.

It is not certain that such browsing history would be used in malicious intent,
the same way that it is not certain that it would not. This is not even a design flaw
of the DoH, which is not less secure by design than DoT. The RFC8484[2] cleverly

51

does not mention the introduction of the third party into DNS resolution. For some
situations, it does not have to be even a bad thing. For example, when the ISP is
forced to do DNS-based censorship by the law, introducing the third-party outside
censorship jurisdiction could help users escape it. However, using untrustful DoH
could have a catastrophic impact on user’s privacy as it could be used as an ultimate
profiling tool that does not need collaboration from website operators.

2.7 DNS64 and DoH Interoperability Issues

In appendix A, the DoH standard, RFC8484[2], explicitly stated that support of
network-specific DNS64 is not required for DoH. It generally states that the DoH
breaks the DNS64 detection, but it is considered to be fine by RFC8484[2] authors.

It is fair to say that the DoH transport does not break the DNS64 detection
by itself. What actually breaks DNS64 is the introduction of the third party into
the resolving process. This is one indicia that the DoH was originally intended
to introduce third parties into the DNS resolution process. Others are the lack of
detection method and not even started standardization process of such method. The
DoH group in IETF was concluded after RFC8484[2] standardization, meaning that
this working group achieved what it intended.

Incompatibility between the DoH and DNS64 detection could be easily observed
in figure 2.13 in the previous section. In the conventional DNS, the query had to
pass through the ISP DNS, which contains the DNS64 service. However, the DoH,
when skipping ISP DNS infrastructure, it is also skipping the DNS64 service. The
application then cannot receive synthesized AAAA records from the DNS64 service,
and because of that, it is also unable to use NAT64.

Furthermore, the DoH provider is unable to provide the DNS64 service for clients
using Network Specific Prefix (NSP) in their network. The DoH provider is unable
to detect which NSP is used in the client’s network, a client might be able to perform
detection, but it is unable to signal it to the DoH operator. At least, this is the
current situation in NAT64/DNS64 detection as it is now standardized.

This is not the case if the client would use the DoH with the same server as
it would use with the conventional DNS. From this perspective, some of the DoH
implementations, like implementation in the Chromium project [55], might not
introduce issues with DNS64 by default. With Chromium/Chrome, it seems that
it does not change the default resolver used by the application. Instead, it would
auto-upgrade the connection to the resolver if it knows that it is running the DoH
service. Users can still choose a DoH provider from the supplied drop-down list.
However, the recursive resolver is not changed by default to the third party. This is
a more sensible and less privacy intrusive solution, and by default, it does not bring
issues with DNS64 mentioned in this section.

52

2.8 DNS64 and DNSSEC Interoperability Issues

The DNS64 is also not entirely compatible with the DNSSEC. This time it is not
because one standard would ignore the other one. It is caused by the incompatibility
of the goals of both standards. The DNSSEC tries to prevent undetected manipulation
with the DNS records. The DNS64 manipulates the DNS records in order to provide
nodes with the NAT64 service. Although the DNS64 manipulation is not done with
malicious intent, it is still unauthorized manipulation and must be detected.

The solution to this problem is mentioned in RFC6147[56]. Basically, if a client
is not sending the CD flag set, a DNS64 server is allowed to perform the DNS64
synthesis. If a client sends the DO flag set and the server is validating, it would set
the AD flag according to its policy and the result of the validation process. It should
set the AD flag even on synthesized records if they come from an authenticated
source.

Table 2.6: DNS64 availability based on DNSSSEC flags according to RFC6147[56]
DNS64 server DO CD AD DNS64
w/o DNSSEC x x N/A Yes
non-validating 1 0 N/A Yes
non-validating 1 1 N/A No
validating 0 0 N/A Yes
validating 1 0 1 Yes
validating 1 1 x No

Table 2.6 shows possible combinations of servers with flags sent from and returned
to a client with the availability of the DNS64 service. When the DNSSEC is not
supported in the server, the server may provide the DNS64 service, but if the client
is validating, then it will not accept synthesized records. If the server is at least
DNSSEC-aware, it will not provide the DNS64 service to a validating client (with
the CD flag set). If the server is validating, it will set the AD flag if the validation
succeeds and may set it also for queries with the CD flag set (depends on policy).

For validating clients, the RFC6147[56] recommends running DNS64 on them, or a
client had to be also translation-aware. Then a client must validate the non-existence
of the AAAA record and know the prefix used for NAT64 translation and the A
record. This way, a client would know that translation had to be used and may allow
the synthesized record with failed DNSSEC validation but with verified source data.
Another suggested solution is to initiate the secure connection to the resolver with
the DNS64 service and outsource the DNSSEC validation to it.

53

3 Current Solutions

3.1 Evaluation of Solutions

The RFC7051[57] provides an evaluation basis for detection mechanisms and several
examples of approaches to this problem. When evaluating detection mechanisms
according to the RFC7051[57] two things must be taken to account. One, RFC7051[57]
is listing only solutions and problems known at the time of writing (2013); the second,
it has been written by the same authors as the RFC7050[1], which is one of an
evaluated solution.

3.1.1 Issues According to RFC7051

The RFC7051[57] is specifying 5 issues asociated with detection of NAT64/DNS64
prefixes. These issues are:

Issue 1 The problem of distinguishing synthesized addresses from real ones. This
includes detection of the presence of NAT64 in the network.

Issue 2 The problem of detection of NSP needed for DNS64 address synthesis.

Issue 3 Detection of NSP or WKP without using DNS.

Issue 4 Detection of NAT64 prefix change.

Issue 5 Support of multiple NAT64 prefixes.

The following sections describe evaluations of detection methods by RFC7051[57],
followed by an evaluation of criteria not covered by it.

3.1.2 DNS Query for a Well-Known Name

This method is the same as the solution in RFC7050[1]. It describes a method in
which a client asks for a specific domain name record, which is not present in global
DNS. If a client receives a reply for this query, then it is determined that there is
DNS64 present in the network.

For pros, the RFC7051[57] states that issues 1 and 2 are solved and that issue 4
could be solved by DNS lifetime. Issue number 5 is solved only partially, as it does
not allow to determine priority for discovered prefixes. As it does not change any

54

of the protocols, it requires almost no standardization effort and no changes to the
host stack. As a result, it also does not bring problems with backward compatibility.
The RFC7051[57] also states that a client can run the discovery process proactively
and that network equipment does not need to know the discovery process; only a
client had to.

Downsides of this method according to RFC7051[57] are: Need to host this
well-known name in global DNS tree. Also, issue number 3 is not solved and needs
to provide multiple AAAA records by DNS64 to detect multiple prefixes.

For this method, it would be appropriate to also add to its cons the inability to
provide information about used prefixes in case that client is using DNS of a different
provider than its network provider (foreign DNS), and that query for a well-known
domain name could not be secured by the DNSSEC. As such, this method is insecure
by design.

3.1.3 EDNS0 Option

The method described by this section is based on an expired internet draft [58], using
Extension Mechanisms for DNS (EDNS0) described by RFC2671[59]. The method
requires the presence of an extension inside query replies, and via three flag bits (SY
bits), it can indicate the length of NSP or WKP. Differentiation between synthesized
records would be done by the presence of the EDNS0 option in the synthesized record
or its absence in the case of real records from the DNS tree. By the knowledge of
prefix length and at least one synthesized record, a client is capable of detecting
prefix used by NAT64. Detection of prefix change is solved by DNS lifetime, and
detection of multiple prefixes is provided by multiple replies for a single query.

The RFC7051[57] states the pros of this solution as capable of solving issue
1 and issue 2. It solves issue 4 by record lifetime and partially can solve issue 5
(multiple addresses in answer section). It is also stated that the method is backward
compatible with legacy hosts. It does not require making a new record type, just the
EDNS0 option, which implementation is needed only on the server-side. The huge
pro is that there would be no additional provisioning and management requirements.
Last but not least, this method’s usage would not generate additional queries to the
global DNS tree, as it could be solved locally.

As for a cons, the RFC7051[57] states: Requires client to understand EDNS0
extensions also requires host resolver changes so that it might provide learned
information to an application. It requires changes to DNS64 servers to serve this
option. It also does not solve issue 3, and most of all, EDNS0 options are considered
to be hop-by-hop, and as such, it is not guaranteed that it could be delivered through
DNS relays and proxies.

Even though this method seems to be elegant from the first view, its usability
might be quite limited by deliverability issues.

55

3.1.4 EDNS0 Flags

This method is almost identical to one described in section 3.1.3. The important
difference is that this method does not use its own extension but bits in the EDNS0
option itself. It was also defined by the same draft as the previous method but in its
earlier version 00 from June 2010. As it shares the basic idea with the later version
of the same draft, it shares the same pros and cons of it. The only difference is
another downside, as it is using a more valuable bit in EDNS0 option, not in the
custom option.

3.1.5 DNS Resource Record for IPv4-Embedded IPv6 Address

This method, defined by [60], proposes a new record type to provide NAT64 ad-
dress to a client. The proposed record, type A64, is designed for storing IPv4 to
IPv6 embedded addresses instead of AAAA record type, which stores general IPv6
addresses. As the IPv6 is the preferred IP address family, in case of dual-stacked
node connection made on IPv6 before there could be fall-back to IPv4 when the
IPv6 connection attempt fails. This would mean that when the DNS64 is used,
a dual-stacked client would automatically prefer translated NAT64 address over a
native connection via IPv4. This method is trying to solve this problem, as it states
that native connection should be preferred over translation-based one. This idea does
have some merit, as translation uses some of the computation power on the NAT64
box. However, it might as well be argued that by the inability of distinguishing
native and translated IPv6 addresses, the IPv6 is getting more utilized in the access
network, and because of it, IPv4 service is being utilized less, and as such, it might
get less significant and even get shut down earlier.

Pros of this method according to the RFC7051[57] are: The issues 1 and 5 are
solved, issue 4 is solved via DNS lifetime, the solution is backward compatible with
legacy servers, authoritative servers might provide a synthesized address, it allows
to provide synthesized addresses as they are and not the same type as native ones.
Furthermore, it provides a way how to ensure preference to native addresses over
synthesized ones.

Cons are stated as: Not solving issues 2 and 3, and it requires host resolver
changes. It requires a new record type and wide deployment across multiple vendors.
It also introduces additional load on DNS servers as it requires three records for a
single name instead of two, and it does not indicate synthesized addresses in case no
hostname is used.

3.1.6 Detection Using U-NAPTR or TXT Records

The RFC7051[57] also considered detection of NAT64 prefixes via DNS records,
but the evaluated method differs from that proposed by this thesis. The evaluated
method proposed by [61] uses U-NAPTR record type standardized by RFC4848[62]
and in the earlier version also plain TXT record. Document [61] has gone through
several changes since it has been firstly presented as a draft to the IETF. In the 00

56

version, it used TXT records and the DHCPv6 option. In version 01, a TXT record
has been replaced with the “U” version of a NAPTR record. The 02 version also
added a Router Advertisement (RA) option and a section about multicast translation
and FTP. The FTP has been removed in the next version as it has been meanwhile
solved by another document. It also added a multicast section to both RA and
DHCPv6. The latest version (04) of the document [61] removed the RA option and
added a few examples of NAPTR records.

The RFC7051[57] states pros as: Solves issues 1 and 2, solves issue 4 by DNS
lifetime and may require only application-level change instead of system resolver
changes.

As for cons, it states the requirement of standardization of new well-known name
and new U-NAPTR application. If not performed by an application, it requires
changes to the system resolver and its Application Programming Interface (API).
It might also require several queries to discover used prefixes. It also requires to
the provision of a reverse zone for NSP. The RFC7051[57] also points out that
RFC5507[63] is speaks against expanding a DNS-based functionality via TXT record.
Lastly, it requires configuration changes on access the network’s DNS servers, and as
DNS based method, it does not solve issue 3.

3.1.7 Detection Using DHCPv6

Method is evaluated by the RFC7051[57] based on two independent drafts, one is
already mentioned [61] in previous method, the second is [64]. The standardized
method is however based on RFC8115[65] which was not yet published, when the
RFC7051[57] was written. Evaluation of this method done by the RFC7051[57]
is however usable for current version of this method, as it is evaluating usage of
DHCPv6, rather then details of specific DHCPv6 option.

Stated pros of a method are: Solution for issues 1, 2, and 3. Issue 4 is solved
by DHCPv6 lifetime. As it is not DNS based, the method also works with clients
who are not using DNS. Furthermore, it states that DHCPv6 is a proper tool for
distributing network configuration information in a centralized way.

Cons according to the RFC7051[57] are: Change of NSP requires change of
DHCPv6 configuration. Then, there is a requirement of at least stateless DHCPv6
support needed on a client, which is not true on all operating systems, as DHCPv6 is
not required functionality on an IPv6 host. It also demands this feature’s support on
nodes that are not involved with NAT64/DNS64 operation. Lastly, implementation
of this option requires changes to both DHCPv6 clients and servers, none of which
would need such support as it does not have an impact on it.

Issue 5 has not been evaluated, as it is not clear how this method would solve
multiple occurrences of defined options and how would selection process chooses
prefix, which would be used.

57

3.1.8 Detection Using Router Advertisements

This method was evaluated based on draft [61] in its third version; in its final version,
this method was abandoned. However, in 2018 it has been resurrected and later
standardized as RFC8781 [66] by people from Google. Same as in the previous
method, even that RFC8781 could not be evaluated by the RFC7051[57], it shares
the same principle, and such its evaluation of the previous draft would also apply
here.

Pros by the RFC7051[57]: Issues 1 to 3 are solved by this method. Issue 4 might
be solved by RA lifetime.

Cons are: All the routers must keep up with possible changes in NSP. This
might even get to the point where all the routers would require a manual change of
configuration. It might not be trivial to provide learned information to applications.
It would also need changes to the operating system IP stack or process responsible
for processing a RA. This method required standardization of the new RA option,
which is not always a favored approach. Furthermore, as in the previous method,
routers are not usually part of the DNS64 chain, so they become affected by this
method without a clear advantage for their operation.

As this method was pushed by people from Google, it was able to proceed through
the standardization process without major setbacks. Also, due to the fact that Google
is both vendor of a widely deployed operating system for mobile phones (Android),
as well as vendor of web browser (Chrome), we might see this method deployed
soon; even with needed API for application to access NAT64 prefix information. It
would also be fair to say that this method is the easiest and fastest from the client’s
perspective, as information can be delivered in a single packet and even without a
client asking specifically for this information. Also, as it is provided as part of a
network configuration process and as the gradual shift of perspective towards IPv4
to a position of IPv4aaS, the RA seems to be the proper tool for providing such
information.

3.1.9 Detection Using Application-Layer Protocols

The RFC7051[57] here considers only Session Traversal Utilities for NAT (STUN)
protocol. However, it explicitly states that it may apply to other application layer
protocols as well. This would also cover Port Control Protocol (PCP) as it might
provide information about NAT.

The bright side, according to the RFC7051[57] consist of: Solving issues 1 and 2,
it might be implemented in an application, it could be backward compatible, and it
could be done proactively. It does not require network boxes along the way support
of NAT64. In the case of STUN, information can be bundled with another request,
like for public IPv4 address. It can also provide a way to perform connectivity tests,
as well as detection of NAT other than NAT64.

The downsides, on the other hand, are requirements for having such application-
layer servers in the network. It also requires standardization of extensions to those
application layer protocols. It would also need changes to devices outside the chain

58

needed for NAT64/DNS64 operation. Issue 3 would not be solved in STUN, as a
server address would be provided via DNS. Issue 4 would not be solved, as STUN
server would not be informed about validity lifetime. Also, it would not be possible
to indicate multiple prefixes, so issue 5 is not solved by this method. At last, it is
stated that STUN is considered to be a heavyweight solution to inform a client about
NSP.

3.1.10 Detection Using Access-Technology-Specific Methods

The last method described by the RFC7051[57] is mentioning an access technology-
specific method. As an example, there is mentioned 3GPP Non-Access-Stratum
signaling protocol. It is stated that these technologies are capable of signaling the
presence of NAT64 prefixes, as well as their absence.

Pros by the RFC7051[57]: Solution for issues 1 to 3 and 5. Solution of issue 4
might be also provided by communicating information validity time.

Cons are the requirement of the configuration of access nodes to signal correct
information to clients. Same as in the case of other “lower layer” solution, it might be
tough on some operating systems to indicate learned information to the upper layer.
Change of NSP might require reconfiguration of access nodes, and standardization
of new access parameters might be needed.

3.1.11 Issues not Covered by RFC7051

Even that RFC7051[57] provides extensive evaluation of NAT64 discovery methods,
it is missing mainly security implications of described methods. It is only referencing
to the RFC6147[56] in its security consideration section. It is stating that there
are the same problems as described in the DNS64s RFC, and it is describing MitM
attack possibilities and DoS attack. It is also mentioning that DHCPv6 and RA
approaches are vulnerable to forgery, but it is missing information about the same
vulnerability of DNS based solution that are not secured by DNSSEC from step one.

Such a vulnerability could be seen in the RFC7050 solution and in others that
are not secured by asking only DNSSEC secured zones and allowing non-secure zones
for getting answers. Example of such zone would be arpa. with its unsecured record
of Well-Known IPv4-only Name (WKN) ipv4only.arpa. as this could not be signed
by network operator.

There are also other issues connected with the NAT64 detection, like depen-
dence on certain services that could be provided only by the network operator.
However, these issues are discussed throughout the thesis. The design goals of the
proposed method in section 4.1 were chosen to mitigate such issues not discussed in
RFC7051[57].

59

3.2 RFC7050

The RFC7050[1] is the current standard for getting the NSP or the WKP and also
the presence of NAT64/DNS64. For some time, this was sufficient, as a foreign DNS
was rare, so it had not to be solved. In this section, this method will be explained as
well as its design features, which lead to current problems with a foreign DNS.

3.2.1 Node Behavior

A node (client) starts with AAAA query for WKN ipv4only.arpa. with DNS flag “CD”
(Checking Disabled) set to zero. This is important, as, without this flag unset, the
DNS64 would not perform address synthesis [56], as it cannot be successfully validated.
Usage of the “CD” flag is described in detail in RFC4035[67]. In short, by setting
this flag, a stub resolver is taking responsibility for validating provided information,
so then DNS recursive server would not provide DNSSEC record validation and
would provide a non-validated record with signatures (if available). However, by this
flag, the DNS64 server would be informed that the stub resolver is validating, and
then the DNS64 would not synthesize records because they would fail the validation
on a stub resolver.

If the response for before mentioned query returns one or more AAAA records
(IPv6 address), this would indicate the presence of NAT64/DNS64 transition mech-
anism. These records are composed by prefix used for NAT64 translation (by
RFC7050[1] denoted as Pref64::/n) and Well-Known IPv4 Address (WKA) in scheme
defined by RFC6052[68]. With this scheme, it is possible to encode different prefix
lengths than /96. The RFC6052[68] allows to use prefix length of /32, /40, /48, /56,
/64 and /96. It also provides a possibility of defining a custom scheme, however in
such case detection method must be modified as it would be unknown by a node
implementing the RFC6052[68].

When there is no DNS64 provided by active DNS server, the server should return
NODATA1 status code for WKN AAAA query with empty response. If the server
returns NXDOMAIN status code, there is either implementation or configuration
error on the server-side or the arpa. domain is not resolved correctly. Because the
NXDOMAIN return code, according to RFC1035[69], is used only when there is
no record of any type and queried name present in the zone. This is obviously not
true for the WKN ipv4only.arpa., as it does have an A record pointing to WKA
192.0.0.170 and 192.0.0.171 as defined in the RFC7050[1]. So because there is a
record for ipv4only.arpa. in the arpa. zone, there should be only two possible return
codes for AAAA query: NOERROR with a synthesized record, in case there is
DNS64 service, or the NODATA response, when there is no DNS64 service provided
for a client.

A client may also ask for an A record of WKN to determine why it received
NXDOMAIN or NODATA. If there is a reply consisting of WKA, it indicates that

1NODATA is not transmitted as a return code, it is a representation of return code NOERROR
in the combination of reply without answer section.

60

DNS64 service is indeed not provided. However, if it does not get this response, then
its DNS is traffic is either filtered (or otherwise modified), or there is something
wrong with a server.

For negative answers or timeout, the RFC7050[1] prescribes repeating the query
after the timeout. Both NXDOMAIN and NODATA responses should be respected
in terms of their TTL. Personally, I do not think that NXDOMAIN should be
respected as it is wrong, as mentioned in the previous paragraph; however, the
standard demands it.

Now, in the case that node would receive a reply for AAAA query, a node must
collect all Pref64::/n and for each of them determine used format according to
RFC6052[68]. If the WKA is present more than once in a received IPv6 address,
then it cannot be used for client-based address synthesis or validation. If there is
more than one prefix detected, then a client had to use all of them and provide them
to an application. Order of prefixes must be maintained while sending them to an
application.

A node should perform detection only when needed, like when the interface status
changes or ten seconds before cached records’ TTL.

3.2.2 Validation of Detected Prefix

The RFC7050[1] states that if an operator chooses to support DNSSEC validating
nodes, it must provide at least one Fully Qualified Domain Name (FQDN) for NAT64
prefix in the form of a prefix followed by WKA inside AAAA record. Then every
such AAAA record had to have a corresponding PTR record pointing to it. Moreover,
the AAAA and A record had to be signed as well as the zone itself, but this is not
mentioned in the standard.

The standard prescribes a node to communicate via a secure channel and that a
node may perform a validation procedure. This procedure consists of performing
discovery according to section 3.2.1 and then send a PTR resource query for discovered
NAT64 addresses. As a result of this query, a node should obtain NAT64 FQDNs.
The standard suggests comparing domains of learned FQDNs with its list of trusted
domains2. If there is no match between learned domains and trusted domains,
method should be considered not secure, and a node is forbidden to continue with
validation.

After the match with the trusted domain list, a node is sending AAAA query
for every matched FQDN. Response from this query then must be matched with
prefixes learned from initial detection in section 3.2.1. Those which match could be
then validated via DNSSEC; any additional record should be ignored.

What is important to notice here is that implementors can choose to support
DNSSEC validating nodes as well as they may not. It is also worth mentioning that
DNSSEC validation of PTR records is not part of this standard; A and AAAA record
DNSSEC validation is optional. Also, that validation method of learned prefixes is
based on a trusted domain list, which the method of populating it with records is

2Method of obtaining such list is not part of the RFC7050[1] and it is stated that it is
implementation-specific.

61

not specified. Lastly, the RFC7050[1] is not mentioning that the validation method
suggested by this standard would not work for WKP, as it is relying on PTR record,
which cannot be provided for WKP.

3.2.3 Connectivity Checks

The standard suggests that after detection, a node should perform a connectivity
test. It is specifying two ways how this can be achieved. One of those would be
implementation-specific. This would probably mean that the operating system should
connect to some remote server via detected prefix.

The second method suggests to a network operator to supply NAT64 FQDN with
an A record, which would point to a box designed for connectivity testing. This
way provider can solve monitoring of NAT64 locally and does not need to rely on
external services. It may also provide an option for devices, which vendors did not
provide their infrastructure for such connection testing.

If a connection would be successful, then detection was also successful, and no
further action is needed. On the other hand, if the connection check would fail, this
would mean that either IPv4 connection have failed, NAT64 is not running correctly,
NAT64 prefix is unreachable, or the detection itself has failed.

3.2.4 Message Flow

This section shows the message flow as described by the RFC7050[1]. In the first
figure 3.1, there is a detection phase of this standard in its most usual deployment
scenario. It starts with a query for WKN, this is then processed by DNS64 capable
server, which would then issue a subsequent query to arpa. root server. It would be
either AAAA query first then followed by A query. Alternatively, if it is aware of
this name’s special meaning, it would directly ask for an A record.

When a server receives a response with the WKA, it will perform address synthesis
according to local settings (prefix, prefix length, and encoding scheme) and sends a
synthesized reply to a client.

Figure 3.1: Detection of NAT64 prefix according to RFC 7050[1]

62

With up mentioned steps, the detection phase ends. Non-validating node is
allowed to end the detection process here. It will start using those prefixes either for
its own address synthesis or by using a DNS64 server for it. Validating node must
continue via process shown in the figure 3.2. There is just one exception when WKP
is detected, as it is not possible to validate this prefix. A node should then continue
without validation as well.

Figure 3.2: Validation of NAT64 prefix according to RFC 7050[1]

The validation phase starts with a client querying for a PTR record for an address
that it receives in the detection phase. As a NSP should fall into a zone under control
for either network operator or its contractual party, it should be able to provide
reverse record back to its forward zone. So a DNS server provides a client with a
response of hostname under the provider domain.

When a client receives a reply, it must compare the domain name in the reply
with the list of the trusted domains. If this domain is not found in the list, a node
must not use such a detected prefix. If it is found, then it would continue with the
validation process.

The next step would be asking for an AAAA record of the domain name received
in the previous step. Server would reply with associated prefixes. A client will then
check if prefixes received in this step are the same as ones from the detection phase.
If an additional record is found, it would be silently discarded.

In the final validation phase, replies received on an AAAA query are validated
by the DNSSEC. If all checks out, a prefix then turns into use.

3.2.5 Security Implications

Starting with the implication stated directly in the RFC7050[1], authors realize that
it allows the same sort of attacks, as if the DNS64 server was under the control of an

63

attacker. The document further states that replies generated by the DNS64 server
could not be validated by the DNSSEC, as it is valid for step one of prefix discovery
proposed by this standard; it is not generally true. Standard is mentioning the same
types of attacks as the RFC6147[56]. These include DoS, MitM and flooding attack,
where an attacker is forcing packets on victim flooding its network interface.

Standard is further mentioning securing AAAA and A records with DNSSEC. It
states that it is required to secure AAAA resource records, as unsecured records may
be forged. It is also suggesting that the arpa. zone would also sign ipv4only.arpa.
A record. This has one side effect as it is also producing an NSEC record (proof of
non-existence) for AAAA record of the same WKN. This might be viewed as there
is no AAAA for that name (which is right) or as there should be no such record
present. However, the standard is using the word “SHOULD” not “MUST” for the
requirement of an access network to sign NAT64 resource record.

The requirement of the trusted domain list states that implementations should
not ask a user if a discovered domain should be trusted. It is also not providing a
way to obtain such a list, but it says that if an implementation does not have a way
to obtain such a list dynamically, prefix validation should fail.

Now for the problems not directly stated in the standard. The biggest concern
of this standard is the detection phase. In this phase, a client is not capable of
validating that it is receiving genuine information. This cannot be ensured because a
resource record of ipv4only.arpa. is outside of a network operator zone, so it cannot
provide a valid signature for this synthesized record.

Standard is trying to solve this insecure record query interception by the require-
ment of a secure channel between a node and a DNS64 server. This requirement is,
however, hardly achievable, as it would require configuration effort, prior established
trust relationship between a client and a server (requirement of trust anchor), and
this would either require provisioning or encrypted and authenticated transport
channel, which is not provided by traditional DNS.

The second way how the standard is trying to mitigate this issue is the trusted
domain list. Forming such a list requires detecting locally used domains, node
provisioning, or implicit trust to all domains, which would go against the standard.

In the validation of detected prefixes, the PTR records are not required to be
signed, and a node is not being recommended to validate its signature. This would
not be an issue if the forward record is signed and a node is implementing a domain
whitelist correctly. Otherwise, it introduces the second breach point to this method’s
security.

So in order for this method to be secure, following must be true:

1. Node must have a secure channel to the DNS64 server.

2. Node must be validating.

3. Node must know the domain used for NAT64 resource prior to detection, and
this domain must be trusted.

4. Resource record must be signed with a valid signature.

64

If the secure channel is not provided, then DoS attack might be done via providing
false / not used WKP, or sending NODATA reply. When the trusted domain list is
also not implemented, it would then be possible to do all mentioned attacks by a
forged prefix.

When a node is not validating and is not having a secure channel to DNS64
server, those attacks could be done by taking over the control of DNS64 server3.
Without a secure channel, any of the mentioned attacks can be done, as a node
would not have any defense against it.

Without the trusted domain list, an attacker could push forged prefix in a
detection phase or the first step of the validation phase. A forged prefix could have
a valid and signed PTR AAAA pair to pass the validation process.

Without a signed zone, in which resource record is, an attacker can forge any
address, even when the trusted domain list is present. With a signed zone attacker
is limited by existing records in the zone.

Even with a secure channel between DNS64 server and client, domain trust list,
and signed forward zone, it is possible to perform DoS type attack via an unsecured
PTR record, if DNS64 server is not authoritative for the reverse zone and there is
not secure channel between authoritative and recursive server. This attack could
be done on validating node by poisoning DNS64 cache with an invalid PTR record.
This way valid prefix would not pass the validation test and would not be used.

3.2.6 Why RFC7050 Would not Work Now?

The main problem with this method is the detection part as a client is asking for
WKN and is expecting to get back a modified record with locally used NAT64 prefix.
Then a server, which it is asking, had to be presented with that information somehow.
This essentially means that the NAT64 gateway and the DNS64 server, had to be
under the control of the same subject – a network operator.

As it has been mentioned before, some technologies like a DoH or operating
systems like Android may introduce a foreign DNS, which gets a priority over a
network operator’s infrastructure. This way, it is not possible to provide such client
DNS64 service with this method, as the WKN is resolved only locally, and NAT64
prefixes are unknown to the public DNS infrastructure.

One solution for this limitation discussed at the IETF is to make query for the
WKN resolve locally, not by DoH. This may solve the issue for most of the users as
the detection process would work for every client, which is not set up to use foreign
DNS in its system stub resolver. For those, which are set up that way, the detection
method would still not work, but this might be acceptable for a network operator,
as it would not be working because of some settings someone else made to a client.

This concept has been later standardized as RFC8880[70]. This standard adds
a requirement for having tight binding between recursive DNS resolver received by
autoconfiguration methods with an interface from which it has been received. This
is needed only for a query for ipv4only.arpa. name as this must be sent to network

3If the DNS64 server would also be authoritative for operator domain with access to signing
key, even validation would not help against such attack.

65

provider operated resolver. Standard further requires that static configuration can
not be used – even user-specified resolver cannot be used. This, however, disqualifies
any static configuration as this is a user-specified configuration. Regardless of huge
architecture changes needed for introduction resolver-interface binding, this standard
does not fix other design flaws of RFC7050[1], and it would not work in all cases.

There is also a problem with the trusted domain list. Not all the CPE are
custom-made for every network operator. In fact, smaller operators, like local Wi-Fi
operators, are using CPEs from an open market, which does not need to be even
installed by the operator’s technician. This way, CPE is not pre-provisioned, so the
trusted domain list could not be provided in advance of connecting it to the operator’s
network. When not provisioned, the CPE could not establish a secure channel to
the provider’s infrastructure by pre-loading operator’s certificates or pre-shared keys.
There are ways how to provide dedicated channel to CPE like Point to point over
Ethernet (PPPoE)[71], 802.1x[72], EAP[73] or other network access technologies,
providing client separation and network access control.

3.3 RFC7225

The method of RFC7225[74] is based on RFC6887[75], the PCP. The PCP is a
protocol that allows a client to modify the behavior of NAT and firewall box, which
has a function of the PCP server. The RFC7225[74] adds NAT64 signaling support
to the PCP protocol so that a client can be informed about NAT64 prefix or prefixes
in use together with individual limitations connected to them.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+−+
|Option Code=129| Reserved | Option Length |
+−+
| Pre f ix64 Length | |
+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+ |
: Pre f ix64 (Var iab le) :
+−+
| |
: S u f f i x (Var iab le) :
| |
+−+
| (op t i ona l) |
: IPv4 Pre f i x L i s t (Var iab le) :
| (See next Figure) |
| |
+−+

Listing 3.1: Prefix64 PCP Option according to RFC7225

Listing 3.1 shows the option that allows such mentioned signaling as it is stan-
dardized in RFC7225[74]. The option starts with the Option Code of 129 given
to this option by IANA, followed by a reserved block that must be set to zero on
transmission and ignored on reception [75].

The Option Length field represents the length of the option data in full octets.
The Prefix64 Length also uses length in octets. It follows the encoding schemes
specified in RFC6052[68], so allowed values are limited to numbers 4-8 and 12. These
numbers are equal to network masks of /32, /40, /48, /56, /64 and /96.

After that, there is the Prefix64 field. This field contains the IPv6 prefix as
described in RFC6052[68]. It has got a variable length determined by the previous

66

field. Then it is followed by the rest of the address used for IPv4 embedding, the
suffix. The suffix also follows the embedding rules from RFC6052[68]. The length of
the suffix in octets is equal to 12− < Prefix64 >. This means there is no suffix if
the length of the prefix is 12 octets (/96). If the prefix length is 4 (/32), the suffix
length is 8 octets. Whenever the suffix is non-zero, it is essential to maintain bits of
the resulting address in positions 64 to 71 equal to zero.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+−+
| IPv4 Pre f i x Count | IPv4 Pre f i x Length |
+−+
| IPv4 Address (32 b i t s) |
+−+
.
+−+
| IPv4 Pre f i x Length | IPv4 Address (32 b i t s) . . . |
+−+
| . . . IPv4 Address (cont inued) |
+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+

Listing 3.2: IPv4 Prefix List according to RFC7225

After the suffix, there could be optionally present the IPv4 prefix list. The format
of that list is shown in listing 3.2. This list can optionally indicate that signaled
NAT64 prefix is destination-dependent, which means that it should be used only for
specific IPv4 destination addresses.

The list starts with the number of prefixes included in the list. Then it is followed
by alternating fields of prefix length and the complete IPv4 address. Here the prefix
length represents the number of bits in CIDR notation.

3.3.1 Principle of Operation

The PCP is a simple, unencrypted, unauthenticated, UDP-based, client/server,
request/reply protocol. The PCP, as the name suggests, allows controlling port
translation on the server by the client. The goal of the protocol is to reach end-to-end
connectivity on IPv4 even when it uses NAT44 and without using the usual indirect
NAT traversal methods.

When a client wants to be reachable from the Internet, it sends a request to the
PCP server for port forwarding. If the server has requested an outer port available to
the client, it will perform port forwarding for the time specified in the client request.

This allows maintaining long-lived connections through the NAT even without
sending so-called keepalive messages, so the NAT would not consider the connection
stale and would not delete its mapping. Reduced keepalive traffic is claimed to be
one of the advantages presented in the RFC6887[75]. Because of this reduction, it is
believed that battery consumption of mobile devices should be reduced too, as well
as bandwidth needed in the operator’s network.

When a client sends its requests, it may choose to include various options. One of
the options available is also option 129, the Prefix64 option specified in RFC7225[74].
If a client wants to receive it, it must also include it in its request, but with zero length.
Then, if the server is configured and capable of delivering this option, it will provide
a client with one or more prefixes, including their limitations. A client then might
supply received information either to its CLAT implementation for the 464XLAT
or to the DNS64 capable stub resolver for the plain NAT64/DNS64. However, this

67

information is not easily communicable to the applications running on the node’s
operating system if they do not run PCP implementations themselves. This limits
usage in the case of the DoH DNS64 capable resolver running in the application. As
a result, the RFC7225[74] method is more suited for 464XLAT deployment as it does
not need to be communicated to the applications.

3.3.2 Security

The PCP has got no security features built-in. As it has no authentication, any
node connected on the interface configured to listen on the PCP can do any action
allowed by configuration. For the mapping option, the PCP protocol requires a nonce
that has been generated by the client when it generated the first request for specific
mapping. Other than that, there was an internet-draft concerning authentication,
but it expired in 2014.

There are two things required for this protocol to be reasonably secure. The
first one is to limit PCP configuration to provide only the bare minimum of needed
functions and only from internal interfaces. This is achieved by rules specified on
the PCP server. An example configuration on the Juniper gateways could be seen in
their documentation [76].

The second prerequisite is the security provided by the network itself. This is way
similar to security requirements for DHCPv4 and DHCPv6. Those protocols also do
not have built-in security features, but network switches provide functionality called
snooping. With the snooping, an administrator specifies which ports are considered
to be trusted and only from those ports, it would allow packets from the server to
be distributed to clients. If the packets provided only from the server were received
on an untrusted port, they would get discarded.

Similarly, the PCP protocol requires filtering of server packets to be placed on
access infrastructure. The difference between the DHCPv4 and DHCPv6 and the
PCP is missing default functions in the network switches. It is still possible to
implement using Access Control Lists (ACLs). The implementation notes for the
PCP recommend servers to listen only on UDP port 5351 and clients on port 5350.
There is no reason for clients to originate packets from port 5351. It is possible to
discard any packet with this source port coming from a client port.

However, some security vulnerabilities cannot be easily fixed. As the PCP is
UDP-based, it is easy to spoof a client address. It is possible to perform DoS attacks
on both server and clients. It is possible to achieve resource depletion on network
ports, processor time, and mapping records on the server-side. On the client-side, it is
theoretically possible to achieve a reflection DoS attack. However, the amplification
factor is low, and the overhead on the server is high.

Overall, the PCP is not a secure protocol by design but securable by the network
policy. It is not as easy to secure as other more common protocols, but it is possible
to do it manually using ACLs. When an operator has a PCP deployed and all the
security measures in place, the PCP could transport information about the NAT64
prefix. However, this method depends on a secure channel between a client and
server. If such a secure channel would not be provided, a client has no means of

68

checking the authenticity of the transported data.

3.3.3 Why RFC7225 is not the Solution?

Or better: Why RFC7225 is not the solution for everybody? First of all, it is fair to
say that the RFC7225[74] is a viable option. From those discussed here, this option
allows the most specific configuration. It allows per user specificity, per destination
specificity.

So, where is the problem? The RFC7225[74] uses the PCP as a transport. The
PCP is, on the one hand, a handy protocol, but on the other hand, it is non-essential.
Although some implementations are available, they usually use a combination of
Universal Plug and Play (UPnP) protocol between a client and CPE, which is
then translated into PCP. The PCP is not directly available to a client but rather
translated from UPnP.

There are also implementations on CGNATs, but these are usually switched off by
default. This is due to the security concerns about the harm that PCP clients could
potentially inflict on the NAT process and the fact that PCP is an unencrypted and
unauthenticated protocol running on UDP that can be spoofed. Long story short,
there must be extreme demand on the client-side, so that the ISP would enable this
functionality.

Lastly, even that some implementation standards demand RFC7225[74] support
for routers (like informational RFC8585[77]), none of the PCP implementations
looked upon by the author explicitly stated RFC7225[74] support.

There might be a use case for this method, for example, in CPE with integrated
464XLAT functionality. In this case, the PCP would be accessible to the CPE, and if
the ISP supports it, then the CPE can provide its downstream network with IPv4aaS.
Another use case could be in cellular networks because it is believed that PCP can
reduce the battery consumption of a mobile device by reducing keepalive messages.
If the cellular operators deploy PCP in their network, they could also provide
information about the NAT64 prefix through RFC7225[74]. The mobile device then
could set up its CLAT according to this information and provide 464XLAT to its
applications or clients via tethering. However, the PCP workgroup inside IETF has
been concluded, and no document was found on cellular use.

3.4 RFC8115 DHCPv6 Option

Another option how to discover the NAT64 prefix is through the DHCPv6 option.
This option is standardized in RFC8115[65]. In a certain way, this option shares
some common characteristics with the PCP option. Both are using UDP-based
transport protocol, both protocols are unauthenticated and unencrypted, and both
transport protocols depend on a secure channel.

There is also a big difference between this DHCPv6 option and both previous
methods (RFC7050[1] and the RFC7225[74]). The previous methods only considered

69

unicast, but this DHCPv6 option mainly focuses on the distribution of IPv4 multicast
through the IPv6-only network.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+−+
| OPTION V6 PREFIX64 | option−l ength |
+−+
| asm−l ength | |
+−+−+−+−+−+−+−+−+ :
: ASM mPrefix64 :
+−+
| ssm−l ength | |
+−+−+−+−+−+−+−+−+ :
: SSM mPrefix64 :
+−+
| unicast−l ength | |
+−+−+−+−+−+−+−+−+ :
: uPre f ix64 (Var iab le) :
+−+

Listing 3.3: The DHCPv6 Prefix64 option according to RFC8115

Listing 3.3 shows the format of this option. The first part of this option is the
option code assigned by IANA, code 113. Then it is followed by option length in
octets. Then there are three NAT64 prefixes. All the prefixes are prepended with
their lengths. All of those represent the number of valid leading bits and are encoded
as an eight-bit unsigned integer.

The first prefix encodes the so-called Any-Source-Multicast prefix. This prefix
is used for multicast traffic with multiple sources. The second prefix is for Single-
Source-Multicast traffic, typically television signals distributed through the Internet
from a single source. The last prefix indicates the unicast NAT64 prefix to a client
(this is the one also provided by other methods).

The lengths of both multicast prefixes are required to be /96. The unicast prefix
could follow the addressing scheme specified in RFC6052[68]. There the allowed
values are /32, /40, /48, /56, /64 and /96. Most likely, the last scheme would be
used.

3.4.1 Principle of Operation

The DHCPv6, defined in RFC8415[78], is one of the autoconfiguration protocols
available in IPv6. It is an unauthenticated, unencrypted, and UDP-based protocol
designed to distribute addresses and other network configurations to clients. Unlike
IPv4 and its DHCPv4, the DHCPv6 support is not required on clients, and there does
not need to be a DHCPv6 server present in the network for IPv6 autoconfiguration
to work. This makes the DHCPv6 protocol non-essential and its support voluntary
rather than mandatory.

In an IPv6, the DHCPv6 could run in two modes. The first is so-called stateless,
and the second is stateful. In the stateless mode, the DHCPv6 server provides only
the additional network information, not addresses to clients nor prefixes for routers.
It does not need to make client tracking, it would run in a simple request/reply
mode, so there is no server state present. The stateless mode would be typically
combined with the mandatory stateless autoconfiguration method, the SLAAC. The
SLAAC would provide a client with a prefix for its address autoconfiguration and
routing information (default route and optionally route for local prefix if it is directly

70

reachable). Then the DHCPv6 would provide additional information, for example,
addresses of recursive DNS servers or this option with NAT64 prefixes.

The stateful mode is similar to DHCPv4. In this mode, the server is providing
clients with addresses, routers with prefixes, or both. For address assignment, the
server has to keep track of the clients and their states, so that is why it is called stateful.
There are two significant differences from DHCPv4 by the network administrator
view. The first, more noticeable, is the introduction of the DHCPv6 identifier, the
DUID. The DHCPv4 used a MAC address as an identifier. The DHCPv6 can also
use different identifiers, and the MAC address is just one discouraged option. The
second, maybe the more important difference, is the absence of routing configuration
in DHCPv6. Even when the DHCPv6 server is present, it cannot provide a client
with any route. This is entirely done by the RA packet that is essential for network
autoconfiguration regardless of DHCPv6 presence.

When a client is connected to the network, it will wait to receive the RA packet
or actively request it by sending a Router Solicitation (RS) packet. In the received
packet, two important flags mark DHCPv6 deployment. The first flag is the M flag.
When it is set to one, it indicates that a client should use stateful DHCPv6 to address
autoconfiguration. The second flag is the O flag. When the O flag is set to one, a
client is supposed to use DHCPv6 to obtain other information configurations. If there
is also some prefix with an autoconfiguration flag present in the RA packet, a client
is supposed to use both methods of address autoconfiguration, and it depends on a
client policy to determine which address should be used for outgoing connections. It
is also important to notice that depending on its policy, a client does not have to
honor the M and O flags, nor does it have to support DHCPv6 altogether.

If the DHCPv6 capable client receives the RA packet with the M flag and decides
to honor it, it would try to contact the DHCPv6 server with the Solicit message. The
server would reply with an Advertise message. A client would confirm that it accepts
the advertised address with a Request message, and the server would confirm the
assignment with a Reply message. In DHCPv6, there is also a two-way handshake
possible when a client also sends the Rapid Commit option in Solicit message that
would indicate that it is willing to accept anything the server offers. Then the server
could reply with a Reply message directly.

When the DHCPv6 server is used only to distribute other network information,
and it is indicated in the RA packet with an O flag, a client would send an Information
Request message with the type of information it wants specified in the Options Request
Option (ORO). The server would then reply with the Reply message containing only
the essential information and information connected to the requested options.

This method of NAT64 prefix detection uses one of such options, option 113. If
a client supports this option and is configured by its policy to accept it, it would
include number 113 in the ORO. If the server supports this option and is configured
to provide it, it would include the RFC8115[65] option in its reply.

71

3.4.2 Security

The DHCPv6 faces similar security difficulties as the PCP. This is due to the same
nature of those protocols. Similarly, solutions to those difficulties are also the same.

The RFC8415[78] lists these considerations. Due to the lack of authentication
and encryption, there is a risk of hijacking, modification of transported information,
and data leakage.

If the malicious server is connected to the network and is able to reach the
network’s clients, it can provide them with misinformation allowing it to hijack
clients’ traffic by offering them malicious DNS servers, or in the case of RFC8115[65],
the false NAT64 prefixes. When the DNS server settings of the DNSSEC non-
validating client are altered, all the traffic for services specified by domain name
could be diverted. If a client would be DNSSEC validating, the attack on DNSSEC
secured domains would result only in DoS as those domains would not be accessible
by a client.

If the attacker convinces a client to change the NAT64 prefix settings, it will result
in diverting all the traffic that uses a transition mechanism. This means that only
the services without native IPv6 would be affected. However, due to the fact that
the NAT64 prefix option modifies routing and not a name resolution, the DNSSEC
validating clients would not be protected against this type of attack. Also, with this
method, the DNSSEC could not be used to warn a client about manipulation with
the Prefix64 option.

Both mentioned attack vectors could be used to redirect traffic (MitM) or to
perform a DoS type of attack. With the MitM attack, the attacker would redirect
traffic to a node under his/her control. On this node, the traffic could be just
intercepted and recorded or modified for subsequent attacks. In the case of DoS, the
attacker would either redirect traffic to a non-existing address (making it fail) or to
an existing address of a victim to additionally exhausting the victim’s network or
processing bandwidth.

Another attack described in RFC8415[78] allows bypassing DHCPv6 relays by
pushing a Server Unicast option to a client. This way attacker could force a client to
communicate with the attacker directly without interference from legitimate relays.
Similarly, a client could be provided with a malicious Reconfigure message containing
misinformation. This type of attack could be partially mitigated by transaction ID,
similarly to Nonce in PCP.

There is also a possibility of resource exhaustion attacks on both a client and
a server. These attacks could be focused on an address or prefix pool exhaustion,
computation resources, or network bandwidth. The standard states that it could be
partially mitigated by limiting the allowed number of resources for a single client.
Nevertheless, this is true only when access infrastructure also limits the number
of connected DHCPv6 clients to access ports. Otherwise, a malicious client could
emulate multiple clients, and a per-client quota would not help solve a problem.

The last non-privacy-related issue mentioned in the standard is connected with
a MitM attack performed between a relay agent and the server. For mitigation of
these attacks, the standard recommends using IPsec tunnels.

72

The RFC8415[78] recommends limiting client access to the network by means of
IEEE 802.1X by sending multicast traffic for DHCPv6 servers only to ports associated
with them and unicast replies only to the respective client port.

These recommendations would be similar to recommendations for PCP proto-
col. The limited security features in the DHCPv6 protocol are compensated with
requirements for a secure channel or at least limiting access to the transported data.
However, securing the DHCPv6 is a little bit easier than in the case of PCP. The
DHCPv6 protocol and the respective security measures are similar to the DHCPv4.
Because the DHCPv4 is one of the most deployed protocols, the network switches
usually include security features, like DHCPv6 snooping, that increase the DHCPv6
security without excessive administrative effort.

3.4.3 Is the RFC8115 the Solution?

It could be, but not for every situation. The advantage of this method is its
concern for multicast prefixes. No other method of discovering NAT64 seems to
care about translated multicast. Also, if the access network is properly secured
against manipulation with the DHCPv6 traffic, this method provides a reasonable
level of security. If the network would use the DHCPv6 and would not be protected
against such manipulation, the risk of manipulation with the NAT64 prefix would be
negligible compared with the damage an attacker could inflict with other options.

There is also one questionable advantage. As this method is not based on the
DNS, it could run even on a node that does not support it. However, this is a
questionable advantage because not every client has to support DHCPv6, but most
clients support DNS. An example of such devices could be the Android operating
system. It does support the DNS, but it is purposely ignoring the DHCPv6.

There are also a few disadvantages of this method. The main one is connected
with the before-mentioned Android. As the market share of the Android operating
system in cellular devices is more than two-thirds, and as the Android does not
support DHCPv6, the RFC8115[65] is unusable in cellular networks. Moreover, the
cellular networks are the ones that implement 464XLAT. It is a paradoxical situation
that the networks that would benefit from the reliable NAT64 discovery method the
most cannot use it as most of the devices connected to such networks do not support
the underlying protocol.

The second disadvantage is a lack of features providing the authenticity of the
NAT64 prefixes. If the reply from the DHCPv6 server is intercepted and modified, a
client has no means to detect such manipulation and could subsequently become a
victim of MitM or DoS attack. It is fair to say that even that this adds a potential
attack vector, it is not the most significant attack vector produced by the DHCPv6.

The next disadvantage is related to the implementation of this method. The
CLAT or the DNS64 stub resolver had to access the NAT64 prefix presented by the
DHCPv6 somehow. However, neither of these services include the DHCPv6 client
in them. There must be some interface made to provide the NAT64 prefix to those
services, or they have to implement at least stateless a DHCPv6 client to get the
required information.

73

If those services choose to implement the client part, they could also have problems
with mandatory access control systems like SELinux. Those security systems usually
do not allow services to access network ports that are not needed for their functions,
and neither of those services is required to become DHCPv6 clients. If they became
one, the security policy would have to be adjusted, and those applications could then
become the security threat as they could send arbitrary data to the DHCPv6 server
and become an attack vector themselves. An example could be a browser doing DoH
and a javascript loaded by the attacker to emulate multiple DHCPv6 clients making
resource exhaustion attacks on the server.

3.5 RFC8781 Pref64 Option

The so far last method for NAT64 detection, standardized during the writing of this
thesis, is the RFC8781[66]. It uses another autoconfiguration protocol known as
Internet Control Message Protocol version 6 (ICMPv6) Neighbor Discovery (ND), or
sometimes it is called by the method it is used by, the SLAAC. Because the ND is
essential for the IPv6, all clients have to support it.

Similar to RFC7050[1] and RFC7225[74], this method allows to specifying only
the unicast NAT64 prefix. It also does not provide any information about data
authenticity, so a client has to rely on access network security rather than protocol
security.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+−+
| Type | Length | Scaled L i f e t ime | PLC |
+−+
| |
+ +
| Highest 96 b i t s o f the Pre f i x |
+ +
| |
+−+

Listing 3.4: The RA NAT64 Prefix option according to RFC8781

Listing 3.4 shows the RFC8781[66] option format. The option starts with an
option type assigned by IANA, the number 38. Then it is followed by the option
length in units of eight octets that must be equal to two; if it would not, the receiver
had to ignore this option.

Next, there is a Scaled Lifetime that represents the time for which the NAT64
prefix could be used by clients. This field had to be scaled to units of eight seconds
as it had to make a place for the prefix length. The prefix length also had to be
encoded into the so-called Prefix Length Code, so that the overall option length would
fit 128 bits. The Prefix Length Code could have values of zero to five, representing
prefix lengths of /96, /64, /56, /48, /40, and /32.

The final part of this option is the Highest 96 bits of the Prefix field. The standard
only specifies this field to represent bits 0 to 95 of the IPv6 prefix. It does not specify
how IPv6 address suffixes should be encoded when other than /96 prefix is used.
Furthermore, the standard does not specify how bits reserved for IPv4 encoding
should be used. This may prove difficult to its implementation and may justify future
Errata to be published.

74

3.5.1 Principle of Operation

The ND is the unauthenticated, unencrypted, ICMPv6-based protocol used to detect
devices on the local segment (similarly to ARP in IPv4), detect routers, and provide
clients with routing information. When compared with the DHCPv6, the ND is only
stateless. The router has no control of the host identifier part of the IPv6 address
when doing the SLAAC, and the ND provides clients with routing information, so
the ND is essential for IPv6 - all clients need to implement it.

The ND operation could be divided into two groups. The first one described here
is connected to its autoconfiguration abilities, the second one to discover neighbors.
If a client is connected to the network, it can either wait to receive the RA packet
or send the RS packet to the all-routers multicast address. A packet sent to this
address would reach every router connected to the same segment as a client as all
routers are required to listen on this multicast address.

When a router receives the RS packet, it will respond with the RA packet if
it is so configured. It will reply from its link-local address to the client (or to all
nodes multicast), announcing its presence with network configuration flags, with
its preference. It may also provide a client with other options. Namely, a router
would usually include its MAC address, link MTU, network prefix for SLAAC. It
could also provide a client with addresses of recursive DNS servers, and with the
RFC8781[66], it could also provide a client with the unicast NAT64 prefix. The
noticeable difference from the DHCPv6 is that it is up to the router, which options
it would include in its reply. There is no signaling present to a client to indicate
which options it would like to receive and what it can process.

When a client receives the RA packet, it will act according to it. Depending on
options, a client would set up its routing table, set the link MTU. If provided with a
prefix with an autoconfiguration flag set, it will generate its IPv6 address. Similarly,
if a client is provided with a NAT64 prefix, it could use such information to set up
its CLAT implementation or provide it to the DNS64 capable stub resolver.

The second part of the ND protocol is connected to the neighbor discovery. Its
function is the same as a function of the ARP protocol for the IPv4. Furthermore, it
can also be used for duplicate address detection so a client can check if the address
selected by it is currently not in use. This is the mandatory part of every IPv6
address generation before a client uses it.

If one client wants to obtain a MAC address for a different client, it will send
a Neighbor Solicitation packet to the solicit multicast address asking for a MAC
address for a known IPv6 address. A client with the requested IPv6 address would
reply to the requestor with its MAC address. Then the requestor would add received
binding to its neighbor cache. The process is essentially the same as in the ARP,
but it does not use Ethernet broadcast; but instead, it uses IPv6 multicast.

There is also an ICMPv6 Redirect message in the ND. However this message is
not relevant to this thesis.

75

3.5.2 Security

The ND protocol as an unencrypted and unauthenticated protocol shares some
security limitations with both previous protocols (PCP and DHCPv6). As the
configuration data are not signed, and a client is not expected to be pre-provisioned
before it is connected to the network, there is no standardized mechanism to provide
integrity of the configuration data.

Without guaranteed data integrity and server authentication, a client cannot
distinguish between malicious and genuine packets. The only solution for the security
of the ND protocol is to secure the access network. As the ND is an essential protocol
for the IPv6 to work correctly, security measures for its protections are usually
present in network switches. This security measure is called RA-guard, and even if
not present in the network switch operating system, it is possible to implement it
via static ACL. At least basic protection against accidental RAs could be achieved
this way.

If the RA-guard were not deployed, it would be a significant threat to all devices
connected in the shared segment. When there would be connected a malicious client,
it can force every node in the network to change its default gateway, redirecting all
of their traffic to its address performing the MitM attack. It could also not forward
such traffic to make a DoS attack.

In the past, it was also possible to flood a network with random RA packets
forcing connected nodes to crash. When a client receives a new RA packet, it has to
set new routes in its routing table, optionally calculate a new address, run a duplicate
address detection, and set it to its network interface. The attack was lately made
stronger by sending subsequent RA packet with a zero lifetime. That subsequently
forces a client to delete the address from its interface and delete associated routes
from its routing table. All of that means much work that every node on the network
had to do in response to just two cheap packets sent by an attacker. Before operating
systems were patched, an RA flooding of the network resulted in system freeze and in
the Windows resulting with so-called Blue Screen of Death. Nowadays, all the major
operating systems should be protected against this attack by at least rate-limiting
and limit on a maximum number of active routers and prefixes. However, this type
of attack shows how a relatively simple attack on network protocol could result
in DoS not just in terms of reachability but also in terms of an operating system
freeze. In desktops, it could result at most in some data loss. In controllers running
manufacturing processes, this can result in physical damage or even fatalities.

It is also fair to say that presence of the RA-guard does not entirely ensure
that the network segment is safe from malicious RAs. It has been observed that
some hardware accelerated RA-guard implementations could be bypassed by using
extension headers that would shift the position of RA in the frame. When a switch
checks the presence of RA only in its usual position, it would not find it and allows the
packet to the network. The techniques of an RA-guard circumvention and filtering
advice for limiting could be found in the informational RFC7113[79].

The ND is not just the RA packet, and the security of the ND protocol is not
just the RA-guard. With the ND protocol, a malicious node could also attempt to

76

kidnap an IPv6 address by neighbor cache poisoning or redirect traffic by the Redirect
message. However, these attacks are not related to the security of the RFC8781[66]
option.

To mitigate some of the risks of the ND protocol, the “secure” version has been
standardized. This version is called Secure Neighbor Discovery (SeND), and it is
standardized in RFC3971[80]. The protocol and its problems are well described in
[81]. The major problem with the SeND even today remains the lack of mature,
widely deployed implementation. Because of that, the SeND is not widely deployed,
so it cannot be taken into consideration when evaluating RFC8781[66] security.

The RFC8781[66] adds another threat to the ND protocol-related attack vectors.
If an attacker is able to distribute malicious RA with the RFC8781[66] option, he/she
is able to redirect traffic that is using a NAT64-based transition mechanism. However,
even before the introduction of this option attacker was able to redirect by the same
attack vector the whole IPv6 traffic. So, the only real impact on the security was
the ability for an attacker to target only the traffic that uses NAT64 translation.

It is also worth noticing that ND attacks are limited only to a single network
segment and cannot traverse through the router. This is enforced by ND using
link-local addresses only and by limiting the hop limit to one. When there is a proper
RA-guard deployed on the network segment or shared segments are not used in the
network, the RFC8781[66] could be viewed as a reasonably secure method, which, at
least, does not introduce unnecessary risks.

3.5.3 Pros and Cons

The advantages of the RFC8781[66] method are mainly in the simplicity and de-
pendency only on the mandatory protocol. It is also beneficial that the routing of
the IPv4 protocol through NAT64 is controlled with the same protocol as the IPv6
protocol.

Because the RFC8781[66] has been developed by Google’s employees, it has
already been implemented in Android [82]. This is a considerable advantage as
Android is currently the most deployed operating system in the mobile segment.
However, support in routers is so far non-existent, but as the number of clients rises,
it is probable that some support in routers will eventually become available.

Support on other client operating systems is currently not present. The support
of the 464XLAT in Windows seems to be artificially limited to cellular networks. As
for supported detection methods, the detection method in use is not documented, but
it is believed to be RFC7050[1] only. In the Linux CLAT daemon called Tayga, there
is no support for the RFC8781[66]; only the RFC7050[1] is supported. Maybe the
RFC8781[66] would get more deployed on clients after it gets supported on routers.

Needed support on routers becomes one of the disadvantages of the RFC8781[66].
As ND protocol-based, this method had to be supported over the whole L3 network
infrastructure. Also, as this option is not router traversal (or at least not stated in
the standard), the network operator had to configure the NAT64 prefix on every
customer-facing router. Even when the network operator would do so, there is
no guarantee that provided information would be transferred over the CPE to the

77

customer’s network. This is not a problem for mobile devices such as Android, as
it is directly connected to the operator’s network. However, in the case of fixed
networks, the CLAT had to be either implemented inside the CPE, or the CPE had
to make this option traversable to reach its clients.

The next disadvantage of this method is its limited implementability. If some
vendor decides to implement it, it must be started from the operating systems’
network stack where usually ND client resides. It had to be supported there first,
then implemented in the CLAT daemon or in the DNS64 capable stub resolver. It is
not deployable in userspace applications only, as it would require some operating
system interface to provide applications with the NAT64 prefix learned from the
ND protocol client. This makes it easier for vendors like Google that has complete
control over the whole operating system. However, it makes implementation difficult
for operating systems that have multiple software vendors like Linux. As Linux is
the most used operating system in the small routers segment, deployability would
become more challenging.

The last disadvantage is connected with the non-existence of a proper validation
method. As the integrity and authorization of this option cannot be checked, it
creates security risks to nodes using it. However, as described in the previous
subsection, it does not produce more significant risks than the ND itself, so it should
not be viewed as an unnecessary risk.

Other than that, the RFC8781[66] seems like a viable solution for those clients
able to support it. However, it is not readily usable for applications that would like to
use it without the assistance of the operating system they are running on. An example
of such an application could be Firefox or any other application incorporating its
own DoH client.

78

4 Proposed Solution

In this section, the thesis is describing a solution of NAT64/DNS64 invented by the
author as it is in the process of standardization at IETF in the “v6ops” working
group. It has been presented and discussed at IETF 104 meeting, and it is available
from Tracker[83] with an intended status of Standard track.

4.1 Design Goals

When thinking about a solution, I had to think about achieving a NAT64 detection
with the lowest number of alterations to existing protocols, device implementations,
and how to utilizing as much already present information about a network as possible.
Another important goal was to maintain network security by not introducing new
holes into it and, if possible, patching existing ones. This is the complete list of
design goals:

Goal 1 No new protocol or alteration of an existing one.

Goal 2 Utilize widely supported protocols.

Goal 3 Utilize information already provided by a network.

Goal 4 Must work with foreign DNS.

Goal 5 Must not require DNS64 synthesis on a host.

Goal 6 Must not require prior provisioning.

Goal 7 Must provide secure detection over an insecure channel.

Goal 8 Must be able to run in user-space.

Goal 1 is based on a comment in RFC7050[1] that expanding RA is not feasible.
It is also known that utilizing existing solutions with existing implementation is
easier than inventing a new protocol. If a new protocol was introduced, it would have
to have a reference implementation, would have to be supported by vendors, need
to be deployed by network providers, and require more standardization effort. On
the other hand, using an existing protocol inside its boundaries requires minimum
standardization effort, would be already deployed and supported, and have several
well-tested implementations.

79

This is connected with goal number 2. Protocols in use by the proposed solution
had to be widely deployed protocols only. The more essential to network operation,
the better it is. This could guarantee easier deployment of the chosen solution, even
over existing solutions using less common protocols.

Goal 3 is connected with the certain laziness of network operators and generally
all humans. If the solution utilizes more information already present in a network,
then less work it would take to set up. Then, if it would be easier to deploy, it would
be more likely to be deployed.

To not get into the same problem as the current RFC7050[1] does with DoH[2]
and foreign DNS in general, goal 4 had to be fulfilled. Otherwise, there would be no
point in proposing new solution.

For some client types like mobile phones, desktops, or laptops, goal 5 would not
be needed, as they do have enough resources to do proper DNS64 synthesis, as well
as DNSSEC validation. However, with the emerging market of Internet of Things
(IoT), which introduces resource limited nodes into the network, this goal makes
sense to fulfill.

Goal 6 might be necessary, especially to smaller network operators, which do not
have enough resources to be able to provide provisioning of every connected device
to their network. This means that method could not use any pre-configured lists,
like RFC7050[1] uses.

Goal 7 says that the method had to provide security by design. This means that
method must not expect a secure channel for the transport of required data. Not
every network operator is reading all relevant standards, and by expecting some
prerequisites, like a secure channel or trusted list, the method could easily become
insecure in deployment.

The last goal is connected to the situation when the application running in
user-space wants to run its own DNS64 capable resolver or CLAT. An example of the
first applications would be web browsers running their DoH resolvers. The second
example would be a CLAT daemon running outside of the network stack like clatd
on Linux. Methods not fulfilling this design goal would be harder to implement in
applications. Such implementation would require a new API to transmit detected
prefix to an application that might be platform-specific and require an operating
system vendor to implement it.

4.2 Information Sources

In IPv6, every autoconfiguration client has to support RA, as it provides routing
information – the default gateway. It could also provide a local prefix for IP address
autoconfiguration, flags indicating DHCPv6 use, recursive DNS server addresses, and
a thing called DNS search list. A RA with its Domain Name System Search List
(DNSSL) option could be considered as one of the usable sources, as it would be
implemented in every IPv6 node. The only downside of using a RA is the absence
of security features. There is a secure variant of neighbor discovery, the SeND[80],
which adds some degree of security to the process, but it is not widely deployed for

80

now. But it is important to know that when there is a possibility of sending RA
from one client to another, then a network operator and its clients have a bigger
issue than hijacked DNS64 on their hands.

Another source of information available for detection could be the DNS itself.
It might be strange to use DNS to configure DNS, but it makes sense, as we are
talking about different servers here, and it would not be the first time as RFC7050[1]
is using it also in some sense. However, in contrast to the RFC7050[1], global DNS
tree has to be used; otherwise, goal 4 would not be fulfilled.

Another source, which could provide the required information, could be the
DHCPv6, but as its deployment is limited (especially on Google platforms), it should
be considered only as an optional source at it might not be present in an access
network.

There are also other sources, which are even authoritative like RIR database, but
these are not considered to be used in production, as they do not provide a usable
interface for clients for accessing it for autoconfiguration purposes.

4.3 Node Behavior

In contrast to other methods, this method proposes three stages to the detection
method instead of the usual two. The usual steps would be detection and validation.
An additional step here is called “Information Gathering” because in this step
proposed method does not produce any traffic going out of a node. It is just
processing the information presented to a node by network autoconfiguration or
other protocols and services.

4.3.1 Information Gathering

In this stage, the main goal of a node is to obtain information about a network to
which it has been connected. Information, which is needed, is a list of domain names
used by a network operator. This information is later used in the discovery phase.
Possible sources of such information are:

1. DNSSL from RA,

2. A DHCPv6 options,

3. PTR record for node address,

4. A client hostname.

If a domain has been supplied by the DNSSL, then the information gathering
phase is done by receiving a RA. This way, it directly provides a list of used domains.
This list does not even need to be directly accessible by an application if it is using
a system resolver as it usually appends known local domains after non-FQDN in
queries, and even then an application is capable of detecting NAT64/DNS64 presence.

81

When local domain is learned via DHCPv6 options, options listed in the table
4.1 should be considered. This table is splitted into two sections. The top section
is showing options directly usable to detect local domain. On the other hand, the
bottom section is showing options, which may contain a local domain, but those
should be used with caution, as they are used for the discovery of other services and
may point to third-party services outside of a local domain. This could induce false
positives to the detection process and the ability of such third parties to eavesdrop
on the communication of nodes, which would be acting upon such false positive
detection.

The preferred option for local domain detection would be option 57. This option
has been introduced for the discovery of Location Information Server (LIS) for which
it is providing domain name. However, the domain name can be easily used for other
services as an authoritative source of such information, as RFC5986[84] does not
deny such usage. A certain theoretical advantage might be the ability to receive this
option also from older DHCPv4 via option 213, which has the same format (except
for shorter option code and length). The advantage is only theoretical because with
NAT64 we are not usually talking about dual-stacked clients but rather IPv6 only
clients.

Table 4.1: List of relevant DHCPv6 options [85]
Option code Option code Defined by
24 OPTION DOMAIN LIST RFC3646[86]
39 OPTION CLIENT FQDN RFC4704[87]
57 OPTION V6 ACCESS DOMAIN RFC5986[84]
74 OPTION RDNSS SELECTION RFC6731[88]
118 OPTION F DNS ZONE NAME RFC8156[89]
21 OPTION SIP SERVER D RFC3319
29 OPTION NIS DOMAIN NAME RFC3898
30 OPTION NISP DOMAIN NAME RFC3898
33 OPTION BCMCS SERVER D RFC4280
50 OPTION MIP6 VDINF RFC6610
51 OPTION V6 LOST RFC5223
55 OPTION-IPv6 FQDN-MoS RFC5678
56(3) OPTION NTP SERVER RFC5908
58 OPTION SIP UA CS LIST RFC6011
64 OPTION AFTR NAME RFC6334

Another suitable option would be option number 39. This option is used for
Dynamic DNS (DDNS), when client can signal to DHCPv6 server its domain name
(FQDN or partial) and server is then providing client with its registered FQDN.
From the difference between a client request and servers’ reply or from FQDN itself,
it is possible to get a local domain.

The next possibility would be option 74. This is used for the detection of recursive
DNS servers. From usual Recursive DNS Server (RDNSS) it differs by the ability to

82

state to which domains a RDNSS provides recursive function. So if there is a server,
which is recursive for certain domains indicated by this option, there is a fair chance
that those domains are local and belong to network operators.

Then the last directly usable options are options 24 and 118. Those are essentially
one option, as 118 is send by a fail-over server, not currently an authoritative one,
but otherwise, it carries the same information as option 24. This option also has the
advantage of broader adoption as it has been standardized among the first, and it
has its alternatives in both DHCPv4 and RA autoconfiguration methods.

Other options from table 4.1 are usually carrying domain names of other services,
so there might be a chance that they would fall under the same domain, but as well
they might not. Because of that, their usage for this method is not recommended,
and clients should not ask for them for this purpose in their option request option.

A PTR would be the third option, which node should support. Resolving a PTR
record would be the safest method, as validating a node would have the possibility
of check the whole chain of trust; from a record of its IPv6 address to the root zone,
as the root signing key is known to a node. In order for this method to work, an
operator must provide DNSSEC signed reverse zone with proper delegation, provide
dynamic PTR records to every node, and this zone must have online signing deployed.
It may be seen as too many requirements. However, some e-mail servers require
valid PTR records from their clients to accept messages from them even on IPv6.
This means that at least the requirement of every node having PTR record would be
at least in some networks already fulfilled. The signing of a reverse zone is also a
straightforward process, and online signing is also doable. As a result, an operator
can get a secure and reliable way to detect NAT64/DNS64 over an almost infinite
number of devices that do not have to know any configuration connected to them.
This is the only proposed method that is producing additional DNS overhead as
nodes need to actively ask for PTR record in contrast to other information-gathering
methods that either passively gets required data from other configuration protocols
or in which node is pre-configured.

The last option of getting a domain name is clients FQDN. It is not the last thing
in terms of suitability but rather the probability, as it is safer to presume that client
has not been provisioned rather than to presume all the clients have been provided
with FQDN. Basically, what a node would do is remove the dotted part of its FQDN
and try the rest of it as a domain for detection. It may also continue down toward
the root domain and add those as candidates to a domain list.

4.3.2 Discovery Phase

In a discovery phase node is performing queries for each of the learned domains from
the previous step. A query is constructed by prepending “ nat64. ipv6 ” before the
detected domain and node should be asking for an SRV type of record. In contrast
to RFC7050[1], a node may use any DNS server providing global recursion service,
or a node may perform recursion itself and could ask directly authoritative servers.

In case the detected domain would be “example.net”, the query would ask for
“ nat64. ipv6.example.net IN SRV ”. A node should make its query with “do” bit set

83

$ORIGIN example . net

% NAT64 reco rds
nat64 . ipv6 IN SRV 5 10 9632 nat64−pool . example . net

nat64−pool IN AAAA 2001: db8 : 6 4 : f f 9b : : c000 : aa
nat64−pool IN A 192 . 0 . 2 . 6 4

% DNS64 reco rds − s t a t i n g p r i o r i t i e s
dns64 . t cp IN SRV 5 10 53 dns64 . example . net
dns64 . udp IN SRV 10 10 53 dns64 . example . net
dns64 . t cp IN SRV 20 10 443 dns64 . example . net

dns64 IN AAAA 2001: db8 : : 5 3

Listing 4.1: Example of NAT64/DNS64 records in operator zone

to indicate support of DNSSEC by RFC3225[90]. Example how relevant part of
“example.net” zone file could look like is shown in listing 4.1.

In the listing 4.1 could be seen a few things this method allows to specify. The
first line is merely stating that all non-FQDN names should be appended with the
domain. The interesting part is starting after that. On top of the section commented
as “NAT64 records” is the most important thing in the whole draft. That is a record
a node should ask for. It follows the usual SRV record scheme, so name followed by
SRV class, priority (a lower number means higher priority), weight. The difference
from this scheme is port. As the IPv6 is an L3 protocol that does not have port
numbers, this became an unused field of a record, and so it could be reused for a
different purpose. This purpose would be an indication of prefix lengths as they
cannot be placed elsewhere. So this detection method proposes to optionally use the
port number as the decimal representation of an IPv6 prefix length followed by the
decimal representation of an IPv4 prefix length. In this example it is indicating that
prefix “2001:db8:64:ff9b::/96 ” is translated to single IPv4 address of “192.0.2.64/32 ”.
The method is further proposing that if the port is not used for this indication, it
should be set to zero, and the method from RFC7050[1] of encoding prefix length
should be used instead. An AAAA record for the target specified in an SRV record is
required for this method to function. On the other hand, an A record is an optional
indication for a node to which address traffic would be translated.

In the listing 4.1 could be further seen that it is also providing information about
DNS64 service available to clients. This record is optional for use by clients unable
to perform address synthesis by themselves. Such a client should redirect its queries
for hostnames that returned NODATA responses via usual channels to this address
as it is pointing to a recursive server with DNS64 service for its access network.

There could be multiple occurrences of SRV records for both NAT64 and DNS64.
In this case, it is showing that DNS64 is provided via TCP transport on port 53 with
the highest priority of 5 (the lowest number), then over UDP protocol on the same
port and lastly over DoH on TCP port 443 with the lowest priority. This would
mean that a node should use TCP port 53 for its queries. If it would be unreachable,
it should use UDP protocol, and only if both fail, it should use DoH. It could have
also used the same priority and the same or different weights. This would have split
traffic to different services by ratio specified by those weights.

The DNS64 record is also something that has not been proposed so far. Other
methods are either expecting a client to use DNS64 server provided by a network

84

operator from the beginning or expecting a client to perform address synthesis by
itself. If a client requires this service, it may ask for it the same way as it would for
NAT64 either at the same time or only after the NAT64 detection has been successful
on the same domain.

When a client receives a negative answer to its SRV query (a dot target), it
should stop trying to query this domain tree as such a record indicates that this
service is not provided in a queried domain. This means that if clients detect its
FQDN from a PTR record to be “some.dynamic.client.example.net” end there is
no SRV record for it and also for “dynamic.client.example.net” but there is SRV
record with target being “.” for “client.example.net”. Client then should not ask
further for domains of “example.net”, “net” or “.”. This allows a network provider
to indicate that this service is not provided and a TLD operators to stop a client
from reaching with its queries the root zone so this method would not have a high
impact on producing traffic to the root zone servers.

The same goes for a case where an SRV record has been found. Then rest of the
domain names in the same tree would also be ignored and taken out of the list. This
allows having a more general NAT64 pool as well as pools for specific clients and
differentiating between them by subdomain in a reverse zone. As a node should start
asking for a more specific domain first and just after that asking for less specific, it
should never reach a generic record if there is a more specific one present in the zone.

4.3.3 Validation Phase

Validation is split into two parts. One is the validation of the detection phase, and
the second is operational validation.

Detection phase validation is exclusively done by a DNSSEC validation of signa-
tures. For this reason, the method requires that all domains used for detection must
be signed and keys properly delegated to a parent zone so a client can validate it. If
a zone is not signed or a signature is invalid, then a node must not try to use such a
prefix or server. This is imperative as a DNSSEC is essential to this method security.
A non-validating node, however, may choose to use this method, but careful risk
assessment should be performed before deployment.

Operational validation depends on a node’s requirements. If a node is making
address synthesis by itself, then it does not make any validation out of ordinary
DNSSEC operations.

If it is using a DNS64 server discovered by this method just for queries that
returned NODATA reply through its usual channel, then a node should validate
that server is providing a node only with addresses out of detected prefixes. Server
may also add original A record used for synthesis in additional section together with
corresponding signatures when a node signals support of DNSSEC by a “do” flag
[90]. This way, a node may be able to perform full validation of synthesis process as
it has got signed prefix from detection phase validation and a signed A record with
an IPv4 address that together makes synthesized AAAA record. Even that it would
not be a usual case to have a node capable of full validation of synthesized record
but unable to perform synthesis by itself, it can be useful for a network operator to

85

check on its DNS64 server for a security breach. If a node does not wish to receive
that additional information for full validation, it will not set the “do” bit, and then
that information would not be provided.

In case that a validating node is using discovered DNS64 for all queries, then
it needs to set a “do” bit for every query, and when there is NSEC type record
present in the answer section, together with non-signed AAAA record. A node should
validate the received address in the AAAA record if it is from the detected NAT64
prefix list. If AAAA address outside of detected prefixes, a node should reject such a
record as forged. A validating node may optionally do a full validation of synthesized
record as in the previous case.

A non-validating node using a DNS64 server for every query is technically possible,
but it had to be used with extreme caution as it allows a much larger attack surface
than in a usual deployment without this method. When network topology allows
one node to intercept and inject packets for another node, this method will allow an
attacker to redirect all DNS queries out from its usual destination to an attacker,
victim, or black hole, depending on the type of attack. The implementer must perform
an in-depth risk assessment for a non-validating node to support this method.

Risk assessment for a non-validating node should include security of transport
channel between node and server in terms of packet authentication (and optionally
encryption), the ability of a hypothetical attacker to inspect and inject packet to
node’s traffic. Then a value of transported information had to be considered as there
is a possibility that it could get redirected to an attacker. Lastly, if transported
information is critical for some system, it could get unavailable for some time if an
attacker would be able to redirect a DNS and data traffic.

4.3.4 Interactions with Other Methods

Even if the SRV method had been standardized, there would still be other methods,
and there is no intention to obsolete them. Because of multiple existent methods,
it is essential to produce predictable behavior when multiple methods are used in
conjunction.

The author of this thesis belive that the network administrator should be the
authority that decides which method should be preferred. Even as it is not possible for
the network administrator to choose priorities between other methods, it is possible
to choose the priority of the SRV method in relation to others. The suggested
order of methods is shown in table 4.2 and follows the recommendation published in
RFC8781[66].

Table 4.2: Recommended priorities of NAT64 prefix detection methods
Standard Protocol Priority
RFC8115 DHCPv6 100
RFC7225 PCP 150
RFC8781 RA 200
RFC7050 DNS 250

86

When a node capable of using the SRV method is also capable of NAT64 detection
via other methods, it should run these detection mechanisms and incorporate results
into those provided by the SRV method. The missing priority field should be filled
from table 4.2, and the missing weight field should be set to zero. As a lower priority
field value means a higher priority, the fixed list of methods from the most preferred
to the least is RFC8115[65], RFC7225[74], RFC8781[66], and RFC7050[1].

The order of the latter three is based on the suggestion of the RFC8781[66].
However, the RFC8115[65] has not been listed in this standard. It has been put into
the first place as a result of a comparison between RFC8115[65] and RFC7225[74].
The DHCPv6 method has a higher chance that needed security precautions on the
access devices are in place than in the case of PCP. It is also considered to allow
higher specificity than the PCP method, and it also allows multicast prefixes to be
provided to a client. For those reasons, the DHCPv6-based method should be more
preferred than the PCP-based method. This puts it in the first place.

The position of the SRV method is then chosen by the network administrator.
When the priority of the SRV records is lower than a hundred, the SRV method
would be the most preferred one. If the higher priority number is chosen, the SRV
method could be set as a backup for other, more preferred methods. The network
administrator may even choose to publish multiple SRV records. In such a case,
it is recommended that more client-specific records would have a lower priority
number, and more general records would be published with a higher priority number.
Nevertheless, it is recommended that the priority field of every SRV record published
by the network operator should be less than 250 as the RFC7050[1] should be treated
as a backup solution only as it is without proper provisioning considered to be the
least secure solution.

4.4 Message Flow

In this section, there is shown how this method would work packet-wise in a simplified
version. For full explanation please refer to section Node Behavior.

4.4.1 Detection of a Local Domain via DNSSL

Client connected to a network would send a RS packet. As a reply, it receives a RA
with local domains present in a DNSSL option. Domains are processed and saved
for subsequent use.

Picture 4.1 shows typical IPv6 ICMPv6 autoconfiguration process. Optional
information is shown in italic, information useful for detection is depicted in bold.
Even though a DNSSL option is not mandatory, it may be already included in local
network segments together with information necessary for stateless autoconfiguration
without DHCPv6 (Network Prefix and List of Recursive Resolvers).

87

Figure 4.1: IPv6 autoconfiguration

21 : 40 : 33 . 419601 IP6 (hlim 255 , next−header ICMPv6 (58) payload length : 96)
f e80 : : 2 0 d : b9 f f : f e3b : ad4d > f f 0 2 : : 1 : [icmp6 sum ok] ICMP6,
route r advert isement , l ength 96

hop l im i t 64 , Flags [none] , p r e f medium , route r l i f e t im e 1800 s , r eachab le time 0s ,
r e t r an s time 0 s
p r e f i x i n f o opt ion (3) , l ength 32 (4) : 2a0a : 3 6 4 6 : 2 0 00 : : / 6 4 , Flags [auto] ,

v a l i d time 86400 s , p r e f . time 14400 s
rdnss opt ion (25) , l ength 24 (3) : l i f e t im e 1800 s , addr : dns−anycast . l b c f r e e . net
dns s l opt ion (31) , l ength 24 (3) : l i f e t im e 3600 s , domain (s) : l b c f r e e . net .

Listing 4.2: Captured Router Advertisement packet

4.4.2 Detection of a Local Domain via PTR

Client asks for its FQDN via PTR record in DNS. It receives its FQDN, records it,
and makes a list of records starting with its FQDN and then omitting the first part
ending with a dot. It will then record a result as well and continues this process until
it reaches the root zone. This list is then subsequently used in the discovery phase.

Figure 4.2 depicts how local domain could be obtained from DNS and how the
answer would look like when using synthetic records generated synthrecord module
of the knot resolver.

4.4.3 Detection of a Local Domain via DHCPv6 Options

During its network configuration process, a client specifies options in ORO that it
wants to use for NAT64 discovery (usable options are listed in table 4.1). A DHCPv6
server replies with required options. Domains are then recorded in a domain list for
subsequent use.

88

Figure 4.2: PTR query for node’s FQDN

4.4.4 Discovery Phase

Client asks for every domain a SRV record by prepending “ nat64. ipv6.” for NAT64
and optionally “ dns64. <proto>.” for DNS64. Answers to those queries are then
validated by DNSSEC and grouped into lists of detected NAT64 prefixes and DNS64
servers. If answers to SRV queries did not include AAAA records in additional
section, then subsequent queries are made. Priority and weight of SRV record must
be recorded and associated with detected prefix and/or server as they are used for
selection process.

Figure 4.3: SRV query for NAT64 prefix

Figure 4.3 shows the sequence of messages needed in order to discover a NAT64
prefix via SRV record. This example shows a situation where the AAAA record was
not included in an additional section of the server reply. Figure 4.4 then shows the

89

discovery of DNS64 service on TCP protocol (UDP would differ only in query and
reply data). In this example, a server included AAAA record - shown in brackets. If
it would not, the subsequent query like in figure 4.3 would need to be made. Both of
these examples represent the data shown in listing 4.1.

Figure 4.4: SRV query for DNS64 service

4.4.5 Validation Phase

A client must perform a DNSSEC validation of every DNS query associated with the
detection process if it is capable of it. Further, a client should check if a reply of
DNS64 server matches discovered prefixes. On the other hand, validating node may
not perform full DNSSEC validation on queries apart of the discovery process. There
is no requirement for a node to ask for an IPv4 address, perform address synthesis,
and compare results. However, there might be use-cases in which this process would
make sense, like monitoring the DNS64 service.

4.5 Deployment Scenarios

There are essentially two deployment scenarios concerning the proposed method of
NAT64/DNS64 detection. One is for networks fully controlled by a network operator.
The second is a case of a network with L3 segments controlled by another entity.
This entity may be a customer, member, employee, or someone else, depending on
the type of organization. For this section, such an entity would be called a user.

There are also other aspects by which networks could be classified, like what
resolver clients are using, what version of an internet protocol, or access technology

90

they are using. However, these aspects should not be relevant for the proposed
method as it is aiming for being independent on DNS resolver used by clients or
access technology. Other things those networks would all have in common, like being
IPv6-only or having similar properties so their clients would benefit from NAT64
like networks running 464XLAT[25].

The main difference between these topologies concerning the proposed method
would occur during a local domain detection process. There might be some small
changes to the detection phase, like changing prefixes depending on a node location,
but the core of the process is the same for every topology. Validation could also
differ, but only for a local domain detection phase, as it would be the only part that
would use a different method.

4.5.1 Topology without User-Controlled Routers

In this topology, every L3+ device handling traffic between lines to the Internet
(other networks) and client is under the control of a network operator. This means
that operator is directly assigning addresses and providing other network-related
information to clients. Users have no control over autoconfiguration parameters like
prefix, prefix length, local domain, or resolver provided to other clients by a network.
Depending on autoconfiguration method client may have control over address suffix
(SLAAC) or it may not (DHCPv6).

Other devices connected to a network but not providing L3+ services should not
have an impact on the proposed method, so these devices are not considered when
evaluating used topology. Examples of such devices would be hubs, switches, cables,
antennas, and others that would not create independent L3 network segments.

An example of such networks would be an office, school network, or any organiza-
tion apart of ISP. In these networks, it is not customary to bring your own router,
connect it to a network and then connect your devices after that router of yours.
There might even be a policy that forbids that kind of behavior as it would make it
hard to control a network that would allow it. Long story short, every router which
node would communicate with would be under network operators’ control. Such
topology is shown in figure 4.5.

For this topology, the most convenient method of local domain detection would
be the use of DNSSL option in RA. Reasons for that are easy deployability, all-in-
one packet configuration, wide support among nodes, probability of being already
deployed for other reasons, and no additional traffic is generated by a node for
this method. Disadvantages of this method would be the absence of cryptographic
signatures when not using SeND (which lacks broader support) and the fact that
DNSSL option is not a transitive parameter, so it had to be configured on every router.
A need for configuration of every router could be solved by central management
solutions and a certain probability that it has been already deployed.

If a network that would not have a Bring Your Own Device (BYOD) policy has
only nodes that support DHCPv6 and it is using DHCPv6 for autoconfiguration of
clients, it might consider using one of the options 57, 39, 74 or 24 (from the highest
to lowest preference). Of course, there is a bit too much ifs in this statement. So even

91

Figure 4.5: Example of flat designed network

that a DHCPv6 may be an excellent addition to domain discovery methods, it should
not be used as the only source of such information. It does have the advantage in
the specificity of provided information, especially with option 57, which is the almost
perfect match for what this method is trying to achieve. However, due to a not
hundred percent coverage on IPv6 nodes, it should not be considered the primary
option. Also, it is worth mentioning that DHCPv6 lacks cryptographic signatures,
so a node has no way of knowing that it is communicating with a genuine router.
Same way as with RA, there are mitigation tools available so a client could not
impersonate a server. Usage of such mechanisms is highly recommended.

Option 57, even if it is not explicitly stated in RFC5986[84], should be router
traversable. This means that when added near the root of network topology, it may
be distributed along a tree up to the leaf routers. This has the advantage of easier
deployment when it is supported along the way. Another connected advantage is
when using this option is that it can also be used with a user-controlled router, not
just with this “flat” design.

On the other hand, option 24 should not be considered the first choice, as it is used
by the system stub resolver to allow expanding partial hostnames to FQDNs. This
may be good in this “flat” design network topology, but it may cause a problem if this
option would be made transitive. First of all, a network operator may choose different
domains in different network segments (like based on departments or customers).
Secondly, if there would be a different domain used locally, overriding it with the
upstream domain in option 24 would mean that partial hostnames would no longer
be resolvable. Overriding option 57 would mean just a minor problem, which a user

92

might not even notice. Because of that, option 24 should not be transitive and local
configuration should have higher priority1.

The last available option to detect a local domain would be a PTR record. It is
considered last as it requires dynamic PTR generation as it is not feasible to have
all 299 of /29 records in the zone cached. If a network operator would not have this
already deployed, it might be viewed as unnecessary complex, and then a network
operator might not deploy this method of NAT64/DNS64 detection. Furthermore, as
only one, a PTR record would require additional traffic to be generated from a node,
while in the case of other methods of information gathering phase would not. On
the other hand, this method will work in every case when a node knows its global
address. Because of that, network operators may prefer it over the others. Also, as
mentioned previously, this method is the only one when a node may validate the
answers it gets.

Detection and validation phases would stay the same, so there is no point
describing it here again. To sum up the information phase deployment considerations,
number one would be the use of the RA DNSSL option, followed by the DHCPv6
options (probably in conjunction), and all backed up with a PTR record if everything
else fails. An operator may not choose to deploy all of the suggested methods, but it
should consider them in that order. Also, it should be considered good practice to
support the PTR detection process when dynamic reverse records are generated.

4.5.2 Topology with User-Controlled Routers

In this topology, there are some network segments that are not under the direct
control of a network operator. This is quite typical for a network run by ISP in
which the router/modem on the customer side is owned and maintained by its user.
It is worth mentioning that not all clients must be using this topology, so some of
them could have been connected directly to the provider’s router. In such a case,
combined topology should also be taken into consideration.

Figure 4.6: Example of ISP’s network

In the case of this topology situation entirely differs. As an operator may not
be in control of end router configuration, it would have no control over passing

1There would also be a problem when there would not be any specific configuration of a local
domain, and then the upstream domain would get applied. This could result in leaking local queries
to the global DNS tree, or it could interfere with a default domain name or multicast DNS.

93

DNSSL option to router’s downstream. Even that it is not convenient from a network
operator’s perspective, it might be necessary for a user to use a custom forward
domain in a local network (same as option 24 of DHCPv6).

With DNSSL out of the way, there are two possibilities left for information
gathering. The number one consideration should be a PTR record. Despite being the
most complex method of information gathering phase, it is also the most universal
one and should cross user controlled router just fine and regardless of local forward
domain.

The second option left is DHCPv6 option. From these DHCPv6 options described
previously, number 24 is not usable in this topology, as it would cause the same
problems when it would be made transitive, as a DNSSL option of RA would cause.
Because of that, only directly usable options would be 57, 39, and 74. None of them
is explicitly marked as transitive, but when they would get through a user-controlled
router, they can be used for NAT64/DNS64 detection.

To sum this section up, when an operator is running a network with user-controlled
routers, it must support the PTR record method as it is only one fully guaranteed to
cross a user’s router. What also may and should get cross is option 57 of DHCPv6.
However, it is not guaranteed that a router would understand this option and pass it
to its clients. Furthermore, as written several times now, not every client supports
DHCPv6 even to get other network configurations.

4.6 Comparison with Other Solutions

In this section, I would try to explain what makes this method better than previous
ones considered and standardized by the IETF and why it should have its place
among them.

For evaluation and comparison, I have chosen RFC7051[57], as it is offering a lot
of comparison and the method’s own design goals. Then, currently, the most deployed
method RFC7050[1], RFC7225[74], RFC8115[65], and lastly, this method would be
compared to recently standardized method in the 6man group, the RFC8781[66]
introducing Pref64 option into RA.

4.6.1 Evaluation According to RFC7051

When evaluating against RFC7051[57], it is important to evaluate it both with
respect to issues defined in RFC7051[57] and to other methods described there. For
details on issues and methods, please refer to section 3.1.

Issue number 1 is solved by the detection phase of the proposed method. When
a client receives a reply for NAT64 SRV query, it detects the presence of NAT64 in
the network as well as a prefix used by the network in AAAA record. Comparing
AAAA replies for its usual queries with a detected prefix can distinguish between
the synthesized and authentic record.

Issue number 2 is strongly connected to issue number 1. As a client gets its reply
for the SRV query, it is also provided with an AAAA record. In this record NSP

94

or/and WKP would be provided, so this issue would also be solved.
Issue number 3 would not be solved as the proposed method is DNS-based. It is

not actually that big issue as it was originally, though as any DNS recursive server
would do. Unlike in the case of RFC7050[1], in which a client must use DNS provided
by a network operator. But yes, there might be some devices that could not use this
method as they might not talk DNS.

Issue number 4 is solved mainly by DNS TTL and also by similar values in
methods used by the information-gathering phase.

The last issue, number 5, is inherently solved by the use of SRV records as they
allow to specify multiple prefixes with different priorities and different weights for
load balancing purposes. This way, it allows finer tunning than any other method
previously proposed except for the NAPTR method, described in section 3.1.6, which
allows the same level of policy specification.

4.6.2 Evaluation Based on Design Goals

Goal 1 has been fulfilled as the method is using only standard DNS queries for
standard SRV record and also standardized DNSSEC for validation. The only partial
alteration is the overloading of the port number in NAT64 SRV record. This is,
however, optional for prefix length of /96.

Goal 2 has also been fulfilled. The method is using DNS which is essential for
usual network operations. Other tools used for information gathering consist of also
essential RA and only optionally on not fully deployed DHCPv6.

Goal 3 will be fulfilled if an operator uses one of the methods used for informational
gathering – either the DNSSL option or any of the DHCPv6 options listed in table 4.1.
The same will also apply if an operator uses dynamically generated PTR records.One
of those tools would probably be used by an operator for different use already.

Goal 4 has also been fulfilled as the method is using SRV records in global DNS
tree, not only in the local one. In the information-gathering phase, a node can ask
for its PTR record any DNS recursive resolver, and the SRV record could also be
resolved globally.

When a node is not capable of DNS64 record synthesis, it is free to use the service
of the server provided by the DNS64 SRV record. This approach is new as this
hasn’t been provided by any other solution. Before this, a client would either had
to support DNS64 record synthesis or it would have to use the network operator’s
DNS64 server for every query. This way, goal 5 is also fulfilled.

The method does not need any prior provisioning as validation is made over the
global DNSSEC chain of trust. Goal 6 is fulfilled as well.

Goal 7 is fulfilled as long as one client is not able to change the address of another
client. If that would be the case, then any security of the detection method would be
futile as there could be worst things happening in a network than NAT64 hijacking.
An attacker could then hijack all the traffic, not just NAT64. This goal is then
fulfilled only partially but with a small attack surface available.

Goal 8 is fulfilled. Any application capable of resolving the DNS domain names
is also capable of asking for the SRV record to detect the NAT64 prefix. There is no

95

need for a new API apart from those already present, where no change is needed.

4.6.3 SRV versus RFC7050

Both this proposed solution and the RFC7050[1] share the same delivery platform,
the DNS, so they share some of the common features. For example, both would not
be able to solve issue 3 of RFC7051[57]. This is due to the fact that both are DNS
based, so both need the DNS to function. Another similarity is the network mask
encoding scheme introduced for RFC7050[1] which could also be optionally used;
even then, it is not actually needed.

The main difference between those two is in which DNS recursive server is a
client supposed to ask for all of its queries. In RFC7050[1], a client have to use
DNS recursive servers provided by its network operator. On the other hand, in the
proposed method, a client is free to ask any recursive DNS as long it can detect the
domain for which it should ask. The best way how to illustrate difference between
proposed method and RFC7050[1] would be by evaluating RFC7050[1] by design
goals of proposed method from section 4.1.

The RFC7050[1] conforms with design goal 1 as it is using only standardized
protocols that have been standardized before RFC7050[1] became effective.

It also utilizes only widely supported protocols as it uses only DNS. Because of
that, it conforms with design goal 2.

Goal 3 could also be considered fulfilled as RFC7050[1] does not introduce more
information besides settings done in DNS64 considering prefix in use.

On the other hand, goal 4 is not fulfilled. As it requires a client to use DNS
recursive server provided by a network operator, by introducing foreign DNS this
method would simply stop working. When the NAT64/DNS64 is the only way how
an operator is providing IPv4aaS, then the IPv4 Internet is not accessible to hosts
using foreign DNS.

The RFC7050[1] conforms with goal 5 as it is using a DNS64 on operator’s end.
Goal number 6 is also not fulfilled as the RFC7050[1] requires a device to have

a list of trusted domains. As this list cannot be provided to a device without
provisioning, the whole method needs provisioning to run with the required security.

The RFC7050[1] is not conformant with goal number 7, as it requires a secure
channel to transfer DNS messages. This is also strongly connected to the previous
goal as for forming a secure channel; either underlying technology must provide such
channel of a client had to be provisioned with keys and certificates.

As the RFC7050[1] method is DNS-based, it can also be implemented in the
user-space. However, an implementation should also follow the requirements of the
RFC8880[70], especially when an application is implementing its own stub resolver.
If it is conformant to the newer standard, design goal 8 is fulfilled.

By comparison with the design goals of the proposed method, it is clear that
the RFC7050[1] is not capable of solving issues presented by the proposed method.
As goals 3, 6, and 7 are not fulfilled, the method is not capable of providing as
reliable service as it has been prior to the DoH standardized by RFC8484[2]. This
is caused by non-conformity with design goal 3. Also, because it does not fulfill

96

design goals 6 and 7 and conditions of secure channel and prior provisioning are
not always fulfilled, the method standardized by RFC7050[1] is less secure than the
proposed method, as the RFC7050[1] does not provide alternative means how to
validate received information.

4.6.4 SRV versus RFC7225

These two methods are different in their approach to the NAT64 prefix detection.
The RFC7225[74] requires routers to provide this information upon request through
the PCP protocol. The SRV method uses the DNS to distribute prefix information.
Using protocol dedicated to NAT, the PCP method can have a more straightforward
detection phase inside a client implementation. With the RFC7225[74], all a client
has to do is ask the PCP server specifically for the NAT64 prefix.

In the SRV method, the detection process is far more complex. In fact, in the
SRV method, the client had to do most of the work. Most of that work is associated
with local domain detection. The complexity is mainly caused by the lack of the
current standard for detection of ISP’s domain. If there were only flat networks that
would have their own NAT64 servers and their domain in the DNSSL, the detection
would have been easy. As this is not the case, the detection of the local domain had
to use dynamic reverse record that may require some configuration effort, or it would
have to use a more complex detection method combining other sources.

On the other hand, the SRV method does not require any new features or logic
on the server part. While in the case of RFC7225[74], both clients and routers are
required to support new features connected to it. All routers contacted by clients
had to be configured with NAT64 prefix, while the SRV method had to be configured
only in a single place - the master authoritative DNS server for an operator’s domain.

The RFC7225[74] is based on the PCP protocol that is not widely supported,
while the SRV method uses unmodified DNS protocol, which is one of the most
deployed and essential protocols for the Internet. Some IoT devices might not speak
DNS, but such devices would not benefit from NAT64 anyway. Other devices would
be able to query DNS so that they can utilize the SRV method.

Another difference is in the validation of the detected prefix. The RFC7225[74]
does not provide any means to verify the validity of the detected prefix. The prefix
provided by the SRV method can and should be validated by DNSSEC. When
validated, a client knows that the NAT64 prefix is genuine and has not been modified
during transport.

When comparing the RFC7225[74] with the design goals of the SRV method,
goal 1 is not fulfilled. The RFC7225[74] is an alteration of the PCP protocol, which
might be a new, previously not needed protocol. This is probably the reason why
the RFC7225[74] has not been massively deployed. The connected design goal 2 is
also not fulfilled. The PCP protocol is not widely supported.

Goal 3 is not fulfilled either. The PCP is not utilizing already provided information
to the network. However, as it is provides the NAT64 prefix directly, this goal is not
relevant for method assessment.

The first fulfilled design goal is goal number 4. As this method is not DNS-based,

97

it is not affected by a node using a foreign DNS server. However, the RFC7225[74]
requires either DNS64 synthesis or the CLAT on the host due to the same reasons.
Because of that, design goal 5 is not fulfilled.

Unlike the RFC7050[1], the RFC7225[74] does not require initial provisioning of
the node for this method to work securely. Design goal 6 is therefore fulfilled.

Goal 7 is, however, only partially fulfilled. The RFC7225[74] requires some secure
channel to work properly. There must be some precautions so the PCP traffic cannot
be intercepted and injected. However, there are means how to prevent such attacks
without using secure tunnels between devices.

The PCP method fails in design goal 8. The typical application does not need to
use PCP in its routine operations. However, if an application would need to access
information about the NAT64 prefix, it would need to either implement PCP or the
network stack would need to publish appropriate API.

Overall, the SRV method is more secure than RFC7225[74] as it validates received
information. It is also easily deployable as it does not require the support of any
new feature throughout the network. Only the clients have to be modified. The
RFC7225[74] is easier on client logic and processing if it already supports the PCP
protocol. However, if the NAT64 should be received by an application, not by the
network stack, the SRV method would be easier to integrate as applications are used
to make DNS queries, not PCP queries.

4.6.5 SRV versus RFC8115

As RFC8115[65] also uses a network protocol other than DNS, the comparison result
would be similar to RFC7225[74]. However, the DHCPv6 is usually deployed with
one or more servers constituting a DHCPv6 server cluster and lots of DHCPv6 relays
on customer-facing segments. In the case of RFC8115[65], the relay agent does not
need to understand a new option as unknown options should be transported as they
are according to RFC8987[91]. So any new option does not have to be supported
throughout the network. It is sufficient to be supported only at the server and clients.

Similar to RFC7225[74], the RFC8115[65] has a more simple detection logic on a
client than the SRV method. The DHCPv6 method, on the other hand, requires the
new option to be implemented on the DHCPv6 server, while the SRV method does
not require any changes in the DNS server.

One of the main disadvantages of the RFC8115[65] is that it uses a protocol
intentionally ignored on the Android platform. Because of that, this method cannot
be used there too. The SRV method does not have such limitations as Android
supports DNS.

The situation of the prefix validation is also similar to the PCP method. The
DHCPv6 method does not provide any means of how a client can detect fraudulent
prefixes. The DHCPv6 option does not include signatures that a client could validate.
The security of this method is strictly provided only by the security features of the
access network devices. The SRV method does not depend on the security features
of access network boxes. Instead, by DNSSEC, a client is capable of validating every
received prefix.

98

The assessment results according to the SRV design goals also have similar results
to the PCP method. Goal 1 is not fulfilled as the RFC8115[65] specifies a new option
to the DHCPv6. However, compared to the PCP method, the alteration is limited
only to two devices, the central server and a client.

Goal 2 is also not fulfilled entirely. The DHCPv6 is a widely used protocol on all
platforms but one. But the one platform that is ignoring it is the biggest one in the
mobile segment. This goal is considered not to be fulfilled as the underlying protocol
is not usable to a considerable amount of clients, and this does not seem to change
anytime soon.

Similar to the PCP method, goal 3 does not apply to this method. It provides
the NAT64 prefix directly, so no additional information is necessary.

Goal 4 is fulfilled as this method is also not DNS-based. It does not matter if a
client is using a third-party resolver. For this same reason, a client is forced to make
DNS64 synthesis by itself or use a CLAT when a client uses a foreign DNS resolver.

The RFC8115[65] also does not require before-hand provisioning, so goal 6 is
fulfilled. However, it requires some security precautions on access devices to provide
some secure channel, which makes goal 7 fulfilled only partially.

Similar to the PCP method, goal 8 is also not fulfilled. Applications are not
typically DHCPv6 clients. Because of that, the information transported through the
DHCPv6 protocol is not accessible in user space directly.

Without Google Android, the RFC8115[65] method could become the solution
for NAT64 detection. It is easy to implement, uses the widely available protocol, and
provides multicast support. Because of Google Android, the deployment of DHCPv6
is out of option in cellular networks and could not depend on even in WiFi access
networks. There is also an issue with goal 5 that limits its implementation to the
network stack of the operating systems. Due to these limitations and incorporated
prefix validation, the SRV method seems to be a better alternative.

4.6.6 SRV versus RFC8781

Similar to the previous two methods, this method also does not use the DNS for
transporting the NAT64 prefix information. The biggest advantage of this method
is that it uses a protocol essential for IPv6. Furthermore, it has got functioning
client implementation in Android devices, giving this method the edge over others,
especially in a cellular environment.

The huge disadvantage of this method is in its administrative demands. If an
operator would like to deploy this method, it would have to configure every customer-
facing router with this option, and every router would have to support this option.
This could become unsolvable for some operators as not every router can get the
support of this feature, and router replacement would not be justified only because of
this one feature. To make a matter worse, this feature does not seems to be supported
by router vendors. Even when this method gets supported, it is a matter of years
when firmware update would be distributed to routers, and if router replacement
would be needed, it can take even decades before reasonably new hardware will be
deployed by smaller networks.

99

There is also a significant disadvantage in not properly defined behavior of transit
routers. The RFC8781[66] does not specify how the CPE should handle this option.
If it should be copied to RAs, send by the CPE downstream, alternatively, if a CPE is
required to run CLAT itself. This undefined behavior could result in the method only
working in flat networks with no user-controlled routers. However, it may fail when
there are routers placed between an end device and a provider-controlled router.

The RA method also has a more simple logic of the client part than the SRV
method. In the RA method, it is a simple matter of receiving the RFC8781[66] option
and setting the CLAT or the DNS64 capable stub resolver. However, application
usage would be complicated as there has to be an interface to provide NAT64 prefix
to the application. This method would be hard to implement when there would
be such a need as an application would have to implement the RA client itself, or
the operating system would have to provide an appropriate interface - neither is
probable.

The security concerns connected to the RFC8781[66] method could be considered
marginal as when an attacker can distribute fake RA messages, it is capable of almost
complete network control in IPv6 protocol. The network must be protected against
such attacks, and if it is not, then the RFC8781[66] vulnerabilities are the least
concern of such an operator. So the fact that the SRV method has the reply signed
is an advantage mainly in the theoretical plain.

The comparison with the design goals of the SRV method is slightly better than
in the DHCPv6 method. However, design goal 1 is still not fulfilled as the RA
method defined a new option in the RA packet. This may considerably slow down
its deployment as it will not be supported in routers anytime soon.

What is different from both the previous method (PCP and DHCPv6) is the
assessment result of goal 2. This goal is fully fulfilled as the RA is essential to IPv6,
so it has to be supported by every IPv6-capable device.

Goal 3 is also not applicable to the RFC8781[66] method as it detects the NAT64
prefix directly.

The foreign DNS is also no factor for this method as it is not DNS-based - goal 4
is fulfilled. However, a client has to run either CLAT or DNS64 capable stub resolver,
when using foreign DNS. Goal 5 is therefore not fulfilled.

The RFC8781[66] method does not require prior provisioning as it does not
require establishing a secure tunnel, list of trusted prefixes or domains, nor key
distribution. Goal 6 is fulfilled.

The secure channel has already been covered. The RFC8781[66] method requires
at least RA-guard to mitigate attacks. However, this is the basic security requirement
for IPv6. Goal 7 is fulfilled only partially as the method requires some security
measures in place.

Goal 8 is not fulfilled with this method. An application is not a typical recipient
of the RA packet; the network stack is. If an application wants to receive the detected
NAT64 prefix, it has to somehow receive it from the system. This information is not
directly accessible to user-space applications.

Overall, the RFC8781[66] method seems to be easiest for devices, where the
network stack, CLAT and stub resolver are firmly integrated together and under

100

the control of a single vendor. Such devices could be found mainly in the cellular
segment, and for them, the RA method could be a tempting solution. For that
reason, the cellular networks will probably be among the first that would deploy this
method. For other not so tightly integrated platforms, the RFC8781[66] could be
hard to implement, and probably would prefer some DNS-based method. For those
devices and applications, the SRV method could be a more preferred alternative.

4.7 Security Considerations

The security of the SRV method relies heavily on the security provided by the
DNSSEC. The network operator utilizing this method has to secure at least one of
its forward domains with the DNSSEC, and such domain has to be announced to its
clients, and the reverse domain for addresses used by clients has to be secured too.
Only if both forward and reverse domains are fully secured and securely delegated
can a client be sure that the replies have not been modified.

It is important to note that only DNSSEC validating clients are fully protected
against DNS record modification. The not DNSSEC validating clients are not
protected entirely and should ideally utilize a protocol that provides a secure channel
between a client and its closest validating resolver. Minimization of the distance
between a client and validating resolver would also be advised.

The author’s recommendation would be to deploy at least validating caching
resolver inside the local area network, reducing DNS attack surface outside the
local network. This can be further aided by the usage of DoT against such resolver,
reducing internal threats. The author would not recommend using a third-party
DoH resolver. Even that the security provided by such a solution against the NAT64
detection method would be sufficient, the privacy implication of using a third-party
provider may not be justified.

The remaining attack surface is connected with the address autoconfiguration. If
an attacker could force a client to use its own prefix, a client would ask for a PTR
record under an attacker’s control (attacker has to own some IPv6 address space),
then the AAAA record is also under the attacker’s control. This attack vector is,
however, only theoretical. If an attacker is capable of inserting an RA packet into
the network, it would have complete control over the routing table of a client. In this
situation, there is no point in kidnapping only the network traffic utilizing NAT64
when an attacker can route all the client’s IPv6 traffic.

The situation is somehow similar to the RFC8781[66] method. When the attacker
can insert the fake RA, it does not matter how secure the NAT64 detection method
is. Because of that, any attack vector that needs a fake RA packet to be inserted
should not be viewed as a security issue of the detection method but a security
problem of ND or a particular network. The difference between the RA method
and the SRV method is that in the case of SRV, the attacker needs to have a valid,
securely delegated IPv6 reverse domain for security measures in the SRV method to
fail.

Overall, the SRV method has at least the same level of security as the previous

101

methods. It allows the detection from DNS like RFC7050[1], but unlike RFC7050[1],
it does not depend on provisioning, secure channel, and particular resolver.

Furthermore, the SRV method does not add dependencies on other protocols that
might not be already present in the network, like PCP in the case of RFC7225[74] or
the DHCPv6 in the case of RFC8115[65]. When a new protocol that was not needed
is added to the network, the attack surface against such a network gets bigger. The
SRV method utilizes only the DNS that would be present in most networks.

Lastly, the SRV method allows a client to detect manipulation with the NAT64
prefix, the ability that is not provided by any other method. When using the PTR
record to detect local domain, this verification method would fail only if the attacker
could insert a fake RA and control the appropriate IPv6 zone to distribute arbitrary
prefixes to a client. Other methods do not provide such verification.

4.8 IANA Considerations

The SRV method requires the standardization of one new protocol into the Proto
field of the SRV record and two new services in the Service field.

So far, the SRV records have been used only in conjunction with the L4 transport
protocol. However, the SRV method transports the L3 information (prefix) in the
SRV record. For this reason, a new value has to be allowed in the Proto field. The
suggested value is “ ipv6 ”, as this service is to be provided to IPv6-only clients and
uses IPv6 for transport.

The two new Service field values required for standardization are “ nat64 ” and
the “dns64 ”. The first value is designed to inform a client about the NAT64 prefix
used by the operator and possibly the IPv4 pool in use. The second one is for
signaling DNS64 capable recursive resolvers to a client together with supported
transport protocols and preferences.

Standardizing these values is needed for interoperability of this method across
multiple vendors and the reservation of these names so they cannot be further used
for different purposes.

4.9 Configuration

Configuration for both testing and production deployment consists of three stages.
Two of them are associated as prerequisites and may or may not be already deployed.
Stage one is connected with the security of detection method by DNSSEC. Both
reverse and a forward zone used by a network operator had to be correctly signed so
clients could validate the provided information’s legitimacy.

Stage two, as the second prerequisite, consist of setting so-called synthetic records
and online signing. It is impossible to generate PTR records for the whole address
space of IPv62, so the only possible solution is a synthesis of reverse records online

2Even the smallest network operator would have /48 of IPv6 address space. It means 280

addresses, PTR records, and corresponding signatures. The number of records required would be

102

when asked by a client. This also leads to the need for the online signing of such
synthesized records. If the zone is signed (this is required for this method), any
non-signed record would be considered a fake one.

Stage three is the only actual configuration stage connected with this detection
method for the network meeting prerequisites. If the network has already signed
zones with online signing and working NAT64 gateway, this method can be easily
utilized by adding a single (or optionally multiple) SRV record and its accompanying
AAAA record to an operator zone.

4.9.1 Setting up and Forcing DNSSEC Validation

Setting up DNSSEC is done in several steps. The first step is to generate a crypto-
graphic key to perform either key signing or directly zone signing.

When the DNSSEC was introduced, the predominant cipher was RSA. With
RSA stronger the key, the longer the key and signatures done by it. To minimize the
size of the signed zone file, RSA uses the two keys. A long-lived larger key called
KSK is used to sign shorter and short-lived ZSK. It leads to shorter signatures by
shorter keys, while reasonable security is provided by the regular key rollover of
ZSK. However, today we also have elliptic curve-based ciphers with strong and small
signatures, so KSK and ZSK roles can be combined in a single key.

After the key/keys have been generated, then DNS authoritative server has to
be set to sign the zone with the newly generated key. When this process is finished,
RRSIG type records for every other existent record in the zone would be provided.
These signatures can be verified either by asking the authoritative server for RRSIG
type or in the authoritative server daemon log.

When signing is completed and signatures are valid, it is necessary to publish
the public part of KSK to the parent zone so a trust chain can be established and
a client can then validate record signatures. For a forward zone, this can be done
either by a registrar or by publishing CDS or CDNSKEY records in the zone. It
depends on the top-level domain in which the zone is. For a reverse zone, this can
be done only by publishing in RIR database.

After publishing a public part of the KSK or its hash, the key generated in step
one is considered trustworthy by clients as a trust chain has been established. The
zone is then secured by DNSSEC, all records are signed and trusted, and the zone is
no longer prone to a spoofing attack. The server-side configuration of this stage is
then complete.

On a client side, some operating systems allow to set DNS client to force DNSSEC
validation for every query. This is useful for testing purposes; however, this could
adversely impact the resolvability of some domains. It is up to every system admin-
istrator to decide if fallback to non-secured DNS resolving should be permitted.

Listing 4.3 shows simple configuration of two zones. One forward zone and one
reverse zone. Both zones are signed by the ECDSA P-256 with SHA256 hashes. This
configuration uses single key with combined KSK and ZSK role. Please be aware

enormous, even several orders higher than the largest top-level domain there is.

103

po l i c y :
− id : ecdsa

a lgor i thm : ecdsap256sha256
nsec3 : on
manual : on
zsk−l i f e t im e : 0
ksk−l i f e t im e : 0

template :
− id : s igned

s to rage : ”/ var / l i b /knot”
f i l e : ”%s . zone”
dnssec−po l i c y : ecdsa
dnssec−s i gn ing : on
z on e f i l e−sync : −1
z on e f i l e−load : d i f f e r e n c e
journa l−content : changes

zone :
− domain : example . com

template : s igned

− domain : 8 . b . d . 0 . 1 . 0 . 0 . 2 . ip6 . arpa
template : s igned

Listing 4.3: DNSSEC related configuration of Knot 3.0.3

that even that this configuration is copied from a production server, domains used
in it are changed to documentation domains for security reasons.

4.9.2 Setting up Synthetic Records

As already stated in the method description, the detection method needs every IPv6
host to have a corresponding PTR record to detect the local domain. As stated at
the beginning of this section, it is impossible to make every possible PTR record to
the zone file. Because of that, another approach has to be used for such records. It
is possible to generate records so-called on the fly as queries for those records arrive
at an authoritative name server. This is called synthetic records, and it is available
in some authoritative DNS servers.

With such configuration, there is automatically connected so-called online signing.
As in DNSSEC secured zone, every record has to be signed. Synthetic records are
not physically present in the zone file. They cannot be signed when a server daemon
loads a zone. Because of that, such records must be signed as they are synthesized.

Online signing does have its pros and cons. The advantage of online signing is
not just the ability to sign synthetic records but also in signing negative answers.
Same way as every record in DNSSEC secured domain has to be signed; also, every
negative answer representing the non-existence of any record has to be signed too.
This is done either by NSEC record or by NSEC3 record. Older NSEC records,
together with offline signing, allowed to so-called walk the zone. It stated that there
is no record between the two existing ones. So by querying DNS server for made-up
names, it was possible to obtain the full content of the zone. NSEC3 records have
slowed this down. However, with online signing DNS server can answer any query
for non-existent names without giving any information about surrounding existing
records.

There are also some disadvantages to online signing. The main security disadvan-
tage is that DNS server needs uninterrupted access to unencrypted ZSK. To make
matter even worse, access to unencrypted ZSK is also needed on slave DNS servers

104

po l i c y :
− id : ecdsa−on l i n e

a lgor i thm : ecdsap256sha256
nsec3 : o f f
manual : on
zsk−l i f e t im e : 0
ksk−l i f e t im e : 0

mod−synthrecord :
− id : forward

type : forward
p r e f i x : dynamic−
t t l : 400
network : 2001 : db8 : : / 3 2

− id : r e v e r s e
type : r e v e r s e
p r e f i x : dynamic−
o r i g i n : example . com .
t t l : 400
network : 2001 : db8 : : / 3 2

template :
− id : on l i n e

s to rage : ”/ var / l i b /knot”
f i l e : ”%s . zone”
dnssec−po l i c y : ecdsa−on l i n e
dnssec−s i gn ing : o f f
z o n e f i l e−sync : −1
z on e f i l e−load : d i f f e r e n c e−no−s e r i a l
journa l−content : a l l

zone :
− domain : example . com

template : on l i n e
module : [mod−synthrecord / forward , mod−on l i n e s i g n / ecdsa]

− domain : 8 . b . d . 0 . 1 . 0 . 0 . 2 . ip6 . arpa
template : on l i n e
module : [mod−synthrecord / rever se , mod−on l i n e s i g n / ecdsa]

Listing 4.4: Online signing configuration with synthrecord module (Knot 3.0.3)

(replicas). This might be OK when slave/replica is running inside infrastructure
controlled by an operator; however, it is not recommended to run all authoritative
servers inside a single ASN because when such ASN became unreachable, the domain
hosted in such ASN would become unresolvable. To solve such disaster scenario,
the slave/replica had to be run on different infrastructure. Not every operator has
got two independent networks and hosting platforms. Because of that, they may
outsource it, or they may run it on a virtual private server outside their infrastructure.
Then some third party would have access to ZSK. This is obviously a security risk
that should be addressed at least by faster ZSK rollover or by hosting service domain
or subdomain with online signing only in-house and run a publicly used domain with
offline signing.

Apart from providing ZSK to slave/replica server, there might also be perfor-
mance drawback or risk of DoS attack by depletion of system resources as there is
computation demanding operation and longer answer connected with a short and
cheap query generated by an attacker. This can be to a certain extend mitigated by
forcing TCP transport over to the UDP.

Listing 4.4 shows the configuration of Knot daemon with both online signing as
well as synthetic records. After applying such configuration, the server synthesizes
the PTR record for every address inside the specified address pool and synthesizes
the matching AAAA record. The same thing can also be made for IPv4 addresses.
It is also worth mentioning that a synthesized record is not made for an address that
already has got PTR record. However, AAAA for dynamic address records would

105

nat64 . ipv6 . example . com . IN SRV 5 0 9632 nat64 . example . com .
nat64 . example . com . IN AAAA 64 : f f 9b : :

Listing 4.5: Example of simple SRV record setup

still be made.

4.9.3 Insertion of SRV Records into Zone

The last step of configuring this detection method is to add an SRV record to the
zone. This can be easy as adding a single SRV record and corresponding AAAA
record. It also allows to add a certain level of flexibility by defining more NAT64
prefixes and specifying which part of the network should use which prefixes with
which priority.

Listing 4.5 shows the simplest configuration example. This defines single NAT64
service record which points to single prefix of 64::ff9b::/96 which is WKP. This
way, every device connected to the network with prefix 2001:db8::/32+ would be
given PTR record pointing to domain example.com – this has been configured in
the previous step. Then every device in the network would be provided by NAT64
WKP prefix from a single SRV record. It depends on a recursive server in use if this
information is provided in a single step with an additional AAAA record present or
two queries without additional field.

Figure 4.7: Split configuration with several NAT64 prefixes

In contrast to any of the current solutions, the proposed method allows specifying
multiple NAT64 gateways with associated priorities and weights. Moreover, it even

106

nat64 . ipv6 . example . com . IN SRV 5 0 9632 nat1 . example . com .
nat64 . ipv6 . c l i e n t . example . com . IN SRV 5 0 9632 nat2 . example . com .
nat64 . ipv6 . sub3 . example . com . IN SRV 5 0 9632 nat2 . example . com .

Listing 4.6: Example of records for several NAT64 prefixes

allows specifying multiple sets of such NAT64 gateways for different clients or network
segments.

An example of such configuration is depicted in figure 4.7. It shows two network
segments with prefixes 2001:db8:1000::/48 and 2001:db8:3000::/48. These segments
can represent, for example, geographical areas like city or network segment of a large
customer. The reason for such segmentation might be linked to network topology,
load balancing, or active–active redundancy solution.

Configuration of such example could be done by record written in listing 4.6. In
this listing, there is one general NAT64 record for the whole domain - not matching
any more specific record. This record points to nat1.example.com. NAT64 box. Then
there are two more specific records, the first one for a single client’s computer, the
second one for a whole subnet, and both are pointing to nat2.example.com.. The
only difference between these two records is in DNS server configuration. For a
subnet record to properly work, it is necessary to configure dynamic records to point
into such subdomain. When network segmentation requires it, there would have to
be multiple dynamic record pools configured. Otherwise, there is no difference in
syntax.

This is, of course, solvable also by routing. For example, using anycasting should
be able to provide topology-based load balancing. However, the granularity of such a
solution is more limited, and load balancing is closely connected with topology. With
the proposed solution, it is possible to go down with policy to per client granularity,
independent of network topology or routing.

4.10 Testing

An important part of the proposed solution is also proof of concept code that proves
that ideas hidden under this solution work as intended. Also, what is essential is that
this solution can also be used inside user-space applications, not just on a system
level. As with DoH, we can see the user-space application (browser) implementing
DNS name resolution and bypassing a system stub resolver altogether.

If this trend would continue, then any DNS based detection mechanism must
be implementable inside user-space, because any detection mechanism based on
information not presented by an operating system to user-space could not be used
by an application. An application with its own resolver would be unable to utilize it,
and because of that, it would be unable to access IPv4-only services.

To properly simulate up mentioned constraints, the proof of concept script has
been written in high-level, cross-platform language - Python 3. Also, the script has
been run on a non-privileged user account and in foreground mode. Script uses
a system resolver function. However, due to the fact that the proposed detection

107

while (not detected) and (” . ” in fqdn) :
s r v r e s u l t = s rv r eq . req (’ nat64 . ipv6 . ’ + fqdn)

for r e s u l t in s r v r e s u l t . answers :
p r i o r i t y , weight , port , pool = r e s u l t [’ data ’]
ipv4 = socket . gethostbyname (pool)
ipv6 = socket . g e taddr in fo (pool , None , socket . AF INET6) [0] [4] [0]
print (”NAT64 p r e f i x detected : ” , ipv6 , ”/” , port // 100 ,

” tan s l a t ed in to ” , ipv4 , ”/” , port % 100 ,
” , p r i o r i t y : ” , p r i o r i t y , ” , weight : ” , weight)

detected = True

fqdn = fqdn . s p l i t (” . ” , 1) [1]

Listing 4.7: NAT64 detection loop

mechanism is resolver independent, the same functionality can be implemented by
hooking it to any function capable of resolving SRV and connected A and AAAA
records. This way, it can be implemented in any user-space resolver without hidden
pitfalls.

4.10.1 Testing Script

The complete script is shown in appendix A. In this section, there is a brief description
of the script structure and algorithm. The script has three dependencies, python3 -
the language it is written in, the python3-py3dns that allows it to run DNS queries,
and the socket library to open connections and detect its own address.

In the first stage, the script has to detect an FQDN of the node it is running on.
To achieve this, it calls the socket function getfqdn(). For testing and demonstration
purposes, it also allows entering FQDN manually. Because of this, it is possible to
enter any domain resolvable on the internet, such as testing domains not presented
to the users, so it is possible to publish records without affecting real traffic.

The second stage is the NAT64 prefix detection, and listing 4.7 shows a relevant
part of the code. This code runs through the FQDN in the cycle, and in every step,
it prepends the “ nat64. ipv6.” string and sends an SRV query for the resulting
name. If it receives a result, it prints detected values and finishes the search. If not,
it strips the leftmost part of the FQDN and reruns a cycle.

Please note that this script is for demonstration purposes only, so the real
implementation would not print the result. Instead, a meaningful implementation
would use a result for setting a CLAT, the DNS64 resolver or modifying output
sockets for IPv4 literals.

In the third, final stage, the script will try to detect the DNS64. This part
would be helpful only to clients who are not capable of doing the DNS64 synthesis
by themselves and are not using CLAT. At first, it tries to detect if the DNS64 is
provided by the stub resolver used by the system. This utilizes the RFC7050[1]
method. A client may choose to finish this process here. However, if it chooses
to do so, the security of this method could be downgraded to the security of the
RFC7050[1]. If doing so, the implementations should at least check if the returned
address by the RFC7050[1] method matches at least one of the detected prefixes.
However, this is a matter of the client’s security policy, if it is willing to accept prefix
provided solely on the RFC7050[1], or if it requires confirmation by the SRV record.

108

In the second part of the final stage, the script tries a similar loop as in the NAT64
detection, but this time with a different string prepended before the FQDN. At
first, it tries a UDP by prepending “ dns64. udp.”, then it tries TCP by prepending
“ dns64. tcp.”. For presentation purposes, the resulted are only printed to the console.
Meaningful implementations would use these results to modify DNS stub resolver
settings to resend any AAAA queries that resulted in NODATA reply to the server
detected by the SRV method.

109

5 Conclusion

Due to the slower than suspected adoption of the IPv6, some services are still
reachable only over the IPv4, while services reachable only over the IPv6 are quite
rare. Meaning, the IPv6-only connection without any transition mechanism would
not be viewed as a complete service, while the IPv4-only service would look like to
be unrestricted when viewed by a customer. Therefore, providing access to the IPv4
Internet is, and for some time, will be a necessity for every Internet provider.

One of the solutions would be to run both protocols in parallel, in so-called
Dual-Stack mode, and many operators would start with this architecture. Then
the operator realizes that it is doing everything twice. It has to configure addresses
for both protocols, set up firewalls, traffic shaping, run dynamic routing for both
protocols. Also, when running both protocols, the network operator has to secure
both protocols as the network can be attacked on both protocols. By the L3 view,
the operator runs two separate networks, meaning twice as many administrative
tasks, security threats, and higher operational costs. There comes a time when the
operator starts to think of shutting down the legacy network.

In order for the operator to shut down the IPv4 while keeping the IPv4 Internet
reachable for its clients, a transition mechanism must be used. Today’s two most
used transition mechanisms are the NAT64/DNS64 and the 464XLAT. Both of those
algorithms share a common component on the operator end - the NAT64, called
PLAT in the 464XLAT. For those transition mechanisms to work, the NAT64 prefix
has to be reliably and securely detected.

For years the reliable detection was provided by the RFC7050[1] method. The
method has been designed to be reasonably secure when strict prerequisites have
been met. This method requires a trusted domain list on clients and a secure channel
between a client and resolver. However, there are implementations using this method
that do not follow those requirements making this method a security threat. This
method also requires the DNSSEC to be switched off on the validating client as
this detection method would cause DNSSEC validation to fail. Furthermore, after
the standardization of DoH, clients started to use third-party resolvers, rendering
RFC7050[1] unusable.

The method was later patched by the RFC8880[70], specifying the resolvers that
should be used to resolve WKN and adding yet more prerequisites. Theoretically,
this fixed a problem with the DoH resolver. However, it also added even more
prerequisites to those that have not been honored. Because of its prerequisites,
the RFC7050[1] is easy to implement incorrectly and incredibly hard to implement
correctly. It served well, but it was designed for circumstances that are no longer

110

valid, and therefore it has to be replaced.
In the pursuit of this replacement, three other methods were standardized. All of

those methods use different protocols than the DNS to avoid design limitations of
the RFC7050[1], and all of them need to modify protocols that they are using for
transport, making support of the new feature required on all fronts (client, server,
and transport). Furthermore, two of those methods require a non-essential protocol
to run.

The SRV method presented in this thesis is different. It has been designed not
to require any change to any protocol it uses, so the support of the new feature
is needed only on the client that requires it. It has been designed to use only the
protocol present in most networks (the DNS). It has been designed to work with
foreign DNS and with DNSSEC while not requiring any new functionality to be
moved to the client (DNS64 or CLAT), like in the case of other methods.

The SRV method has also been designed in mind of one not-honored prerequisite of
the RFC7050[1], the prior provisioning. Therefore, the SRV method does not require
that as well as the other not honored prerequisite, the secure channel requirement.
All of that is in the form of easily accessible information presented to an application
by the DNS protocol they are used to run without needing a new platform-specific
API. This way, any application can utilize this method in user-space, without
administrative privileges, without the need to implement a new protocol or use a
new API provided by the operating system or its network stack. As a bonus, this
method can be enabled in the whole operator’s network by a configuration change at
a single point - the master authoritative DNS.

The contribution of this thesis is the replacement of the method that may not
work in current conditions with a new method that is better suited for the current
Internet, more secure while not sacrificing ease of use. This new method fulfills the
design goals presented in this thesis. It provides at least the same level of security of
detection process as previous methods, but in contrast to them, it provides additional
verification of received data by using the DNSSEC - the same extension of the DNS
the original detection method, the RFC7050[1], struggled to cooperate with.

Although this new method does not need any changes to protocols to be used in
any network right away, the standardization of this method was attempted inside the
IETF. After the first attempt for the standardization, the method was improved into
the version presented in this thesis. The first version utilized the DNSSL option of
the RA packet. However, a different approach was taken, as this option could not be
validated, and it is not transitive through the routers. The current version instead
uses the PTR record for the client’s IPv6 address. While this adds the requirement
for the operator to provide dynamic records with an online signing, this method of
the local domain detection can be verified by the DNSSEC, eliminating the loophole
in the detection process, and it is transitive through the network regardless of the
number of routers in the path.

The future work on this topic will focus on finishing the standardization process
of this method and providing an actual implementation of this method in the CLAT
daemon.

111

Bibliography

1. SAVOLAINEN, Teemu; KORHONEN, Jouni; WING, Dan. Discovery of the
IPv6 Prefix Used for IPv6 Address Synthesis [RFC 7050]. RFC Editor, 2013.
Request for Comments, no. 7050. ISSN 2070-1721. Available from DOI: 10.
17487/RFC7050.

2. HOFFMAN, Paul E.; MCMANUS, Patrick. DNS Queries over HTTPS (DoH)
[RFC 8484]. RFC Editor, 2018. Request for Comments, no. 8484. ISSN 2070-
1721. Available from DOI: 10.17487/RFC8484.

3. Information technology – Open Systems Interconnection – Basic Reference
Model: The Besic Model. Geneva, CH, 1994. Standard. International Organiza-
tion for Standardization.

4. Data networks and open system communications, Open systems interconnection
– Model and Notation. Geneva, CH, 1994. Standard. ITU Telecomunication
Standardization Sector.

5. WIKIPEDIA CONTRIBUTORS. OSI model [online]. Wikipedia, The Free
Encyclopedia, 2019 [visited on 2019-05-27]. Available from: https : / / en .

wikipedia.org/w/index.php?title=OSI_model&oldid=898908861.

6. CERF, V.; KAHN, R. A Protocol for Packet Network Intercommunication.
IEEE Transactions on Communications. 1974, vol. 22, no. 5, pp. 637–648. ISSN
0090-6778. Available from DOI: 10.1109/TCOM.1974.1092259.

7. POSTEL, Jon. Comments on Internet Protocol and TCP [Internet Experiment
Note]. RFC Editor, 1977. Available also from: https://www.rfc-editor.org/
ien/ien2.txt. IEN. RFC Editor.

8. CERF, Vint. A Proposed New Internet Header Format [Internet Experiment
Note]. RFC Editor, 1978. Available also from: https://www.rfc-editor.org/
ien/ien26.pdf. IEN. RFC Editor.

9. POSTEL, Jonathan B. Draft Internetwork Protocol Specification Version 2
[Internet Experiment Note]. RFC Editor, 1978. Available also from: https:
//www.rfc-editor.org/ien/ien28.pdf. IEN. RFC Editor.

10. POSTEL, Jonathan B. Internetwork Protocol Specification Version 4 [Internet
Experiment Note]. RFC Editor, 1978. Available also from: https://www.rfc-
editor.org/ien/ien41.pdf. IEN. RFC Editor.

112

http://dx.doi.org/10.17487/RFC7050
http://dx.doi.org/10.17487/RFC7050
http://dx.doi.org/10.17487/RFC8484
https://en.wikipedia.org/w/index.php?title=OSI_model&oldid=898908861
https://en.wikipedia.org/w/index.php?title=OSI_model&oldid=898908861
http://dx.doi.org/10.1109/TCOM.1974.1092259
https://www.rfc-editor.org/ien/ien2.txt
https://www.rfc-editor.org/ien/ien2.txt
https://www.rfc-editor.org/ien/ien26.pdf
https://www.rfc-editor.org/ien/ien26.pdf
https://www.rfc-editor.org/ien/ien28.pdf
https://www.rfc-editor.org/ien/ien28.pdf
https://www.rfc-editor.org/ien/ien41.pdf
https://www.rfc-editor.org/ien/ien41.pdf

11. POSTEL, Jonathan B. Latest Header Formats [Internet Experiment Note].
RFC Editor, 1978. Available also from: https://www.rfc-editor.org/ien/
ien44.pdf. IEN. RFC Editor.

12. POSTEL, Jonathan B. Internetwork Protocol Specification Version 4 [Internet
Experiment Note]. RFC Editor, 1978. Available also from: https://www.rfc-
editor.org/ien/ien54.pdf. IEN. RFC Editor.

13. POSTEL, Jon (ed.). Internet Protocol [RFC 791]. RFC Editor, 1981. Request for
Comments, no. 791. ISSN 2070-1721. Available from DOI: 10.17487/RFC0791.

14. TOUCH, Dr. Joseph D. Updated Specification of the IPv4 ID Field [RFC 6864].
RFC Editor, 2013. Request for Comments, no. 6864. ISSN 2070-1721. Available
from DOI: 10.17487/RFC6864.

15. BELLOVIN, Steven. The Security Flag in the IPv4 Header [RFC 3514]. RFC
Editor, 2003. Request for Comments, no. 3514. ISSN 2070-1721. Available from
DOI: 10.17487/RFC3514.

16. POSTEL, J. Assigned numbers [RFC 790]. RFC Editor, 1981. Request for
Comments, no. 790. ISSN 2070-1721. Available from DOI: 10.17487/RFC0790.

17. DROMS, Ralph. Dynamic Host Configuration Protocol [RFC 1531]. RFC Editor,
1993. Request for Comments, no. 1531. ISSN 2070-1721. Available from DOI:
10.17487/RFC1531.

18. DEERING, Dr. Steve E.; HINDEN, Bob. Internet Protocol, Version 6 (IPv6)
Specification [RFC 8200]. RFC Editor, 2017. Request for Comments, no. 8200.
ISSN 2070-1721. Available from DOI: 10.17487/RFC8200.

19. DEERING, Dr. Steve E.; HINDEN, Bob. IP Version 6 Addressing Architecture
[RFC 4291]. RFC Editor, 2006. Request for Comments, no. 4291. Available
from DOI: 10.17487/RFC4291.

20. Internet Protocol Version 6 Address Space [online]. Los Angeles, US, 2021 [visited
on 2021-01-20]. Available from: https://www.iana.org/assignments/ipv6-
address-space/ipv6-address-space.xhtml.

21. GILLIGAN, Robert E.; NORDMARK, Erik. Basic Transition Mechanisms for
IPv6 Hosts and Routers [RFC 4213]. RFC Editor, 2005. Request for Comments,
no. 4213. Available from DOI: 10.17487/RFC4213.

22. HUITEMA, Christian. Teredo: Tunneling IPv6 over UDP through Network
Address Translations (NATs) [RFC 4380]. RFC Editor, 2006. Request for
Comments, no. 4380. Available from DOI: 10.17487/RFC4380.

23. TOWNSLEY, Mark; TRØAN, Ole. IPv6 Rapid Deployment on IPv4 Infras-
tructures (6rd) – Protocol Specification [RFC 5969]. RFC Editor, 2010. Request
for Comments, no. 5969. Available from DOI: 10.17487/RFC5969.

24. MATTHEWS, Philip; BEIJNUM, Iljitsch van; BAGNULO, Marcelo. Stateful
NAT64: Network Address and Protocol Translation from IPv6 Clients to IPv4
Servers [RFC 6146]. RFC Editor, 2011. Request for Comments, no. 6146. ISSN
2070-1721. Available from DOI: 10.17487/RFC6146.

113

https://www.rfc-editor.org/ien/ien44.pdf
https://www.rfc-editor.org/ien/ien44.pdf
https://www.rfc-editor.org/ien/ien54.pdf
https://www.rfc-editor.org/ien/ien54.pdf
http://dx.doi.org/10.17487/RFC0791
http://dx.doi.org/10.17487/RFC6864
http://dx.doi.org/10.17487/RFC3514
http://dx.doi.org/10.17487/RFC0790
http://dx.doi.org/10.17487/RFC1531
http://dx.doi.org/10.17487/RFC8200
http://dx.doi.org/10.17487/RFC4291
https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
http://dx.doi.org/10.17487/RFC4213
http://dx.doi.org/10.17487/RFC4380
http://dx.doi.org/10.17487/RFC5969
http://dx.doi.org/10.17487/RFC6146

25. MAWATARI, Masataka; KAWASHIMA, Masanobu; BYRNE, Cameron. 464XLAT:
Combination of Stateful and Stateless Translation [RFC 6877]. RFC Editor,
2013. Request for Comments, no. 6877. ISSN 2070-1721. Available from DOI:
10.17487/RFC6877.

26. YU, Jessica; LI, Tony; VARADHAN, Kannan; FULLER, Vince. Supernetting:
an Address Assignment and Aggregation Strategy [RFC 1338]. RFC Editor, 1992.
Request for Comments, no. 1338. Available from DOI: 10.17487/RFC1338.

27. FULLER, Vince; LI, Tony; VARADHAN, Kannan; YU, Jessica. Classless Inter-
Domain Routing (CIDR): an Address Assignment and Aggregation Strategy
[RFC 1519]. RFC Editor, 1993. Request for Comments, no. 1519. Available
from DOI: 10.17487/RFC1519.

28. EGEVANG, Kjeld Borch; FRANCIS, Paul. The IP Network Address Transla-
tor (NAT) [RFC 1631]. RFC Editor, 1994. Request for Comments, no. 1631.
Available from DOI: 10.17487/RFC1631.

29. Available Pool of Unallocated IPv4 Internet Addresses Now Completely Emptied:
The Future Rests with IPv6 [online]. Internet Corporation For Assigned Names
and Numbers, 2011 [visited on 2021-03-16]. Available from: https://itp.cdn.
icann.org/en/files/announcements/release-03feb11-en.pdf.

30. HAIN, Tony L. Architectural Implications of NAT [RFC 2993]. RFC Editor,
2000. Request for Comments, no. 2993. Available from DOI: 10.17487/RFC2993.

31. POSTEL, Jon. NCP/TCP transition plan [RFC 801]. RFC Editor, 1981. Request
for Comments, no. 801. ISSN 2070-1721. Available from DOI: 10.17487/

RFC0801.

32. MOSKOWITZ, Robert; KARRENBERG, Daniel; REKHTER, Yakov; LEAR,
Eliot; GROOT, Geert Jan de. Address Allocation for Private Internets [RFC
1918]. RFC Editor, 1996. Request for Comments, no. 1918. Available from DOI:
10.17487/RFC1918.

33. WEIL, Jason; KUARSINGH, Victor; DONLEY, Chris; LILJENSTOLPE,
Christopher; AZINGER, Marla. IANA-Reserved IPv4 Prefix for Shared Ad-
dress Space [RFC 6598]. RFC Editor, 2012. Request for Comments, no. 6598.
Available from DOI: 10.17487/RFC6598.

34. Jool SIIT & NAT64: Home [online]. Col. Altavista Monterrey, Mexico: NIC
MÉXICO, 2021 [visited on 2021-08-29]. Available from: https://www.jool.
mx/en/index.html.

35. IP Address Sharing in Large Scale Networks: DNS64/NAT64 (BIG-IP v10:
LTM) [online]. Seattle, WA, USA: F5, 2016 [visited on 2021-11-28]. Available
from: https://www.f5.com/services/resources/deployment-guides/ip-
address-sharing-in-large-scale-networks-dns64na.

114

http://dx.doi.org/10.17487/RFC6877
http://dx.doi.org/10.17487/RFC1338
http://dx.doi.org/10.17487/RFC1519
http://dx.doi.org/10.17487/RFC1631
https://itp.cdn.icann.org/en/files/announcements/release-03feb11-en.pdf
https://itp.cdn.icann.org/en/files/announcements/release-03feb11-en.pdf
http://dx.doi.org/10.17487/RFC2993
http://dx.doi.org/10.17487/RFC0801
http://dx.doi.org/10.17487/RFC0801
http://dx.doi.org/10.17487/RFC1918
http://dx.doi.org/10.17487/RFC6598
https://www.jool.mx/en/index.html
https://www.jool.mx/en/index.html
https://www.f5.com/services/resources/deployment-guides/ip-address-sharing-in-large-scale-networks-dns64na
https://www.f5.com/services/resources/deployment-guides/ip-address-sharing-in-large-scale-networks-dns64na

36. ŽORŽ, Jan. Skype On Android Works Over IPv6 On Mobile Networks Using
464XLAT [online]. Reston, VA, USA: Internet Society, 2013 [visited on 2021-
09-11]. Available from: https://www.internetsociety.org/blog/2013/
11/skype-on-android-works-over-ipv6-on-mobile-networks-using-

464xlat/.

37. COLITTI, Lorenzo; CERF, Dr. Vinton G.; CHESHIRE, Stuart; SCHINAZI,
David. Host Address Availability Recommendations [RFC 7934]. RFC Editor,
2016. Request for Comments, no. 7934. Available from DOI: 10.17487/RFC7934.

38. ZHANG, Lixia; THALER, Dave; LEBOVITZ, Gregory M. IAB Thoughts on
IPv6 Network Address Translation [RFC 5902]. RFC Editor, 2010. Request for
Comments, no. 5902. Available from DOI: 10.17487/RFC5902.

39. MOCKAPETRIS, P. Domain names: Concepts and facilities [RFC 882]. RFC
Editor, 1983. Request for Comments, no. 882. ISSN 2070-1721. Available from
DOI: 10.17487/RFC0882.

40. MOCKAPETRIS, P. Domain names: Implementation specification [RFC 883].
RFC Editor, 1983. Request for Comments, no. 883. ISSN 2070-1721. Available
from DOI: 10.17487/RFC0883.

41. DoD Internet host table specification [RFC 952]. RFC Editor, 1985. Request
for Comments, no. 952. Available from DOI: 10.17487/RFC0952.

42. BORTZMEYER, Stéphane. DNS Query Name Minimisation to Improve Privacy
[RFC 7816]. RFC Editor, 2016. Request for Comments, no. 7816. Available
from DOI: 10.17487/RFC7816.

43. Domain Name System (DNS) Parameters [online]. Los Angeles, US, 2021 [visited
on 2021-09-13]. Available from: https://www.iana.org/assignments/dns-
parameters/dns-parameters.xhtml.

44. SURÝ, Ondřej. DNS flag day 2020 [online]. Czech Republic, 2020 [visited on
2021-09-15]. Available from: https://dnsflagday.net/2020/.

45. KRČMÁŘ, Petr; CALETKA, Ondřej. DoesNotWork.eu [online]. Czech Republic:
Krčmář, Caletka, 2016 [visited on 2021-09-26]. Available from: https://www.
doesnotwork.eu/.

46. ROSE, Scott; LARSON, Matt; MASSEY, Dan; AUSTEIN, Rob; ARENDS,
Roy. DNS Security Introduction and Requirements [RFC 4033]. RFC Editor,
2005. Request for Comments, no. 4033. ISSN 2070-1721. Available from DOI:
10.17487/RFC4033.

47. ROSE, Scott; LARSON, Matt; MASSEY, Dan; AUSTEIN, Rob; ARENDS, Roy.
Resource Records for the DNS Security Extensions [RFC 4034]. RFC Editor,
2005. Request for Comments, no. 4034. ISSN 2070-1721. Available from DOI:
10.17487/RFC4034.

115

https://www.internetsociety.org/blog/2013/11/skype-on-android-works-over-ipv6-on-mobile-networks-using-464xlat/
https://www.internetsociety.org/blog/2013/11/skype-on-android-works-over-ipv6-on-mobile-networks-using-464xlat/
https://www.internetsociety.org/blog/2013/11/skype-on-android-works-over-ipv6-on-mobile-networks-using-464xlat/
http://dx.doi.org/10.17487/RFC7934
http://dx.doi.org/10.17487/RFC5902
http://dx.doi.org/10.17487/RFC0882
http://dx.doi.org/10.17487/RFC0883
http://dx.doi.org/10.17487/RFC0952
http://dx.doi.org/10.17487/RFC7816
https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml
https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml
https://dnsflagday.net/2020/
https://www.doesnotwork.eu/
https://www.doesnotwork.eu/
http://dx.doi.org/10.17487/RFC4033
http://dx.doi.org/10.17487/RFC4034

48. ARIYAPPERUMA, Suranjith; MITCHELL, Chris J. Security vulnerabilities in
DNS and DNSSEC. In: The Second International Conference on Availability,
Reliability and Security (ARES’07). 2007, pp. 335–342. Available from DOI:
10.1109/ARES.2007.139.

49. DNS over TLS support in Android P Developer Preview [online]. Mountain View,
CA, USA: Google [visited on 2021-11-28]. Available from: https://security.
googleblog.com/2018/04/dns-over-tls-support-in-android-p.html.

50. DNS Clients [online]. Redmond, Washington, USA: Microsoft Corporation, 2016
[visited on 2021-09-21]. Available from: https://docs.microsoft.com/en-
us/previous-versions/windows/it-pro/windows-server-2012-r2-and-

2012/dn593685(v=ws.11).

51. ICAAN Research: TLD DNSSEC Report [online]. Los Angeles, California,
USA: Internet Corporation For Assigned Names and Numbers, 2019 [visited on
2021-09-21]. Available from: http://stats.research.icann.org/dns/tld_
report/.

52. DNSSEC [online]. Praha: CZ.NIC, 2021 [visited on 2021-09-22]. Available from:
https://stats.adam.nic.cz/dashboard/en/DNSSEC.html.

53. DNSSEC Scoreboard: .com and .net Domain Names with DS Records [online].
Reston, VA, USA: Verisign, 2021 [visited on 2021-09-23]. Available from: https:
/ / www . verisign . com / en _ US / company - information / verisign - labs /

internet-security-tools/dnssec-scoreboard/index.xhtml.

54. DUKHOVNI, Viktor; HARDAKER, Wes. The DNS-Based Authentication of
Named Entities (DANE) Protocol: Updates and Operational Guidance [RFC
7671]. RFC Editor, 2015. Request for Comments, no. 7671. Available from DOI:
10.17487/RFC7671.

55. DNS over HTTPS (aka DoH) [online]. Mountain View, CA, USA: The Chromium
Projects, 2021 [visited on 2021-09-25]. Available from: https://www.chromium.
org/developers/dns-over-https.

56. MATTHEWS, Philip; SULLIVAN, Andrew; BEIJNUM, Iljitsch van; BAG-
NULO, Marcelo. DNS64: DNS Extensions for Network Address Translation
from IPv6 Clients to IPv4 Servers [RFC 6147]. RFC Editor, 2011. Request for
Comments, no. 6147. ISSN 2070-1721. Available from DOI: 10.17487/RFC6147.

57. KORHONEN, Jouni; SAVOLAINEN, Teemu. Analysis of Solution Proposals
for Hosts to Learn NAT64 Prefix [RFC 7051]. RFC Editor, 2013. Request for
Comments, no. 7051. ISSN 2070-1721. Available from DOI: 10.17487/RFC7051.

58. KORHONEN, Jouni; SAVOLAINEN, Teemu. EDNS0 Option for Indicating
AAAA Record Synthesis and Format. Internet Engineering Task Force, 2011.
Available also from: https://datatracker.ietf.org/doc/html/draft-
korhonen-edns0-synthesis-flag-02. Internet-Draft. Internet Engineering
Task Force. Work in Progress.

116

http://dx.doi.org/10.1109/ARES.2007.139
https://security.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html
https://security.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn593685(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn593685(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn593685(v=ws.11)
http://stats.research.icann.org/dns/tld_report/
http://stats.research.icann.org/dns/tld_report/
https://stats.adam.nic.cz/dashboard/en/DNSSEC.html
https://www.verisign.com/en_US/company-information/verisign-labs/internet-security-tools/dnssec-scoreboard/index.xhtml
https://www.verisign.com/en_US/company-information/verisign-labs/internet-security-tools/dnssec-scoreboard/index.xhtml
https://www.verisign.com/en_US/company-information/verisign-labs/internet-security-tools/dnssec-scoreboard/index.xhtml
http://dx.doi.org/10.17487/RFC7671
https://www.chromium.org/developers/dns-over-https
https://www.chromium.org/developers/dns-over-https
http://dx.doi.org/10.17487/RFC6147
http://dx.doi.org/10.17487/RFC7051
https://datatracker.ietf.org/doc/html/draft-korhonen-edns0-synthesis-flag-02
https://datatracker.ietf.org/doc/html/draft-korhonen-edns0-synthesis-flag-02

59. VIXIE, Paul A. Extension Mechanisms for DNS (EDNS0) [RFC 2671]. RFC
Editor, 1999. Request for Comments, no. 2671. ISSN 2070-1721. Available from
DOI: 10.17487/RFC2671.

60. BOUCADAIR, Mohamed; BURGEY, Eric. A64: DNS Resource Record for
IPv4-Embedded IPv6 Address. Internet Engineering Task Force, 2010. Available
also from: https://datatracker.ietf.org/doc/html/draft-boucadair-
behave-dns-a64-02. Internet-Draft. Internet Engineering Task Force. Work
in Progress.

61. WING, Dan. Learning the IPv6 Prefix of a Network’s IPv6/IPv4 Transla-
tor. Internet Engineering Task Force, 2009. Available also from: https://
datatracker.ietf.org/doc/html/draft-wing-behave-learn-prefix-04.
Internet-Draft. Internet Engineering Task Force. Work in Progress.

62. DAIGLE, Leslie. Domain-Based Application Service Location Using URIs and
the Dynamic Delegation Discovery Service (DDDS) [RFC 4848]. RFC Editor,
2007. Request for Comments, no. 4848. ISSN 2070-1721. Available from DOI:
10.17487/RFC4848.

63. IAB; KOCH, Peter; FÄLTSTRÖM, Patrik; AUSTEIN, Rob. Design Choices
When Expanding the DNS [RFC 5507]. RFC Editor, 2009. Request for Com-
ments, no. 5507. ISSN 2070-1721. Available from DOI: 10.17487/RFC5507.

64. BOUCADAIR, Mohamed; LEVIS, Pierre; GRIMAULT, Jean-Luc; SAVOLAINEN,
Teemu; BAJKO, Gabor. Dynamic Host Configuration Protocol (DHCPv6) Op-
tions for Shared IP Addresses Solutions. Internet Engineering Task Force, 2009.
Available also from: https://datatracker.ietf.org/doc/html/draft-
boucadair-dhcpv6-shared-address-option-01. Internet-Draft. Internet
Engineering Task Force. Work in Progress.

65. BOUCADAIR, Mohamed; QIN, Jacni; TSOU, Tina; DENG, Xiaohong. DHCPv6
Option for IPv4-Embedded Multicast and Unicast IPv6 Prefixes [RFC 8115].
RFC Editor, 2017. Request for Comments, no. 8115. ISSN 2070-1721. Available
from DOI: 10.17487/RFC8115.

66. COLITTI, Lorenzo; LINKOVA, Jen. Discovering PREF64 in Router Adver-
tisements [RFC 8781]. RFC Editor, 2020. Request for Comments, no. 8781.
Available from DOI: 10.17487/RFC8781.

67. ROSE, Scott; LARSON, Matt; MASSEY, Dan; AUSTEIN, Rob; ARENDS,
Roy. Protocol Modifications for the DNS Security Extensions [RFC 4035]. RFC
Editor, 2005. Request for Comments, no. 4035. ISSN 2070-1721. Available from
DOI: 10.17487/RFC4035.

68. LI, Xing; BOUCADAIR, Mohamed; HUITEMA, Christian; BAGNULO, Marcelo;
BAO, Congxiao. IPv6 Addressing of IPv4/IPv6 Translators [RFC 6052]. RFC
Editor, 2010. Request for Comments, no. 6052. ISSN 2070-1721. Available from
DOI: 10.17487/RFC6052.

117

http://dx.doi.org/10.17487/RFC2671
https://datatracker.ietf.org/doc/html/draft-boucadair-behave-dns-a64-02
https://datatracker.ietf.org/doc/html/draft-boucadair-behave-dns-a64-02
https://datatracker.ietf.org/doc/html/draft-wing-behave-learn-prefix-04
https://datatracker.ietf.org/doc/html/draft-wing-behave-learn-prefix-04
http://dx.doi.org/10.17487/RFC4848
http://dx.doi.org/10.17487/RFC5507
https://datatracker.ietf.org/doc/html/draft-boucadair-dhcpv6-shared-address-option-01
https://datatracker.ietf.org/doc/html/draft-boucadair-dhcpv6-shared-address-option-01
http://dx.doi.org/10.17487/RFC8115
http://dx.doi.org/10.17487/RFC8781
http://dx.doi.org/10.17487/RFC4035
http://dx.doi.org/10.17487/RFC6052

69. Domain names - implementation and specification [RFC 1035]. RFC Editor,
1987. Request for Comments, no. 1035. ISSN 2070-1721. Available from DOI:
10.17487/RFC1035.

70. CHESHIRE, Stuart; SCHINAZI, David. Special Use Domain Name ’ipv4only.arpa’
[RFC 8880]. RFC Editor, 2020. Request for Comments, no. 8880. Available
from DOI: 10.17487/RFC8880.

71. CARREL, David; EVARTS, Jeff; LIDL, Kurt; MAMAKOS, Louis A.; SIMONE,
Dan; WHEELER, Ross. A Method for Transmitting PPP Over Ethernet (PP-
PoE) [RFC 2516]. RFC Editor, 1999. Request for Comments, no. 2516. ISSN
2070-1721. Available from DOI: 10.17487/RFC2516.

72. IEEE Standard for Local and metropolitan area networks–Port-Based Network
Access Control. IEEE Std 802.1X-2010 (Revision of IEEE Std 802.1X-2004).
2010, pp. 1–205. Available from DOI: 10.1109/IEEESTD.2010.5409813.

73. VOLLBRECHT, John; CARLSON, James D.; BLUNK, Larry; PH.D., Dr. Bernard
D. Aboba; LEVKOWETZ, Henrik. Extensible Authentication Protocol (EAP)
[RFC 3748]. RFC Editor, 2004. Request for Comments, no. 3748. ISSN 2070-
1721. Available from DOI: 10.17487/RFC3748.

74. BOUCADAIR, Mohamed. Discovering NAT64 IPv6 Prefixes Using the Port
Control Protocol (PCP) [RFC 7225]. RFC Editor, 2014. Request for Comments,
no. 7225. ISSN 2070-1721. Available from DOI: 10.17487/RFC7225.

75. WING, Dan; CHESHIRE, Stuart; BOUCADAIR, Mohamed; PENNO, Reinaldo;
SELKIRK, Paul. Port Control Protocol (PCP) [RFC 6887]. RFC Editor, 2013.
Request for Comments, no. 6887. ISSN 2070-1721. Available from DOI: 10.
17487/RFC6887.

76. Port Control Protocol: Adaptive Services Interfaces User Guide for Routing
Devices [online]. Sunnyvale, CA, USA: Juniper Networks, 2021 [visited on
2021-10-01]. Available from: https://www.juniper.net/documentation/
us/en/software/junos/interfaces-adaptive-services/topics/topic-

map/port-control-protocol.html.

77. MARTINEZ, Jordi Palet; LIU, Hans M.-H.; KAWASHIMA, Masanobu. Re-
quirements for IPv6 Customer Edge Routers to Support IPv4-as-a-Service [RFC
8585]. RFC Editor, 2019. Request for Comments, no. 8585. Available from DOI:
10.17487/RFC8585.

78. MRUGALSKI, Tomek; SIODELSKI, Marcin; VOLZ, Bernie; YOURTCHENKO,
Andrew; RICHARDSON, Michael; JIANG, Sheng; LEMON, Ted; WINTERS,
Timothy. Dynamic Host Configuration Protocol for IPv6 (DHCPv6) [RFC
8415]. RFC Editor, 2018. Request for Comments, no. 8415. Available from DOI:
10.17487/RFC8415.

79. GONT, Fernando. Implementation Advice for IPv6 Router Advertisement Guard
(RA-Guard) [RFC 7113]. RFC Editor, 2014. Request for Comments, no. 7113.
Available from DOI: 10.17487/RFC7113.

118

http://dx.doi.org/10.17487/RFC1035
http://dx.doi.org/10.17487/RFC8880
http://dx.doi.org/10.17487/RFC2516
http://dx.doi.org/10.1109/IEEESTD.2010.5409813
http://dx.doi.org/10.17487/RFC3748
http://dx.doi.org/10.17487/RFC7225
http://dx.doi.org/10.17487/RFC6887
http://dx.doi.org/10.17487/RFC6887
https://www.juniper.net/documentation/us/en/software/junos/interfaces-adaptive-services/topics/topic-map/port-control-protocol.html
https://www.juniper.net/documentation/us/en/software/junos/interfaces-adaptive-services/topics/topic-map/port-control-protocol.html
https://www.juniper.net/documentation/us/en/software/junos/interfaces-adaptive-services/topics/topic-map/port-control-protocol.html
http://dx.doi.org/10.17487/RFC8585
http://dx.doi.org/10.17487/RFC8415
http://dx.doi.org/10.17487/RFC7113

80. KEMPF, James; ARKKO, Jari; ZILL, Brian; NIKANDER, Pekka. SEcure
Neighbor Discovery (SEND) [RFC 3971]. RFC Editor, 2005. Request for Com-
ments, no. 3971. ISSN 2070-1721. Available from DOI: 10.17487/RFC3971.

81. ALSADEH, Ahmad; MEINEL, Christoph. Secure Neighbor Discovery: Review,
Challenges, Perspectives, and Recommendations. Security & Privacy, IEEE.
2012, vol. 10, pp. 26–34. Available from DOI: 10.1109/MSP.2012.27.

82. COLITTI, Lorenzo. Listen for pref64 RA attributes in IpClientLinkObserver. [on-
line]. Mountain View, CA, USA: Google, 2020 [visited on 2021-10-06]. Available
from: https://cs.android.com/android/_/android/platform/packages/
modules/NetworkStack/+/70d7ffa59f1f4ac242d8409143108466025102c7.

83. HUNEK, Martin. NAT64/DNS64 detection via SRV Records. Internet Engi-
neering Task Force, 2021. Available also from: https://datatracker.ietf.
org/doc/html/draft-hunek-v6ops-nat64-srv-00. Internet-Draft. Internet
Engineering Task Force. Work in Progress.

84. THOMSON, Martin; WINTERBOTTOM, James. Discovering the Local Lo-
cation Information Server (LIS) [RFC 5986]. RFC Editor, 2010. Request for
Comments, no. 5986. ISSN 2070-1721. Available from DOI: 10.17487/RFC5986.

85. Dynamic Host Configuration Protocol for IPv6 (DHCPv6) [online]. Los Angeles,
US, 2019 [visited on 2019-06-18]. Available from: https://www.iana.org/
assignments/dhcpv6-parameters/dhcpv6-parameters.xhtml.

86. DROMS, Ralph. DNS Configuration options for Dynamic Host Configuration
Protocol for IPv6 (DHCPv6) [RFC 3646]. RFC Editor, 2003. Request for
Comments, no. 3646. ISSN 2070-1721. Available from DOI: 10.17487/RFC3646.

87. VOLZ, Bernie. The Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
Client Fully Qualified Domain Name (FQDN) Option [RFC 4704]. RFC Editor,
2006. Request for Comments, no. 4704. ISSN 2070-1721. Available from DOI:
10.17487/RFC4704.

88. SAVOLAINEN, Teemu; KATO, Jun-ya; LEMON, Ted. Improved Recursive
DNS Server Selection for Multi-Interfaced Nodes [RFC 6731]. RFC Editor,
2012. Request for Comments, no. 6731. ISSN 2070-1721. Available from DOI:
10.17487/RFC6731.

89. MRUGALSKI, Tomek; KINNEAR, Kim. DHCPv6 Failover Protocol [RFC
8156]. RFC Editor, 2017. Request for Comments, no. 8156. ISSN 2070-1721.
Available from DOI: 10.17487/RFC8156.

90. CONRAD, David R. Indicating Resolver Support of DNSSEC [RFC 3225]. RFC
Editor, 2001. Request for Comments, no. 3225. ISSN 2070-1721. Available from
DOI: 10.17487/RFC3225.

91. FARRER, Ian; KOTTAPALLI, Naveen; HUNEK, Martin; PATTERSON, Richard.
DHCPv6 Prefix Delegating Relay Requirements [RFC 8987]. RFC Editor, 2021.
Request for Comments, no. 8987. Available from DOI: 10.17487/RFC8987.

119

http://dx.doi.org/10.17487/RFC3971
http://dx.doi.org/10.1109/MSP.2012.27
https://cs.android.com/android/_/android/platform/packages/modules/NetworkStack/+/70d7ffa59f1f4ac242d8409143108466025102c7
https://cs.android.com/android/_/android/platform/packages/modules/NetworkStack/+/70d7ffa59f1f4ac242d8409143108466025102c7
https://datatracker.ietf.org/doc/html/draft-hunek-v6ops-nat64-srv-00
https://datatracker.ietf.org/doc/html/draft-hunek-v6ops-nat64-srv-00
http://dx.doi.org/10.17487/RFC5986
https://www.iana.org/assignments/dhcpv6-parameters/dhcpv6-parameters.xhtml
https://www.iana.org/assignments/dhcpv6-parameters/dhcpv6-parameters.xhtml
http://dx.doi.org/10.17487/RFC3646
http://dx.doi.org/10.17487/RFC4704
http://dx.doi.org/10.17487/RFC6731
http://dx.doi.org/10.17487/RFC8156
http://dx.doi.org/10.17487/RFC3225
http://dx.doi.org/10.17487/RFC8987

A Testing Script

#!/ b in / python3

pre−req : python3 , python3−py3dns , s o c k e t

import socket
import DNS

auto = input (”Auto−detec t l o c a l domain? [y/n] : ”)

i f auto == ’y ’ :
fqdn = socket . get fqdn ()
hostname = socket . gethostname ()
ip = socket . gethostbyname (hostname)

print (”=========================”)
print (”Getting host in format ion : ”)
print (”−−−−−−−−−−−−−−−−−−−−−−−−−”)
print (”FQDN =” , fqdn)
print (”Hostname =” , hostname)
print (”IP =” , ip)

e l i f auto == ’n ’ :
fqdn = input (”FQDN: ”)
print (”FQDN =” , fqdn)

else :
qu i t ()

print (”=========================”)
print (”Detect ing NAT64 via SRV: ”)
print (”−−−−−−−−−−−−−−−−−−−−−−−−−”)

detected = False
dns64 = False
fqdn bcp = fqdn

DNS. ParseResolvConf ()
s r v r eq = DNS. Request (qtype = ’ srv ’)

while (not detected) and (” . ” in fqdn) :
print (”Reso lv ing : ” + ’ nat64 . ipv6 . ’ + fqdn + ” . . . ”)
s r v r e s u l t = s rv r eq . req (’ nat64 . ipv6 . ’ + fqdn)

for r e s u l t in s r v r e s u l t . answers :
p r i o r i t y , weight , port , pool = r e s u l t [’ data ’]
ipv4 = socket . gethostbyname (pool)
ipv6 = socket . g e taddr in fo (pool , None , socket . AF INET6) [0] [4] [0]
print (”NAT64 p r e f i x detected : ” , ipv6 , ”/” , port // 100 ,

” tan s l a t ed in to ” , ipv4 , ”/” , port % 100 ,
” , p r i o r i t y : ” , p r i o r i t y , ” , weight : ” , weight)

detected = True

fqdn = fqdn . s p l i t (” . ” , 1) [1]

print (”−−−−−−−−−−−−−−−−−−−−−−−−−”)
fqdn = fqdn bcp

Listing A.1: Testing script in Python3 - NAT64 detection

120

i f detected :
print (”NAT64 detected ! ”)

print (”=========================”)
print (”Detect ing DNS64 via RFC7050 : ”)
print (”−−−−−−−−−−−−−−−−−−−−−−−−−”)
try :

r f c7050 = socket . g e taddr in f o (” ipv4only . arpa” , None , socket . AF INET6) [0] [4] [0]
dns64 = True

except :
print (”DNS64 not provided by DNS r e s o l v e r ”)
dns64 = False

print (”=========================”)
print (”Detect ing DNS64 via SRV: ”)
print (”−−−−−−−−−−−−−−−−−−−−−−−−−”)

dns64 udp = False
dns64 tcp = False

while (not dns64 udp) and (” . ” in fqdn) :
print (”Reso lv ing : ” + ’ dns64 . udp . ’ + fqdn + ” . . . ”)
s r v r e s u l t = s rv r eq . req (’ dns64 . udp . ’ + fqdn)

for r e s u l t in s r v r e s u l t . answers :
p r i o r i t y , weight , port , pool = r e s u l t [’ data ’]
ipv6 = socket . g e taddr in fo (pool , None , socket . AF INET6) [0] [4] [0]
print (”DNS64 detected : ” , ipv6 , ” at UDP port : ” , port ,

” , p r i o r i t y : ” , p r i o r i t y , ” , weight : ” , weight)
dns64 udp = True

fqdn = fqdn . s p l i t (” . ” , 1) [1]

fqdn = fqdn bcp

while (not dns64 tcp) and (” . ” in fqdn) :
print (”Reso lv ing : ” + ’ dns64 . t cp . ’ + fqdn + ” . . . ”)
s r v r e s u l t = s rv r eq . req (’ dns64 . t cp . ’ + fqdn)

for r e s u l t in s r v r e s u l t . answers :
p r i o r i t y , weight , port , pool = r e s u l t [’ data ’]
ipv6 = socket . g e taddr in fo (pool , None , socket . AF INET6) [0] [4] [0]
print (”DNS64 detected : ” , ipv6 , ” at TCP port : ” , port ,

” , p r i o r i t y : ” , p r i o r i t y , ” , weight : ” , weight)
dns64 tcp = True

fqdn = fqdn . s p l i t (” . ” , 1) [1]

dns64 = dns64 udp or dns64 tcp

print (”−−−−−−−−−−−−−−−−−−−−−−−−−”)
i f dns64 :

print (”DNS64 detected ! ”)
else :

print (”DNS64 not detected ! ”)
print (”=========================”)

else :
print (”No NAT64 p r e f i x detected . ”)

Listing A.2: Testing script in Python3 - DNS64 detection

121

	Introduction
	Theoretical Background
	ISO/OSI Model
	Definitions of OSI Model Layers
	Overlapping of Layers in Protocols

	IP
	IPv4
	IPv6
	IPv4 and IPv6 Interoperability Issues
	Reasons for Migration Towards IPv6

	NAT
	NAT44
	NAT64
	NAT66

	DNS
	DNS Record Types
	DNS Protocol
	DNS64

	DNSSEC
	DNSSEC Deployment

	DNS over HTTPS
	DNS64 and DoH Interoperability Issues
	DNS64 and DNSSEC Interoperability Issues

	Current Solutions
	Evaluation of Solutions
	Issues According to RFC7051
	DNS Query for a Well-Known Name
	EDNS0 Option
	EDNS0 Flags
	DNS Resource Record for IPv4-Embedded IPv6 Address
	Detection Using U-NAPTR or TXT Records
	Detection Using DHCPv6
	Detection Using Router Advertisements
	Detection Using Application-Layer Protocols
	Detection Using Access-Technology-Specific Methods
	Issues not Covered by RFC7051

	RFC7050
	Node Behavior
	Validation of Detected Prefix
	Connectivity Checks
	Message Flow
	Security Implications
	Why RFC7050 Would not Work Now?

	RFC7225
	Principle of Operation
	Security
	Why RFC7225 is not the Solution?

	RFC8115 DHCPv6 Option
	Principle of Operation
	Security
	Is the RFC8115 the Solution?

	RFC8781 Pref64 Option
	Principle of Operation
	Security
	Pros and Cons

	Proposed Solution
	Design Goals
	Information Sources
	Node Behavior
	Information Gathering
	Discovery Phase
	Validation Phase
	Interactions with Other Methods

	Message Flow
	DNSSL
	PTR
	DHCPv6
	Discovery Phase
	Validation Phase

	Deployment Scenarios
	Topology without User-Controlled Routers
	Topology with User-Controlled Routers

	Comparison with Other Solutions
	Evaluation According to RFC7051
	Evaluation Based on Design Goals
	SRV versus RFC7050
	SRV versus RFC7225
	SRV versus RFC8115
	SRV versus RFC8781

	Security Considerations
	IANA Considerations
	Configuration
	Setting up and Forcing DNSSEC Validation
	Setting up Synthetic Records
	Insertion of SRV Records into Zone

	Testing
	Testing Script

	Conclusion
	Appendix
	Testing Script

