3,433 research outputs found

    Information Security Using DNA Sequences

    Get PDF
       يعد أمن المعلومات من المواضيع المهمة، ويرجع ذلك أساسًا إلى النمو الهائل في استخدام الإنترنت على مدى السنوات القليلة الماضية. نتيجة لهذا النمو، كانت هناك حالات وصول غير مصرح به، والتي تم تقليلها بفضل "استخدام مجموعة من بروتوكولات الاتصال الآمن، مثل التشفير وإخفاء البيانات". باستخدام القدرات الجزيئية الحيوية للحمض النووي، ازداد استخدام الحمض النووي كناقل للتشفير وإخفاء البيانات في السنوات الأخيرة. أثار إدراك أن الحمض النووي قد يعمل كوسيط نقل أثار هذه الحركة. في هذه الدراسة، نفحص أولاً ونلخص بإيجاز تطور نظام ترميز الحمض النووي الحالي. بعد ذلك، يتم تصنيف الطرق العديدة التي تم بها استخدام الحمض النووي لتحسين تقنيات التشفير. تمت مناقشة مزايا وعيوب هذه الخوارزميات وأحدث التطورات في تقنيات التشفير القائم على الحمض النووي. أخيرًا، نقدم أفكارنا حول المستقبل المحتمل لخوارزميات التشفير القائمة على الحمض النووي.Information security is a significant cause for concern, mainly because of the explosive growth in internet usage over the last few years. Due to this growth, there have been occurrences of unauthorized access, which have been reduced thanks to “using a range of secure communication protocols, such as encryption and data concealment”. Using DNA's bio-molecular capabilities, the usage of DNA as a carrier for encryption and data concealing has increased in recent years. The realization that DNA may function as a transport medium sparked this movement. In this study, we first examine and briefly outline the evolution of the present DNA coding system. After that, the several ways DNA has been used to enhance encryption techniques are categorized. The benefits and drawbacks of these algorithms and the most recent advancements in DNA-based encryption techniques are discussed. Finally, we provide our thoughts on the potential future of DNA-based encryption algorithms. &nbsp

    JPEG steganography with particle swarm optimization accelerated by AVX

    Get PDF
    Digital steganography aims at hiding secret messages in digital data transmitted over insecure channels. The JPEG format is prevalent in digital communication, and images are often used as cover objects in digital steganography. Optimization methods can improve the properties of images with embedded secret but introduce additional computational complexity to their processing. AVX instructions available in modern CPUs are, in this work, used to accelerate data parallel operations that are part of image steganography with advanced optimizations.Web of Science328art. no. e544

    Crossovers between epigenesis and epigenetics. A multicenter approach to the history of epigenetics (1901-1975)

    Get PDF
    The origin of epigenetics has been traditionally traced back to Conrad Hal Waddington's foundational work in 1940s. The aim of the present paper is to reveal a hidden history of epigenetics, by means of a multicenter approach. Our analysis shows that genetics and embryology in early XX century--far from being non-communicating vessels--shared similar questions, as epitomized by Thomas Hunt Morgan's works. Such questions were rooted in the theory of epigenesis and set the scene for the development of epigenetics. Since the 1950s, the contribution of key scientists (Mary Lyon and Eduardo Scarano), as well as the discussions at the international conference of Gif-sur-Yvette (1957) paved the way for three fundamental shifts of focus: 1. From the whole embryo to the gene; 2. From the gene to the complex extranuclear processes of development; 3. From cytoplasmic inheritance to the epigenetics mechanisms

    A Review on Biometric Encryption System in Cloud Computing

    Get PDF
    This Review paper is about the security of bio metric templates in cloud databases. Biometrics is proved to be the best authentication method. However, the main concern is the security of the biometric template, the process to extract and stored in the database within the same database along with many other. Many techniques and methods have already been proposed to secure templates, but everything comes with its pros and cons, this paper provides a critical overview of these issues and solutions

    A Survey on Comparisons of Cryptographic Algorithms Using Certain Parameters in WSN

    Get PDF
    The Wireless Sensor Networks (WSNs) have spread its roots in almost every application. Owing to their scattered nature of sensor nodes, they are more prone to attacks. There are certain applications e.g. military, where sensor data’s confidentiality requirement during transmission is essential. Cryptography has a vital role for achieving security in WSNs.WSN has resource constraints like memory size, processing speed and energy consumption which bounds the applicability of existing cryptographic algorithms for WSN. Any good security algorithms has higher energy consumption by the nodes, so it’s a need to choose most energy-efficient cryptographic encryption algorithms for WSNs. This paper surveys different asymmetric algorithms such as RSA, Diffie-Hellman, DSA, ECC, hybrid and DNA cryptography. These algorithms are compared based on their key size, strength, weakness, attacks and possible countermeasures in the form of table

    Jiā

    Get PDF
    This body of work 家(Jia) explores the domestic violence that is prevalent in the typical Chinese family and the complex family relationship that are a result of this trauma. 家 is a multimedia site-specific installation comprises of video, sculpture, collage and photographic images. Traumatic memories, the beautifully unbearable experiences, have inspired this artwork from both a personal and cultural perspective. In this work I am examining, and displaying for the audience, the effects of abuse and the trauma that is a result, how it is manifested, and how it transforms an individual and a family’s identity

    Systematizing Genome Privacy Research: A Privacy-Enhancing Technologies Perspective

    Full text link
    Rapid advances in human genomics are enabling researchers to gain a better understanding of the role of the genome in our health and well-being, stimulating hope for more effective and cost efficient healthcare. However, this also prompts a number of security and privacy concerns stemming from the distinctive characteristics of genomic data. To address them, a new research community has emerged and produced a large number of publications and initiatives. In this paper, we rely on a structured methodology to contextualize and provide a critical analysis of the current knowledge on privacy-enhancing technologies used for testing, storing, and sharing genomic data, using a representative sample of the work published in the past decade. We identify and discuss limitations, technical challenges, and issues faced by the community, focusing in particular on those that are inherently tied to the nature of the problem and are harder for the community alone to address. Finally, we report on the importance and difficulty of the identified challenges based on an online survey of genome data privacy expertsComment: To appear in the Proceedings on Privacy Enhancing Technologies (PoPETs), Vol. 2019, Issue

    DNA Cryptography and Deep Learning using Genetic Algorithm with NW algorithm for Key Generation

    Get PDF
    Cryptography is not only a science of applying complex mathematics and logic to design strong methods to hide data called as encryption, but also to retrieve the original data back, called decryption. The purpose of cryptography is to transmit a message between a sender and receiver such that an eavesdropper is unable to comprehend it. To accomplish this, not only we need a strong algorithm, but a strong key and a strong concept for encryption and decryption process. We have introduced a concept of DNA Deep Learning Cryptography which is defined as a technique of concealing data in terms of DNA sequence and deep learning. In the cryptographic technique, each alphabet of a letter is converted into a different combination of the four bases, namely; Adenine (A), Cytosine (C), Guanine (G) and Thymine (T), which make up the human deoxyribonucleic acid (DNA). Actual implementations with the DNA don’t exceed laboratory level and are expensive. To bring DNA computing on a digital level, easy and effective algorithms are proposed in this paper. In proposed work we have introduced firstly, a method and its implementation for key generation based on the theory of natural selection using Genetic Algorithm with Needleman-Wunsch (NW) algorithm and Secondly, a method for implementation of encryption and decryption based on DNA computing using biological operations Transcription, Translation, DNA Sequencing and Deep Learning.</p
    corecore