5,503 research outputs found

    Experimental investigation of the impact of optical injection on vital parameters of a gain-switched pulse source

    Get PDF
    An analysis of optical injection on a gain-switched distributed feedback (DFB) laser and its impact on pulse parameters that influence the performance of the pulse source in high-speed optical communication systems is presented in this paper. A range of 10 GHz in detuning and 5 dB in injected power has been experimentally identified to attain pulses, from an optically injected gain-switched DFB laser, with durations below 10 ps and pedestal suppression higher than 35 dB. These pulse features are associated with a side mode suppression ratio of about 30 dB and a timing jitter of less than 1 ps. This demonstrates the feasibility of using optical injection in conjunction with appropriate pulse compression schemes for developing an optimized and cost-efficient pulse source, based on a gain-switched DFB laser, for high-speed photonic systems

    Fiber Laser for Phase-Sensitive Optical Time-Domain Reflectometry

    Get PDF
    We have designed a new fiber laser configuration with an injection-locked DFB laser applicable for phase-sensitive optical time-domain reflectometry. A low-loss fiber optical ring resonator (FORR) is used as a high finesse filter for the self-injection locking of the DFB (IL-DFB) laser. By varying the FORR fidelity, we have compared the DFB laser locking with FORR operating in the under-coupled, critically coupled, and over-coupled regimes. The critical coupling provides better frequency locking and superior narrowing of the laser linewidth. We have demonstrated that the locked DFB laser generates a single-frequency radiation with a linewidth less than 2.5 kHz if the FORR operates in the critically coupled regime. We have employed new IL-DFB laser configuration operating in the critical coupling regime for detection and localization of the perturbations in phase-sensitive OTDR system. The locked DFB laser with a narrow linewidth provides reliable long-distance monitoring of the perturbations measured through the moving differential processing algorithm. The IL-DFB laser delivers accurate localization of the vibrations with a frequency as low as ~50 Hz at a distance of 9270 m providing the same signal-to-noise ratio that is achievable with an expensive ultra-narrow linewidth OEwaves laser (OE4020–155000-PA-00)

    Room temperature InGaAs/InP distributed feedback laser directly grown on silicon

    Get PDF
    We report an optically pumped room-temperature O-band DFB laser, based on the buffer-less epitaxial growth of high quality InGaAs/InP waveguides directly on silicon wafer

    Laterally-Coupled Dual-Grating Distributed Feedback Lasers for Generating Mode-Beat Terahertz Signals

    Get PDF
    We present a laterally-coupled AlGaInAs/InP DFB laser emitting two longitudinal modes simultaneously within the same cavity and integrated with EAM. A stable 0.82 THz beating signal was observed over a wide range of bias parameters

    155-ÎŒm distributed feedback laser monolithically integrated with amplifier array

    Get PDF
    We present a laterally coupled 1.55-ÎŒm distributed feedback laser monolithically integrated with multistage multimode interferences and semiconductor optical amplifiers, using low-bias currents and providing an output power of ∌100  mW with a quasi-single spatial-mode far-field pattern and low divergence angle of 3.5° in the horizontal direction. The fabrication techniques are based on side-wall gratings and quantum-well intermixing and offer a simple, flexible, and low cost alternative to conventional methods

    Monolithic quantum-dot distributed feedback laser array on silicon

    Get PDF
    Electrically-pumped lasers directly grown on silicon are key devices interfacing silicon microelectronics and photonics. We report here, for the first time, an electrically-pumped, room-temperature, continuous-wave (CW) and single-mode distributed feedback (DFB) laser array fabricated in InAs/GaAs quantum-dot (QD) gain material epitaxially grown on silicon. CW threshold currents as low as 12 mA and single-mode side mode suppression ratios (SMSRs) as high as 50 dB have been achieved from individual devices in the array. The laser array, compatible with state-of-the-art coarse wavelength division multiplexing (CWDM) systems, has a well-aligned channel spacing of 20 0.2 nm and exhibits a record wavelength coverage range of 100 nm, the full span of the O-band. These results indicate that, for the first time, the performance of lasers epitaxially grown on silicon is elevated to a point approaching real-world CWDM applications, demonstrating the great potential of this technology

    Room Temperature InP DFB Laser Array Directly Grown on (001) Silicon

    Full text link
    Fully exploiting the silicon photonics platform requires a fundamentally new approach to realize high-performance laser sources that can be integrated directly using wafer-scale fabrication methods. Direct band gap III-V semiconductors allow efficient light generation but the large mismatch in lattice constant, thermal expansion and crystal polarity makes their epitaxial growth directly on silicon extremely complex. Here, using a selective area growth technique in confined regions, we surpass this fundamental limit and demonstrate an optically pumped InP-based distributed feedback (DFB) laser array grown on (001)-Silicon operating at room temperature and suitable for wavelength-division-multiplexing applications. The novel epitaxial technology suppresses threading dislocations and anti-phase boundaries to a less than 20nm thick layer not affecting the device performance. Using an in-plane laser cavity defined by standard top-down lithographic patterning together with a high yield and high uniformity provides scalability and a straightforward path towards cost-effective co-integration with photonic circuits and III-V FINFET logic
    • 

    corecore