75 research outputs found

    Fault Ride-Through Power Electronic Topologies for Hybrid Energy Storage Systems

    Get PDF
    This work presents a fault ride-through control scheme for a non-isolated power topology used in a hybrid energy storage system designed for DC microgrids. The hybrid system is formed by a lithium-ion battery bank and a supercapacitor module, both coordinated to achieve a high-energy and high-power combined storage system. This hybrid system is connected to a DC bus that manages the power flow of the microgrid. The power topology under consideration is based on the buck-boost bidirectional converter, and it is controlled through a bespoke modulation scheme to obtain low losses at nominal operation. The operation of the proposed control scheme during a DC bus short-circuit failure is shown, as well as a modification to the standard control to achieve fault ride-through capability once the fault is over. The proposed control provides a protection to the energy storage systems and the converter itself during the DC bus short-circuit fault. The operation of the converter is developed theoretically, and it has been verified through both simulations and experimental validation on a built prototype

    A multi-modular second life hybrid battery energy storage system for utility grid applications

    Get PDF
    The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications

    Recent Advances of Wind-Solar Hybrid Renewable Energy Systems for Power Generation: A Review

    Get PDF
    A hybrid renewable energy source (HRES) consists of two or more renewable energy sources, such as wind turbines and photovoltaic systems, utilized together to provide increased system efficiency and improved stability in energy supply to a certain degree. The objective of this study is to present a comprehensive review of wind-solar HRES from the perspectives of power architectures, mathematical modeling, power electronic converter topologies, and design optimization algorithms. Since the uncertainty of HRES can be reduced further by including an energy storage system, this paper presents several hybrid energy storage system coupling technologies, highlighting their major advantages and disadvantages. Various HRES power converters and control strategies from the state-of-the-art have been discussed. Different types of energy source combinations, modeling, power converter architectures, sizing, and optimization techniques used in the existing HRES are reviewed in this work, which intends to serve as a comprehensive reference for researchers, engineers, and policymakers in this field. This article also discusses the technical challenges associated with HRES as well as the scope of future advances and research on HRES

    A novel converter station structure for improving multi-terminal HVDC system resiliency against AC and DC faults

    Get PDF
    In an effort to minimize the power disruption between a dc grid and ac grids that host power converters during ac and dc network faults, this paper proposes a novel converter station structure to improve ac and dc fault ride-through performance of the multi-terminal HVDC grid. The proposed structure consists of two independent ac and dc interfacing circuits, which are a half-bridge modular multilevel converter and a cascaded H-bridge (CHB) based energy storage system. Taking the advantages of high controllability and flexibility of the independent CHB converter and ease of integrating energy modules, a decoupled power relationship between the ac and dc sides is achieved, which is important for enhancing ac and dc fault performance. Operation of the proposed converter station under normal conditions and during ac and dc faults is explained, with the control system presented. Simulation validation of the proposed structure on a three-terminal HVDC grid confirms the enhanced performance, including the continuous operation during ac and dc faults with negligible power transfer disruption

    A comprehensive review on modular multilevel converters, submodule topologies, and modulation techniques

    Get PDF
    The concept of the modular multilevel converter (MLC) has been raising interest in research in order to improve their performance and applicability. The potential of an MLC is enormous, with a great focus on medium- and high-voltage applications, such as solar photovoltaic and wind farms, electrified railway systems, or power distribution systems. This concept makes it possible to overcome the limitation of the semiconductors blocking voltages, presenting advantageous characteristics. However, the complexity of implementation and control presents added challenges. Thus, this paper aims to contribute with a critical and comparative analysis of the state-of-the-art aspects of this concept in order to maximize its potential. In this paper, different power electronics converter topologies that can be integrated into the MLC concept are presented, highlighting the advantages and disadvantages of each topology. Nevertheless, different modulation techniques used in an MLC are also presented and analyzed. Computational simulations of all the modulation techniques under analysis were developed, based on four cascaded full-bridge topologies. Considering the simulation results, a comparative analysis was possible to make regarding the symmetry of the synthesized waveforms, the harmonic content, and the power distribution in each submodule constituting the MLC.This work has been supported by FCT—Fundação para a Ciência e Tecnologia, within the R&D Units Project Scope UIDB/00319/2020. Mr. Luis A. M. Barros is supported by the doctoral scholarship PD/BD/143006/2018, granted by the Portuguese FCT foundation

    Hourly Dispatching Wind-Solar Hybrid Power System with Battery-Supercapacitor Hybrid Energy Storage

    Get PDF
    This dissertation demonstrates a dispatching scheme of wind-solar hybrid power system (WSHPS) for a specific dispatching horizon for an entire day utilizing a hybrid energy storage system (HESS) configured by batteries and supercapacitors. Here, wind speed and solar irradiance are predicted one hour ahead of time using a multilayer perceptron Artificial Neural Network (ANN), which exhibits satisfactory performance with good convergence mapping between input and target output data. Furthermore, multiple state of charge (SOC) controllers as a function of energy storage system (ESS) SOC are developed to accurately estimate the grid reference power (PGrid,ref) for each dispatching period. A low pass filter (LPF) is employed to decouple the power between a battery and a supercapacitor (SC), and the cost optimization of the HESS is computed based on the time constant of the LPF through extensive simulations. Besides, the optimum value of depth of discharge for ESS considering both cycling and calendar expenses has been investigated to optimize the life cycle cost of the ESS, which is vital for minimizing the cost of a dispatchable wind-solar power scheme. Finally, the proposed ESS control algorithm is verified by conducting control hardware-in-the loop (CHIL) experiments in a real-time digital simulator (RTDS) platform

    Delta STATCOM with partially rated energy storage for intended provision of ancillary services

    Get PDF
    This thesis presents research on two distinct areas, where the work carried out in the first half highlights the challenges posed by the declining system inertia in the future power systems and the potential capability of the energy storage systems in bridging the gap, supporting a safe and reliable operation. A comparison of various energy storage technologies based on their specific energy, specific power, response time, life-cycle, efficiency, cost and further correlating these characteristics to the timescale requirements of frequency and RoCoF services showed that supercapacitors (SC) and Li-ion batteries present the most suitable candidates. Results of a network stability study showed that for a power system rated at 2940 MVA with a high RES contribution of 1688 MVA, equating to 57% of the energy mix, during a power imbalance of 200 MW, an ESS designed to provide emulated inertia response (EIR) in isolation required a power and energy rating of 39.54 MW and 0.0365 MWh respectively. Similarly, providing primary frequency response (PFR) on its own required a power and energy rating of 114.52 MW and 2.14 MWh respectively. ESS providing these services in isolation was not able to maintain all the frequency operating limits and similar results were also seen in the case of the recently introduced Dynamic Containment service. However, with the introduction of a combined response capability, a significantly improved performance, comparable to that of the synchronous generators was observed. In order to maintain the RoCoF and the statutory frequency limit of 0.5 Hz/s and ±0.5 Hz respectively, an ESS must be able to respond with a delay time of no more than 0.2 seconds and be able to ramp up to full response within 0.3 seconds (0.5 seconds from the start of contingency) for a frequency deviation of ±0.5 Hz. The second half of the thesis focused on investigating the current state-of-the-art power conversion system topologies, with the objective of identifying a suitable topology for interfacing ESSs to the grid at MV level. A delta-connected Modular Multilevel STATCOM with partially rated storage (PRS-STATCOM) is proposed, capable of providing both reactive and active power support. The purpose is to provide short-term energy storage enabled grid support services such as inertial and frequency response, either alongside or temporarily instead of standard STATCOM voltage support. The topology proposed here contains two types of sub-modules (SM) in each phase-leg: standard sub-modules (STD-SMs) and energy storage element sub-modules (ESE-SMs) with a DC-DC interface converter between the SM capacitor and the ESE. A control structure has been developed that allows energy transfer between the SM capacitor and the ESE, resulting in an active power exchange between the converter and the grid. A 3rd harmonic current injection into the converter waveforms was used to increase the amount of power that can be extracted from the ESE-SMs and so reduce the required ESE-SMs fraction in each phase-leg. Simulation results demonstrate that for three selected active power ratings, 1 pu, 2/3 pu, & 1/3 pu, the fraction of SMs that need to be converted to ESE-SMs are only 69%, 59% & 38%. Thus, the proposed topology is effective in adding real power capability to a STATCOM without a large increase in equipment cost. Furthermore, modifying the initially proposed topology with the use of Silicon Carbide (SiC) switching devices and interleaved DC-DC interface converter with inverse coupled inductors resulted in similar efficiencies when operated in STATCOM mode.Open Acces

    High step up DC-DC converter topology for PV systems and electric vehicles

    Get PDF
    This thesis presents new high step-up DC-DC converters for photovoltaic and electric vehicle applications. An asymmetric flyback-forward DC-DC converter is proposed for the PV system controlled by the MPPT algorithm. The second converter is a modular switched-capacitor DC-DC converter, it has the capability to operate with transistor and capacitor open-circuit faults in every module. The results from simulations and tests of the asymmetric DC-DC converters have suggested that the proposed converter has a 5% to 10% voltage gain ratio increased to the symmetric structures among 100W – 300W power (such as [3]) range while maintaining efficiency of 89%-93% when input voltage is in the range of 25 – 30 V. they also indicated that the softswitching technique has been achieved, which significantly reduce the power loss by 1.7%, which exceeds the same topology of the proposed converter without the softswitching technique. Moreover, the converters can maintain rated outputs under main transistor open circuit fault situation or capacitor open circuit faults. The simulation and test results of the proposed modularized switched-capacitor DC-DC converters indicate that the proposed converter has the potential of extension, it can be embedded with infinite module in simulation results, however, during experiment. The sign open circuit fault to the transistors and capacitors would have low impact to the proposed converters, only the current ripple on the input source would increase around 25% for 4-module switched-capacitor DC-DC converters. The developed converters can be applied to many applications where DC-DC voltage conversion is alighted. In addition to PVs and EVs. Since they can ride through some electrical faults in the devices, the developed converter will have economic implications to improve the system efficiency and reliability

    Advanced power converters for railway traction systems

    Get PDF
    This thesis presents a new traction drive suitable for fuel-cell powered light rail vehicles based on a multilevel cascade converter with full-bridge cells. The converter provides dc-ac power conversion in a single stage, while compensating for the variation of fuel cell terminal voltage with load power. The proposed converter can replace the conventional combination of dc-dc converter, as it benefits from having a multilevel ac voltage waveform and much smaller power inductors, compared to conventional solutions. The converter numerical and analytical models are derived showing that the converter can be modelled as a cascaded boost converter and 3-phase inverter. The design methodology for the energy storage capacitors and power inductors is presented, showing that inductance is reduced at a quadratic rate with the addition of more sub-modules, while total converter capacitance remains constant. A simulation of a full-scale traction drive in a fuel cell tram demonstrates that the proposed converter is a viable solution for light rail applications. The concept of a boost modular cascaded converter is fully validated through a bespoke laboratory prototype driving a small induction machine. The experimental inverter achieves operation from standstill, with full motor torque, to field weakening with constant power, boosting a 50V dc supply to 200V peak line-to-line voltage
    • …
    corecore