Advanced power converters for railway traction systems

Abstract

This thesis presents a new traction drive suitable for fuel-cell powered light rail vehicles based on a multilevel cascade converter with full-bridge cells. The converter provides dc-ac power conversion in a single stage, while compensating for the variation of fuel cell terminal voltage with load power. The proposed converter can replace the conventional combination of dc-dc converter, as it benefits from having a multilevel ac voltage waveform and much smaller power inductors, compared to conventional solutions. The converter numerical and analytical models are derived showing that the converter can be modelled as a cascaded boost converter and 3-phase inverter. The design methodology for the energy storage capacitors and power inductors is presented, showing that inductance is reduced at a quadratic rate with the addition of more sub-modules, while total converter capacitance remains constant. A simulation of a full-scale traction drive in a fuel cell tram demonstrates that the proposed converter is a viable solution for light rail applications. The concept of a boost modular cascaded converter is fully validated through a bespoke laboratory prototype driving a small induction machine. The experimental inverter achieves operation from standstill, with full motor torque, to field weakening with constant power, boosting a 50V dc supply to 200V peak line-to-line voltage

    Similar works