28 research outputs found

    A Parallel Distributed Strategy for Arraying a Scattered Robot Swarm

    Full text link
    We consider the problem of organizing a scattered group of nn robots in two-dimensional space, with geometric maximum distance DD between robots. The communication graph of the swarm is connected, but there is no central authority for organizing it. We want to arrange them into a sorted and equally-spaced array between the robots with lowest and highest label, while maintaining a connected communication network. In this paper, we describe a distributed method to accomplish these goals, without using central control, while also keeping time, travel distance and communication cost at a minimum. We proceed in a number of stages (leader election, initial path construction, subtree contraction, geometric straightening, and distributed sorting), none of which requires a central authority, but still accomplishes best possible parallelization. The overall arraying is performed in O(n)O(n) time, O(n2)O(n^2) individual messages, and O(nD)O(nD) travel distance. Implementation of the sorting and navigation use communication messages of fixed size, and are a practical solution for large populations of low-cost robots

    Biallelic VARS variants cause developmental encephalopathy with microcephaly that is recapitulated in vars knockout zebrafish

    Get PDF
    Aminoacyl tRNA synthetases (ARSs) link specific amino acids with their cognate transfer RNAs in a critical early step of protein translation. Mutations in ARSs have emerged as a cause of recessive, often complex neurological disease traits. Here we report an allelic series consisting of seven novel and two previously reported biallelic variants in valyl-tRNA synthetase (VARS) in ten patients with a developmental encephalopathy with microcephaly, often associated with early-onset epilepsy. In silico, in vitro, and yeast complementation assays demonstrate that the underlying pathomechanism of these mutations is most likely a loss of protein function. Zebrafish modeling accurately recapitulated some of the key neurological disease traits. These results provide both genetic and biological insights into neurodevelopmental disease and pave the way for further in-depth research on ARS related recessive disorders and precision therapies

    Secreted Akkermansia muciniphila threonyl-tRNA synthetase functions to monitor and modulate immune homeostasis

    Get PDF
    Commensal bacteria are critically involved in the establishment of tolerance against inflammatory challenges, the molecular mechanisms of which are just being uncovered. All kingdoms of life produce aminoacyl-tRNA synthetases (ARSs). Thus far, the non-translational roles of ARSs have largely been reported in eukaryotes. Here, we report that the threonyl-tRNA synthetase (AmTARS) of the gut-associated bacterium Akkermansia muciniphila is secreted and functions to monitor and modulate immune homeostasis. Secreted AmTARS triggers M2 macrophage polarization and orchestrates the production of anti-inflammatory IL-10 via its unique, evolutionary-acquired regions, which mediates specific interactions with TLR2. This interaction activates the MAPK and PI3K/AKT signaling pathways, which converge on CREB, leading to an efficient production of IL-10 and suppression of the central inflammatory mediator NF-κB. AmTARS restores IL-10-positive macrophages, increases IL-10 levels in the serum, and attenuates the pathological effects in colitis mice. Thus, commensal tRNA synthetases can act as intrinsic mediators that maintain homeostasis. © 2023 The Author(s)ope

    Modeling and Control of a Quadrotor UAV Equipped With a Flexible Arm in Vertical Plane

    Get PDF
    In the field of unmanned aerial vehicles (UAVs), aerial manipulations are receiving considerable attention because of their potential application to tasks such as pick and place, detection, and inspection. However, short flight endurance times and concerns about the safety to surroundings during interacting heavily limit the expansion of aerial manipulations in real implementations. To overcome these challenges, this paper focuses on a system in which a quadrotor UAV is equipped with a lightweight and flexible arm. Based on the infinite-dimensional dynamics, the mathematic model of system is described by a hybrid partial differential equation-ordinary differential equation (PDE-ODE). An easily implementable controller is derived from a Lyapunov functional construction related to the energy of the system. The proposed controller ensures global Lyapunov stability for nonlinear system and local asymptotic stability for the linearized system. Further, it is shown that the proposed controller realizes stable motion of the aerial manipulator as well as vibration control of the flexible arm. Finally, numerical simulations are conducted to investigate the validity of the proposed controller

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Adaptive foraging for simulated and real robotic swarms: The dynamical response threshold approach

    Get PDF
    Developing self-organised swarm systems capable of adapting to environmental changes as well as to dynamic situations is a complex challenge. An efficient labour division model, with the ability to regulate the distribution of work among swarm robots, is an important element of this kind of system. This paper extends the popular response threshold model and proposes a new adaptive response threshold model (ARTM). Experiments were carried out in simulation and in real-robot scenarios with the aim of studying the performance of this new adaptive model. Results presented in this paper verify that the extended approach improves on the adaptability of previous systems. For example, by reducing collision duration among robots in foraging missions, our approach helps small swarms of robots to adapt more efficiently to changing environments, thus increasing their self-sustainability (survival rate). Finally, we propose a minimal version of ARTM, which is derived from the conclusions drawn through real-robot and simulation results

    Art and Engineering Inspired by Swarm Robotics

    Get PDF
    Swarm robotics has the potential to combine the power of the hive with the sensibility of the individual to solve non-traditional problems in mechanical, industrial, and architectural engineering and to develop exquisite art beyond the ken of most contemporary painters, sculptors, and architects. The goal of this thesis is to apply swarm robotics to the sublime and the quotidian to achieve this synergy between art and engineering. The potential applications of collective behaviors, manipulation, and self-assembly are quite extensive. We will concentrate our research on three topics: fractals, stability analysis, and building an enhanced multi-robot simulator. Self-assembly of swarm robots into fractal shapes can be used both for artistic purposes (fractal sculptures) and in engineering applications (fractal antennas). Stability analysis studies whether distributed swarm algorithms are stable and robust either to sensing or to numerical errors, and tries to provide solutions to avoid unstable robot configurations. Our enhanced multi-robot simulator supports this research by providing real-time simulations with customized parameters, and can become as well a platform for educating a new generation of artists and engineers. The goal of this thesis is to use techniques inspired by swarm robotics to develop a computational framework accessible to and suitable for both artists and engineers. The scope we have in mind for art and engineering is unlimited. Modern museums, stadium roofs, dams, solar power plants, radio telescopes, star networks, fractal sculptures, fractal antennas, fractal floral arrangements, smooth metallic railroad tracks, temporary utilitarian enclosures, permanent modern architectural designs, guard structures, op art, and communication networks can all be built from the bodies of the swarm

    Recent Advances and Future Trends in Fermented and Functional Foods

    Get PDF
    Health and wellness are among the core segments of quickly-changing consumer goods, with ever-increasing health consciousness among consumers around the globe. Functional foods and beverages, formulated from natural ingredients with targeted physiological functions, are at the heart of research and development in the food industry. The application of modern biotechnology methods in the food and agricultural industry is expected to alleviate hunger today and help avoid mass starvation in the future. Modern food biotechnology has in recent years been transforming existing methods of food production and preparation far beyond the traditional scope. Currently, at the global level, food biotechnological research has focused on traditional process optimization (starter culture development, enzymology, fermentation), food safety and quality, nutritional quality improvement, functional foods, and food preservation (improving shelf life). The fermentation of substrates considered for human consumption has been applied for centuries as a process that enhances shelf life, sensory properties, and nutritional value. Special emphasis has also been given to newly growing concepts, such as functional foods and probiotics. The application of biotechnology in the food sciences has led to an increase in food production and has enhanced the quality and safety of food
    corecore