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ABSTRACT

Art and Engineering Inspired by Swarm Robotics

by

Yu Zhou

Swarm robotics has the potential to combine the power of the hive with the sen-

sibility of the individual to solve non-traditional problems in mechanical, industrial,

and architectural engineering and to develop exquisite art beyond the ken of most

contemporary painters, sculptors, and architects. The goal of this thesis is to apply

swarm robotics to the sublime and the quotidian to achieve this synergy between art

and engineering.

The potential applications of collective behaviors, manipulation, and self-assembly

are quite extensive. We will concentrate our research on three topics: fractals, stabil-

ity analysis, and building an enhanced multi-robot simulator. Self-assembly of swarm

robots into fractal shapes can be used both for artistic purposes (fractal sculptures)

and in engineering applications (fractal antennas). Stability analysis studies whether

distributed swarm algorithms are stable and robust either to sensing or to numerical

errors, and tries to provide solutions to avoid unstable robot configurations. Our

enhanced multi-robot simulator supports this research by providing real-time simula-

tions with customized parameters, and can become as well a platform for educating

a new generation of artists and engineers.

The goal of this thesis is to use techniques inspired by swarm robotics to develop

a computational framework accessible to and suitable for both artists and engineers.



The scope we have in mind for art and engineering is unlimited. Modern muse-

ums, stadium roofs, dams, solar power plants, radio telescopes, star networks, fractal

sculptures, fractal antennas, fractal floral arrangements, smooth metallic railroad

tracks, temporary utilitarian enclosures, permanent modern architectural designs,

guard structures, op art, and communication networks can all be built from the bod-

ies of the swarm.
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Chapter 1

Introduction

1.1 Benefits of Multi-Robot Systems

A large population of low-cost robots is more suitable than a single expensive robot for

solving problems in large environments. Swarm robots are also effective in microscopic

environments, where large robots are not viable. Multi-robot systems provide these

benefits: lower cost, greater robustness, and better physical coverage.

Lower cost. High-precision sensors and high-power actuators are difficult to man-

ufacture and are typically highly overpriced. The cost of sensors and actuators is

often related exponentially to precision and power. A large set of low-cost sensors

with good software can usually achieve the same high resolution as a single expensive

sensor. Swarm cooperation is often cheaper and more flexible than a single expensive

multi-axle actuator, which is why modern quadcopters are more popular and less

expensive than traditional helicopters with the same capacity.

Greater robustness. Carefully designed distributed algorithms for multi-robot sys-

tems can automatically bypass or average out inaccurate sensor readings, which is

typically not possible for a single large robot with only a small number of sensors.

Multi-robot systems may contain many similar robots, which can take over each

other’s tasks when a small proportion of the robots fail due to wear and tear. In

comparison, if a single large robot such as a Mars rover fails, the whole project fails

at the potential loss of much valuable research and billions of dollars.
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Better physical coverage. Even if a single powerful robot can be equipped with a

high-resolution camera or long-range radar, a large population of low-cost robots can

provide much larger physical coverage, continuous surveillance, and multiple perspec-

tives. Swarm robots move locally after they are fully dispersed, in comparison to a

single robot actively patrolling the whole environment. Multi-robot systems can even

be dropped from an airplane to cover a large area, saving money by reducing wear

and tear on motors and gears.

1.2 Existing Applications of Multi-Robot Systems

Multi-robot systems have numerous engineering applications. Collective behaviors

mimic common behaviors of social animals and provide the foundation for controlling

swarms of robots. Triangulation is a topological artifice that expands robots into

unknown environments and builds a communication backbone. Manipulation allows

robots to sense and actuate collaboratively and to transport large objects through

complicated environments. Self-assembly utilizes the bodies of swarm robots to build

temporary or permanent structures that are difficult or inefficient to manufacture in

traditional ways.

1.2.1 Collective Behaviors

Social animals like ants and bees have complicated behaviors: individuals can col-

laborate to build structures orders of magnitude larger than themselves. Multiple

ants can cooperate to transport large pieces of food, and even build bridges with

their bodies [6]. Birds and fish fly and swim in formation and share the same direc-

tion. Researchers in swarm robotics would like to mimic these animal behaviors with

swarms of robots.
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(a) Collective behavior: flocking [2]. (b) Triangulation [3].

(c) Swarm manipulation [4]. (d) Multi-robot self-assembly [5].

Figure 1.1 : Images from existing applications of multi-robot systems.
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Flocking is the most common swarm behavior (Figure 1.1(a)), which occurs when

all the individuals move in the same direction [7]. The first step is to turn the robots

towards a common heading. Each robot turns in the direction that is the average

heading of all its neighbors, and after some time to reach consensus, all the robots

will share the same heading [8]. If the robots move at slightly different speeds, error

accumulates and eventually tears the swarm apart. Therefore speed must be managed

and feedback must be provided. These techniques are still not enough: if the swarm

starts with some locally weak connections (articulation points), these connections

may be accidentally broken and the robots may become separated. Some researchers

insist on concentration so that weak connections get protected and strengthened, and

avoid generating new weak connections [9].

When the swarm moves towards an obstacle, the first few robots change direction

to avoid the obstacle, and other robots adjust headings according to the swarm rules.

If all the robots try to avoid an obstacle by moving in the same direction, the swarm

can successfully dodge the obstacle. But if robots avoid the obstacle by moving in

different directions, the swarm may separate. Some researchers require robots to sur-

round the obstacle and remain connected [10] [11], and some others allow temporary

separation but try to reunite the robots at the other side of the obstacle [12]. There

are also some other behaviors, such as following, clustering, and dispersing, which

are demonstrated in some multi-robot systems. Some of these behaviors are learned

from social animals, and some are invented by humans to control the robot swarm.

Joysticks can be used by humans to interact with these robots, in order to change to

a different behavior, manually control the leader robot, and globally control all the

robots [13] [14] [15].
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1.2.2 Triangulation

Triangulation is the process wherein robots build a triangular mesh [16]. Since a

triangle requires only three non-collinear points and is stable with fixed edge lengths,

a triangular network is easy to build with multiple robots and is a reliable way to

relay communication.

The first two robots are manually placed to form a gate. Other robots go through

the gate and locate their destinations. Once a robot passes through an external edge

between two robots (initially the gate), the robot tries to stop at a position where the

three robots form an equilateral triangle, and this robot becomes the owner of the

triangle. Two external edges are generated, and the previous external edge becomes

internal. The robot may also discover some adjacent triangles and become their

owners. These generated triangles and discovered triangles form a triangle mesh, and

expansion in one direction stops if there is obstacle in this direction. Other robots are

guided to different external edges by the triangular network and repeat this process

[17] (Figure 1.1(b)). Since robots might not form equilateral triangles due to sensor

error, motion error, and obstacles, the triangular mesh may contain lattice defects.

Building a triangular mesh is often a good method to expand over an unknown

environment and remain connected. If each robot has some sensing ability such

as metal detectors, the robots will be able to find areas that are likely to contain

minerals. The triangular network can efficiently pass these kinds of information back

to a base station, and guide another set of robots to the target areas for mining

[17]. Triangulation can also provide a communication backbone and area division for

cooperative surveillance [18].
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1.2.3 Manipulation

Multiple ants can transport large pieces of food by cooperatively holding the food

along all the sides and moving in the same direction. When humans move furniture

into a new house, workers need to make sure that they have enough force to lift the

furniture, and rotate the furniture to pass through doors and stairs. Humans want

robots to carry large objects to save man power, so researchers try to endow swarm

robots with the ability to cooperatively transport large objects.

To deal with large objects, the first issue to consider is how robots interact with

objects. Some researchers assume that the object is manually mounted on the robots

so that the object can never fall to the ground [19]. When the robots move, their

relative positions are fixed due to the rigid object. Some researchers assume that

the object has handles and the robots have grippers, and once gripped robots can

push or pull the object [4] (Figure 1.1(c)). Since there is friction between the object

and the ground, and grippers can pivot at the attach point, robots need to call for

reinforcements if they do not have enough force. Some researchers assume that the

object can slide on the floor, and robots have no special manipulators but simply push

the object with their bodies [15]. Robots may slide away from the object, so robots

need to compact their swarm and come back for another push. In some more realistic

applications, robots lift the object with their arms like humans, and the robots need

to take care of the forces to prevent the object from falling [20].

The second issue is to transport an object along a desired path. Robots need to

face in the same direction and move at the same speed. The most common solution is

to select a leader distributively or manually. The leader robot moves along the desired

path, and the other robots move in the same direction as the leader at the same speed.

Slight difference in the direction or speed can accidentally rotate the object or push
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the object sideways, so feedback is needed to keep robots on the desired path.

When the environment contains obstacles, or especially narrow passages, the

robots need to rotate the object to avoid collision. The object can be irregular,

and thus the robots need to figure out where the mass center of the object is, what

the largest dimension is, and what the smallest dimension is. The environment can

be partitioned into different safety levels: the safe zone is where the object does not

collide with obstacles in any directions; the risk zone is where the object collides in

some directions and does not collide in some other directions; the collision zone is

where the object collides in all directions. Robots can move freely in the safe zone, but

needs to carefully rotate the obstacle before entering a risk zone. The motion planner

needs to balance between the length of the transportation path and the additional

work needed to rotate the object [19].

1.2.4 Self-assembly

Self-assembly is a procedure wherein several agents change positions and connections

in order to automatically build an organized structure. Self-assembly is discovered in

a large range of scales in nature. Atoms and molecules automatically assemble into

crystals [21]. DNA and protein self-assemble from nucleotides and amino acids to

build live cells [22]. Some species of ants can create a bridge with their bodies so that

coworkers can cross the gap quickly to bring back food [6]. Researchers are actively

developing algorithms and mechanisms to implement self-assembly on multi-robot

systems, and utilize self-assembly in artistic and scientific projects.

Imagine swarm robots constructing temporary buildings, such as galleries in a

World Expo, with the robots own bodies. A set of brick-shaped robots, smart bricks,

are transported to the construction site. Smart bricks have coils so they can generate
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magnetic forces and relay electric energy. A smart brick climbs a wall of smart bricks

with magnetic interaction, moves to the desired area and interlocks with other smart

bricks. Multiple smart bricks can join the construction in parallel to save time. After

the temporary building completes its mission, smart bricks automatically change

into a pile of bricks for transportation. Construction and destruction of temporary

buildings with smart bricks can greatly save building materials, reduce non-renewable

energy consumed by construction vehicles, and protect the environment.

The most recent research on self-assembly with high reputation is by Harvard

University Self-Organizing Systems Research Group, which is published in Science

Magazine about a multi-robot controlling method to deploy a large number of robots

to form a given shape [5] (Figure 1.1(d)). Initially, four robots are specially pro-

grammed and manually deployed into special positions. The other robots are placed

in a solid group adjacent to the special robots, and are given the desired shape as a

bitmap. When the algorithm starts, a spanning tree is built and rooted at one of the

special robots. The spanning tree classifies robots into different layers with different

gradient values, and only those robots in the outer-most layer (with the largest gra-

dient) start to follow the edge of the swarm. These robots calculate their positions

in the bitmap through a distributed inter-robot positioning system, and stop upon

exiting the desired shape or filling in the next position in the current layer. Repeating

this procedure converts the initial swarm into the desired shape.

The Harvard researchers had great success because self-assembly is a very popular

research area, and they provide a strong background from bioscience and potential

applications in bioscience. They also set up the worlds largest robot swarm: 1,024

Kilobots were used to implement their algorithm in a single experiment. Their Kilobot

design [23] with compact size, extremely low cost, reflective infrared communication,
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vibration motors, and charging connectors enables them to implement this algorithm

with real robots and study high-density swarm behaviors.

Professor Daniela Rus and her team at MIT built a swarm of cubic robots that

can flip, jump, and self-assemble [24]. Each robot looks like a cube with no external

moving parts, but can magically move and jump. This magic is powered by flywheels.

When a flywheel suddenly brakes, the angular momentum transforms to torque on

the object and forces the object to move. With the help of edge magnets and face

magnets, robots can assemble into complicated structures, and can build, change, or

decompose the structure via individual movements. ETH Zurich in Switzerland has

a similar design where a robot cube can balance on its edge or vertex [25].
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Chapter 2

Building Fractals with a Robot Swarm

2.1 Motivation and Related Work

Fractals are self-similar shapes [26]. For example, a minor branch of a tree is similar

to a major branch at a smaller scale, and a snowflake has complicated details that

have small structures similar to the structure of the snowflake as a whole. Fractals

are common in nature, and include such diverse objects as plants, crystals, mountain

surfaces, lightning bolts, and tracheobronchial trees.

We want robots to form fractals because fractals are useful in engineering – certain

antennas have fractal shapes [27] [28] [29] [30] [31] (Fig. 2.1); civil utility structures

[32] and the Internet [33] demonstrate self-similar behaviors. Fractal formations can

be useful as well for generating aesthetic shapes [34] [35] [36], such as artificial trees,

or beautiful patterns of flowers in a botanical garden.

(a) Vicsek fractal (re-
drawn from [27]).

(b) Koch snowflake with round holes
(redrawn from [28]).

Figure 2.1 : Fractal antennas with different designs.
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Two traditional methods for generating fractals are Recursive Turtle Programs

[37] and Iterated Function Systems [38]. Recursive Turtle Programs require a pre-set

depth, and a single turtle draws the fractal in a single thread, like a Depth-First

Search. Iterated Function Systems require keeping track of a detailed description of

a large number of objects so that at each iteration each object can be replaced with

a self-similar structure.

In the real world people manufacture fractals with several different techniques.

One approach is to draw the fractal with a pen or to stitch the fractal with a

sewing machine, following the trajectory generated by a recursive turtle program.

The Valiant Turtle [39] (Figure 2.2(a)) was introduced in 1983 as a robot toy to draw

fractals on paper. Another approach is to build the fractal as a whole by printing

or casting; this method is typically used to manufacture fractal antennas. Fractals

can also be assembled with pre-made building blocks, such as cellular base stations

disguised as trees. The assembly process is usually single-threaded either by a human

or by a robot arm.

We are interested in generating fractals with multi-robot systems, because robot

swarms are a cheap, effective, and reconfigurable tool for generating complex shapes.

With the help of multiple robots, we can generate fractals in parallel, and the detailed

description can be distributed to different robots so that each robot needs to remember

only a small number of states.

There are several articles related to robots forming randomized and deterministic

fractals. Rold [41] discovers that multiple robots can exhibit fractal dimensions by

programming the robots to simulate attractor behaviors (Figure 2.2(b)). Sugawara

and Watanabe [42] gather robots towards the center of the environment, and the

clustering process builds a fractal tree (Figure 2.2(c)). Aznar, Pujol, and Rizo [43]
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(a) The Valiant Turtle [39] (image from
Wikipedia [40]).

(b) Robot simulates attractor behaviors [41].

(c) Recovery tree [42]. (d) Multi-robot self-assembly [43].

Figure 2.2 : Figures from related work.
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describe a multi-robot self-assembly procedure with L-Systems (Figure 2.2(d)).

We are also inspired by algorithms that place robots into other formations. Lee,

Fekete, and McLurkin [44] develop an algorithm to build a triangular mesh with

a robot swarm. This algorithm can be used to explore unknown spaces and guide

other robots for security patrols. Alonso-Mora et. al. [45] move multiple robots into

solid geometric shapes in order to generate artistic patterns. Guo, Meng, and Jin [46]

deploy swarm robots on a NURBS curve to approximate the boundary of an arbitrary

shape.

2.2 Model and Assumptions

Fractals have complicated structures, but these structures can be generated from

simple growth rules. Based on how to apply these rules with multi-robot systems, we

classify fractals that can be approximated by line segments into four major types:

• Tree-based fractals: fractals with branching growth rules and a tree-like skele-

ton.

• Curve-based fractals: fractals formed by polygonal chains, or represented by

subsets of polygonal chains.

• Space-filling fractals: similar to curve-based fractals, these fractals are continu-

ous and dense in the unit square.

• Shape-based fractals: fractals that are often drawn with colored fills.

There are many fractals outside these categories, especially those fractals that cannot

be effectively approximated by line segments or polygons, like the Mandelbrot set



14

[47] and the Lorenz attractors [48]. This chapter focuses on 2-dimensional fractals for

which robots can be used to outline their skeletons.

Fractals are defined as a limit of an infinite number of iterations, but fractals

can only be printed or manufactured with some finite number of vertices and edges.

Therefore, we are more interested in approximating a fractal with a limited number of

iterations. We define the level of a fractal as the depth of the iterations or recursions

used to approximate the fractal. We also define the level of a vertex as the lowest

level at which the vertex appears in the fractal. A lower level is a level with fewer

iterations; a higher level is a level with more iterations.

2.3 Algorithms

2.3.1 Tree-based Fractals

Fractal trees are fractals with a branching growth rule. The growth rule should have

two or more branches in non-trivial directions with a scale factor < 1 so that the

fractal converges to a tree-like shape. Fractal trees differ from each other by a set of

parameters (Fig. 2.3): the number of branches, the angle between branches, the scale

factor, symmetric or asymmetric rules, and the activeness of each node. We need to

define a set of rules so that the robots generate the desired fractal.

For iterated function systems the base case is usually represented by a line seg-

ment, and this line segment is replaced by a set of line segments described in the

growth rule. To implement these growth rules using robots, we denote the base case

by a single vertex and an expansion direction. We manually place a stationary initial

robot into the workspace, heading towards a fixed direction. We define a polar co-

ordinate system whose pole O lies on the center of the initial robot and whose polar
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(a) A fractal tree with two branches. (b) With a different angle.

(c) With a different scale factor. (d) With three branches.

(e) With inactive branches. (f) Asymmetric.

(g) Asymmetric alternative.

Figure 2.3 : Fractal trees with different parameters (shown at level 5).
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Initial robot

Auxiliary robot

(optional)

θ

d0

O

L

Figure 2.4 : Polar coordinate system. We always assume that the polar axis is in the
upward direction so we will omit the polar axis in all subsequent drawings.

axis L points in the direction of the heading of the initial robot (Fig. 2.4). We also

set up an initial distance d0 either manually or by placing another auxiliary robot

whose distance to the initial robot is d0.

For the simplest fractal tree, a k-branch symmetric fractal tree, we describe the

growth rule with k vectors extending from the pole O, embodied as k robot children

forming branches from their parent robot. Each vector vi can be described by its

angle θi from the polar axis L, in addition to its scale factor si. For a symmetric

fractal tree, the angles {θi} form an arithmetic sequence symmetric about zero, and

all the scale factors {si} are equal (Fig. 2.6(a)).

To simplify the description of our algorithm, we shall initially assume that the

robots have a sensing range larger than the length of any edge in the fractal tree. In

addition, we will assume that a robot can always move accurately a given distance in

a given direction without colliding with other robots. We will handle limited sensing

range, errors in accuracy, and collisions later in this section.

When a new robot joins the building process, the robot starts near the initial

robot with the same heading as the initial robot. The new robot treats the initial

robot as its parent. Now there are k directions in which to grow the fractal tree.

One strategy is to pick a branch randomly from 1, ..., k; another strategy is to ask
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Figure 2.5 : Fractal tree generated with random branching.

the parent robot to select a branch, and have the parent robot reply sequentially

with 1, ..., k to each request. These different strategies determine whether the fractal

tree grows probabilistically (Fig. 2.5) or deterministically (Fig. 2.3(c)). Once the

new robot knows in which branch i to grow, the robot rotates by θi to face towards

that branch, where θi = k+1−2i
2

α if the angle between two branches is given by α, or

θi = k+1−2i
2k−2

β if the angle between the leftmost and the rightmost branches is given

by β.

The robot moves a distance d in that direction. When the robot arrives at its

target, the robot becomes a vertex of the fractal tree and remains stationary during

the remainder of this algorithm. However, if another robot has already occupied this

position, the new robot selects that robot as its parent, repeats this process as growth

in a sub-tree, and shortens the next distance by a given scale factor s.

When we add more and more robots at the location of the initial robot and all

the robots follow this same protocol, these robots build a symmetric fractal tree.

We present our main algorithm in Algorithm 1, along with several customizable

helper functions in Algorithms 2 to 5.

Next we enhance our algorithm to deal with more complicated fractal trees:

Asymmetric angles. Instead of calculating θi from the adjacent branch angle α or
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Algorithm 1 FractalTree(u)
1: InitRobot(u)
2: while u.state 6= STOP do
3: if u.state = EXPAND then
4: if ∃v such that v.parent = u.parent and v.branch = u.branch and v.level = u.level and

v.state = STOP then
5: u.state← FOLLOW
6: if u.branch is active branch then
7: u.parent← v
8: u.level← v.level + 1
9: u moves towards v

10: else
11: u backs to parent and selects another branch
12: end if
13: else if u reaches expansion destination then
14: u.state← STOP
15: else
16: u continues current expansion motion
17: end if
18: else if u.state = FOLLOW then
19: if u is close enough to v then
20: u.branch← GetBranch(u)
21: if u.branch is active or inactive branch then
22: u.state← EXPAND
23: u.length← u.length×GetScale(u)
24: u rotates GetAngle(u.branch)
25: u moves forward for a distance up to u.length
26: else
27: u.length← u.length×GetScale(u)
28: u.level← u.level + 1
29: end if
30: else
31: u continues current following motion
32: end if
33: end if
34: end while

Algorithm 2 InitRobot(u)
1: if ∃v such that v.level = 0 then
2: u.parent← v
3: u.level← 1
4: u.state← FOLLOW
5: else
6: u.parent← ∅
7: u.level← 0
8: u.state← STOP
9: end if

10: u.length← an initial length
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Algorithm 3 GetScale(u)
1: scale← a constant value less than 1
2: return scale

Algorithm 4 GetBranch(u)
1: if random branch mode then
2: branch← a random branch among all active, inactive, and head branches
3: else
4: branch← ask u.parent about the next branch at u.level
5: end if
6: return branch

the total branch angle β and the number of branches k, the user can specify an array

of angles to describe the directions of the branches.

Asymmetric scale factors. Instead of all the robot children moving the same

distance, the user can specify an array of scale factors. Individual scale factors apply

to each branch, and the size difference of sub-trees amplifies in higher levels. All of

the scale factors should be less than 1 to ensure convergence. We can combine the

angles and the scale factors into vectors (Fig. 2.6(b)).

Inactive branches. Some branches can be inactive, i.e. no fractal sub-trees grow

from inactive branches. The user can specify an array of Boolean values to indicate

whether each branch is active or inactive (Fig. 2.6(c)). If a robot selects a branch

randomly and a robot is already present in this inactive branch, the robot must return

to its parent and reselect another branch. If the parent assigns branches for robot

children, an inactive branch can be assigned only once.

Complicated local structure. There are some tree-based fractals with special local

Algorithm 5 GetAngle(u)
1: angle← (k/2 + 1/2− u.branch)α where k is the number of active and inactive branches
2: return angle
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60° 60° 

(a) Growth rule for 3 symmetric branches.

0.5

0.7

60° 

30° 

(b) Growth rule with arbitrary vectors.

0.5

0.50.5

60° 60° 

(c) No iteration at inactive branch.

1/3
1/3

(d) Growth rule for Vicsek fractal with an
additional iteration at the root.

Figure 2.6 : Fractal tree growth rules.

(a) A fractal tree with local cycles
(shown at level 3).

(b) Growth rule without the loop.

Figure 2.7 : Fractal tree with complicated local structure.
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(a) Vicsek fractal shown at level
4.

O

O’

x

z
y

(b) An illustration of growing into three-dimensional space.
O and O′ should be occupied by the same robot in the plane.

Figure 2.8 : Vicsek fractal can be divided into 5 similar parts.

structures including cycles (Fig 2.7(a)). We can simply convert these structures to

vectors extending directly from the parent robot, and mark some of the branches as

inactive (Fig. 2.7(b)).

Vertices with multiple degrees. Fractal trees usually grow only at the vertices on

the highest level, but some fractals such as Vicsek fractals (Fig. 2.8) grow at all the

vertices. These fractals can be treated as if they have additional branches above the

plane extending into three-dimensional space, and the original fractal is the parallel

projection onto the plane of a three-dimensional fractal. Thus a parent robot can have

children robots at various levels. When a moving robot approaches a stationary robot

and selects this stationary robot as its parent, the moving robot can either branch

immediately or fall into the higher level by applying the scale factor to its future

motion and choosing a branch again at the same parent (Fig. 2.6(d)). Since any

stationary robot is considered as multiple instances in the different levels, if a child

robot asks the parent robot to assign a branch, the parent robot needs to maintain

multiple states for different levels in order to answer at the child’s level.

Complicated growth rules. Some shape-based fractals, such as the Sierpiński carpet
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(a) Sierpiński carpet shown at level 4. (b) Sierpiński triangle shown at level 6.

Figure 2.9 : Shape-based fractals approximated with fractal trees.

and the Sierpiński triangle, can be approximated with fractal trees (Fig. 2.9). For

the Sierpiński carpet, we use one robot to represent each square (and the robot may

have the ability to paint the square). Each node has 8 branches, but these branches

have different scale factors from the scale factor in the parent node. Furthermore,

scale factors alternate in every level and all the squares must be oriented along the

same directions. We also allow the user to override some helper functions and attach

an event handler to state change in order to build more complicated fractals.

For a Sierpiński carpet, we define even branches as the branches in the forward

direction, and these branches increment at right angles (0◦, 90◦, 180◦, 270◦). Odd

branches are those branches with an angle of 45◦ to even branches (45◦, 135◦, 225◦,

315◦). We set the number of branches to 8 and override GetAngle to return these

angles. Each robot u needs to count how many times u enters an odd branch in

u.counter, and this counter increments whenever u.state changes to EXPAND and

u.branch is odd. Finally, we override GetScale as in Algorithm 6.

Limited sensing range and motion errors. Even when the robots have a limited
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Algorithm 6 SierpinskiCarpet::GetScale(u)
1: scale← 1/3
2: if u.branch is odd then
3: if u.counter is odd then
4: scale← scale×

√
2

5: else
6: scale← scale/

√
2

7: end if
8: end if
9: return scale

sensing range and even when the robots have motion errors, the robots can still form

the correct fractal topology if the maximum length of edge d satisfies the following

condition (in any Cartesian coordinate system):

∀a, b ∈ {(x, y)|(d−∆d)2 < x2 + y2 < (d+ ∆d)2,

tan(θ −∆θ) <
y

x
< tan(θ + ∆θ)} ⇒ ‖a, b‖ < r.

(2.1)

This condition means that if two robots try to reach the same destination (d, θ)

but separate due to motion error (∆d, ∆θ), these robots will fall within each other’s

sensing range r when both believe that they have reached their destination. In this

case, if a robot moves into a branch that is already established, the robot can always

discover the next vertex robot and become its child.

Collision avoidance. To implement this algorithm on real robots, we need to keep

the robots at a safe distance from each other in order to avoid collisions. We pack the

robot swarm into a dense formation near the initial robot, and we run the algorithm

in [5] so that the robots enter the workspace one after another without becoming

disconnected.

Once a robot moves along edges in the fractal tree, we define a set of routes around

the edges so that robots only move sequentially on these routes (Fig. 2.10). There
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Initial robot

Occupied branchUnoccupied branch

Spare robots

Forward 

route

Orbit route

Backward 

route

Capture 

route

Figure 2.10 : Routes for collision avoidance.

are four types of routes with descending priority:

• Capture route (robot becomes a new vertex),

• Backward route (robot returns to its parent due to an inactive branch or for

other reasons),

• Orbit route (circular connection between other routes),

• Forward route (to reach a higher level).

Robots in a route with a lower priority must yield to robots with a higher priority,

as well as to any robot in front of the robot. If a robot encounters an oncoming robot

or is about to collide with a vertex robot due to motion errors, the robot must yield

to the right to avoid a collision.
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(a) Growth rule for distorted
Koch curve.

(b) Skipping a middle section
(shown as a dashed line).

(c) Mirroring the middle sec-
tion (shown as a dotted line).

(d) Reversing the middle sec-
tion (shown as an arrow).

(e) Flipping (mirroring and
reversing) the middle section.

(f) Growth rule for Sierpiński
arrowhead curve.

Figure 2.11 : Growth rules for curve-based fractals.

If the fractal to be built has enough clearance between branches at the desired

level, the robots will be collision-free and can organize themselves automatically into

the fractal.

2.3.2 Curve-based Fractals

Curve-based fractals are those fractals formed by a polygonal chain, such as the

Koch Curve [49]; in particular, those fractals that are continuous and do not have

branches. This category can be expanded to fractals that self-intersect, such as the

Lévy C curve [50], but can still be represented as an Eulerian path. This category

can be further expanded to fractals that are not continuous, such as the Cantor set

[51], but are subsets of a continuous curve. Space-filling curves will be discussed in

a later section because the iteration rule for space-filling curves requires interfaces

between components.

We describe the base case by a line segment with two vertices, and for the growth
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rule we replace the line segment with a polygonal chain (Fig. 2.11(a)). We denote

the number of vertices in the growth rule (including both endpoints) by t + 1, and

the level of iterations by k. For a perfect fractal with n vertices, we should have

n = tk + 1. The base shape with two vertices and one line segment has k = 0 and

n = 2.

Suppose we already have n robots placed along a line, and each robot knows both

of its adjacent neighbors in opposite directions (except for the two robots at each end

which have only one adjacent neighbor). The linear ordering can be achieved with

chain-formation algorithms [52] [53] [54] [55], or with physical sorting algorithms [56]

[57] [58] [59]. From some of these algorithms each robot also knows its topological

distances to one end h and to the other end h′; thus all the robots know the total

number of robots n = h+ h′ + 1.

Algorithm 7 GetSequence(h, begin, end, k)
1: if end− begin ≥ k then
2: step← b(end− begin)/kc
3: if h− begin ≡ 0 (mod step) then
4: return (h− begin)/step
5: else
6: return GetSequence(h, b(h− begin)/stepc , d(h− begin)/stepe , k)
7: end if
8: else
9: Not enough robots to form a new level. The robot simply moves to the midpoint of the closest

two neighbors.
10: return ∅
11: end if

To generate curve-based fractals with a robot swarm, we first describe the iterating

shape as a set of vectors. The iterating shape maps to t+ 1 vectors, where we denote

the first vector by the zero vector (0, 0) and the last vector by the unit vector (1, 0).

Other vectors have their own scales of the unit vector; for example, the three middle

vectors describing the Koch curve are (1
3
, 0), (1

2
,
√

3
2

), and (2
3
, 0). Then each robot

is assigned its level and sequence in the fractal. Since each robot knows the total
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(a) Distorted Koch curve. (b) With skipped segments.

(c) With mirrored segments. (d) With reversed segments.

(e) With flipped (mirrored and reversed) segments.

Figure 2.12 : Curve-based fractals (shown at level 4).

number of robots n and its relative position h along the line, the robots can run an

iterated function (Algorithm 7) locally to determine its sequence as well as the closest

two robots on the previous level.

If each robot has a sensing range large enough to cover at any time the two closest

robots on the previous level, each robot can move to the relative position defined

by its corresponding vector. When all the robots move in the same manner (except

the two robots on each end that remain stationary), the line of robots transforms

progressively into a curve-based fractal.

In order to build more complicated curve-based fractals, we introduce some prop-
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erties attached to each line segment in the growth rule. Skip determines whether

a line segment is skipped instead of replaced (Fig. 2.11(b)), and can be used for

erasing the line segments in a Cantor set. A customized GetSequence may be pro-

vided to avoid assigning robots into such void zones. Mirror determines whether the

replacement rule is mirrored over the original line segment (Fig. 2.11(c)). Reverse

determines whether the replacement rule is rotated 180 degrees (Fig. 2.11(d)). Mirror

and reverse can be combined into a flip for the same line segment (Fig. 2.11(e)). The

corresponding fractals are shown in Fig. 2.12.

Some shape-based fractals can be approximated with curve-based fractals. For

example, the Sierpiński triangle can be constructed using a Sierpiński arrowhead

curve. The vectors for constructing a Sierpiński arrowhead curve are:

v0 = (0, 0), v1 = (1
4
,
√

3
4

), v2 = (3
4
,
√

3
4

), v3 = (1, 0).

The line segments (v0 to v1) and (v2 to v3) are mirrored (Fig. 2.11(f)). When

the program starts, the lower two triangles fold inward until their destination, while

the other robots for the upper triangle move above. Then the upper triangle gets

constructed with a similar procedure. The process for building this fractal (Fig.

2.13) is a fractal!

This algorithm requires some robots to have a longer sensing range than other

robots. This assumption is still practical since the swarm can have different robots

with different costs, and still keep the total cost low. Removing the requirement of

long sensing range is possible, but may introduce accumulated errors.

2.3.3 Space-filling Curves

Space-filling curves are more difficult to generate than curve-based fractals because of

the existence of interfaces (Fig. 2.14). Interfaces are the line segments that connect
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(a) Folding two lower triangles. Some
robots fall behind due to a speed con-
straint.

(b) Folding two lower triangles in the
upper triangle. This procedure repeats
for each level and looks similar.

(c) Folding in a higher level. (d) Final result.

Figure 2.13 : Procedure for building the Sierpiński arrowhead curve (shown at level
6).

(a) The Hilbert space filling curve shown at
level 3.

y

x

(b) Growth rule.

Figure 2.14 : The Hilbert space filling curve contains 4 similar squares and 3 interfaces.
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adjacent sub-fractals. At a given level these interfaces usually have the same size

as the shortest line segments, which depend on the number of levels and the num-

ber of robots used to build the space-filling curve. Therefore, the number of levels

must be determined in advance, and the ratio of interfaces to sub-fractals must be

predetermined.

For the Hilbert curve, we use an algorithm similar to the algorithm for a curve-

based fractal, but we define the vectors based on the highest level lmax and the current

level l. The ratio of the interface to the size of the fractal at level l is x = 1
2lmax−l+2−1

,

and we denote by y = 1−x
2

the ratio of the sub-fractal to the fractal. Then vectors

are calculated at each level by setting:

v1 = (0, y), v2 = (0, y + x), v3 = (y, y + x), v4 = (y + x, y + x), v5 = (1, y + x),

v6 = (1, y).

To avoid assigning robots inside the interfaces, we also mark the interface line

segments as skipped, using a customized assignment function. Then we mirror the

first and last sub-fractals.

This method applies to space filling curves that have start and end points distinct

from each other. An alternative method is to pack the robots into a square first [60],

and then assign the virtual edges between robots.

2.4 Simulation Results

All the algorithms discussed in this chapter are implemented with our Multi-Robot

Simulator written in C#. Running on a Windows laptop (1.8GHz CPU) and using

25MB memory, this simulator can generate the Sierpiński arrowhead curve up to level

8 (with 6,562 robots) in a two-minute animation with smooth motion. All the fractal

figures in this chapter are exported directly from this simulator in SVG format.
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2.5 Conclusion

We presented a distributed method that allows swarm robots to self-assemble into

fractals. Starting from a dense swarm, robots move into fractal trees and fractal

curves, and our algorithm adapts to different fractals by setting a small set of param-

eters. We validated our algorithm with simulations using thousands of robots.
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Chapter 3

Stability Analysis of Distributed Algorithms

3.1 Introduction

Figure 3.1 : The cover of Scientific American July 1965.

Scientific American [61] introduced the four-bug problem in July 1965 (Figure 3.1).

Four bugs start at the corners of a square and chase each other moving clockwise at

a speed proportional to their distance from the bug they are chasing. The trajectory

of each bug forms a spiral. How far does each bug walk before all the bugs gather at

the center?

In this problem, we observe that these bugs get closer to each other instead of

moving along a circle. In addition, by symmetry these bugs always lie on the vertices

of a square until they meet at the center; the square rotates clockwise and shrinks
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(a) Attack. (b) Defend. (c) Form a perimeter.

Figure 3.2 : Robots attack, defend, and form a perimeter [1].

while the bugs move, and the sequence of these squares forms a whirl [62].

We can implement this behavior of shrinking a perimeter using robots, which

already have the ability of following in a queue [63], clustering [64], dispersing [65],

flocking [66], and sorting [58]. Shrinking the perimeter provides the robots the ability

to guard an area and to narrow down the area while keeping the border free of

penetration, in order to encircle and suppress enemies (Figure 3.2) [14].

When we generalize this problem for various directions of robot motion, including

in the reverse direction, some unexpected strange behaviors occur. The reverse motion

does not exactly follow the reverse extension of the forward motion, because moving

in reverse is unstable for some configurations. For a similar reason, tractor-trailers

can jackknife if not backed up properly or if uneven forces are applied to the wheels

[67] [68], and jackknife becomes severe if these conditions continue to occur. With

multiple robots interacting with each other, these behaviors sometimes end up in

chaos.

This chapter focuses on why chaotic behaviors appear in some configurations

and not in other configurations. We provide multiple perspectives on how errors

accumulate and interfere with each other. We focus our analysis on several special
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directions, and then reach a general description to classify all the directions into

three categories: counterclockwise/clockwise, inward/outward, and stable/unstable.

We also provide solutions to convert unstable trajectories into similar, but stable

trajectories. With our simulation software, we draw the trajectories of the robots to

demonstrate stable and unstable motions, and verify our solution to maintain stability

while arranging robots in desired patterns.

We are also interested in robots expanding the perimeter at a constant rate during

each revolution, like following the Archimedean spiral [69], which allows robots to

seamlessly examine the ground while expanding the perimeter. There is some related

work about generating Archimedean spirals using a single robot so that the robot

can vacuum the floor [70] or detect landmines [71]. Our work enables a new kind of

swarm behavior to generate approximate Archimedean spirals, where multiple robots

move along different spiral arms that provides higher efficiency of collaboration and

prevents single point of failure.

3.2 Related Work

Four-bug problem. There are many different versions of the four-bug problem in ge-

ometry books and mathematical puzzles. Other animals (such as mice, beetles, dogs)

and vehicles are also used to name the moving entities. The first known publication

of this problem is by Gardner [76] in 1957. Walfram MathWorld has a collection of

these problems under the topic Mice Problem [77].

Peters [72] solves the four-bug problem with the geometric constraint that the tan-

gents of adjacent bugs are always perpendicular to each other (Figure 3.3(a)). Thus,

a differential equation describes the derivative of the slope so that the time parameter

can be avoided. This method can be extended to any number of bugs starting at the
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(a) Image from Peters’s solution [72]. (b) Robots change formation be-
tween rectangles and rhombuses [73].

(c) Pursuit of nonholonomic vehicles
[74].

(d) Lorenz attractor [48] (image from Wikipedia
[75]).

Figure 3.3 : Images from related work.
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vertices of a regular polygon, although the differential equation becomes complicated

due to a non-perpendicular but fixed angle between tangents.

Klamkin and Newman [78] proved that three bugs starting from the vertices of

any arbitrary non-degenerate triangle meet at the same time at a point uniquely

determined by the initial positions of the bugs. Behroozi and Gagnon [79] later

proved that mutual capture also happens when more bugs are present. Nester [80]

provides a good demonstration of how the different parameters - height, side lengths,

and angles - change the position of this center point.

Bruckstein, Cohen, and Efrat [81] investigated differential equations and matrices

with both continuous and discrete solutions, and discussed how constant and varying

speeds affect their solutions.

There are also some articles about the chasing problem in general. Bernhart stud-

ies pursuit curves in many scenarios [82] [83] [84]. Good [85] generates mathematical

art with pursuit curves. Nahin [86] provides several interesting puzzles in his book

about the pursuit and evasion problems.

Stability of swarm robotics and formation control. There have been several arti-

cles about the stability of swarm algorithms on different problems or with different

methods.

Chapman, Lottes, and Trefethen [73] study a generalized version of this problem

in which four bugs start from the vertices of a rectangle or a parallelogram (Figure

3.3(b)), and mention that instability over some parameters could lead to chaos.

Marshall, Broucke, and Francis [74] [87] solve for the trajectories of nonholonomic

vehicles (using limited steering angle) from arbitrary configurations with matrices and

complex numbers, and analyze the local stability of these trajectories (Figure 3.3(c)).

Liu, Passino, and Polycarpou [88] expand stability analysis into higher dimensions
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with a fixed communication topology, enabling stable control of robotic aircraft. Gazi

and Passino [89] provide a similar analysis for multi-dimensional swarm aggregations.

Gazi also develops stability analysis for robot swarms in his Ph.D. dissertation [90].

Stability of dynamical systems. We are inspired by the stability analysis of dynam-

ical systems. In particular, nonlinear dynamical systems can display unpredictable

behaviors called chaos, which seem random but are intrinsically deterministic.

The Lorenz attractor [48] is a well-known chaotic dynamical system. The solution

of the Lorenz equations describes motion in a butterfly pattern around two attractors

(Figure 3.3(d)), but which attractor is subsequently surrounded is unpredictable and

highly sensitive to the initial configuration.

There are many books discussing stability of dynamical systems and differential

equations, such as [91] [92] [93] [94] [95].

Formation control. In formation control people try to maintain the stability of a

swarm against errors and obstacles by applying control theory. Here is some related

work that I studied in my Master’s thesis [59].

Desai, Ostrowski, and Kumar [96] created a feedback model so that multiple robots

can maintain their relative positions while moving and avoiding obstacles.

Poduri and Sukhatme [97] develop an algorithm to deploy a mobile sensor network

with maximum area coverage, and robots are connected with any user-defined degree

of connection. This algorithm can generate a connected uniform distribution when

all the robots stop.

Zavlanos and Pappas [98] Williams and Sukhatme [99] use a potential field to keep

robots connected and follow the leader, and maintain a similar organized structure

in motion. Zavlanos, Jadbabaie, and Pappas [100] also keep robots connected when

flocking, using a fully distributed algorithm without a leader.
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Figure 3.4 : An initial configuration of the robot pursuit problem with 6 robots in
the counterclockwise arrangement.

Hsieh et. al. [101] and Zhang et. al. [102] keep robots connected to each other

while moving in an environment with obstacles. The robots maintain appropriate

distances and relative angles to minimize the risk of disconnection caused by obstacles.

Egerstedt and Hu [103] provide a mathematical model for multi-agent formation

control, and apply their model to rigid body constrained motions.

Ji and Egerstedt [104] keep robots connected during rendezvous maneuvers by

adding appropriate weights to the connections.

3.3 The Robot Pursuit Problem

We define the robot pursuit problem as follows. Given n robots whose positions

are p1(t), p2(t), ..., pn(t) at time t, lying initially on the vertices of a regular polygon

oriented in the counterclockwise direction at time t = 0, each robot pk moves towards

pk+1 (and robot pn moves towards p1) at a speed proportional to their distance. Find

the trajectories of all the robots (Figure 3.4).
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To solve this problem, first we write linear differential equations to describe each

robot’s velocity vector (ignoring constants):

dpk
dt

= pk+1 − pk, (3.1)

with these initial conditions:

pkx(0) = r0 cos

(
2πk

n

)
, pky(0) = r0 sin

(
2πk

n

)
. (3.2)

In these equations, robots move at a common but non-constant speed propor-

tional to the distance between adjacent robots. Solving these differential equations

analytically yields the following solutions:

pkx(t) = r0e−bt cos

(
2πk

n
+ t

)
, (3.3)

pky(t) = r0e−bt sin

(
2πk

n
+ t

)
. (3.4)

b is a constant to be determined. Introducing polar coordinate (rk, θk), we find that

the functions pkx and pky satisfy rk = r0e−bθk , θk ≥ 0 for every k ∈ {0, ..., n − 1}.

Thus the trajectory of each robot is a counterclockwise inward logarithmic spiral [105].

From the logarithmic spiral it can also be verified that each robot always maintains

a constant angle φ = n−2
2n
π (half of the internal angle of regular n-gon) between its

heading and the direction to the origin [105].

Let

arctan
1

b
= φ =

n− 2

2n
π. (3.5)
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Solving Equation (3.5), we find the constant

b = cot

(
n− 2

2n
π

)
. (3.6)

If, instead, the robots move at a constant speed, the robot pursuit problem can

be described by the following differential equations (ignoring constants):

dpk
dt

=
pk+1 − pk
‖pk+1 − pk‖

. (3.7)

Although the speed is constant, these differential equations are nonlinear: the x

and y coordinates of the robots interact with each other, making an analytic solution

impractical. However, due to the symmetry of this problem and restrictions between

the x and y coordinates, the trajectories of the robots are exactly the same as those

with proportional speeds. Lacking analytic solutions, we focus this chapter on de-

veloping numerical algorithms to solve these problems in swarm robotics, especially

with simulation software.

On actual robot platforms, robots can take measurements of the other robots’

positions and communicate periodically with other robots. The movement between

communication rounds is independent of the position change of any other robots

during these rounds, because the robot cannot be aware of the changes until taking

new measurements at the next round. Software simulations are designed to generate

frames of animation; thus the movement of robots is discrete. We treat these frames

as rounds, and model the motion between rounds as line segments. We also define

a step size s that each robot can move between two consecutive rounds. If a robot

intends to move to a destination with distance smaller than s, the robot reaches its

destination at the next round; otherwise the robot moves towards its destination for



41

(a) After 1 round. (b) After 10 rounds.

(c) After 30 rounds. (d) The trajectory of a single robot.

Figure 3.5 : Simulation of the robot pursuit problem with 6 robots.

a distance of s along a straight line.

In the discrete motion model, we describe robot motion by the following difference

equation:

pk(t+ 1)− pk(t) = min

(
pk+1(t)− pk(t)
‖pk+1(t)− pk(t)‖

s, pk+1(t)− pk(t)
)
. (3.8)

Solving these difference equations numerically with software simulation generates

a set of line segments as in Figure 3.5. Note that the robots cannot reach the center

of the polygon. Instead, the robots end up on the vertices of a smaller polygon with

edge length less than or equal to s. When the edge length of the polygon is less
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(a) Op art from the whirl of 4 robots filled with
black and white (image from Wikipedia [106]).

(b) Six whirls form an artistic pattern (re-
drawn from [72]).

Figure 3.6 : Artistic patterns with whirls.

than or equal to s, each robot can jump to the next vertex in a single round and

thus the spiral generated is not complete. Also note that Figure 3.5(d) is different

from a recursively generated logarithmic spiral [26]: a recursively generated spiral

has edges with decreasing lengths and constant angle, while the robot’s trajectory

has line segments with (almost) constant length and various angles.

The whirls formed by the robot pursuit problem can be used for artistic design

(Figure 3.6(a)). Combining 6 instances of the robot pursuit whirls with 3 robots

generates a beautiful artistic pattern (Figure 3.6(b)) [72].

3.4 The Robot Evasion Problem

We can reverse the robot pursuit problem by reversing the direction of each robot.

Each robot pk now moves in the opposite direction away from pk+1 (and robot pn



43

 
-3

-2

-1

0

1

2

3

-5 -4 -3 -2 -1 0 1 2 3 4 5

Logarithmic spiral trajectories

forward

hexagon

reverse

Figure 3.7 : The inward spiral and the outward spiral connect at a vertex and are
tangent to an edge at that vertex.

moves away from p1). Thus the velocity of each robot is given by the differential

equation

dpk
dt

= −(pk+1 − pk). (3.9)

These differential equations look similar to the previous ones in Equation 3.1, but

with a negative sign. The solution is also similar except for the negative signs

pkx(t) = r0ebt cos

(
2πk

n
− t
)
, (3.10)

pky(t) = r0ebt sin

(
2πk

n
− t
)
, (3.11)

b = cot

(
n− 2

2n
π

)
. (3.12)

The solution is an outward clockwise logarithmic spiral that expands to infinity.

Drawing the forward spiral and the reverse spiral in Figure 3.7, we observe that
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these spirals connect at a vertex of the polygon (the robot), and both spirals are

tangent to the edge pointing to another robot which the robot intends to chase or to

avoid. If we allow t ∈ (−∞,∞), the robot moves smoothly in both directions and

the motion is reversible.

The iterations for the corresponding discrete motion model are defined by the

following difference equation:

pk(t+ 1)− pk(t) = − pk+1(t)− pk(t)
‖pk+1(t)− pk(t)‖

s. (3.13)

Simulating the robot evasion problem in software, we see at first that the robots

expand the perimeter of the polygon. However, after some time, the robots start to

move in chaotic directions. In Figure 3.8 with 16 robots, the g16 symmetry is lost

but an approximate g8 symmetry is preserved [107]. In Figure 3.9 with 13 robots,

no symmetry is preserved from the less symmetric initial configuration.

Our experiments show that any of the following factors speed up the descent into

chaos:

• Place more robots on the vertices of a regular polygon.

• Increase the speed or step size of the robots.

• Introduce error in the speed or direction of the robots.

• Place the robots on the vertices of a non-regular polygon.

Chaos results because errors accumulate and amplify in the reverse problem. Our

investigations reveal that chaos comes from uncontrollable increments in the angle

between neighbors (Figure 3.10(a)). If this angle increases during iterations and
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(a) After 18 rounds, the trajectories are
spirals with g16 symmetry.

(b) After 36 rounds, the differences in the den-
sity between spiral arms become obvious. Some
trajectories bend towards the inside, while other
trajectories escape from the center.

(c) After 50 rounds, those trajectories bent in-
side leave at tangent directions.

(d) After 160 rounds, trajectories form a flower
shape with an approximate g8 symmetry.

Figure 3.8 : Simulation of the robot evasion problem with 16 robots. (trajectories
are drawn to different scales)
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(a) After 90 rounds. (b) After 300 rounds.

Figure 3.9 : Simulation of the robot evasion problem with 13 robots. (trajectories
are drawn to different scales)

θ1 p1

p0

p2 p'2

p'1

p'0

θ'1

(a) The angle θ1 increases during iterations (θ′1 >
θ1 until θ′1 becomes a reflex angle.

θ''1

p''1
p''0

p''2

(b) Once the angle θ′′1 is above the straight
angle, p′′1 moves in a direction where the tra-
jectories intersect.

Figure 3.10 : Chaos results from trajectory intersections which are driven by uncon-
trollable increments in the angles.
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Figure 3.11 : The geometry in the robot evasion problem.

becomes a reflex angle, the vertex robot moves in a direction towards another robot’s

trajectory (Figure 3.10(b)), causing trajectories to intersect.

Here we explain the influence of accumulated errors by introducing two kinds of

controllable errors: direction error and distance error.

In Figure 3.11, several adjacent robots in counterclockwise order are denoted by

p0, p1, p2, p3. Distances between adjacent robots are denoted by l1, l2, l3, and angles

between neighbors are denoted by θ1, θ2. Robots p0, p1, p2 move toward p′0, p
′
1, p
′
2 in

the next round by moving at step sizes s0, s1, s2. The distances between adjacent

robots after these steps are denoted by l′1, l
′
2, and the angle between neighbors of p1

after these steps is denoted by θ′1.

From the law of cosines

l′1 =
√
s2

1 + (l1 + s0)2 − 2s1(l1 + s0) cos(π − θ1), (3.14)

l′2 =
√
s2

2 + (l2 + s1)2 − 2s2(l2 + s1) cos(π − θ2), (3.15)
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and from the law of sines

θ′1 = arcsin

(
l1 + s0

l′1
sin(π − θ1)

)
+ arcsin

(
s2

l′2
sin(π − θ2)

)
. (3.16)

Note that the arcsines in Equation (3.16) may need to be resolved from an ob-

tuse angle by subtracting from π, and whether the angle is acute or obtuse can be

determined by applying the law of cosines to the corresponding angle.

If the robots are on the vertices of a regular polygon, and there are no errors in

the directions or distances, then l1 = l2, θ1 = θ2, and s0 = s1 = s2. Therefore the two

triangles are congruent, 4p′0p′1p1
∼= 4p′1p′2p2, so l′1 = l′2 and θ′1 = θ1.

Now we introduce some error in the direction by setting θ1 = θ2+∆θ while keeping

l1 = l2 and s0 = s1 = s2. If θ′1 > θ1, a slightly larger angle generates an even larger

angle in the next iteration. During subsequent iterations this angle may rise above

a straight angle. Then the polygon is no longer convex and robot trajectories may

intersect.

Calculating the derivative
dθ′1
dθ1

analytically from Equation (3.16) results in a very

complicated result. Therefore, we solve for this derivative numerically by enumerating

θ2 over a series of angles and setting ∆θ = 1◦.

In Figure 3.12, we measure the instability by the instability index
θ′1−θ1

∆θ
, which

measures whether a positive error in θ1 is amplified or reduced after an iteration. To

perform our simulations, we set the step size ratio s
l

to five different values. Our

calculations show that:

• The crossover point (θ2 where
θ′1−θ1

∆θ
= 0) is smaller when the step size ratio s

l

is smaller, meaning that a smaller step size leads to instability starting from a

smaller angle.
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Figure 3.12 : Instability of the robot evasion problem due to direction error. A
positive instability index means that direction error is amplified and the configuration
is unstable. Five data series reflect different step size ratios s

l
. Since we care about

the largest internal angle of a convex polygon, we limit θ2 ∈ [60◦, 180◦).

• With a larger step size ratio and an unstable configuration, chaos is fiercer since

the direction error is amplified by a larger ratio.

• The crossover point has a limit near 90◦ when s
l
→ 0, meaning that an angle

smaller than 90◦ (such as those angles in a regular triangle) is always stable.

• If the step size s is fixed and is independent of the distance l, the step size ratio

s
l

becomes smaller after each iteration; thus all angles above 90◦ are unstable.

However, a smaller step size ratio amplifies the distance error at a smaller ratio,

so the system may take a very large number of iterations to display chaotic

behavior.

Also keep in mind that if θ1 > θ2, we always get l′1 < l′2, as in Figure 3.13. The

distance in the next iteration is reduced because of a positive direction error in the
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Figure 3.13 : Direction error generates distance error. Five data series reflect different
step size ratios s

l
, and in all cases l′1 < l′2.

current iteration and the law of sines.

Figure 3.14 shows an example of a non-regular hexagon configured with the same

initial lengths but different initial angles. Simulation shows that one of the largest

internal angles increments above 180◦ causing trajectories to intersect. All the edge

lengths of the hexagon increase before intersection but at different speeds.

Next we discuss distance error. Figure 3.15 illustrates another example of a non-

regular hexagon with the same initial angles but different initial lengths.

By invoking Equation (3.16) with θ1 = θ2 and s0 = s1 = s2 but l1 6= l2, we

find that the distance error always decreases, and the distances between neighboring

robots converge to a single distance. Figure 3.16 shows that the difference in the

distances is always reduced. A smaller initial angle θ has a larger impact on reducing

the difference of distances.

However, decrementing distance error introduces direction error at a relatively
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150.0°

(a) The marked angle increases after each iteration, and the differences be-
tween distances increase.

(b) The trajectories of the robots intersect.

Figure 3.14 : The robot evasion problem with a flattened hexagon (same initial lengths
but different initial angles).
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120.0°

(a) The marked angle increases after each it-
eration, and the differences between distances
decrease.

(b) The trajectories of the robots intersect.

Figure 3.15 : The robot evasion problem with a deformed hexagon (same initial angles
but different initial lengths).
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Figure 3.16 : The stability of distance error. Five data series reflect different distance
ratios l1

l2
, and the step size is set to s = l2

2
. The distance ratio in the next round

l′1
l′2

is always closer to 1 than the initial ratio l1
l2

(except for the control group where

l1
l2

=
l′1
l′2

= 1).
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Figure 3.17 : Although distance error decreases, direction error is introduced. Five
data series reflect different distance ratios l1
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, and the step size is set to s = l2

2
.

large scale (Figure 3.17). θ′1 can either increase or decrease based on l1
l2

, so differ-

ent distances between neighboring robots change the angle between adjacent robots,

resulting in the previous problem of direction error.

The final effect is the accumulation of the combination of these two geometric

errors, which may either strengthen or cancel each other. Motion errors, such as

deviation from the direction of travel or different step sizes, also result in these geo-

metric errors. In computer systems, floating point errors are somewhat unpredictable

but usually deterministic. Euclidean space becomes anisotropic, since each axis is

represented by a different variable and subject to a separate floating point error. For

example, if a robot moves only along the x-axis, no floating point error can apply to

the y-axis since the variable for the y coordinate never changes; if the robot moves

along the line y = x, the same error always applies to both the x and y coordinates

because floating point error is deterministic for the same value. But if a robot pushes
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Figure 3.18 : The geometry in the robot pursuit problem.

another robot in a generic direction, floating point error may cause the robots to sway

away from the line. Therefore the symmetry of the initial configuration may or may

not be preserved during this chaotic procedure.

3.5 Stability of the Robot Pursuit Problem

In the previous section we analyzed why the robot evasion problem is unstable in

most cases. But why does the chaotic behavior not appear in the original pursuit

problem? Let’s analyze the original problem with the same method to show why the

robots are stable in the forward direction.

In Figure 3.18, from the law of cosines

l′1 =
√
s2

1 + (l1 − s0)2 − 2s1(l1 − s0) cos θ1, (3.17)

l′2 =
√
s2

2 + (l2 − s1)2 − 2s2(l2 − s1) cos θ2, (3.18)
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Figure 3.19 : The robot pursuit problem is mostly stable (negative instability index)
except for θ2 < 90◦ with small step size ratio. Five data series reflect different step
size ratios s

l
.

and from the law of sines

θ′1 = π − arcsin

(
l1 − s0

l′1
sin θ1

)
− arcsin

(
s2

l′2
sin θ2

)
. (3.19)

Note that the arcsines in Equation (3.19) may need to be resolved from an ob-

tuse angle by subtracting from π, and whether the angle is acute or obtuse can be

determined by applying the law of cosines to the corresponding angle.

By invoking Equation (3.19) with θ1 = θ2 + 1◦, s0 = s1 = s2, and l1 = l2, we get

the instability index of the robot pursuit problem against direction error in Figure

3.19. Unlike the robot evasion problem, most configurations are stable to direction

error. The only exception is that for a small step size ratio s
l
< 1

3
, there exist some

θ2 < 90◦ with positive instability index. But their instability indexes
θ′1−θ1

∆θ
are very

small (< 0.075) so that noticeable instability is never observed in simulations. Also
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Figure 3.20 : Direction error generates distance error in the robot pursuit problem.
Three data series reflect different step size ratios s

l
, and show that series with step

size ratio (1− s
l
) have the same data points as series with step size ratio s

l
.

note that when s
l

= 1
2
, we always have θ′1 = θ1+θ2

2
regardless of θ1 and θ2; other

pairwise step size ratios summing up to 1 (such as 0.1 and 0.9) have data points

symmetric to
θ′1−θ1

∆θ
= 1

2
due to geometric symmetry.

Direction error generates distance error (Figure 3.20). We have
l′1
l′2
> l1

l2
under all

circumstances.

For the distance error, we invoke Equation (3.19) with θ1 = θ2 and s0 = s1 = s2

but l1 6= l2. In Figure 3.21,
l′1
l′2

is closer to 1 when l1
l2
< 1, which is stable to distance

error; but for l1
l2
> 1, we have

l′1
l′2
> l1

l2
> 1 which is an unstable configuration.

The instability in the distance explains why the transitions between rectangles and

rhombuses are difficult to predict in [73].

However, decrementing distance error introduces direction error at a relatively

large scale (Figure 3.22). θ′1 can either increase or decrease based on l1
l2

, so different
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Figure 3.21 : The stability of distance error. Five data series reflect different distance

ratios l1
l2

, and the step size is set to s = l2
2

. Data series with l1
l2
< 1 have

l′1
l′2

closer to

1 (stable), and data series with l1
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> 1 have

l′1
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farther away from 1 (unstable).
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.
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distances between neighboring robots change the angle between robots, resulting in

the previous problem of direction error.

In the robot pursuit problem, we observe two types of feedback:

• Even though negative distance error (l1 < l2) generates positive direction error

(θ′1 > θ1), this phenomenon is very weak when θ → 180◦ (since θ′1 − θ1 → 0),

and cannot cause the angle to rise above 180◦. On the other hand, direction

error is stable so that large angles decrease during iterations.

• The distance ratio l1
l2

tends to increase, either because of the distance error

itself or due to errors introduced by direction error. But since the robots on the

vertices of a polygon form a circular chain,
∏

i
li
li+1

= 1, so increasing l1
l2

must

cause another ratio li
li+1

to decrease, and, as observed in Figure 3.21, a small

ratio li
li+1

has higher stability preventing this ratio from further decrement.

Therefore, although instability exists in the robot pursuit problem and errors interfere

with each other, feedback keeps the errors bounded and prevents chaotic behavior.

3.6 The General Problem of Stability

Here we introduce a general stability problem from the robot pursuit paradigm. Given

n robots whose positions are p1(t), p2(t), ..., pn(t) at time t, initially lying on the

vertices of a regular polygon oriented in the counterclockwise direction at time t = 0,

where each robot pk moves in the direction towards pk+1 plus an angle ϕ, determine

whether this dynamic system is stable for the given parameters (n, ϕ).

For the discrete version of this problem, two general positions are shown in Figure

3.23. The previous sections discussed two special cases: the robot pursuit problem

has ϕ = 0, and the robot evasion problem has ϕ = π.
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Figure 3.23 : The geometry in the general problem.
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For ϕ > 0, from the law of sines and the law of cosines

x2 = p′1p2 =
√
l22 + s2

1 − 2l2s1 cosϕ1, (3.20)

∠p1p2p
′
1 = arcsin

(
s1

x2

sin |ϕ1|
)
, (3.21)

∠p′1p2p
′
2 = θ2 − ϕ2 − ∠p1p2p

′
1, (3.22)

∠p1p
′
1p2 = arcsin

(
l2
x2

sin |ϕ1|
)
, (3.23)

l′2 =
√
x2

2 + s2
2 − 2x2s2 cos∠p′1p2p′2, (3.24)

∠p2p
′
1p
′
2 = arcsin

(
s2

l′2
sin∠p′1p2p

′
2

)
, (3.25)

x1 = p′0p1 =
√
l21 + s2

0 − 2l1s0 cosϕ0, (3.26)

∠p0p1p
′
0 = arcsin

(
s0

x1

sin |ϕ0|
)
, (3.27)

∠p′0p1p
′
1 = θ1 − ϕ1 − ∠p0p1p

′
0, (3.28)

l′1 =
√
x2

1 + s2
1 − 2x1s1 cos∠p′0p1p′1, (3.29)

∠p′0p
′
1p1 = arcsin

(
x1

l′1
sin∠p′0p1p

′
1

)
, (3.30)

θ′1 = 2π − ∠p1p
′
1p2 − ∠p2p

′
1p
′
2 − ∠p′0p

′
1p1. (3.31)

All the angles mentioned above are within the range (0, π) except for ϕ, and the

arcsines may need to be resolved from an obtuse angle by subtracting from π (whether

the angle is acute or obtuse can be determined by applying the law of cosines to the

corresponding angle).

These equations rely on the fact that p0p1p
′
1p
′
0 and p1p2p

′
2p
′
1 are non-degenerate
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convex quadrilaterals. If any angle is equal to 0 or π, or any line segment has zero

length, or any two line segments are collinear, some triangles may become degenerate

and need to be handled specially, since division by zero may occur or some angles may

become undefined. Concave and complex quadrilaterals also need special handling

and will be discussed later.

For ϕ < 0, absolute values need to be taken when ϕ participate in the sines to

avoid negative angles. We also need to subtract Equations (3.22), (3.28), and (3.31)

from 2π to resolve these angles correctly.

Now we enumerate a few special values of ϕ.

Forward (pursuit counterclockwise). We have discussed the original robot pursuit

problem in Section 3.5 when ϕ = 0.

Reverse (evasion clockwise). We have discussed the robot evasion problem in

Section 3.4 when ϕ = 180◦.

Radial motion. If the robots select an appropriate direction ϕ, the robots can en-

large or shrink the polygon perimeter without clockwise or counterclockwise rotation

(Figure 3.24). From the geometry of the polygon, we have

ϕi =
θ

2
=
n− 2

2n
π, (3.32)

ϕo = ϕi − π = −n+ 2

2n
π, (3.33)

where n is the number of the vertices.

From Figure 3.25, we find that the outward direction is stable (negative instability

index), and the inward direction is unstable (positive instability index).

The stability of outward motion is verified with simulation in Figure 3.26, where

the initial polygon configuration has the same edge lengths but different angles. The
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Figure 3.24 : The motion angle ϕi allows the robots to move radially inward, and the
angle ϕo allows the robots to move radially outward.
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(a) In the first stage, some distance error is introduced while fixing
the direction error.

(b) In the second stage, both distance error and direction error
decrease.

Figure 3.26 : Outward radial motion is stable, even if the initial configuration is
distorted.
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(a) By keeping ϕ = 60◦, two robots move out of the initial polygon, and change the
convex polygon into a concave polygon.

(b) Some robots meet before reaching the
center, causing their trajectories to intersect
and the polygon becomes complex.

Figure 3.27 : Inward radial motion is unstable in these two extreme cases.

robots are given the information that n = 6, so the robots keep ϕ = −120◦. The

largest angle maxi θi decreases, and the largest ratio of adjacent edges maxi
li
li+1

first

increases and later decreases.

The instability of inward motion is not obvious for regular polygons, since the

instability grows slowly and robots soon meet in the center. Figure 3.27 shows two

extreme cases: two robots move out of the convex polygon or meet before reaching

the center, changing the convex polygon into a concave or complex polygon.
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(b) With s > l and ϕ > 0.

Figure 3.28 : Robots move onto the circumscribed circle so that the perimeter remains
unchanged.
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Figure 3.29 : Five data series with different step size ratios s
l

all have negative in-
stability index, meaning that forward circular motion is stable relative to direction
error.

Circular motion. If the robots start on a regular polygon and are given some

specially chosen s and ϕ, the robots end up on another concentric regular polygon of

the same size. In Figure 3.28, any point on the circumscribed circle can be chosen

for the next move, including s < l and s > l. Since we are more interested in the

problem at a larger scale, we continue limiting s < l.

From the law of cosines

r2 = r2 + l2 − 2rl cos
θ

2
, (3.34)

r2 = r2 + s2 − 2rs cos

(
θ

2
− ϕ

)
, (3.35)

we get

ϕ =
θ

2
− arccos

s

2r
, ϕ < 0. (3.36)
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Thus counterclockwise circular motion is stable (Figure 3.29), and is verified with

the simulator for some extreme cases. Robots can reconstruct a circle from a line if

they are given the corresponding parameters (n, s, ϕ). The perimeter automatically

enlarges or shrinks until

r =
s

2 cos
(
n−2
2n
π − ϕ

) (3.37)

is satisfied.

There is another direction where robots keep the perimeter and rotate clockwise:

ϕ =
θ

2
+ arccos

s

2r
. (3.38)

This clockwise circular motion is unstable as observed in Figure 3.30.

The most and the least stable directions. We can find the boundaries between

stable and unstable configurations by finding ϕ that satisfies

dθ′1(ϕ)

dδ
= 1 (3.39)

from Equation (3.31) where θ1 = θ2 + dδ and θ′1 is influenced by ϕ. We can also find

the most and the least stable directions by satisfying

d2θ′1
dδ2

= 0. (3.40)

The analytical expressions for the derivatives are very complicated and depend on

the step size ratio s
l
. Using a numerical approach at a small step size ratio (Figure

3.31), we observe that the most stable direction is ϕs ≈ θ2 − π which is −2π
n

for a

regular polygon, and the stable range spans about 180◦. A large step size ratio can

cause these directions to depart from those observed values (Figure 3.31).
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(a) With 6 robots.

(b) With 16 robots.

Figure 3.30 : Robots first rotate clockwise on the same circle, then error accumulates
and robot motion becomes chaotic.
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Name ϕ ccw/cw in/out stable?
Unstable/stable boundary −n+4

2n
π cw out -

Outward radial −n+2
2n
π - out y

Most Stable −2π
n

ccw out y
Forward circular n−2

2n
π − arccos s

2r
ccw - y

Forward 0 ccw in y
Stable/unstable boundary n−4

2n
π ccw in -

Inward radial n−2
2n
π - in n

Least stable n−2
n
π cw in n

Reverse circular n−2
2n
π + arccos s

2r
cw - n

Reverse π cw out n

Table 3.1 : List of special directions in the general problem.

Outward radial

Inward radial

Forward

Forward

circular

Most stable

Least stable

Reverse

circular

Reverse

Counter-

clockwise
Clockwise

Stable
Unstable

Inward

Outward

Figure 3.33 : The directions can be classified into three pairs of categories: counter-
clockwise/clockwise, inward/outward, and stable/unstable.
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(a) Unstable with ϕ = 180◦. (b) Stable with ϕ = −22.5◦.

Figure 3.34 : With a different ϕ, an unstable problem has a stable version in a mirror
image. Both figures have 16 robots and the snapshot is taken after 150 rounds.

Finally, we have a list of all the special directions. Table 3.1 lists all these special

directions (at a small step size ratio), and Figure 3.33 shows all these directions in a

unit circle.

3.7 Methods to Maintain Stability

Now we understand why the robot evasion problem is unstable and which general

configurations are unstable. How then can we control the robots in these problems

to maintain stability?

One solution is that since Figure 3.33 has some reflective symmetry, we may

be able to choose another angle ϕ to obtain a stable configuration in the mirror

image. For the robot evasion problem, if we change the direction from ϕ = 180◦

to ϕ = −360◦

n
, the robots move outward clockwise as if in a mirror image (Figure

3.34), and this configuration is the most stable one among all the configurations.
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If we initially deploy the robots in the clockwise orientation and use a left-handed

coordinate system, the trajectories will be exactly the spirals as expected. This

method does not apply to the directions near the inward radial direction since the

mirror image is still unstable, but since these directions have very little instability

(near the boundary) and the robots are gathering at the center, noticeable instability

is not observed from configurations with regular polygons.

We are also interested in moving robots along some other types of spirals. The

Archimedean spiral has a nice geometric property: any ray from the origin intersects

successive turnings of the spiral in points with a constant separation distance [108].

The involute of a circle also has a similar geometric property: its successive turns are

parallel curves with constant separation distance [109]. If each robot has an area of

reach greater than this separation distance, the union of the area of reach over time

can efficiently cover a continuous piece of the ground. Robots can paint the floor,

mow the grass, or detect underground objects progressively from a given origin. The

iRobot Roomba robotic vacuum cleaner [70] starts in this behavior when placed on

the floor away from its charger.

When we set ϕ = θ−π
2

= −π
n
, we observe that the robots move along outward

counterclockwise spirals that have almost constant separation distance. Figure 3.35

shows two examples (compare with Figure 3.34(b) to see the difference).

Figure 3.36 provides an explanation of this spiral behavior. With ϕ = −π
n
, we

have θ
2
− ϕ = π

2
, and the robot always move perpendicular to the radial direction.

From the Pythagorean theorem

r1 =
√
r2

0 + s2, r2 =
√
r2

1 + s2 =
√
r2

0 + 2s2, (3.41)
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(a) With 4 robots after 50 rounds, ϕ =
−45◦.

(b) With 16 robots after 50 rounds, ϕ =
−11.25◦.

Figure 3.35 : Robots move along spirals with almost constant separation distance.
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p2 p0
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r1

r2

ω2
ω1

Figure 3.36 : The robot moves in the direction perpendicular to the radial direction,
and its distance the the origin increases in each round.
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ω1 = arcsin
s

r1

, ω2 = arcsin
s

r2

. (3.42)

Triangle 4p′′1Op′1 is not similar to 4p′1Op1, since we keep the same step size s,

thus ω2 < ω1. In general, after k rounds of iteration

rk − rk−1

ωk
=

√
r2

0 + ks2 −
√
r2

0 + (k − 1)s2

arcsin s√
r20+ks2

. (3.43)

During the kth round, the distance between the robot and the origin increases by

rk − rk−1, and the robot rotates by the angle ωk around the origin. rk−rk−1

ωk
describes

how much distance is gained from one radian of revolution.

Since x < arcsinx < π
2
x for 0 < x < π, we can find an upper bound

rk − rk−1

ωk
=
rk − rk−1

arcsin s
rk

<
rk − rk−1

s
rk

<
r2
k − r2

k−1

s
= s (3.44)

and a lower bound

rk − rk−1

ωk
=
rk − rk−1

arcsin s
rk

>
rk − rk−1

π
2
s
rk

>
2

π

r2
k − r2

k− 1
2

s
=
s

π
. (3.45)

We have both an upper bound and a lower bound for the distance gained per

radian of revolution, so per revolution 2πs < 2π rk−rk−1

ωk
< 2s. This spiral has bounded

separation distance. In fact, rk−rk−1

ωk
monotonically decreases with the limit

lim
k→∞

rk − rk−1

ωk
=
s

2
. (3.46)

This limit is independent of r0. The step size s controls the tightness of the spiral.

Figure 3.37 shows the actual distance gained per radian of revolution. This spiral

is not exactly an Archimedean spiral or the involute of a circle, but is a very good
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Figure 3.37 : The separation distance is proportional to step size when k → ∞ and
the limit is independent of the initial circumradius which is set to r0 = 1. Five data
series have different step sizes valued in the legend.

approximation.

Since −2π
n
< ϕ < 0, ϕ falls into the stable range, and the stability is observed

in simulations. There is another ϕ = θ + π
n

= n−1
n
π for a clockwise version which is

unstable (Figure 3.38).

With multiple robots, we can adjust the parameters to ensure that each piece of

ground is examined by two or more different robots ensuring that our algorithm is

robust to the failure of a single sensor.

3.8 Conclusion

Starting from the four-bug problem, we generalize to an arbitrary number of robots

and arbitrary motion angles. We find that some configurations are unstable to direc-

tion error and distance error, and verify in simulations that robots move in chaotic
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(a) With 4 robots after 400 rounds, ϕ = 135◦.

(b) With 16 robots after 30 rounds, ϕ = 168.75◦.

Figure 3.38 : The clockwise spirals intended to have constant separation distance are
unstable.
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trajectories. We analyze the stability with both analytical and numerical methods,

and classify which range of angles lead to instability. Finally, we provide solutions

that maintain stability so that multiple robots can efficiently patrol along a perimeter,

shrink the perimeter, expand the perimeter, and seamlessly search over the ground

with controllable redundancy. The results from this algorithm not only enhance en-

gineering applications with better parallelization and robustness but also can be used

to generate artistic drawings.
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Chapter 4

Design and Implementation of Multi-Robot

Simulator

4.1 Introduction and Related Work

When I joined the Multi-Robot Systems Lab led by James McLurkin to start my

research on swarm robotics, we programmed directly on the r-one robots [114]. Pro-

gramming was slow before wireless broadcast programming was implemented: USB

cable connections were required and only one robot can be programmed at a time.

Robots have sensing and motion errors, and sometimes robots fail due to hardware

defects. Wireless bandwidth was limited so that real-time data collection often in-

terfered with robot-to-robot communication. In order to efficiently verify and debug

new algorithms, a multi-robot simulator became a necessity.

There are many robot simulators available to the public for free, and each simula-

tor has its own applicable scope. Some simulators focus on the physics of connected

rigid bodies with degrees of freedom, such as robot arms and robot hands [115] [116]

[117]. Some simulators build realistic 3D environments for humanoid robots and robot

soccer [112] [113] [118].

The Open Motion Planning Library (OMPL) is a robotic software library devel-

oped by the Kavraki Lab at Rice University [110]. This software is written in C++

and supports motion planning for multiple agents, using sampling-based algorithms

including PRM [119], RRT [120], KPIECE [121], and STRIDE [122]. A user interface
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(a) OMPL [110]. (b) SwarmControl.net by Aaron
Becker [111].

(c) SimRobot [112]. (d) USARSim [113].

Figure 4.1 : Images from related work.
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is provided to view animations of computed results (Figure 4.1(a)).

Aaron Becker studied controlling a robot swarm with a common signal [123] and

built a series of online games with HTML5 [111]. In these games a user can use a

mouse to attract robots or use the keyboard to drive the robots in the same direction

(Figure 4.1(b)). Robots are modeled as solid objects and physical forces are simulated

so that objects can be pushed by the swarm and robots can push against each other.

There are also many other simulators written by researchers to simulate the swarm

robot platforms they use [124] [125] [126]. These simulators often have fancy anima-

tions, but the details of individual robots and the construction of the background

environment become a large overhead when a large number of robots need to be

simulated. My simulator focuses on the geometry and topology of robot networks,

and communication between robots is more important to my research than physics.

Existing simulators are not good solutions for me to quickly evolve my algorithms.

So I wrote my own simulator for my own research.

4.2 System Design

My fifth generation multi-robot simulator is developed as a C# Windows Application

with Microsoft Visual Studio 2015. The simulator is optimized to run on Microsoft

Windows 7 with .NET Framework 4.0, but some other platforms can also be sup-

ported. The simulator consists of one framework and six modules: robot, physics,

program, control, graphics, and data (Figure 4.2).

Figure 4.3 shows a screenshot of the simulator with Windows Forms graphics. All

the figures describing robot swarms in the previous chapters are also exported from

the simulator.
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Framework

Main Function Sync Timer Updaters Drawers Libraries

Robot ProgramPhysics GraphicsControl Data

Figure 4.2 : The system structure of my simulator.

Figure 4.3 : The simulator with 200 robots building a fractal tree. Some robots are
still in motion and have not yet arrived at their final destinations.



82

4.2.1 The Simulator Framework

The simulator framework is a set of classes that provides these functionalities:

• Serve as the static Main function for program entry point.

• Manage the threads for parallel execution.

• Synchronize the timer for a stable refresh rate and for critical sections that

require single-thread execution.

• Provide shared data structures, default parameters, and mathematical libraries.

When the simulator starts to run, the simulator framework first loads several

parameters, including how many threads to use and how many frames to display per

second. Each module is then initialized. Several threads are created in a paused state

with different payloads, such as the updaters and the drawers. Finally, the sync timer

is created which is used to synchronize the threads.

The updaters and the drawers are inspired by XNA, in which one updater and

one drawer execute alternatively sharing a single thread. To enable multi-threading,

my simulator allows a configurable number of updaters and drawers, and manages

them with minimal thread-safe constraints.

An updater is a worker thread for updating states related to the robots. A list

of the robots is stored by the robot module, and the list is fragmented so that each

robot is updated by one of these updaters, unless a user pauses the simulator. The

updater calls these modules in order:

• Physics module: determines which robots fall in each other’s sensing range, and

calculates their relative positions.
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• Program module: executes user-written program to process sensor readings,

updates robot internal states, and generates the commands to actuators.

• Physics module: simulates actuator behaviors including robot motion.

• Data module: generates output data and prepares data for real-time plots.

The robot states before and after one round of update are stored into different

copies. This storage structure ensures that if a robot reads information from another

robot, the information is always from the previous round regardless of in what or-

der the robots are updated. Since only the information written during updating is

accessible by the corresponding updater, we do not have to introduce any locking

mechanism on the time-consuming updating process.

A drawer is a worker thread for converting robots’ states into a graphical drawing.

The drawer may be single-threaded if multi-threading is not supported by the graphics

engine. The drawer calls the program module to gather the contents needed for

drawing, including the robots, the caption of each robot, robot-to-robot connections,

and any other information customized by the user program. The drawer may also

gather data from the data module for real-time plots. The coordinate systems are

converted from ground coordinates and plot coordinates into the screen coordinates.

Finally the drawer invokes the graphics module to render the user interface.

The sync timer has two modes: user interaction mode and video rendering mode.

In the user interaction mode, the sync timer is invoked once every 20 ms (50 Hz) or

16.7 ms (60 Hz) to maintain a stable refresh rate. In the video rendering mode, the

sync timer is invoked once all the updaters and drawers finish their tasks.

The sync timer activates the updaters and drawers so that all the tasks are aligned

by rounds. Before activating the multi-thread tasks, the sync timer needs to execute
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some single-threaded tasks or those tasks requiring locking mechanism:

• Exchange the two sets of robot states: previous and current. This exchange

also moves all the robots from their previous positions to their calculated des-

tinations.

• Add and/or remove robots, since the number of robots cannot change when

iterating over the list of robots.

• Initialize the updaters and drawers if a single-thread initialization is required

before multi-thread tasks.

• Process user input (can also be handled with a dedicated updater).

This framework provides several common data structures. The types of angles

are packed into an Angle class with subclasses like Degree and Radian. When the

user creates a variable for an angle, the user calls different static methods of the

Angle class to identify whether the angle unit is in degrees or in radians, and the

static methods call the private constructors to create a subclass instance according

to the factory pattern [127]. Operators are provided so that the user can simply sum

up a degree angle and a radian angle with a plus sign, and all the conversions are

performed automatically behind the scene. The Vector class is handled with a similar

set of subclasses to represent vectors written in a Cartesian coordinate system (x, y)

and in a polar coordinate system (r, θ). Integer-only calculation is also provided as

subclasses to simulate a robot lacking floating point calculation.

The framework also provides a robotic math library for some popular mathematical

operations such as calculating the distance between two neighbors. Most of these

functions are bound to the data structures to support the diversity of data units.
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Integer-only approximations of trigonometric functions automatically apply to those

integer-only units.

4.2.2 The Robot Module

The robot module maintains a list of the robots, and each robot is represented by an

instance of a dynamic class.

Each robot is uniquely identified by a Globally Unique Identifier (GUID) [128].

GUIDs are 128-bit randomly generated numbers that are unlikely to be duplicated,

and are efficient for use in hash maps. The list of the robots is a hash map that maps

GUIDs to robot objects.

The robot object contains a set of properties, external states, and internal states.

The properties are the parameters of robot physics, such as the radius, the commu-

nication range, and the maximum speed. The external states describe the robot’s

position, heading, current speed, and current angle speed. The internal states are

those states defined by the user, such as topological information used by a distributed

spanning tree [58]. The robot class is now designed as a dynamic class to improve

the compatibility between programs, and the internal states are stored as a hash map

from string to object.

The robot object also provides several methods that can easily be used to manipu-

late the robot, such as moving towards another robot or along some specific direction.

These functions only set the motion targets: the actual movements are handled by

the physics module.

4.2.3 The Physics Module

The physics module is a set of classes that provides these functionalities:
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• Models for sensing (neighbor recognition and obstacle detection) with simulated

sensing errors.

• Models of measurement (distance and angle) with simulated measurement er-

rors.

• Executes communication commands with simulated communication errors.

• Executes motion commands with simulated motion errors and collision events.

Researchers have tried to solve swarm problems with low-cost sensors or even al-

lowing some sensors to be absent. The Kilobot [129] designed at Harvard University

can measure distance with infrared reflection, but cannot measure direction with a

single infrared receiver. The r-one robot [114] designed at Rice University can measure

heading and orientation with multiple infrared transmitters and receivers, but does

not support distance measurement before range bits are introduced [4] [59]. Kroller

et. al. are even able to extract topology from robots with no continuous measure-

ments but can tell only whether or not another robot is within sensing range [130].

My simulator provides sensing and measurement models that can intentionally hide

some information from the robots. The measurement error can be modeled as a uni-

form distribution, a Gaussian distribution, or some user-defined discrete distribution.

Systematic errors and random loss of measurement are also supported.

The motion commands which specify motion targets are converted into motion

destinations that adhere to speed limits, avoid collisions, and respect nonholonomic

restrictions. Robots are given feedback concerning whether the motion targets are

achieved.
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4.2.4 The Program Module

The program module contains a base class called Program, and holds user-defined

robot programs derived from this base class.

A user program contains user-defined code that sets up the environment, modifies

parameters, and updates the robots. Users can also override some functions such as

how the robot is drawn on the screen, for example, draw a robot in some specific

color with a customized caption.

Several template programs are provided, such as robots building fractals. Users

can subclass a program and change some parameters to build a different fractal.

4.2.5 The Control Module

The control module provides a bidirectional user interface with these functionalities:

• A control panel with buttons for input and indicators for output.

• Capture mouse events that select/add/delete/move a robot or adjust the view.

• Capture keyboard events that start/stop/change the current program, load/save

data, adjust the view, move robots.

• Handle input and output for peripherals such as a joystick, keyboard illumina-

tion, and real robots.

A default set of keyboard and mouse commands are provided, and users can also

assign keys to functions in the user program (including overriding the existing ones).

Users can use customized keys to manually control some specific robots.
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4.2.6 The Graphics Module

The graphics module is a set of classes that provides these functionalities:

• Converts robot coordinates into graphics coordinates and vice versa.

• Maintains a list of items to be drawn and/or graphics buffers, depending on the

type of graphics.

• Draws the items on the screen or through third-party graphics engines.

Different graphics engines can be chosen by the user. Drawing on a Windows Form

is now supported, and third-party graphics engines such as DirectX and OpenGL will

be introduced soon. Third-party graphics engines usually have their own threading

models, but several tricks are required to enable multi-threading on Windows Forms.

Instead of drawing objects sequentially based on their layers, a z-buffer can be

used to describe the depth of each pixel. The z-buffer can be rendered in parallel if

painting on a pixel can be done atomically, or if the canvas can be split into distinct

parts. In the past, drawing robots along with their historical trajectories was often

slow because the line segments in the trajectories increase rapidly and need to be

rendered in every frame. A solution to this problem is to render the trajectories and

the robots separately; the trajectories are cached in a bitmap and only recent line

segments are added. The full history of trajectories is then still preserved in case the

user changes the view and a full repaint is needed.

4.2.7 The Data Module

The data module is a set of classes that provides these functionalities:

• Loads and saves robot configurations.
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• Saves and exports any data generated by user programs.

• Generates real-time plots.

• Handles program logs and exceptions.

Exporting the positions of the robots and their trajectories as Scalable Vector

Graphics (SVG) files is a new feature. SVG files use XML to describe line segments,

circles, rectangles, and curves, which can be formatted from existing data structures.

SVG files can later be converted to PDF files by Inkscape command-line, and embed-

ded at high definition in academic articles.

4.3 Discussion

I started to develop my first-generation multi-robot simulator in mid-2013. I chose

Microsoft XNA because I had just learned XNA for game development in a game

design course, and XNA provides texture-based drawings and frame management.

In addition, C# is an object-oriented programming language that is easy to write

and to maintain. My first simulator focused on the transition between the Cartesian

coordinate system of the ground and the polar coordinate system of each robot. A

robot converts its destination in the global coordinate system into the angles and

distances relative to some stationary robots, and becomes stationary itself when the

robot thinks that its destination has been reached. Simulated sensing and motion

errors can be adjusted, and the ground-truth destinations are shown as references to

compare between perceived and actual positions.

The second version of my simulator was developed when I needed to simulate

swarm behaviors. I implemented a distributed spanning tree for my topology-based
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sorting algorithm [131]. Realistic scenarios such as integer-based computing, section-

based bearing measurement, and collision avoidance were also introduced. A data col-

lection module was written to gather real-time data from the robots and the AprilTag

[132] positioning system so that experiments could be monitored and controlled by

the computer. These improvements provided more realistic simulations, but because

at that time I lacked sufficient knowledge of software engineering, the program soon

became too complicated and difficult to use.

I had to write the third version of my simulator from scratch because I needed to

implement topological information which is difficult to debug in a over-complicated

simulator. For my topology-based sorting algorithm [58], I introduced a switch be-

tween global topology mode and local topology mode. The global topology mode

provides collection logic over a set of states so that I can always generate the cor-

rect topology, and develop my algorithm without worrying about topological errors.

Later I switch back to local topology mode to verify that my algorithm is robust to

topological errors such as a robot being added or removed from the swarm. I also

created a tool bar to control the program by clicking a mouse on some buttons, but

this panel seems not to work well with XNA.

In the fourth generation of my multi-robot simulator, I introduced a better object-

oriented design so that different programs with different parameters – sorting, fractal

formation, and stability analysis – could be integrated within the same framework.

The user-defined internal states of the robots were packed into a separate class, and

I intended to support dynamic switching between programs, but this attempt failed

due to different definitions of the states in different programs.

Then I realized that the XNA framework is becoming a bottleneck. XNA was

deprecated by Microsoft, and XNA is no longer supported by Visual Studio 2012 and
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newer versions of Visual Studio. XNA handles updating and drawing automatically,

but runs only in a single thread so many CPU cores remain idle. Texture-based

drawing is redundant as I usually draw lines and circles, and bitmap textures do not

scale to high-definition. XNA is based on single-precision floating point and 32-bit

integers, which are insufficient for scientific computing. The classes of vector and color

provided by XNA lack some efficient methods, but Microsoft marks those classes as

final so I cannot inherent them to make my improvements. Therefore, I decided to get

rid of XNA and replace XNA with my own framework that solves these problems.

4.4 Conclusion

I have built a multi-robot simulator that can simulate swarm algorithms in real time.

This simulator is specially crafted to my research and provides realistic modeling

and high definition output with minimal latency. Multi-threading and 64-bit archi-

tecture increase the performance over previous simulators based on Microsoft XNA,

customized data structures eliminate the pains of unit conversions, and software en-

gineering techniques make the program easier to maintain and to use to develop new

functionalities.

GPU computing is an oncoming trend. GPUs are manufactured with more cores

than CPUs and with more powerful floating point calculation abilities. These advan-

tages are especially suitable for multi-robot simulation. So in the future I plan to

learn GPU programming and to build a faster GPU-based multi-robot simulator.



92

Chapter 5

Conclusion

I developed an algorithm that allows a swarm of robots to self-assemble into fractals.

Since there are various types of fractals – tree-based, curve-based, and space-filling

fractals – with different intrinsic properties, I designed methods corresponding to

these properties to generate fractals efficiently. A collision-free solution is provided

for building tree-based fractals. The process of building fractals can be used in both

art and engineering, for generating aesthetic shapes and for building fractal antennas.

I analyzed the stability of the general robot chasing problem, which is an exten-

sion of the classical four-bug problem. I observed both spiral motions and chaotic

behaviors with robot swarms, which inspired me to figure out the reason for insta-

bility and whether a general configuration is stable. I provided a solution to convert

an unstable problem into a stable one, and found a concise method to approximate

the Archimedean spiral which allows multiple robots to traverse the environment ef-

ficiently. The results can help engineers build swarm systems with more stability,

while the trajectories of unstable robot swarms can be drawn as artistic patterns.

This work and the work in my Master’s thesis are supported by my multi-robot

simulator. I developed my own multi-robot simulator so that I can verify my algo-

rithms quickly and gather data in real time. The simulator is optimized for my area

of research and enhanced with parallel computing. The artistic drawings and some

figures for scientific analysis are exported by the simulator in high definition formats.

In my future work, I need to make a better connection between art and engineering,
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and generate more practical solutions for art and engineering problems. The fractal

generating algorithm can build only a subset of all the fractals and needs to be

expanded, and more specific algorithms need to be designed for different space-filling

fractals. In addition to geometric stability, topological stability is another area of

study that deals with inconsistency. To increase the number of robots supported by

the multi-robot simulator, GPU programming is an oncoming trend and adopting the

new technologies will benefit researches in both art and engineering.
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