14 research outputs found

    Conditional Random Field Autoencoders for Unsupervised Structured Prediction

    Full text link
    We introduce a framework for unsupervised learning of structured predictors with overlapping, global features. Each input's latent representation is predicted conditional on the observable data using a feature-rich conditional random field. Then a reconstruction of the input is (re)generated, conditional on the latent structure, using models for which maximum likelihood estimation has a closed-form. Our autoencoder formulation enables efficient learning without making unrealistic independence assumptions or restricting the kinds of features that can be used. We illustrate insightful connections to traditional autoencoders, posterior regularization and multi-view learning. We show competitive results with instantiations of the model for two canonical NLP tasks: part-of-speech induction and bitext word alignment, and show that training our model can be substantially more efficient than comparable feature-rich baselines

    SimAlign: High Quality Word Alignments without Parallel Training Data using Static and Contextualized Embeddings

    Get PDF
    Word alignments are useful for tasks like statistical and neural machine translation (NMT) and annotation projection. Statistical word aligners perform well, as do methods that extract alignments jointly with translations in NMT. However, most approaches require parallel training data and quality decreases as less training data is available. We propose word alignment methods that require no parallel data. The key idea is to leverage multilingual word embeddings, both static and contextualized, for word alignment. Our multilingual embeddings are created from monolingual data only without relying on any parallel data or dictionaries. We find that alignments created from embeddings are competitive and mostly superior to traditional statistical aligners, even in scenarios with abundant parallel data. For example, for a set of 100k parallel sentences, contextualized embeddings achieve a word alignment F1 for English-German that is more than 5% higher (absolute) than eflomal, a high quality alignment model

    Building and querying parallel treebanks

    Get PDF
    This paper describes our work on building a trilingual parallel treebank. We have annotated constituent structure trees from three text genres (a philosophy novel, economy reports and a technical user manual). Our parallel treebank includes word and phrase alignments. The alignment information was manually checked using a graphical tool that allows the annotator to view a pair of trees from parallel sentences. This tool comes with a powerful search facility which supersedes the expressivity of previous popular treebank query engines

    Neural Network-based Word Alignment through Score Aggregation

    Get PDF
    We present a simple neural network for word alignment that builds source and target word window representations to compute alignment scores for sentence pairs. To enable unsupervised training, we use an aggregation operation that summarizes the alignment scores for a given target word. A soft-margin objective increases scores for true target words while decreasing scores for target words that are not present. Compared to the popular Fast Align model, our approach improves alignment accuracy by 7 AER on English-Czech, by 6 AER on Romanian-English and by 1.7 AER on English-French alignment

    A Bayesian model for joint word alignment and part-of-speech transfer

    Get PDF
    Current methods for word alignment require considerable amounts of parallel text to deliver accurate results, a requirement which is met only for a small minority of the world's approximately 7,000 languages. We show that by jointly performing word alignment and annotation transfer in a novel Bayesian model, alignment accuracy can be improved for language pairs where annotations are available for only one of the languages---a finding which could facilitate the study and processing of a vast number of low-resource languages. We also present an evaluation where our method is used to perform single-source and multi-source part-of-speech transfer with 22 translations of the same text in four different languages. This allows us to quantify the considerable variation in accuracy depending on the specific source text(s) used, even with different translations into the same language.Non peer reviewe

    Word Sequence Modeling using Deep Learning:an End-to-end Approach and its Applications

    Get PDF
    For a long time, natural language processing (NLP) has relied on generative models with task specific and manually engineered features. Recently, there has been a resurgence of interest for neural networks in the machine learning community, obtaining state-of-the-art results in various fields such as computer vision, speech processing and natural language processing. The central idea behind these approaches is to learn features and models simultaneously, in an end-to-end manner, and making as few assumptions as possible. In NLP, word embeddings, mapping words in a dictionary on a continuous low-dimensional vector space, have proven to be very efficient for a large variety of tasks while requiring almost no a-priori linguistic assumptions. In this thesis, we investigate continuous representations of segments in a sentence for the purpose of solving NLP tasks that involve complex sentence-level relationships. Our sequence modelling approach is based on neural networks and takes advantage of word embeddings. A first approach models words in context in the form of continuous vector representations which are used to solve the task of interest. With the use of a compositional procedure, allowing arbitrarily-sized segments to be compressed onto continuous vectors, the model is able to consider long-range word dependencies as well. We first validate our approach on the task of bilingual word alignment, consisting in finding word correspondences between a sentence in two different languages. Source and target words in context are modeled using convolutional neural networks, obtaining representations that are later used to compute alignment scores. An aggregation operation enables unsupervised training for this task. We show that our model outperforms a standard generative model. The model above is extended to tackle phrase prediction tasks where phrases rather than single words are to be tagged. These tasks have been typically cast as classic word tagging problems using special tagging schemes to identify the segments boundaries. The proposed neural model focuses on learning fixed-size representations of arbitrarily-sized chunks of words that are used to solve the tagging task. A compositional operation is introduced in this work for the purpose of computing these representations. We demonstrate the viability of the proposed representations by evaluating the approach on the multiwork expression tagging task. The remainder of this thesis addresses the task of syntactic constituency parsing which, as opposed to the above tasks, aims at producing a structured output, in the form of a tree, of an input sentence. Syntactic parsing is cast as multiple phrase prediction problems that are solved recursively in a greedy manner. An extension using recursive compositional vector representations, allowing for lexical infor- mation to be propagated from early stages, is explored as well. This approach is evaluated on a standard corpus obtaining performance comparable to generative models with much shorter computation time. Finally, morphological tags are included as additional features, using a similar composition procedure, to improve the parsing performance for morphologically rich languages. State-of-the-art results were obtained for these task and languages

    Annotation, exploitation and evaluation of parallel corpora

    Get PDF
    Exchange between the translation studies and the computational linguistics communities has traditionally not been very intense. Among other things, this is reflected by the different views on parallel corpora. While computational linguistics does not always strictly pay attention to the translation direction (e.g. when translation rules are extracted from (sub)corpora which actually only consist of translations), translation studies are amongst other things concerned with exactly comparing source and target texts (e.g. to draw conclusions on interference and standardization effects). However, there has recently been more exchange between the two fields – especially when it comes to the annotation of parallel corpora. This special issue brings together the different research perspectives. Its contributions show – from both perspectives – how the communities have come to interact in recent years

    Annotation, exploitation and evaluation of parallel corpora: TC3 I

    Get PDF
    Exchange between the translation studies and the computational linguistics communities has traditionally not been very intense. Among other things, this is reflected by the different views on parallel corpora. While computational linguistics does not always strictly pay attention to the translation direction (e.g. when translation rules are extracted from (sub)corpora which actually only consist of translations), translation studies are amongst other things concerned with exactly comparing source and target texts (e.g. to draw conclusions on interference and standardization effects). However, there has recently been more exchange between the two fields – especially when it comes to the annotation of parallel corpora. This special issue brings together the different research perspectives. Its contributions show – from both perspectives – how the communities have come to interact in recent years

    Iterated learning framework for unsupervised part-of-speech induction

    Get PDF
    Computational approaches to linguistic analysis have been used for more than half a century. The main tools come from the field of Natural Language Processing (NLP) and are based on rule-based or corpora-based (supervised) methods. Despite the undeniable success of supervised learning methods in NLP, they have two main drawbacks: on the practical side, it is expensive to produce the manual annotation (or the rules) required and it is not easy to find annotators for less common languages. A theoretical disadvantage is that the computational analysis produced is tied to a specific theory or annotation scheme. Unsupervised methods offer the possibility to expand our analyses into more resourcepoor languages, and to move beyond the conventional linguistic theories. They are a way of observing patterns and regularities emerging directly from the data and can provide new linguistic insights. In this thesis I explore unsupervised methods for inducing parts of speech across languages. I discuss the challenges in evaluation of unsupervised learning and at the same time, by looking at the historical evolution of part-of-speech systems, I make the case that the compartmentalised, traditional pipeline approach of NLP is not ideal for the task. I present a generative Bayesian system that makes it easy to incorporate multiple diverse features, spanning different levels of linguistic structure, like morphology, lexical distribution, syntactic dependencies and word alignment information that allow for the examination of cross-linguistic patterns. I test the system using features provided by unsupervised systems in a pipeline mode (where the output of one system is the input to another) and show that the performance of the baseline (distributional) model increases significantly, reaching and in some cases surpassing the performance of state-of-the-art part-of-speech induction systems. I then turn to the unsupervised systems that provided these sources of information (morphology, dependencies, word alignment) and examine the way that part-of-speech information influences their inference. Having established a bi-directional relationship between each system and my part-of-speech inducer, I describe an iterated learning method, where each component system is trained using the output of the other system in each iteration. The iterated learning method improves the performance of both component systems in each task. Finally, using this iterated learning framework, and by using parts of speech as the central component, I produce chains of linguistic structure induction that combine all the component systems to offer a more holistic view of NLP. To show the potential of this multi-level system, I demonstrate its use ‘in the wild’. I describe the creation of a vastly multilingual parallel corpus based on 100 translations of the Bible in a diverse set of languages. Using the multi-level induction system, I induce cross-lingual clusters, and provide some qualitative results of my approach. I show that it is possible to discover similarities between languages that correspond to ‘hidden’ morphological, syntactic or semantic elements
    corecore