44 research outputs found

    Contraction blockers for graphs with forbidden induced paths.

    Get PDF
    We consider the following problem: can a certain graph parameter of some given graph be reduced by at least d for some integer d via at most k edge contractions for some given integer k? We examine three graph parameters: the chromatic number, clique number and independence number. For each of these graph parameters we show that, when d is part of the input, this problem is polynomial-time solvable on P4-free graphs and NP-complete as well as W[1]-hard, with parameter d, for split graphs. As split graphs form a subclass of P5-free graphs, both results together give a complete complexity classification for Pâ„“-free graphs. The W[1]-hardness result implies that it is unlikely that the problem is fixed-parameter tractable for split graphs with parameter d. But we do show, on the positive side, that the problem is polynomial-time solvable, for each parameter, on split graphs if d is fixed, i.e., not part of the input. We also initiate a study into other subclasses of perfect graphs, namely cobipartite graphs and interval graphs

    Efficient enumeration of maximal split subgraphs and sub-cographs and related classes

    Full text link
    In this paper, we are interested in algorithms that take in input an arbitrary graph GG, and that enumerate in output all the (inclusion-wise) maximal "subgraphs" of GG which fulfil a given property Π\Pi. All over this paper, we study several different properties Π\Pi, and the notion of subgraph under consideration (induced or not) will vary from a result to another. More precisely, we present efficient algorithms to list all maximal split subgraphs, sub-cographs and some subclasses of cographs of a given input graph. All the algorithms presented here run in polynomial delay, and moreover for split graphs it only requires polynomial space. In order to develop an algorithm for maximal split (edge-)subgraphs, we establish a bijection between the maximal split subgraphs and the maximal independent sets of an auxiliary graph. For cographs and some subclasses , the algorithms rely on a framework recently introduced by Conte & Uno called Proximity Search. Finally we consider the extension problem, which consists in deciding if there exists a maximal induced subgraph satisfying a property Π\Pi that contains a set of prescribed vertices and that avoids another set of vertices. We show that this problem is NP-complete for every "interesting" hereditary property Π\Pi. We extend the hardness result to some specific edge version of the extension problem

    Contraction blockers for graphs with forbidden induced paths

    Get PDF
    We consider the following problem: can a certain graph parameter of some given graph be reduced by at least d for some integer d via at most k edge contractions for some given integer k? We examine three graph parameters: the chromatic number, clique number and independence number. For each of these graph parameters we show that, when d is part of the input, this problem is polynomial-time solvable on P4-free graphs and NP-complete as well as W[1]-hard, with parameter d, for split graphs. As split graphs form a subclass of P5-free graphs, both results together give a complete complexity classification for Pâ„“-free graphs. The W[1]-hardness result implies that it is unlikely that the problem is fixed-parameter tractable for split graphs with parameter d. But we do show, on the positive side, that the problem is polynomial-time solvable, for each parameter, on split graphs if d is fixed, i.e., not part of the input. We also initiate a study into other subclasses of perfect graphs, namely cobipartite graphs and interval graphs

    Recognizing graphs close to bipartite graphs.

    Get PDF
    We continue research into a well-studied family of problems that ask if the vertices of a graph can be partitioned into sets A and B, where A is an independent set and B induces a graph from some specified graph class G. We let G be the class of k-degenerate graphs. The problem is known to be polynomial-time solvable if k=0 (bipartite graphs) and NP-complete if k=1 (near-bipartite graphs) even for graphs of diameter 4, as shown by Yang and Yuan, who also proved polynomial-time solvability for graphs of diameter 2. We show that recognizing near-bipartite graphs of diameter 3 is NP-complete resolving their open problem. To answer another open problem, we consider graphs of maximum degree D on n vertices. We show how to find A and B in O(n) time for k=1 and D=3, and in O(n^2) time for k >= 2 and D >= 4. These results also provide an algorithmic version of a result of Catlin [JCTB, 1979] and enable us to complete the complexity classification of another problem: finding a path in the vertex colouring reconfiguration graph between two given k-colourings of a graph of bounded maximum degree

    Enumerating Minimal Connected Dominating Sets in Graphs of Bounded Chordality

    Get PDF
    Listing, generating or enumerating objects of specified type is one of the principal tasks in algorithmics. In graph algorithms one often enumerates vertex subsets satisfying a certain property. We study the enumeration of all minimal connected dominating sets of an input graph from various graph classes of bounded chordality. We establish enumeration algorithms as well as lower and upper bounds for the maximum number of minimal connected dominating sets in such graphs. In particular, we present algorithms to enumerate all minimal connected dominating sets of chordal graphs in time O(1.7159^n), of split graphs in time O(1.3803^n), and of AT-free, strongly chordal, and distance-hereditary graphs in time O^*(3^{n/3}), where n is the number of vertices of the input graph. Our algorithms imply corresponding upper bounds for the number of minimal connected dominating sets for these graph classes

    On prime inductive classes of graphs

    Get PDF
    AbstractLet H[G1,…,Gn] denote a graph formed from unlabelled graphs G1,…,Gn and a labelled graph H=({v1,…,vn},E) replacing every vertex vi of H by the graph Gi and joining the vertices of Gi with all the vertices of those of Gj whenever {vi,vj}∈E(H). For unlabelled graphs G1,…,Gn,H, let φH(G1,…,Gn) stand for the class of all graphs H[G1,…,Gn] taken over all possible orderings of V(H).A prime inductive class of graphs, I(B,C), is said to be a set of all graphs, which can be produced by recursive applying of φH(G1,…,G∣V(H)∣) where H is a graph from a fixed set C of prime graphs and G1,…,G∣V(H)∣ are either graphs from the set B of prime graphs or graphs obtained in the previous steps. Similar inductive definitions for cographs, k-trees, series–parallel graphs, Halin graphs, bipartite cubic graphs or forbidden structures of some graph classes were considered in the literature (Batagelj (1994) [1] Drgas-Burchardt et al. (2010) [6] and Hajós (1961) [10]).This paper initiates a study of prime inductive classes of graphs giving a result, which characterizes, in their language, the substitution closed induced hereditary graph classes. Moreover, for an arbitrary induced hereditary graph class P it presents a method for the construction of maximal induced hereditary graph classes contained in P and substitution closed.The main contribution of this paper is to give a minimal forbidden graph characterization of induced hereditary prime inductive classes of graphs. As a consequence, the minimal forbidden graph characterization for some special induced hereditary prime inductive graph classes is givenThere is also offered an algebraic view on the class of all prime inductive classes of graphs of the type I({K1},C)

    Decycling a graph by the removal of a matching: new algorithmic and structural aspects in some classes of graphs

    Full text link
    A graph GG is {\em matching-decyclable} if it has a matching MM such that G−MG-M is acyclic. Deciding whether GG is matching-decyclable is an NP-complete problem even if GG is 2-connected, planar, and subcubic. In this work we present results on matching-decyclability in the following classes: Hamiltonian subcubic graphs, chordal graphs, and distance-hereditary graphs. In Hamiltonian subcubic graphs we show that deciding matching-decyclability is NP-complete even if there are exactly two vertices of degree two. For chordal and distance-hereditary graphs, we present characterizations of matching-decyclability that lead to O(n)O(n)-time recognition algorithms
    corecore