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a b s t r a c t

Let H[G1, . . . ,Gn] denote a graph formed from unlabelled graphs
G1, . . . ,Gn and a labelled graph H = ({v1, . . . , vn}, E) replacing
every vertex vi of H by the graph Gi and joining the vertices of Gi
with all the vertices of those of Gj whenever {vi, vj} ∈ E(H). For
unlabelled graphs G1, . . . ,Gn,H , let ϕH(G1, . . . ,Gn) stand for the
class of all graphs H[G1, . . . ,Gn] taken over all possible orderings
of V (H).

A prime inductive class of graphs, I(B, C), is said to be a set
of all graphs, which can be produced by recursive applying of
ϕH(G1, . . . ,G|V (H)|) where H is a graph from a fixed set C of prime
graphs and G1, . . . ,G|V (H)| are either graphs from the set B of
prime graphs or graphs obtained in the previous steps. Similar
inductive definitions for cographs, k-trees, series–parallel graphs,
Halin graphs, bipartite cubic graphs or forbidden structures of some
graph classes were considered in the literature (Batagelj (1994) [1]
Drgas-Burchardt et al. (2010) [6] and Hajós (1961) [10]).

This paper initiates a study of prime inductive classes of
graphs giving a result, which characterizes, in their language, the
substitution closed induced hereditary graph classes.Moreover, for
an arbitrary induced hereditary graph class P it presents a method
for the construction of maximal induced hereditary graph classes
contained in P and substitution closed.

The main contribution of this paper is to give a minimal forbid-
den graph characterization of induced hereditary prime inductive
classes of graphs. As a consequence, the minimal forbidden graph
characterization for some special induced hereditary prime induc-
tive graph classes is given

There is also offered an algebraic view on the class of all prime
inductive classes of graphs of the type I({K1}, C).
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1. Introduction

There are many different possibilities for defining a class of graphs: by forbidden structures,
features, which each member of such a family has to have, construction and so on. Among others,
inductive definitions of graph classes were done in the literature [1,2,6,10]. The last option is useful
mainly because of an algorithmic aspect. An efficient algorithm for a problem restricted to an
inductively (recursively) constructed graph class typically uses the following approach: solve the
problem on the base graphs defined for the given class, and then combine the solutions for subgraphs
into a solution for a larger graph that is formed by the specific composition rules that govern the
construction of members in the class [2].

In this paper, we are focusing on a wide class of special inductive graph classes, defined as prime.
The minimal forbidden graph characterization of those of themwhich are induced hereditary is given
(Theorem 3) and in particular all induced hereditary graph classes with prime forbidden subgraphs
are described in the language of prime inductive classes (Theorem 6). Moreover, maximal prime
inductive graph classes, which are substitution closed and contained in a given induced hereditary
graph class are found in Theorem 7. Finally, an algebraic description of prime inductive graph classes
in Theorems 8 and 9 is given. The examples of the presented results application can be found in the
paper.

2. Preliminaries

Throughout this paper all graphs are undirected, simple and finite. Let G denote a graph with the
vertex set V (G) and the edge set E(G). For a given v ∈ V (G) let NG(v), degG(v) stand for the open
neighbourhood of v and the degree of v in G, respectively. The symbols G and G[V ′

] for V ′
⊆ V (G)

denote the complement of the graph G and the graph induced in G by the set of vertices V ′. If G′ is an
induced subgraph of G we write G′

≤ G. The notation Kn, Cn, Pn is used for a complete graph, a cycle
and a path of order n, respectively.

A set W ⊆ V (G) is a module in a graph G if for any two vertices x, y ∈ W , the equality NG(x) \

W = NG(y) \ W is satisfied. The trivial modules in G are V (G), ∅ and the singletons. A graph having
only trivial modules is called prime. A module M of a graph G is strong if for each other module M ′ of
G eitherM and M ′ are disjoint sets or one of them is a proper subset of the second one.

For a given graph G its strong modules can be organized in a tree, TG, to represent their inclusion
order, that is, a strongmoduleM is an ancestor of another strongmoduleM ′ in TG if and only ifM ′

⊆ M .
TG is called the modular decomposition tree of G. Its root is V (G) and its leaves are the singletons {v},
for v ∈ V (G).

To explain interesting interdependence between the structure of a graph and its prime induced
subgraphs we cite the modular decomposition theorem, due to Gallai.

By a maximal prime induced subgraph of G we mean a prime induced subgraph of G, which is
contained as an induced subgraph in no other prime induced subgraph of G.

Theorem 1 ([7]). Let G be any graphwith at least two vertices. Then exactly one of the following conditions
holds:

1. G is disconnected and can be uniquely decomposed into its connected components,
2. G is disconnected and G can be uniquely decomposed into complements of connected components of G,
3. G and G are connected and there is some U ⊆ V (G) and a unique partition Π of V (G) such that

(a) |U| ≥ 4, and
(b) every part S of the partition Π is a maximal strong module in G with |S ∩ U| = 1, and
(c) the subgraph of G induced by U is the maximal prime induced subgraph of G, whose form does not

depend on the choice of U.

Because for a given graph G, its unique decomposition parts described in Theorem 1 correspond to
its maximal strong modules, one can see that TG has exactly three types of internal vertices. LetM be
a strong module in G and vM be the internal vertex of TG corresponding toM . If G[M] is disconnected,
then vM is called series, and its children in TG are sets of vertices of the connected components of
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G[M]. If G[M] is disconnected, then vM is called parallel, and its children in TG are sets of vertices of
the connected components ofG[M]. If bothG[M] andG[M] are connected, then vM is called prime, and
its children are labelled by the maximal strong modules included in M and different from M . These
modules define the partition ofM denoted as Π in Theorem 1 used for the graph G[M].

Let TG be a modular decomposition tree of a graph G. We assign to each internal vertex v of TG
a graph Hv so that if v is parallel then Hv = K2, if v is series then Hv = K2, otherwise Hv = G[Uv],
whereUv ⊆ V (G) is a set having exactly one common vertexwith eachmaximal strongmodulewhich
corresponds to the child of v in TG (|V (Hv)| = degTG(v)).

Theorem 1 and the definitions mentioned above imply that G is uniquely determined by TG with
assignment {Hv : v is an internal vertex of TG}, where each Hv is viewed as the graph labelled by
children of v. In the rest of the paper the couple (TG, {Hv : v is an internal vertex of TG}) will be called
the modular pair of G.

Let us denote by I the class of all graphs having at least one vertex, and let PRIME be its subclass
of prime graphs on at least two vertices. Note that both I and PRIME contain unlabelled graphs. From
now on Z(G) = {H ∈ I : there exists an internal vertex v of TG such that H is isomorphic to Hv}.

Let Z∗(G) stand for a superset of Z(G) containing all induced subgraphs of graphs from Z(G) being
in PRIME.

Observe that for eachG ∈ PRIME themodular decomposition tree TG is a star on |V (G)|+1 vertices
having only one internal vertex v with Hv = G. Hence, in such a case Z(G) = {G}.

Lemma 1. Let G, G′
∈ I and G′

∈ PRIME. Then G′
≤ G if and only if G′

∈ Z∗(G).

Proof. First we assume that G′
∈ Z∗(G). It means that there exists H ∈ Z(G) satisfying G′

≤ H .
By Theorem 1 we know that each H ∈ Z(G) is an induced subgraph of G and by the transitivity of ≤-
relation one can observe that G′

≤ G. To prove the converse implication, assume that PRIME ∋ G′
≤ G

and there is no H ∈ Z(G) such that G′
≤ H . It means that there are disjoint strong modules V1, . . . ,

Vn, n ≥ 2, satisfying G′
≤ G[V1 ∪ · · · ∪ Vn], V (G′) ∩ Vi ≠ ∅ for each i ∈ [n] and there exists k ∈ [n]

for which |V (G′) ∩ Vk| ≥ 2. Trivially, if G′
≤ G and M is a module of G, then V (G′) ∩ M is a module of

G′. Hence, Vk ∩ V (G′) is a non-trivial module in G′. This contradicts the fact that G′
∈ PRIME. �

Below we give an immediate observation which follows from Lemma 1.

Remark 1. Let G1,G2 ∈ I and G1 ≤ G2. Then Z∗(G1) ⊆ Z∗(G2).

For given graphsG1, . . . ,Gn ∈ I and a labelled graphH = ({v1, . . . , vn}, E)wewill use the symbol
H[G1, . . . ,Gn] to denote the graph whose vertex set is the union of V (G1), V (G2), . . . , V (Gn) and
whose edge set consists of the union of E(G1), E(G2), . . . , E(Gn) with the additional edge set {{x, y} :

x ∈ V (Gi), y ∈ V (Gj), {vi, vj} ∈ E}. A description of the symbol H[G1, . . . ,Gn] implies that V (H) is
ordered, which will be sometimes omitted in assumptions. It is worth mentioning that the presented
above graph operation was defined as a generalized lexicographic product of graphs and analysed in
the literature in different aspects (see [11]).

For C ∈ PRIME and unlabelled graphs G1, . . . ,G|V (C)|, which can be isomorphic, by ϕC (G1, . . . ,
G|V (C)|)we denote the set of all graphs C[G1, . . . ,G|V (C)|] taken over all possible labellings of V (C). For
instance, ϕK2(G1,G2) (ϕK2(G1,G2)) produces a one-element set consisting of the join (union) of G1 and
G2.

3. Prime inductive graph classes

LetB, C be classes of prime graphs such that K1 ∈ B \C. We define a prime inductive class I(B, C)
as a class of all graphs which can be obtained starting from graphs of B and using recursively ϕC with
C ∈ C. It means that if (TG, {Hv : v ∈ V }) is the modular pair of G ∈ I(B, C), then for each v ∈ V
we have Hv ∈ B ∪ C and if Hv ∈ B \ C, then either v is the unique vertex of V and TG is the star or
v is adjacent to |V (Hv)| leaves and one ancestor labelled by a graph from C \ B. It follows that if G
belongs to the prime inductive class I(B, C), TG is of height at least two and v is its root, then Hv ∈ C.
Moreover, for an arbitrary C ⊆ PRIME, the equality I({K1}, C) = {G ∈ I : Z(G) ⊆ C} is satisfied.

A class A of graphs is called prime induced hereditary if G ∈ A implies Z∗(G) ⊆ A.
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Fig. 1. Modular pairs.

Lemma 2. Let B, C be classes of prime graphs which are prime induced hereditary. Let K1 ∈ B \ C and
{K2, K2} ⊆ C. Then F ∈ PRIME ∩ I(B, C) if and only if F ∈ B ∪ C.

Proof. Obviously, if F ∈ B ∪ C then F ∈ PRIME and because K1 ∈ B we have F ∈ I(B, C). If
F ∈ I(B, C) \ (B ∪ C), then the modular decomposition tree TF has at least two internal vertices. It
is so because we must build F from elements of B at least once using some ϕC and if we only once
use only one ϕC then at least one out of the used elements from B has at least two vertices. Thus such
a graph F ∉ PRIME which follows from the previously observed (before Lemma 1) fact that for each
prime graph its modular decomposition tree has exactly one internal vertex. �

A graph class P is any isomorphism closed non-empty subclass of I. A graph class P is induced
hereditary if it is closed under taking induced subgraphs. Among others O = {G ∈ I : G is edgeless}
and K = {G ∈ I : G is a complete graph} are induced hereditary graph classes. By L≤ we denote the
class of all induced hereditary graph classes (for more details, see [3]).

Let B, C be classes of prime graphs such that K1 ∈ B \ C. It has to be mentioned that not all
prime inductive classes I(B, C) are in L≤. For instance C6 ∈ I({C6, K1}, {K2}), P4 ∉ I({C6, K1}, {K2})

and P4 ≤ C6. It follows that I({C6, K1}, {K2}) ∉ L≤. Using Lemma 1, it can be checked at once that any
prime inductive class of graphs I({K1}, C), for which C is prime induced hereditary, is in L≤. On the
other hand, the assumption that B, C are prime induced hereditary is not sufficient for the condition
I(B, C) ∈ L≤. Let us consider the example B = PRIME ∪ {K1} and C = {K2, K2}. Evidently, B, C
are prime induced hereditary and K1 ∈ B \ C. Moreover, the graph Q20 presented in Fig. 2 belongs to
I(B, C) because Q20 ∈ B = PRIME ∪ {K1} but its induced subgraph Q16, presented in Fig. 2 too, does
not belong to I(B, C). It is so because TQ16 cannot be produced inductively as an element of I(B, C)
(TQ16 is illustrated in Fig. 1 forG = P4). In the next theorem some sufficient conditions for the assertion
I(B, C) ∈ L≤ will be given.

Let B, C be graph classes which are prime induced hereditary. By DB,C we denote the class of
graphs


G(ϕG(K2, K1, . . . , K1)∪ϕG(K2, K1, . . . , K1)), where the union is taken over all graphs G being

minimal with respect to ≤-relation in (B \ (C ∪ {K1})).

Theorem 2. Let B, C be classes of prime graphs which are prime induced hereditary, K1 ∈ B \ C and
{K2, K2} ⊆ C. If the conditions H ′

∈ DB,C and H ∈ B imply H ′
≰ H, then I(B, C) ∈ L≤.

Proof. Suppose that G ∈ I(B, C) and G1 ≤ G. We shall prove that G1 ∈ I(B, C).
By the definition of I(B, C) we have the inclusion Z(G) ⊆ B ∪ C. Because B, C are prime induced

hereditary Z∗(G) ⊆ B ∪ C holds. It follows from Remark 1 that Z∗(G1) ⊆ Z∗(G) and because
Z(G1) ⊆ Z∗(G1) we have the observation Z(G1) ⊆ B ∪ C.

To obtain the contradiction, suppose that G1 ∉ I(B, C). Our earlier considerations lead to the
conclusion that if (TG1 , {Hv : v ∈ V }) is the modular pair of G1, then there exists a vertex w ∈ V
satisfying that Hw ∈ B \ (C ∪ {K1}) and there exists a son x of w such that x ∈ V and Hx ∈ C. It
follows that there exists at least one graph G∗

∈ ϕHw (K2, K1, . . . , K1)∪ϕHw (K2, K1, . . . , K1) satisfying
G∗

≤ Hw[Hx, K1, . . . , K1]. Note that Hx has at least two vertices and Hw is an induced supergraph of at
least one graph frommin≤(B\(C∪{K1})). ThusG∗ contains as an induced subgraph at least one graph
H ′ from DB,C . Next, combining Hw ≤ G ∈ I(B, C) with Hw ∈ B \ (C ∪ {K1}) we get the existence of
H ∈ B satisfying Hw[Hx, K1, . . . , K1] ≤ H . Evidently, H ′

≤ H , giving a contradiction. �
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Now we refer to a minimal forbidden graph set F(P ), which uniquely determines the graph class
P ∈ L≤ and is defined as follows:

F(P ) = {G ∈ I : G ∉ P but for each proper induced subgraph H of G, H ∈ P }.

Theorem 3. Let B, C be classes of prime graphs which are prime induced hereditary. Let K1 ∈ B \ C

and {K2, K2} ⊆ C. If the conditions H ′
∈ DB,C and H ∈ B imply H ′

≰ H, then F(I(B, C)) = DB,C ∪

min≤(DB,C ∪ (PRIME \ (B ∪ C))).

Proof. From Theorem 2, it immediately follows that I(B, C) ∈ L≤. We start by showing that if G ∈

min≤(B \ (C ∪ {K1})), then each graph G∗ being either of the form G[K2, K1, . . . , K1] or G[K2,
K1, . . . , K1] is forbidden for I(B, C). Clearly, G∗ cannot be an element of I(B, C) because it has the
modular pair (see Fig. 1), which does not correspond to any of the graphs from I(B, C).

Assume that v is an arbitrary vertex of G∗. We claim that G∗
\ {v} ∈ I(B, C). If v is one of the

vertices of K2(K2) then G∗
\ {v} ∈ B, which implies G∗

\ {v} ∈ I(B, C). Otherwise (v is neither a
vertex of K2 nor K2) we obtain that Z(G∗

\ {v}) ⊆ C. Hence G∗
\ {v} ∈ I({K1}, C) ⊆ I(B, C).

Now, we assume that F ∈ min≤(DB,C ∪ (PRIME\ (B ∪C))) and F is prime. Evidently, by Lemma 2
the statement F ∉ I(B, C) is true. Let v be an arbitrary vertex of F . If F \ {v} is prime then by choice
of F we know that F \ {v} ∈ B ∪ C and Lemma 2 guarantees that F \ {v} ∈ I(B, C).

Assume that F \ {v} is not prime. Then again by choice and minimality arguments we can observe
that Z(F\{v}) ⊆ B∪C. Let us assume that F\{v} ∉ I(B, C). Hence in themodular decomposition tree
TF\{v} there exists a vertex x corresponding to the operationϕC with C = Hx and C ∈ B\(C∪{K1}) and
x has a son x′ corresponding to the operation ϕC ′ with C ′

= Hx′ , where C ′
∈ C. Because either K2 ≤ C ′

or K2 ≤ C ′ we have that G1 = C[K2, K1, . . . , K1] or G2 = C[K2, K1, . . . , K1] is an induced subgraph of
F \ {v}. Of course both G1,G2 contain induced subgraphs from DB,C , contrary to the choice of F .

Actually we have shown that DB,C ∪ min≤(DB,C ∪ (PRIME \ (B ∪ C))) ⊆ F(I(B, C)). Finally,
assume that F ∈ F(I(B, C)) and F ∉ DB,C ∪ min≤(DB,C ∪ (PRIME \ (B ∪ C))). The last part of the
proof is divided into two cases.
1. F is not prime. Thus the minimality argument guarantees that Z(F) ⊆ B ∪ C. Since F ∉ I(B, C),

like the previous part of the proof (for F \{v}), the existence of a graph fromDB,C being an induced
subgraph of F can be shown, which is impossible.

2. F is prime. Then from Lemma2 once again F ∈ PRIME\(B∪C) and F does not contain any induced
subgraph from DB,C . It is easy to see that there is no F satisfying all these requirements. �

Below we present the examples of Theorem 3 application giving the minimal forbidden graph
characterizations for some prime inductive classes of graphs. The following lemma will be a useful
tool in our consideration.

Lemma 3 ([15]). Let H be a prime supergraph of the path on four vertices, which is different from this
path. Then H contains as an induced subgraph at least one of the graphs Q1,Q2,Q3,Q4,Q5,Q6 depicted
in Fig. 2.

Theorem 4. The class F(I({K1, K2, K2, P4, P5}, {K2, K2, P4})) consists of the graphs Qi, i ∈ {1, 2, 3, 5,
6, 7, 8, 9, 10, 11, 12, 13, 20, 21, 22} depicted in Fig. 2.

Proof. Clearly, we can use Theorem 3 with B = {K1, K2, K2, P4, P5} and C = {K2, K2, P4}. Because
P5 is the unique graph from B \ (C ∪ {K1}) then DB,C = {Q8, . . . ,Q13}. Moreover, Lemma 3 implies
that graphs Q1,Q2,Q3,Q5,Q6 are minimal elements in PRIME \ (B ∪C) in the sense of ≤-relation, so
that A = {Qi : i ∈ {1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13}} is a set of incomparable elements in (I, ≤).
Next, we can observe that S = A ∪ {Q7,Q20,Q21,Q22} is an antichain in (I, ≤) and graphs from
S \ A are at the same time from PRIME \ (B ∪ C). We shall show that each other graph G∗ from
PRIME \ (B ∪ C) contains as an induced subgraph at least one element of S. Using Lemma 3 once
again we can assume that G∗ has at least six vertices and contains P5 as an induced subgraph. Suppose
that P5 is induced by V ′

= {v1, v2, v3, v4, v5} ⊆ V (G∗) and let v6 ∈ V (G∗) \ V ′. If |N(v6) ∩ V ′
| = 1,

then Q7, Q8 or Q20 is induced subgraph of G∗. If |N(v6) ∩ V ′
| = 2, then V ′

∪ {v6} induces in G∗

one of the graphs: Q2, Q3, Q9, Q10, Q12, Q21 as a subgraph. If |N(v6) ∩ V ′
| = 3, then we can find

induced Q1, Q2, Q3, Q11, Q13 or Q22 in G∗. If |N(v6) ∩ V ′
| = 4, then G∗ contains Q1 or Q3 as an
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Fig. 2. Special graphs.

induced subgraph. If |N(v6) ∩ V ′
| ∈ {0, 5} then either there exists other vertex of G∗ satisfying one

of the properties analysed previously or V ′ is a module in G∗ contrary to the assumption about its
primality. �

In the same fashion one can derive many other sets of forbidden graphs for prime inductive graph
classes, which are induced hereditary. We present some of these results in Table 1 omitting their
proofs which imitate the proof of Theorem 4.
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Table 1

B C F(I(B, C)) = {Qi : i ∈ J}

{K1, K2, K2, P4} {K2, K2} J = {1, 2, 3, 4, 16, 17, 18, 19}
{K1, K2, K2, P4, P5} {K2, K2} J = {1, 2, 3, 7, 16, 17, 18, 19, 21}
{K1, K2, K2, P4, C5} {K2, K2} J = {1, 3, 4, 16, 17, 18, 19}
{K1, K2, K2, P4, C5} {K2, K2, P4} J = {1, 3, 4, 5, 6, 14, 15}
{K1, K2, K2, P4, P5} {K2, K2, P4} J = {1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 20, 21, 22}

It is worth mentioning that the last row of Table 1 coincides with Theorem 4 and the first one
concerns the subclass of P4-sparse graphs and can be deduced from [12].

Other consequences of Theorem 3 can be formulated as the following facts.

Theorem 5. Let G∗
∈ PRIME be a graph on at least four vertices, M = ϕG∗(K2, K1, . . . , K1) ∪

ϕG∗(K2, K1, . . . , K1) andP ∈ L≤. Then F(P ) = M if and only if P = I(B, C), whereB = {G ∈ PRIME :

for each G′
∈ M holds G′

≰ G} ∪ {K1} and C = {G ∈ PRIME : G∗
≰ G}.

Proof. If G∗
∈ PRIME and P = I(B, C), where B = {G ∈ PRIME : for each G′

∈ M holds G′
≰

G} ∪ {K1} and C = {G ∈ PRIME : G∗
≰ G}, then Theorem 3 gives that F(P ) = ϕG∗(K2, K1, . . . , K1) ∪

ϕG∗(K2, K1, . . . , K1). The uniqueness of description of P ∈ L≤ by F(P ) leads to the assertion. �

For instance it follows that if Q14,Q15 are graphs presented in Fig. 2, then F(P ) = {Q14,Q15}

characterizesP = I({G ∈ PRIME : Q14 ≰ G and Q15 ≰ G}∪{K1}, {G ∈ PRIME : C5 ≰ G}). Fortunately,
Theorem 5 can be generalized to the case F(P ) =


{G:G∈G}

(ϕG(K2, K1, . . . , K1) ∪ ϕG(K2, K1, . . . , K1)),
where G is an arbitrary class of at least 4-vertex prime graphs whose elements are incomparable in
(I, ≤). Such F(P ) describes the class I(B, C) with B = {G ∈ PRIME : G does not contain any
element of


{G:G∈G}

(ϕG(K2, K1, . . . , K1) ∪ ϕG(K2, K1, . . . , K1)) and C = {G ∈ PRIME : for each
G∗

∈ G, G∗
≰ G}.

Theorem 6. Let P ∈ L≤. F(P ) ⊆ PRIME if and only if there exists a class of graphs C ⊆ PRIME, which
is prime induced hereditary such that P = I({K1}, C).

Proof. Let P = I({K1}, C) for some C ⊆ PRIME, which is prime induced hereditary. First we assume
that {K2, K2} ⊆ C. By Theorem 3, F(P ) = min≤(PRIME \ C), which gives us F(P ) ⊆ PRIME. If the
condition {K2, K2} ⊆ C is not satisfied then because C is prime induced hereditary three possibilities
are allowed:

1. K2 ∈ C and K2 ∉ C. In this case P = O and F(O) = {K2} ⊆ PRIME,
2. K2 ∉ C and K2 ∈ C. In this case P = K and F(K) = {K2} ⊆ PRIME,
3. K2 ∉ C and K2 ∉ C. In this case P = {K1} and F(P ) = {K2, K2} ⊆ PRIME.

Assume that F(P ) ⊆ PRIME \ {K2, K2}. Put C = {G ∈ PRIME : Z∗(G) ∩ F(P ) = ∅}. Remark 1 implies
that defined C is prime induced hereditary. The assumption {K2, K2} ∩ F(P ) = ∅ and the definition
of C yield {K2, K2} ⊆ C. Hence, by Theorem 3 we have F(I({K1}, C)) = min≤(PRIME \ ({K1} ∪ {G ∈

PRIME : Z∗(G)∩F(P ) = ∅})) = min≤({G ∈ PRIME : Z∗(G)∩F(P ) ≠ ∅}) = F(P ). But F(P ) uniquely
determinesP which completes the proof in that case. Nowwe assume that {K2, K2}∩F(P ) ≠ ∅. Then

1. if K2 ∈ F(P ) and K2 ∉ F(P ) we have P = O = I({K1}, C) for C = {K2} ⊆ PRIME,
2. if K2 ∈ F(P ) and K2 ∉ F(P ) we have P = K = I({K1}, C) for C = {K2} ⊆ PRIME,
3. if {K2, K2} ⊆ F(P ) we have P = {K1} = I({K1}, C) for C = ∅ ⊆ PRIME. �

4. Closure under substitution

A substitution graph G of two graphs G1,G2 is obtained by first removing a vertex v ∈ V (G2) and
then making every vertex of G1 adjacent to all the neighbours of v in G2. We call a class P of graphs
substitution closed if for each graphs G1,G2 ∈ P the substitution graph of G1,G2 is in P .
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In 1997 Giakoumakis [8] proved that for each P ∈ L≤ its closure under substitution P ∗ consisting
of all the graphs from P and all their substitution graphs can be characterized by F(P ∗), which
contains all minimal prime extensions of all the graphs from F(P ). It has to be said that G′ is a
minimal prime extension of G if it is prime induced supergraph of G and it does not contain as an
induced subgraph any other prime graphs containing induced G. Let L∗

≤
stand for a class of all induced

hereditary and substitution closed graph classes. Because for each class P ∈ L∗
≤
we have P = P ∗

then the above consideration leads to the following conclusion.

Remark 2. Let P ∈ L≤. Then P ∈ L∗
≤
if and only if F(P ) ⊆ PRIME.

In the light of Remark 2 and Theorem 6 we are in a position to formulate the following fact.

Corollary 1. P ∈ L∗
≤
if and only if P = I({K1}, C) for some C ⊆ PRIME being a prime hereditary class

of graphs.

There are interesting known graph classes from L∗
≤
. Two of the most notable are perfect graphs and

cographs. Probably the simple inductive description produce polynomial solvability of many, hard in
general, problems for such classes [9]. Corollary 1 gives us a lot of graph classes being inductive and
induced hereditary, simultaneously. To define such a class it is enough to forbid a set of prime graphs
which is an antichain in (I, ≤). If a graph class P ∈ L≤ has a non-prime forbidden graph then it
does not have a prime inductive description of the type I({K1}, C). It motivates the searching of set
inclusionmaximal graph classes contained in P and having such a description. This question is stated
as a main problem of this section.

To explore this topic we have to use the following notions. Let M be a set of graph classes. A graph
class T is called a transversal (respectively, an antichain transversal) of M if for each P ∈ M we have
T ∩ P ≠ ∅ (respectively, T ∩ P ≠ ∅ and T is an antichain in (I, ≤)).

Lemma 4 ([3]). Let P1, P2 ∈ L≤. Then P1 ⊆ P2 if and only if for every F ∈ F(P2) there exists a graph
F ′

∈ F(P1) such that F ′
≤ F .

Lemma 5. Let P ∈ L≤. A propertyQ ∈ L∗
≤
satisfiesQ ⊆ P if and only if F(Q) is an antichain transversal

of the family {Z∗(F) : F ∈ F(P )}.

Proof. Assume that Q ∈ L∗
≤
and Q ⊆ P . From Lemma 4 we know that for each F ∈ F(P ) there exists

F ′
∈ F(Q) such that F ′

≤ F . Moreover, by Remark 2 each F ′
∈ F(Q) is prime. Hence, Lemma 1 implies

that for each F ∈ F(P ) there exists F ′
∈ F(Q) satisfying F ′

∈ Z∗(F). It means that F(Q) is a transversal
of the family {Z∗(F) : F ∈ F(P )}. Using the definition of the set F(Q) we know that it has to be an
antichain transversal.

To prove the opposite implication let us assume that T is an antichain transversal of the family
{Z∗(F) : F ∈ F(P )}. Because T is an antichain in (I, ≤), it can be viewed as a family of minimal
forbidden graphs for some property Q ∈ L≤. The fact that T contains only prime graphs and Remark 2
imply that Q ∈ L∗

≤
. We shall see that Q ⊆ P . Since T is a transversal of {Z∗(F) : F ∈ F(P )} one

can observe that for each F ∈ F(P ) there is F ′
∈ T such that F ′

≤ F which, using Lemma 4, implies
claimed inclusion. �

Let K , M be two antichains in the partially ordered set (I, ≤). We write that KρM if and only if
for each F ∈ M there exists F ′

∈ K such that F ′
≤ F . It is easy to verify that ρ is a partial order in the

class of all antichains in (I, ≤). In the light of Lemmas 4 and 5 the relation ρ defined in the family of
all antichains in (I, ≤), gives us a new insight into the main problem of this section.

Theorem 7. Let P ∈ L≤ and let TP be the class of all antichain transversals for the family {Z∗(F) : F ∈

F(P )}. Q ∈ L∗
≤
is a maximal in the sense of ⊆-relation element which is contained in P if and only if

F(P ) is a maximal element in (TP , ρ).

Let us consider an example. Let P be a graph class for which F(P ) = {G1,G2} (see Fig. 3, where Hs
is the house graph denoted by Q1 in Fig. 2). Note that P is well defined because G1,G2 are incompa-
rable in (I, ≤). We can verify that Z∗(G1) = {K2, K2, P4, P5, C5} and Z∗(G2) = {K2, K2,Hs, P4, P5, C6}.
According to Theorem 7, to construct a maximal Q ∈ L∗

≤
, which is contained in P , we have to find the
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Fig. 3. Forbidden graphs.

Fig. 4. Hasse diagram.

set of all antichain transversals TP of the family {Z∗(G1), Z∗(G2)} and then the maximal, with respect
to ρ-relation elements in this one. The Hasse diagram of the partial ordered set (TP , ρ) is illustrated
in Fig. 4.

The presented consideration defines three set inclusion maximal properties Q1, Q2, Q3 contained
in P and being in L∗

≤
. These properties are described by classes of minimal forbidden graphs F(Q1) =

{C5,Hs}, F(Q2) = {C5, C6}, F(Q3) = {P5}. One of the resulting classes, Q3, was characterized in [13] as
the class of those graphs for which each of its connected induced subgraphs has a dominating clique
or a dominating C5.

It must be noted that the procedure, which constructs a ⊆-maximal class Q ∈ L∗
≤
contained in the

given class P ∈ L≤ guarantees the finiteness of F(Q) provided that F(P ) is finite. In fact |F(Q)| ≤

|


{F∈F(P )} Z
∗(F)|. Moreover, as we can observe in the example, Q is not uniquely determined. Both

these facts are different from the corresponding features of the class P ∗
∈ L∗

≤
, which contains P and

in that sense is minimal with respect to ⊆-relation [8].
Wenow turn our attention to other observations concerning classesQ from L∗

≤
contained in a given

P ∈ L≤. One can easily see that if P has at least one forbidden cograph, then Theorem 5 implies that
it can contain only Q = O or Q = K . This is a case of planar graphs, claw-free graphs (especially line
graphs), diamond-free graphs and so on.
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Next, we illustrate Theorem 7 for P described by F(P ) consisting of a finite or an infinite family of
wheels (a wheel of order n can be defined as K2[K1, Cn−1] with an arbitrary ordering of V (K2)). Let
{ni : i ∈ J ⊆ N} be the set of all orders of wheels from F(P ), where for i > j the condition
ni > nj holds. If n1 ≥ 6, then the unique ⊆-maximal class Q ∈ L∗

≤
included in P is characterized

by F(P ) = {Cni−1 : i ∈ J}. A quite different situation is for n1 = 4. In that case the unique Q equals
O. For n1 = 5, both properties O and K can play the role of Q. The last two cases are consequences
of the fact that the wheels on four or five vertices are cographs.

5. Comments on clique-with

One of themost interesting graph invariants,which could be considered in the context of presented
results is the clique-with of a graph. The notion of clique-with, cwd(G), of a graph G is defined in [4]
as the minimum number of labels needed to construct G by means of the following four operations:
• creation of a new vertex v with label i,
• disjoint union of two labelled graphs,
• joining by an edge every vertex labelled i to every vertex labelled j for i ≠ j,
• renaming label i to label j.

In 2000 Courcelle and Olariu [5] published the result stating that for every graph G, cwd(G) =

max{cwd(H) : H ≤ G and H ∈ PRIME}. Hence by Lemma 1we deduce that cwd(G) = max{cwd(H) :

H ∈ Z∗(G)}. In the light of this fact, if for fixed k ∈ N we define CWDk as the class of graphs {G ∈ I :

cwd(G) ≤ k}, then the definition of I({K1}, C) and Theorem 6 force the following fact.

Remark 3. If k ∈ N, then
1. CWDk = I({K1}, C), where C = {G ∈ PRIME : cwd(G) ≤ k}, and
2. F(CWDk) ⊆ PRIME.
Moreover, ifwe knowa classP ∈ L≤ with clique-with bounded fromabove by k, thenP ∗ has the same
property. It means that a hereditary graph class having at least one non-prime forbidden graph can
be extended to the wider superclass with the same upper bound of clique-with. In addition, because
I(B, C) ⊆ I({K1}, B∪C)weknow that all the classes presented in Table 1 have clique-with parameter
bounded from above by three.

6. Algebraic structures

This section is intended for noting some interesting facts concerning prime inductive classes,
which can be described in an algebraic language. First we shall show two results (Theorems 8 and
9) investigating the considered graph classes in the context of algebraic structures. Then, using them,
the unique representation result shall be proved (Corollary 2) and direction of new research will be
given.

Let C∗
= {I({K1}, C) : C ⊆ PRIME}.

Theorem 8. (C∗, ⊆) is a Boolean algebra.

Proof. First we shall show that for two elements of C∗, say I({K1}, C1) and I({K1}, C2), the elements
I({K1}, C1 ∩ C2) and I({K1}, C1 ∪ C2) are their meet and join in (C∗, ⊆), respectively. Obviously,
I({K1}, C1 ∩ C2) ⊆ I({K1}, Ci) ⊆ I({K1}, C1 ∪ C2) for i ∈ {1, 2}. Let I({K1}, C) ⊆ I({K1}, Ci) for
i ∈ {1, 2} and let G ∈ I({K1}, C). Then, as we have mentioned previously, Z(G) ⊆ C1 ∩ C2 and
G ∈ I({K1}, C1 ∩ C2), which means that I({K1}, C1 ∩ C2) is the meet for elements I({K1}, C1) and
I({K1}, C2) in (C∗, ⊆). In the same fashion the join element is verified. The distributivity of (C∗, ⊆)
follows immediately by the distributivity of union and intersection of each to the other one. Clearly
I({K1}, ∅) and I({K1}, PRIME) are the minimum and maximum elements in (C∗, ⊆), respectively.
These considerations lead to the fact that I({K1}, PRIME \ C1) is the complement of I({K1}, C1). �

Next, we can give the observation arranging L∗
≤
in C∗.

Theorem 9. (L∗
≤
, ⊆) is a distributive sublattice of (C∗, ⊆).
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Proof. It is an immediate consequence of the fact that the union and intersection of twoprime induced
hereditary families C1, C2 ⊆ PRIME are prime induced hereditary too. �

6.1. Theoretical application

Belowwe present the examples of applications of two theoretical results on lattices (Theorems 10
and 11) to (L∗

≤
, ⊆) and (C∗, ⊆).

Let (L, ≼) be a lattice with a join operation ∨ and let xi, i ∈ [m] be elements of L. We call an
expression x1 ∨ . . . ∨ xm irredundant if no xi can be omitted without altering the value of a join.

An element x ∈ L is said to be ∨-reducible, or briefly reducible, if x = x1 ∨ x2, where x,x2 are
arbitrary elements of L for which x1 ≺ x, x2 ≺ x, otherwise x is said to be irreducible.

The unique factorization result presented below can be found in [14].

Theorem 10 ([14]). If
n

i=1 xi and
m

j=1 yj are two irredundant representations of x as a join of irreducible
elements of a distributive lattice, then n = m and there exists a bijection ϕ : [n] → [n] such that
xi = yϕ(i), i ∈ [n].

Taking into account Theorems 8 and 9wenowobtain an interesting fact on (induced hereditary) graph
properties, which are closed under substitution.

Corollary 2. Let P1, . . . , Pn be irreducible properties in (L∗
≤
, ⊆) (respectively, in (C∗, ⊆)). If the expres-

sion
n

i=1 Pi = P is irredundant in (L∗
≤
, ⊆)((C∗, ⊆)), then it is the unique irredundant representation

of P as a join of finitely many irreducible properties in (L∗
≤
, ⊆) (respectively, in (C∗, ⊆)).

For example let i ∈ N and C i denote the class of graphs consisting of the cycle Ci and all the paths
on at least two and at most i − 1 vertices. For each i ≥ 3 the class I({K1}, C i) = Ri is reducible
in (C∗, ⊆) and irreducible in (L∗

≤
, ⊆). It is so becauseRi can be expressed in (C∗, ⊆) as I({K1}, {P2})∨

. . .∨ I({K1}, {Pi−1})∨ I({K1}, {Ci}) and there are no two proper subsets ofC i, which are prime induced
hereditary and incomparable in the sense of ⊆-relation. In particular Theorems 9 and 10 show that
for {i1, . . . , im} ⊆ N the join Ri1 ∨ . . . ∨ Rim = R is the unique irredundant representation of R as
a join of finitely many irreducible classes in (L∗

≤
, ⊆) giving the uniqueness of the factorization of R,

like the uniqueness of factorization of an integer, which follows from the same theorem.
Of particular interest in connection with distributive lattices is the concept of an interval [y, x] of

a lattice (L, ≼) consisting of all the elements z of (L, ≼) such that y ≼ z ≼ x. It is easily verified that
[y, x] forms a sublattice of (L, ≼) [14].

Theorem 11 ([14]). In a distributive lattice all the intervals [x, x ∨ y] and [x ∧ y, y] are isomorphic.

Using Theorems 9 and 11 for x = Rt ∨ Rs and y = Rk, where k > s > t > 4, we can explore
the interval [x ∧ y, y] = [I({K1}, {K 2, K2, P4, . . . Pt−1}), Rk], which evidently is a chain, instead of the
interval [Rt ∨ Rs, Rk ∨ Rs ∨ Rt ], whose exploring seems to be difficult.

These two theoretical applications show us a new direction in the investigation of prime inductive
graph classes.
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