12 research outputs found

    The economics of information security

    Get PDF
    In the year 2008, world markets suffered a huge economic crisis. The extent of the economic crisis has been so severe and has had a global impact. As a contingency strategy, governments of wealthy nations have resorted to extensive bailouts and rescue packages to stop organisations from going bankrupt. A skyrocketing amount of money has been spent on rescue packages and bailouts for the tumbling organisations. However, this could not stop some of the world’s wealthiest financial institutions e.g. Lehman Brothers, Northern Rock, etc from collapsing. Most of the surviving organisations froze their expenditure, implemented cost-cutting measures and in the process, numerous employees lost their jobs. Executives were compelled to ‘achieve more with less’ in order to save their organisations from going bankrupt. It is on this premise that this research proposed the BC3I (Broad Control Category Cost Indicators) model, which is a step towards ‘achieving more with less’ within information security budgeting. The tumbling world markets and increased requirements for legal and regulatory compliance have made this a timely and relevant research that addressed a current, spot-on and global problem. The BC3I model as the main outcome of this research has indeed come at the right time. The BC3I model as proposed in this research makes a real contribution towards assisting information security managers as they make informed decisions regarding the optimal and cost-effective allocation of financial resources to information security activities. The proposed model can be argued to be a good start towards the selection of appropriate controls to optimally and cost-effectively protect organisations’ information assets and simultaneously achieve compliance with legal and regulatory mandates. As a proof of concept, the practicality of the BC3I model has been demonstrated in three different scenarios. The model has been illustrated for an organisation chosen from the financial sector; being the hardest hit by the economic crisis. Furthermore, the financial sector is chosen because of its high reliance on information security for the most obvious reasons that of dealing with money and confidential customer information. Finally and for acceptance purposes, the model has been discussed and reviewed by industry experts from the financial sector. CopyrightDissertation (MSc)--University of Pretoria, 2010.Computer Scienceunrestricte

    Security Technologies and Methods for Advanced Cyber Threat Intelligence, Detection and Mitigation

    Get PDF
    The rapid growth of the Internet interconnectivity and complexity of communication systems has led us to a significant growth of cyberattacks globally often with severe and disastrous consequences. The swift development of more innovative and effective (cyber)security solutions and approaches are vital which can detect, mitigate and prevent from these serious consequences. Cybersecurity is gaining momentum and is scaling up in very many areas. This book builds on the experience of the Cyber-Trust EU project’s methods, use cases, technology development, testing and validation and extends into a broader science, lead IT industry market and applied research with practical cases. It offers new perspectives on advanced (cyber) security innovation (eco) systems covering key different perspectives. The book provides insights on new security technologies and methods for advanced cyber threat intelligence, detection and mitigation. We cover topics such as cyber-security and AI, cyber-threat intelligence, digital forensics, moving target defense, intrusion detection systems, post-quantum security, privacy and data protection, security visualization, smart contracts security, software security, blockchain, security architectures, system and data integrity, trust management systems, distributed systems security, dynamic risk management, privacy and ethics

    Security Technologies and Methods for Advanced Cyber Threat Intelligence, Detection and Mitigation

    Get PDF
    The rapid growth of the Internet interconnectivity and complexity of communication systems has led us to a significant growth of cyberattacks globally often with severe and disastrous consequences. The swift development of more innovative and effective (cyber)security solutions and approaches are vital which can detect, mitigate and prevent from these serious consequences. Cybersecurity is gaining momentum and is scaling up in very many areas. This book builds on the experience of the Cyber-Trust EU project’s methods, use cases, technology development, testing and validation and extends into a broader science, lead IT industry market and applied research with practical cases. It offers new perspectives on advanced (cyber) security innovation (eco) systems covering key different perspectives. The book provides insights on new security technologies and methods for advanced cyber threat intelligence, detection and mitigation. We cover topics such as cyber-security and AI, cyber-threat intelligence, digital forensics, moving target defense, intrusion detection systems, post-quantum security, privacy and data protection, security visualization, smart contracts security, software security, blockchain, security architectures, system and data integrity, trust management systems, distributed systems security, dynamic risk management, privacy and ethics

    Secure Communication in Disaster Scenarios

    Get PDF
    WĂ€hrend Naturkatastrophen oder terroristischer AnschlĂ€ge ist die bestehende Kommunikationsinfrastruktur hĂ€ufig ĂŒberlastet oder fĂ€llt komplett aus. In diesen Situationen können mobile GerĂ€te mithilfe von drahtloser ad-hoc- und unterbrechungstoleranter Vernetzung miteinander verbunden werden, um ein Notfall-Kommunikationssystem fĂŒr Zivilisten und Rettungsdienste einzurichten. Falls verfĂŒgbar, kann eine Verbindung zu Cloud-Diensten im Internet eine wertvolle Hilfe im Krisen- und Katastrophenmanagement sein. Solche Kommunikationssysteme bergen jedoch ernsthafte Sicherheitsrisiken, da Angreifer versuchen könnten, vertrauliche Daten zu stehlen, gefĂ€lschte Benachrichtigungen von Notfalldiensten einzuspeisen oder Denial-of-Service (DoS) Angriffe durchzufĂŒhren. Diese Dissertation schlĂ€gt neue AnsĂ€tze zur Kommunikation in Notfallnetzen von mobilen GerĂ€ten vor, die von der Kommunikation zwischen MobilfunkgerĂ€ten bis zu Cloud-Diensten auf Servern im Internet reichen. Durch die Nutzung dieser AnsĂ€tze werden die Sicherheit der GerĂ€te-zu-GerĂ€te-Kommunikation, die Sicherheit von Notfall-Apps auf mobilen GerĂ€ten und die Sicherheit von Server-Systemen fĂŒr Cloud-Dienste verbessert

    On the Edge of Secure Connectivity via Software-Defined Networking

    Get PDF
    Securing communication in computer networks has been an essential feature ever since the Internet, as we know it today, was started. One of the best known and most common methods for secure communication is to use a Virtual Private Network (VPN) solution, mainly operating with an IP security (IPsec) protocol suite originally published in 1995 (RFC1825). It is clear that the Internet, and networks in general, have changed dramatically since then. In particular, the onset of the Cloud and the Internet-of-Things (IoT) have placed new demands on secure networking. Even though the IPsec suite has been updated over the years, it is starting to reach the limits of its capabilities in its present form. Recent advances in networking have thrown up Software-Defined Networking (SDN), which decouples the control and data planes, and thus centralizes the network control. SDN provides arbitrary network topologies and elastic packet forwarding that have enabled useful innovations at the network level. This thesis studies SDN-powered VPN networking and explains the benefits of this combination. Even though the main context is the Cloud, the approaches described here are also valid for non-Cloud operation and are thus suitable for a variety of other use cases for both SMEs and large corporations. In addition to IPsec, open source TLS-based VPN (e.g. OpenVPN) solutions are often used to establish secure tunnels. Research shows that a full-mesh VPN network between multiple sites can be provided using OpenVPN and it can be utilized by SDN to create a seamless, resilient layer-2 overlay for multiple purposes, including the Cloud. However, such a VPN tunnel suffers from resiliency problems and cannot meet the increasing availability requirements. The network setup proposed here is similar to Software-Defined WAN (SD-WAN) solutions and is extremely useful for applications with strict requirements for resiliency and security, even if best-effort ISP is used. IPsec is still preferred over OpenVPN for some use cases, especially by smaller enterprises. Therefore, this research also examines the possibilities for high availability, load balancing, and faster operational speeds for IPsec. We present a novel approach involving the separation of the Internet Key Exchange (IKE) and the Encapsulation Security Payload (ESP) in SDN fashion to operate from separate devices. This allows central management for the IKE while several separate ESP devices can concentrate on the heavy processing. Initially, our research relied on software solutions for ESP processing. Despite the ingenuity of the architectural concept, and although it provided high availability and good load balancing, there was no anti-replay protection. Since anti-replay protection is vital for secure communication, another approach was required. It thus became clear that the ideal solution for such large IPsec tunneling would be to have a pool of fast ESP devices, but to confine the IKE operation to a single centralized device. This would obviate the need for load balancing but still allow high availability via the device pool. The focus of this research thus turned to the study of pure hardware solutions on an FPGA, and their feasibility and production readiness for application in the Cloud context. Our research shows that FPGA works fluently in an SDN network as a standalone IPsec accelerator for ESP packets. The proposed architecture has 10 Gbps throughput, yet the latency is less than 10 ”s, meaning that this architecture is especially efficient for data center use and offers increased performance and latency requirements. The high demands of the network packet processing can be met using several different approaches, so this approach is not just limited to the topics presented in this thesis. Global network traffic is growing all the time, so the development of more efficient methods and devices is inevitable. The increasing number of IoT devices will result in a lot of network traffic utilising the Cloud infrastructures in the near future. Based on the latest research, once SDN and hardware acceleration have become fully integrated into the Cloud, the future for secure networking looks promising. SDN technology will open up a wide range of new possibilities for data forwarding, while hardware acceleration will satisfy the increased performance requirements. Although it still remains to be seen whether SDN can answer all the requirements for performance, high availability and resiliency, this thesis shows that it is a very competent technology, even though we have explored only a minor fraction of its capabilities

    Propagation Networks: A Flexible and Expressive Substrate for Computation

    Get PDF
    PhD thesisI propose a shift in the foundations of computation. Practically all ideas of general-purpose computation today are founded either on execution of sequences of atomic instructions, i.e., assembly languages, or on evaluation of tree-structured expressions, i.e., most higher level programming languages. Both have served us well in the past, but it is increasingly clear that we need something more. I suggest that we can build general-purpose computation on propagation of information through networks of stateful cells interconnected with stateless autonomous asynchronous computing elements. Various forms of this general idea have been used with great success for various special purposes; perhaps the most immediate example is constraint propagation in constraint satisfaction systems. These special-purpose systems, however, are all complex and all different, and neither compose well, nor interoperate well, nor generalize well. A foundational layer is missing. The key insight in this work is that a cell should not be seen as storing a value, but as accumulating information about a value. The cells should never forget information -- such monotonicity prevents race conditions in the behavior of the network. Monotonicity of information need not be a severe restriction: for example, carrying reasons for believing each thing makes it possible to explore but thenpossibly reject tentative hypotheses, thus appearing to undo something, while maintaining monotonicity. Accumulating information is a broad enough design principle to encompass arbitrary computation. The object of this dissertation is therefore to architect a general-purpose computing system based on propagation networks; to subsume expression evaluation under propagation just as instruction execution is subsumed under expression evaluation; to demonstrate that a general-purpose propagation system can recover all the benefits that have been derived from special-purpose propagation systems, allow them to compose andinteroperate, and offer further expressive power beyond what we have known in the past; and finally to contemplate the lessons that such a fundamental shift can teach us about the deep nature of computation.My graduate career in general, and this work in particular, have been sponsored in part by a National Science Foundation Graduate Research Fellowship, by the Disruptive Technology Office as part of the AQUAINT Phase 3 research program, by the Massachusetts Institute of Technology, by Google, Inc., and by the National Science Foundation Cybertrust (05-518) program.Doctor of Philosoph

    Flexible and expressive substrate for computation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 167-174).In this dissertation I propose a shift in the foundations of computation. Modem programming systems are not expressive enough. The traditional image of a single computer that has global effects on a large memory is too restrictive. The propagation paradigm replaces this with computing by networks of local, independent, stateless machines interconnected with stateful storage cells. In so doing, it offers great flexibility and expressive power, and has therefore been much studied, but has not yet been tamed for general-purpose computation. The novel insight that should finally permit computing with general-purpose propagation is that a cell should not be seen as storing a value, but as accumulating information about a value. Various forms of the general idea of propagation have been used with great success for various special purposes; perhaps the most immediate example is constraint propagation in constraint satisfaction systems. This success is evidence both that traditional linear computation is not expressive enough, and that propagation is more expressive. These special-purpose systems, however, are all complex and all different, and neither compose well, nor interoperate well, nor generalize well. A foundational layer is missing. I present in this dissertation the design and implementation of a prototype general-purpose propagation system. I argue that the structure of the prototype follows from the overarching principle of computing by propagation and of storage by accumulating information-there are no important arbitrary decisions. I illustrate on several worked examples how the resulting organization supports arbitrary computation; recovers the expressivity benefits that have been derived from special-purpose propagation systems in a single general-purpose framework, allowing them to compose and interoperate; and offers further expressive power beyond what we have known in the past. I reflect on the new light the propagation perspective sheds on the deep nature of computation.by Alexey Andreyevich Radul.Ph.D

    A model for information security management and regulatory compliance in the South African health sector

    Get PDF
    Information Security is becoming a part of the core business processes in every organization. Companies are faced with contradictory requirements to ensure open systems and accessible information while maintaining high protection standards. In addition, the contemporary management of Information Security requires a variety of approaches in different areas, ranging from technological to organizational issues and legislation. These approaches are often isolated while Security Management requires an integrated approach. Information Technology promises many benefits to healthcare organizations. It helps to make accurate information more readily available to healthcare providers and workers, researchers and patients and advanced computing and communication technology can improve the quality and lower the costs of healthcare. However, the prospect of storing health information in an electronic form raises concerns about patient privacy and security. Healthcare organizations are required to establish formal Information Security program, for example through the adoption of the ISO 17799 standard, to ensure an appropriate and consistent level of information security for computer-based patient records, both within individual healthcare organizations and throughout the entire healthcare delivery system. However, proper Information Security Management practices, alone, do not necessarily ensure regulatory compliance. South African healthcare organizations must comply with the South African National Health Act (SANHA) and the Electronic Communication Transaction Act (ECTA). It is necessary to consider compliance with the Health Insurance Portability and Accountability Act (HIPAA) to meet healthcare international industry standards. The main purpose of this project is to propose a compliance strategy, which ensures full compliance with regulatory requirements and at the same time assures customers that international industry standards are being used. This is preceded by a comparative analysis of the requirements posed by the ISO 17799 standard and the HIPAA, SANHA and ECTA regulations
    corecore