
Tampere University Dissertations 347

On the Edge of
Secure Connectivity

via Software-Defined
Networking

MARKKU VAJARANTA

Tampere University Dissertations 347

MARKKU VAJARANTA

On the Edge of Secure Connectivity via
Software-Defined Networking

ACADEMIC DISSERTATION

To be presented, with the permission of

the Faculty of Information Technology and Communication Sciences

of Tampere University,

for public discussion at Tampere University

on 27 November 2020, at 12 o’clock.

ACADEMIC DISSERTATION
Tampere University, Faculty of Information Technology and Communication Sciences
Finland

Responsible
supervisor
and Custos

Associate Professor
Billy Brumley
Tampere University
Finland

Pre-examiners Professor Antonio Lioy
Politecnico di Torino
Italy

Dr. David Arroyo Guardeño
Spanish National Research
Council
Spain

Opponent Dr. Diego R. Lopez
Telefónica Research and
Development
Spain

The originality of this thesis has been checked using the Turnitin OriginalityCheck
service.

Copyright ©2020 author

Cover design: Roihu Inc.

ISBN 978-952-03-1778-2 (print)
ISBN 978-952-03-1779-9 (pdf)
ISSN 2489-9860 (print)
ISSN 2490-0028 (pdf)
http://urn.fi/URN:ISBN:978-952-03-1779-9

PunaMusta Oy – Yliopistopaino
Vantaa 2020

PREFACE

The research for this thesis was conducted in Tampere University of Technology

(TUT) Laboratory of Pervasive Computing during years 2015-2018. I had the

opportunity to build a complete cyberlab (TUTCyberLabs) environment on the

TUT premises to support both this research and many other similar projects.

It has been a rewarding journey from my �rst day as a Ph.D. student to

writing the �nal words of this thesis. It has included numerous hours working

in the laboratory, a lot of brainstorming sessions and gallons of co�ee. Working

in several projects, including the EIT Digital ACTIVE, has o�ered me a great

opportunity to conduct cutting-edge research while simultaneously meeting and

working with inspiring people.

I want to express my deepest gratitude to Prof. Jarmo Harju for his guidance

and collaboration over the years, including several publications. The years

moving from working as a laboratory assistant to a M.Sc degree programme to

further conducting joint research with Prof. Harju on the doctoral programme

have been fruitful and extremely rewarding.

Prof. Billy Bob Brumley is to be thanked for supervising my thesis and help-

ing me �nish my doctoral studies. Our cooperation has been straightforward

and �uent, so I realize I've been privileged to have worked with Billy.

I am grateful to Prof. Antonio Lioy and Dr. David Arroyo Guardeño for

pre-examination of my thesis and all their sharp-minded comments regarding

the manuscript. Also I'd like to extend a very special thank you to Dr. Diego R.

Lopez, Telefónica, for having such interest in my topic and for his willingness

to act as an opponent.

Special thanks go to my colleague, Joona Kannisto, for his enlightening con-

versations on a broad range of topics, and for his support for my research over

the years. Furthermore, I'd like to thank all the co-authors who have writ-

ten publications with me including Prof. Timo D. Hämäläinen, Arto Oinonen,

iii

Ph.D. Ari Kulmala, Jouni Markunmäki, Vili Viitamäki, Antti Kolehmainen

and Bilhanan Silverajan.

I'd also like to thank my family for their support during my road to a Ph.D.

It has been a much easier path throughout the years of studying and doing

research while having such a supportive family as you.

I've heard a story that once upon a time, a distinguished researcher started

a conference speech by stating:

�If you think I will reveal any secrets here, you're all wrong�.

This applies at some level to this thesis as well. The topics covered in this

publication are relatively straightforward and any presented innovations could

have been discovered by other researches working with secure networking.

Regardless, I contentedly publish this thesis addressing presented topics and

their purpose in this �eld of technology. Especially the combination of VPN and

SDN is highly e�cient to be utilized more in modern networks with high-speed

and low latency requirements. Hopefully, my �ndings will accelerate research

in this �eld and will eventually lead to ever more sophisticated security designs.

�All design involves con�icting objectives and hence compromise,

and the best designs will always be those that come up with the best

compromise�

Invention by Design, Henry Petroski.

Markku Vajaranta

21.8.2019 Tampere

iv

ABSTRACT

Securing communication in computer networks has been an essential feature

ever since the Internet, as we know it today, was started. One of the best known

and most common methods for secure communication is to use a Virtual Private

Network (VPN) solution, mainly operating with an IP security (IPsec) protocol

suite originally published in 1995 (RFC1825). It is clear that the Internet, and

networks in general, have changed dramatically since then. In particular, the

onset of the Cloud and the Internet-of-Things (IoT) have placed new demands

on secure networking. Even though the IPsec suite has been updated over the

years, it is starting to reach the limits of its capabilities in its present form.

Recent advances in networking have thrown up Software-De�ned Networking

(SDN), which decouples the control and data planes, and thus centralizes the

network control. SDN provides arbitrary network topologies and elastic packet

forwarding that have enabled useful innovations at the network level.

This thesis studies SDN-powered VPN networking and explains the bene�ts

of this combination. Even though the main context is the Cloud, the approaches

described here are also valid for non-Cloud operation and are thus suitable for

a variety of other use cases for both SMEs and large corporations.

In addition to IPsec, open source TLS-based VPN (e.g. OpenVPN) solutions

are often used to establish secure tunnels. Research shows that a full-mesh

VPN network between multiple sites can be provided using OpenVPN and it

can be utilized by SDN to create a seamless, resilient layer-2 overlay for multiple

purposes, including the Cloud. However, such a VPN tunnel su�ers from re-

siliency problems and cannot meet the increasing availability requirements. The

network setup proposed here is similar to Software-De�ned WAN (SD-WAN)

solutions and is extremely useful for applications with strict requirements for

resiliency and security, even if best-e�ort ISP is used.

IPsec is still preferred over OpenVPN for some use cases, especially by

v

smaller enterprises. Therefore, this research also examines the possibilities for

high availability, load balancing, and faster operational speeds for IPsec. We

present a novel approach involving the separation of the Internet Key Exchange

(IKE) and the Encapsulation Security Payload (ESP) in SDN fashion to oper-

ate from separate devices. This allows central management for the IKE while

several separate ESP devices can concentrate on the heavy processing.

Initially, our research relied on software solutions for ESP processing. De-

spite the ingenuity of the architectural concept, and although it provided high

availability and good load balancing, there was no anti-replay protection. Since

anti-replay protection is vital for secure communication, another approach was

required. It thus became clear that the ideal solution for such large IPsec tun-

neling would be to have a pool of fast ESP devices, but to con�ne the IKE

operation to a single centralized device. This would obviate the need for load

balancing but still allow high availability via the device pool.

The focus of this research thus turned to the study of pure hardware so-

lutions on an FPGA, and their feasibility and production readiness for appli-

cation in the Cloud context. Our research shows that FPGA works �uently

in an SDN network as a standalone IPsec accelerator for ESP packets. The

proposed architecture has 10 Gbps throughput, yet the latency is less than 10

µs, meaning that this architecture is especially e�cient for data center use and

o�ers increased performance and latency requirements.

The high demands of the network packet processing can be met using several

di�erent approaches, so this approach is not just limited to the topics presented

in this thesis. Global network tra�c is growing all the time, so the development

of more e�cient methods and devices is inevitable. The increasing number of

IoT devices will result in a lot of network tra�c utilising the Cloud infrastruc-

tures in the near future. Based on the latest research, once SDN and hardware

acceleration have become fully integrated into the Cloud, the future for secure

networking looks promising. SDN technology will open up a wide range of

new possibilities for data forwarding, while hardware acceleration will satisfy

the increased performance requirements. Although it still remains to be seen

whether SDN can answer all the requirements for performance, high availability

and resiliency, this thesis shows that it is a very competent technology, even

though we have explored only a minor fraction of its capabilities.

vi

CONTENTS

1 Introduction . 15

1.1 The research question, the methodology and the original contri-

bution of the thesis . 15

1.2 The storyline . 17

1.3 Scope and restrictions . 19

1.4 The author's contribution to the publications 20

1.5 Acknowledgments . 21

2 Background . 23

2.1 Conventional networking . 23

2.2 SDN networking . 27

2.2.1 A short history of SDN 27

2.2.2 SDN in a nutshell . 29

2.2.3 SDN: a worthy endeavor or a waste of e�ort? 33

2.3 VPN technologies . 36

2.3.1 Encryption algorithms and modes for IPsec and OpenVPN 39

2.3.2 IPsec . 41

2.3.3 OpenVPN . 44

2.3.4 Speed, security and high availability considerations for

IPsec and OpenVPN . 45

2.4 Time to make tasks faster: Hardware acceleration 48

3 Answers to questions: publications get tied up 51

3.1 Resilient VPN connections with an IP zero con�guration 51

vii

3.2 Tunneling enhancements for large enterprise VPNs 60

4 Re�ections and lessons learned of the conducted research 75

4.1 Real world SDN stu� . 75

4.1.1 One controller to rule them all 75

4.1.2 Future prospects for the control plane and the controllers 77

4.1.3 The future for the data plane 80

4.1.4 (Security) applications for the SDN 83

4.1.5 Does the designed IPsec setup work in the real world? . 85

4.2 Hardware backed IaaS Cloud 88

4.3 An orchestrator to glue it all together 90

5 Conclusion . 95

References . 99

Publication I . 121

Publication II . 131

Publication III . 141

Publication IV . 153

Publication V . 159

viii

ABBREVIATIONS

AES Advanced Encryption Standard

AES-NI Advanced Encryption Standard New Instruction

AH Authentication Header

API Application Programming Interface

ARP Address Resolution Protocol

AS Autonomous System

ASIC Application-Speci�c Integrated Circuit

BSDRP BSD Router Project

BYOD Bring Your Own Device

CAM Content Address Memory

CBC Cipher Block Chaining

CCM Counter with CBC-Message Authentication Code

CFB Cipher Feedback

COTS Commercial O�-the-Shelf

CPU Central Processing Unit

CTR Counter mode

CUDA Computer Unied Device Architecture

DES Data Encryption Standard

DHCP Dynamic Host Con�guration Protocol

DHCPv6-PD DHCPv6 Pre�x Delegation

DNS Domain Name System

ix

DoS denial-of-service

DPDK Data Path Development Kit

DPI Deep Packet Inspection

DSA Digital Signature Algorithm

DSS Digital Signature Standard

DTLS Datagram Transport Layer Security

ECDSA Elliptic Curve Digital Signature Algorithm

ECMP Equal-Cost Multi-Path

ESP Encapsulated Security Payload

ForCES Forwarding and Control Element Separation

FPGA Field Programmable Gateway Array

GCM Galois Counter Mode

Geneve Generic Network Virtualization Encapsulation

GPGPU General Purpose GPU

GPU Graphics Processing Unit

HA High Availability

HMAC Hashed Message Authentication Code

HNCP Home Networking Control Protocol

HW Hardware

IaaS Infrastructure-as-a-Service

ICS Industrial Control System

IDS Intrusion Detection System

IHU I-Hear-U

IKE Internet Key Exchange

IMIX Internet MIX

IoT Internet of Things

IP Internet Protocol

x

ISC Internet Systems Consortium

ISP Internet Service Provider

IV initialization vector

LAN Local Area Network

LTE Long-Term Evolution

LUT Lookup table

MAC Media Access Control

MitM Man-in-the-Middle

MPLS Multiprotocol Label Switching

MTU Maximum Transfer Unit

NAPT Network Address Port Translation

NAT Network Address Translation

NAT-T NAT Traversal

NFV Network Function Virtualization

NIC network interface card

NIST National Institute of Standards and Technology

NVGRE Network Virtualization using Generic Routing Encapsula-

tion

OFB Output Feedback

OMP Overlay Management Protocol

OSI Open Systems Interconnection

OTV Overlay Transport Virtualization

OVS Open vSwitch

PC Personal Computer

PDR Port Down Reconciliation

PISA Protocol Independent Switch Architecture

PPTP Point-to-Point Tunneling Protocol

PRP Parallel Redundancy Protocol

xi

QAT QuickAssist Technology

REST Representational State Transfer

RFC Request For Comments

RSA Rivest�Shamir�Adleman

SA Security Association

SAD Security Association Database

SD-WAN Software-De�ned WAN

SDN Software-De�ned Networking

SME Small and medium-sized enterprises

SNMP Simple Network Management Protocol

SoC System on a Chip

SOHO Small o�ce / Home o�ce

SPI Security Parameter Index

SSH Secure SHell

SSL Secure Sockets Layer

STP Spanning Tree Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security

Trill Transparent Interconnection of Lots of Links

TUT Tampere University of Technology

UDP User Datagram Protocol

USB Universal Serial Bus

VM Virtual Machine

VPN Virtual Private Networking

VXLAN Virtual eXtensible LAN

WWAN Wireless WAN

XML eXtensive Markup Language

xii

ORIGINAL PUBLICATIONS

Publication I B. Silverajan, M. Vajaranta and A. Kolehmainen. Home Net-

work Security: Modelling Power Consumption to Detect and

Prevent Attacks on Homenet Routers. 11th Asia Joint Con-

ference on Information Security, AsiaJCIS 2016, Fukuoka,

Japan, August 4-5, 2016. IEEE Computer Society, 2016, 9�

16. doi: 10.1109/AsiaJCIS.2016.10.

Publication II M. Vajaranta, J. Kannisto and J. Harju. Implementation Ex-

periences and Design Challenges for Resilient SDN Based

Secure WAN Overlays. 11th Asia Joint Conference on In-

formation Security, AsiaJCIS 2016, Fukuoka, Japan, August

4-5, 2016. IEEE Computer Society, 2016, 17�23. doi: 10.

1109/AsiaJCIS.2016.25.

Publication III M. Vajaranta, J. Kannisto and J. Harju. IPsec and IKE

as Functions in SDN Controlled Network. Network and

System Security - 11th International Conference, NSS 2017,

Helsinki, Finland, August 21-23, 2017, Proceedings. Ed. by

Z. Yan, R. Molva, W. Mazurczyk and R. Kantola. Vol. 10394.

Lecture Notes in Computer Science. Springer, 2017, 521�530.

doi: 10.1007/978-3-319-64701-2_39.

Publication IV M. Vajaranta, V. Viitamaki, A. Oinonen, T. D. Hämäläi-

nen, A. Kulmala and J. Markunmäki. Feasibility of FPGA

Accelerated IPsec on Cloud. 21st Euromicro Conference on

Digital System Design, DSD 2018, Prague, Czech Republic,

August 29-31, 2018. Ed. by M. Novotný, N. Konofaos and

A. Skavhaug. IEEE Computer Society, 2018, 569�572. doi:

10.1109/DSD.2018.00099.

xiii

https://doi.org/10.1109/AsiaJCIS.2016.10
https://doi.org/10.1109/AsiaJCIS.2016.25
https://doi.org/10.1109/AsiaJCIS.2016.25
https://doi.org/10.1007/978-3-319-64701-2_39
https://doi.org/10.1109/DSD.2018.00099

Publication V M. Vajaranta, A. Oinonen, T. D. Hämäläinen, V. Viitamäki,

J. Markunmäki and A. Kulmala. Feasibility of FPGA accel-

erated IPsec on cloud. Microprocessors and Microsystems -

Embedded Hardware Design. Ed. by P. Kitsos. Vol. 71. Else-

vier, 2019, 102861. doi: 10.1016/j.micpro.2019.102861.

xiv

https://doi.org/10.1016/j.micpro.2019.102861

1 INTRODUCTION

Secure networking is a highly desirable security feature nowadays. Both do-

mestic and commercial users demand technology that can maintain security for

their data as it goes through the Internet. There are several di�erent methods

for achieving this, including Virtual Private Networking (VPN), which is often

the choice for many large enterprises. However, probably the most interesting

new networking technology to have appeared in a long time is Software-De�ned

Networking (SDN). Vendors and Cloud operators are touting beguiling images

of automated networks that are the answer to all networking problems. In

this context, device manufacturers are presenting SDN as a technology which

can meet all the requirements for these networks. Nevertheless, even the most

ardent of these vendors will concede that there are still some question marks

about the supposed bene�ts of SDN.

Therefore, this thesis aims to study what this new technology, SDN, can do

for secure communication, particularly with regard to its utilization for VPN

networks such as those used to link multiple sites within a single enterprise. Is it

all just sales hype, or can SDN really provide added value for the Internet users

by o�ering outstanding solutions to the challenges faced by VPN technology?

1.1 The research question, the methodology and
the original contribution of the thesis

When the Forwarding and Control Element Separation (ForCES) Framework

was introduced in 2004 by [178], the whole network paradigm underwent a

wave of innovative change. This led to the inception of the latest SDN concept,

which has opened up yet more new possibilities for ingenious solutions. SDN

can not only be utilized by the largest of corporate organizations, but it can also

15

be used to improve and refresh the networks of even small and medium-sized

enterprises (SMEs).

The importance of secure communication channels over untrusted networks

cannot be emphasized enough. It is a de facto requirement when a company's

operations are spread over several di�erent physical locations. Although this

might only appear to be a concern for large multi-site companies, the current

trend for outsourcing servers to Cloud providers is very common. Many small,

kickstart technology companies use servers in the public Cloud, and thus they

have to communicate with them through the Internet.

This thesis answers the following research questions about networking tech-

nology in general, and SDN in particular. The focus is on their ability to

provide secure communication for both SMEs and large businesses:

1. What cost-e�ective solution can provide SMEs with a secure and resilient

VPN using best-e�ort ISPs, either with or without SDN?

2. How secure and resilient is an SDN-supported VPN given the additional

rigorous performance requirements of large corporations and the Cloud?

This thesis contributes to the debate by providing fresh thinking and novel

approaches to these questions. The methodology utilized to accomplish this is

the result of practice-driven experiments.

More precisely, the same three-step approach was used for every published

article. The �rst step was to conduct research on the web to identify and

evaluate any related work on best practice in the �eld. The second step was to

examine the latest research not only in terms of its relation to previous research,

but also to apply novel approaches to the topics. Finally, experiments were

conducted to obtain empirical data which would show up any limitations of the

studies, along with any possible problems with the designs of the networking

solutions under study.

As the research for this thesis progressed, it threw up still more unanswered

questions, so what follows is the story behind each stage of the articles produced

for this thesis, including a brief introduction to each topic.

16

1.2 The storyline

The search for answers to the �rst question presented in section 1.1 began with

a study of the Small o�ce/Home o�ce (SOHO) approach to networking. This

work was actually conducted over a much larger environment than was pre-

sented in the Publication I. The research in Publication I focuses on modeling

power consumption to detect attacks on wireless routers designed for home

use. The results of this research successfully illustrate how a router's power

consumption changes signi�cantly when it undergoes Wi�-based attacks.

The power consumption modeling and attacks may only play a minor part in

the bigger picture of researching SDN-based VPN solutions. The work is based

on a setup that depicts a SOHO network. It includes four wireless routers, one

of which acts as a gateway to the Internet. The network setup used for the

experiments in Publication I was in fact a smaller part of a larger entity, as

explained later in section 3.1. After the experiments on Wi� attacks had been

conducted, the setup was extended to include both another SOHO network and

a Cloud connection as well. As this was beyond the scope of Publication I this

work was not included in that publication.

The network presented in Publication I was a fully functional routed VPN

setup for which the routing and IP distribution were done with a Zero-con�gura-

tion networking (zeroconf) [68] approach. The question then arose, �What

would happen with a non-routed setup?� Especially one in which the sites

could communicate with each other using a best-e�ort Internet Service Provider

(ISP)? How resilient and fault-tolerant could it be made to be using open source

tools?

This led to Publication II, for which the research question was immediately

obvious, i.e. �What solution ful�lls the needs for a secure and resilient layer-

2 Wide Area Network (WAN) overlay?� Our solution utilized an OpenVPN

carrying Virtual eXtensible Local Area Network (VXLAN) packets which made

forwarding decisions for network packets between virtual Open vSwitch (OVS)

switches. The SDN controller handled all the virtual switches, thus providing

elastic packet-forwarding in the network.

The test network in Publication II had two virtualization platforms and an

o�ce network with two gateways, each using two ISPs for the Internet connec-

17

tion. The experiments conducted on this network showed it to be relatively

resilient and fault-tolerant.

This kind of virtualization platform was a good example of a Cloud infras-

tructure setup where multiple sites host a number of Virtual Machines (VMs),

and this is just what is needed in the head o�ce of many commercial organi-

zations. Although the current trend for many companies is to outsource their

servers and thus to buy virtualization capacity from a Cloud provider, such

companies still need fast connectivity to their Cloud VMs, especially in terms

of throughput and latency. Furthermore, as commercial enterprises tend to

stick with proprietary solutions instead of open source ones, any connection to

the Cloud is often built using IPsec.

This fact highlighted the need to dig deeper into IPsec, and into methods

for speeding up tunneling. This also entailed research into the high-availability

and fault-tolerance options for IPsec, which resulted in Publication III.

The novel approach taken here was to use an SDN network to separate the

Internet Key Exchange (IKE) and IPsec Encapsulated Security Payload (ESP)

tra�c from each other, and to terminate them on di�erent servers. In this

way, a single device was able to handle a vast number of key negotiations using

IKE. Keys were distributed to a set of servers that were dedicated for ESP

encapsulation.

This work includes a thorough description of the network architecture and

the message exchange description for the SDN and IPsec, all of which were

orchestrated with an Application Programming Interface (API). The results

of the experiments described in Publication III con�rmed that the proposed

architecture is functional and ESP encapsulation works �uently on the separate

devices in the network. However, the predicted problem with IPsec sequence

numbers was detected and thus it was not feasible to share tra�c related to a

single Security Association (SA) with other ESP servers. The di�erent SAs, on

the other hand, worked well and packets were distributed e�ciently throughout

the network.

Since it was cumbersome, in fact nearly impossible, to share a single SA

on separate devices, a question arose: How to make IPsec packet encryption

faster? The answer was to accelerate it, e.g. on a Field Programmable Gateway

Array (FPGA) device.

18

This topic was thus investigated more carefully in Publication IV and in the

extended journal version of that study published as Publication V. Hereinafter,

Publication V will be the research referred to regarding this topic. The aim of

this study was to evaluate the feasibility of IPsec FPGA acceleration in Cloud

environments with the help of the SDN solution presented in Publication III.

The results were astonishingly good. A single FPGA can host a vast number of

tunnels and provide 10 Gbps packet throughput rate with only 10 µs latency.

The FPGA appears to be an extremely e�cient device for this purpose. The

utilization of a separate IKE in a dedicated server relieves the FPGA from a

lot of complex algorithms and processes, leaving it with more room for the

all-important encryption process.

1.3 Scope and restrictions

The �eld of internet security could include so many aspects of networking that

is is necessary to de�ne the scope of any research in the �eld. The following

topics have been excluded from this thesis in order to focus on other, more

desired topics.

• Wireless communication

• Digital design

• Cloud (limited scope)

As this thesis focuses heavily on networking, while Publication I is about

wireless networking, it is necessary to state clearly that wireless communica-

tion itself is beyond the scope of this thesis. The methods presented here rely

on wired communication, usually with Ethernet networking. The high-speed

links are mostly wired, and the ISPs o�er wired connectivity for their clients.

Although the internal network in some companies might include a wireless net-

work for clients, the backbone of the company network and its server networks

are mostly wired.

This thesis only touches on the topic of digital design described in Publica-

tion V. The FPGA described in that article provides a platform for the desired

functionality. Even though some factors concerning the design of the FPGA

are explained, the digital design itself is beyond the scope of this work.

19

The term 'the Cloud' also needs to be de�ned within the context of this the-

sis. Here, the Cloud is considered to be an Infrastructure-as-a-Service (IaaS)

Cloud, one which o�ers VMs to its customers. Virtualization platforms provide

the same service, but here the Cloud is regarded as a relatively large environ-

ment hosting a vast number of VMs on several hypervisors. Furthermore, the

IaaS Cloud is often built to be easily expandable and the surrounding infras-

tructure has to be able to adapt to this feature. Such modularity and elasticity

is not covered in more traditional server virtualizations.

1.4 The author’s contribution to the publications

Publication I describes how power measurements can reveal network attacks

on home network routers. The author set up the network for the experiments,

which included a Wi� mesh, OpenWRT �rmware deployment to routers, a

custom-built Babel routing protocol daemon and an ISP providing IPv6 pre-

�xes. The network packets used for the attacks against the Wi� network were

also designed by the author. The energy measurements and related data anal-

ysis were covered by the co-authors.

Most of the work described in Publication II on resilient, secure, SDN-based

WAN overlay networks was carried out by the author, who also wrote the

corresponding sections and designed both the network and the experiments

conducted to verify its performance. The topics of redundancy and link watch

script in the architecture were covered by the co-authors.

Publication III describes how SDN is utilized to operate the IKE and ESP

processes from the IPsec on individual devices in a network. Although it was

the coauthor of the article who came up with the original idea for including a

separate ESP processing server in the network, nearly all of the research was

carried out by the author. This included the SDN setup, the ESP crypto en-

gine setp, the IKE service and their orchestration, as well as the veri�cation

experiments. All the relevant sections corresponding to these topics in Publi-

cation III were written up by the author. The orchestration of the IPsec and

the speci�cation of the API speci�cation were done in collaboration with the

co-authors.

Finally, the author's major contribution to Publication V was in providing

20

the overall architectural vision of how the FPGA accelerator can be �tted to

the IPsec with SDN paradigm. The author was responsible for several ele-

ments of this article including the system model for the complete design, the

feasibility considerations for using an IPsec on an FPGA, the speci�cation of

the IPsec accelerator logic for the FPGA, and the physical network setup for

the experiments. The corresponding sections in Publication V were written by

the author. However, the author did not contribute to the FPGA internal de-

velopment, the Advanced Encryption Standard (AES) block development, the

FPGA measurement hardware, the packet client or the application logic for the

experiments. Neither did the author contribute to the FPGA resource, or the

performance and latency evaluations.

1.5 Acknowledgments

Supported in part by the European Research Council (ERC) under the Euro-

pean Union's Horizon 2020 research and innovation programme (grant agree-

ment No 804476 �SCARE�).

21

22

2 BACKGROUND

Sending messages has a long history encompassing the ingenious use of a variety

of media including smoke signals, �ags, carrier and even carrier pigeons. More

modern inventions include the telegraph, the phone and, nowadays, the packets

of digital data carried by the Internet. Since the 1980s, however, there has been

surprisingly little development in communication networking.

Now, changes are being wrought by the idea of detaching the control and

forwarding planes in the form of an SDN. It is hypothesized that such an

approach would be a perfect match for the Cloud technologies currently being

developed all around the globe.

One of the principal requirements of cloud-related technologies is that the

communication to the Cloud should be secure, and one of the best ways of

ensuring this is through the use of VPNs. This means that current performance

requirements for VPNs are extremely high, so new innovations such as hardware

acceleration are required as soon as possible.

2.1 Conventional networking

For the vast majority of people around the world, computer networks are now

an indispensable part of everyday life. Besides gaming and watching videos,

many people rely on computer networks for their news feeds, for the majority of

their long-distance communication, and of course for their banking and business

a�airs. The Internet, that global network which interconnects an incalculably

vast number of electronic devices, is the core communication network for our

world. However, in reality the Internet consists of numerous smaller networks,

each of which may contain any manageable number of devices. Arguably, the

most common type of these smaller networks is the Local Area Network (LAN),

which is usually dedicated to one single network area, such as a company o�ce,

23

or increasingly nowadays, someone's private home.

Any device connecting to the Internet will require an exact addressing scheme

for establishing connectivity with other devices connected to the net and ex-

changing messages. Currently, networking relies on two main types of addresses:

a Media Access Control (MAC) address and an Internet Protocol (IP) address.

The MAC address was standardized by IEEE 802.3 and is the address in the

Ethernet II frame �eld of a network packet [93]. Its purpose is to point out the

next recipient for a packet. A MAC address is 48 bits long and is considered to

be globally unique. It is also called the hardware address since it is hard-coded

to the Ethernet chip.

Within networks, the Ethernet packet carries the IP packet in its payload.

The IP address was speci�ed as long ago as 1981 [136]. There are currently two

di�erent versions in use: version 4 [136] which speci�es a 32-bit long address

format, and version 6 [33] which has a 128-bit address. The purpose of the IP

address is to specify the actual source and destination devices of each network

packet in any packet transmission.

The Ethernet frame carries the IP frame in its payload. The IP frame

further carries a transport layer protocol, the most common of which are the

Transmission Control Protocol (TCP) [137] or the User Datagram Protocol

(UDP) [134]. It is the transport layer protocol that usually carries the real

information that is being transmitted in its application data.

The TCP is a stateful protocol ensuring that the communicating devices

can keep track of all the packets sent and received and verify that every single

packet gets transmitted between the two ends of the connection [137]. While

the TCP provides a reliable communication channel for its peers, the UDP,

being a stateless protocol, does not o�er the same level of reliability by itself

[134]. For that reason, UDP is often used for packet transmissions which do

not su�er from a number of lost packets, such as audio or video transmission.

In networking, there are two types of devices that are mostly concerned with

packet forwarding: switches and routers. The switch is the basic building block

of any network. It may have a relatively large number of ports (e.g. 4-48) and

its purpose is to connect all the devices e.g. in a LAN, for example, together.

The basic function for a switch is to receive a packet in one of its ports and

forward it to one of its other ports for transmission in the LAN. A switch uses

24

PC A

SW A

PC B

SW B

SW X

ROUTER A ROUTER B

MAC ADDR:
AA:AA:AA:AA:AA:AA
IP ADDR: 1.1.1.2

MAC ADDR:
11:11:11:AA:AA:AA
IP ADDR: 1.1.1.1

MAC ADDR:
C0:FF:EE:B1:B1:B1
IP ADDR: 3.3.3.2

MAC ADDR:
BB:BB:BB:BB:BB:BB
IP ADDR: 2.2.2.2

MAC ADDR:
11:11:11:A1:A1:A1
IP ADDR: 3.3.3.1

MAC ADDR:
C0:FF:EE:BB:BB:BB
IP ADDR: 3.3.3.2

MAC SRC:
AA:AA:AA:AA:AA:AA
MAC DST: 11:11:11:AA:AA:AA
IP SRC: 1.1.1.2
IP DST: 2.2.2.2

MAC SRC: 11:11:11:A1:A1:A1
MAC DST: C0:FF:EE:B1:B1:B1
IP SRC: 1.1.1.2
IP DST: 2.2.2.2

MAC SRC: C0:FF:EE:BB:BB:BB
MAC DST: BB:BB:BB:BB:BB:BB
IP SRC: 1.1.1.2
IP DST: 2.2.2.2

Figure 2.1 Packet forwarding when PC A sends a packet to PC B.

MAC addresses for this purpose and thus holds a table of seen addresses that

is constantly updated whenever necessary.

The router, on the other hand, connects whole networks together. It usually

has a relatively small number of ports compared to a switch, but of course

there are exceptions. When a router receives a packet, it reads the IP address

to �nd out which destination network the packet is going to, and re-sends the

packet either directly to the �nal destination or to another router for further

delivery. The router makes the routing decision based on its routing table,

which contains information related to known IP networks. The information in

this table can be gathered using both static and dynamic methods, although

further analysis of these methods is beyond the scope of this thesis.

Figure 2.1 shows a very basic scenario for a network with two PCs, two

routers and three switches (SW). PC A in the �gure sends a network packet

to PC B, which is in an entirely di�erent network. To reach its destination,

this packet needs to travel through routers A and B. The solid black lines show

the physical connections between devices whereas the green arrows depict the

packet forwarding through the devices holding a MAC or IP address.

As illustrated in Figure 2.1, the router manipulates the Ethernet header by

replacing the source and destination MAC address �elds. The switches A, X

and B only read the MAC address and forward the packet to the port where

the destination MAC address is supposed to be. It is notable that in this

con�guration the IP address of the packet stays the same from end to end.

However, this is not always the case since sometimes the network utilizes a

technology called Network Address Translation (NAT) [36]. NAT's Purpose is

to translate a public IPv4 address into a private IPv4 address. An even more

25

useful technology is Network Address Port Translation (NAPT), which trans-

lates a single public IPv4 address and its TCP/UDP port numbers into multiple

IPv4 private addresses and their corresponding TCP/UDP port numbers. In

this thesis, the term NAT will be used to refer to both NAT and NAPT. This

is an established practice in the literature as, in the end, there is not much

di�erence in the two technologies.

The case in Figure 2.1 changes quite dramatically when NAT is deployed on

router A. The packet is sent as before, but the router also replaces the SRC

IP address before sending it on to router B. In this scenario, router B, and

eventually PC B, receives a packet with a source IP of 3.3.3.1.

Commonly, the IP addresses in networks like the one shown in Figure 2.1

are distributed to the clients using a Dynamic Host Con�guration Protocol

(DHCP). The DHCP greatly reduces the network management burden and is

thus recommended, especially for IPv6, due to its much larger address space.

In addition, DHCPv6 can also assign complete network blocks from ISP to

customers using DHCPv6 Pre�x Delegation (DHCPv6-PD) [170].

The objective of the IETF Zeroconf Working Group is to facilitate network

management by making speci�cations for a zeroconf approach using IPv4 and

IPv6 addressing [68]. The Homenet working group has the same ambition

according to [131, 160]. The Homenet [61] project is in turn making imple-

mentations based on these RFCs. These rely on the Home Networking Control

Protocol (HNCP) [160] in order to achieve �zeroconf IPv6 (and IPv4) routing,

pre�x assignment and service discovery� for networks with multiple wireless

routers, as stated in [61] . The HNCP uses the pre�x-assignment algorithm of

[131] with its own message structure, as presented in [160]. Periodic update

messages take place every 20 seconds, verifying the router's continued existence

in the network. The Homenet project relies on the Babel routing protocol [21].

This works by sending periodic HELLO messages to the network every 4 sec-

onds with reciprocal IHU (I-Hear-U) messages. These messages identify neigh-

bouring routers and are followed with the UPDATE messages that update the

routing table information regarding IP networks behind these neighbors.

Networks and devices are often benchmarked in order to ascertain their ac-

tual performance and throughput rate. It is important to understand the e�ect

that the size of the network packet may have when carrying out such experi-

26

ments. For instance, IPFire has benchmarked IPsec in [169] with a wide range

of di�erent-size packets. Their results clearly indicate the need for a relatively

large packet size (in the range of 64 B to 1500 B) before line rate operation

can be achieved. Their results [169] started to approach the theoretical maxi-

mum when a packet size of 800 B was used. Operation with small packet sizes

requires a lot of performance just for the packet generation part, let alone the

packet handling itself. Thus, these benchmarks often tend to favor large packet

sizes in their experiments in order to ensure good results and demonstrate a

network's peak performance, rather than its actual performance.

De�ning the real throughput of a network is not a simple topic due to the

di�culties of accurate benchmarking caused by the large variation in packet

sizes handled by the Internet. The Internet MIX (IMIX) speci�cation explains

the situation in [96] by de�ning the methods used to �nd �repeatable test con-

ditions�, though the authors are careful to state that one test set might not

work in a di�erent con�guration. Benson, Akella and Maltz [12] measured the

typical packet size in networks, or IMIX, as varying between 200 B and 1400

B. In this thesis we assume that the Maximum Transfer Unit (MTU) of 1500 B

is used if the packet size for the benchmarks is not de�ned. These MTU-sized

packets may skew the results slightly, since it shows the maximum throughput

for the easiest-to-handle packet size. Smaller packets are more di�cult to han-

dle, and would result in a lower value for maximum throughput. This has been

veri�ed, for instance, Park et al. [128] for IPsec processing.

2.2 SDN networking

2.2.1 A short history of SDN

The earliest reference to SDN is from 1987 by Cummings, Hickey and Kinney

[31] in an AT&T document discussing the evolution of telecommunication at

that time. Their document has only a sketchy reference to SDN, and only

informs the reader that the network is managed using software. The current

SDN concept was �rst presented in [178] which described the separation of the

forwarding and control planes. The migration from hardware to software had

already reached networking a while ago, but the really rapid development in

27

this research �eld has only occurred since 2009 based on Nunes et al. [103].

Since that time, researchers' views on the potential capabilities of SDN have

broadened considerably.

However, this kind of network management via software is de�nitely not a

new invention. The well-known Simple Network Management Protocol (SNMP)

performed such a task from the time it was developed in 1988 [18]. The idea

behind SNMP is that agent software on an administrator machine sends com-

mands to the network devices. This allows a single machine to manage multiple

network devices.

Going back even further, in-house built custom management script setups

have been used ever since the Telnet protocol was speci�ed in 1983 [138]. These

scripts usually tend to deploy some feature or con�guration parameter centrally

to a large set of network devices with relative ease. Telnet has since been

replaced by Secure Shell (SSH) [179], but the main idea of script collection has

stayed the same.

Netconf [39] is an even more sophisticated method compared to custom

script collection. It uses eXtensive Markup Language (XML) [177] to represent

the con�guration on network devices and thus is very �exible, allowing di�erent

con�guration schemes for various devices. The only requirement is to have a

Netconf agent running on the device software, which should be connected to a

Netconf manager.

All of the aforementioned methods ful�ll the SDN paradigm for a software

programmable network [55, 178]. Essentially, it means that devices are con�g-

ured centrally with user-friendly software involving minimal e�ort. The de�ni-

tion of SDN is still �nding its form among the stakeholders.

The SDX Central which is a �news and resource site for software-de�ned

everything� has de�ned SDN as follows [151]: �The goal of Software-De�ned

Networking (SDN) is to enable cloud computing and network engineers and

administrators to respond quickly to changing business requirements via a cen-

tralized control console.�

If Cloud technology is to be closely associated with SDN, then it is also nec-

essary to have a de�nition for the Cloud. The National Institute of Standards

and Technology (NIST) has speci�ed [91] the Cloud as follows: �Cloud comput-

ing is a model for enabling ubiquitous, convenient, on-demand network access

28

to a shared pool of con�gurable computing resources . . . that can be rapidly

provisioned and released with minimal management e�ort or service provider

interaction.� Thus the cloud can be considered as a large virtualization platform

providing VM hosting services using several servers (hypervisors). Cloud com-

puting can be supported by edge computing, a technique which moves some of

the data processing from the Cloud core to the edge of the network [156]. This

o�oading reduces the network tra�c and therefore any latency for applications

that utilize the Cloud.

Nunes et al. [103] de�ned SDN to be �a new networking paradigm in which

the forwarding hardware is decoupled from control decision.� A similar de�ni-

tion underlies Raghavan et al. [141] who state that: �SDN e�ectively separates

the control plane from the data plane, much like earlier e�orts such as . . . and

provides a programmatic interface so that new control plane functionality re-

quires only writing code for the network controllers.�

Perhaps the simplest and best explanation is found from a non-pro�t con-

sortium, the Open Network Foundation, which is now playing a signi�cant role

in the standardization of SDN-related technologies. Their explanation [109] for

SDN states that it is: �The physical separation of the network control plane

from the forwarding plane, and where a control plane controls several devices.�

2.2.2 SDN in a nutshell

To summarize subsection 2.2.1: the SDN is about having separate control and

data planes. This helps administrators to make required network changes e�-

ciently even in complex networks such as Clouds. Figure 2.2 depicts a conven-

tional network approach on the left and an SDN approach on the right. Usually,

as in this �gure, the SDN is speci�cally designed to utilize switches, but the

SDN concept can be extended to all network equipment. Traditional network

switches make forwarding decisions on their own since every single switch can

be considered to have its own control plane, i.e. its �brains�. In an SDN net-

work, this control plane is transferred to a server called the SDN controller,

which has connectivity to the switches. This way, the �brains� of the network

are centralized.

Thus, the SDN controller has a complete understanding of the network struc-

29

SW 1

SW 2 SW 3

SDN Controller

SW 1

SW 2 SW 3

Control plane

Data plane

Data plane,
Programmable switch

Control plane

Figure 2.2 Conventional network with combined control and data plane on the left
and corresponding SDN solution with a separate controller device on the
right [17].

SW 1 SW 2

SW 3 SW 4

PC A

PC B

Middlebox X

SDN Controller

Figure 2.3 SDN network with four switches, two PCs, single random middlebox and
an SDN controller.

ture and is in an impeccable location for creating �ows, which de�ne network

packet paths in the switch plane. A �ow can be regarded as the rule set for

how a packet gets forwarded in the switch plane. Every switch in the packet

path gets an entry in its packet forwarding table. Figure 2.3 depicts an SDN

network with an SDN controller, four switches, two PCs and a single random

middlebox that can be any network device or a server holding an application

of any kind related to network packet handling.

In traditional networking, the network presented in Figure 2.3 is considered

to have a loop. Traditionally, the Spanning Tree Protocol (STP) [167] modi�es

the network structure by disabling links it �nds best to prevent loops [23].

Assume the STP has disabled the link between SW 3 and SW 4, and a packet

transfer from PC A to PC B occurs. The SW 1 uses the path via SW 2 since

that is the only possibility.

SDN changes the situation dramatically as it obviates the need for STP. All

the links between the switches are active. When a packet from PC A to PC B

30

Figure 2.4 Different SDN layers and their corresponding API interfaces [152].

enters SW 1, the switch asks the controller for the desired path. The controller

knows the structure of the network precisely, so it creates a �ow for the packet

through the network from SW 1, either via SW 2 or SW 3. The topology in SDN

is always completely loop-free, because �ows are created centrally on-demand.

Flows can be created either directly, as the SDN controller �nds best, or with

rules from third-party software deployed along with the controller. Figure 2.4

shows the di�erent layers in the SDN stack and their corresponding APIs [152].

The control layer in the middle holds the SDN controller, which communi-

cates with the applications and switches. Two popular open-source controller

projects are, for instance, OpenDaylight and Floodlight [88]. The Floodlight

SDN controller contains a number of inbuilt applications, or modules, (e.g. net-

work services) like Learning switch [47]. The Learning switch is a basic layer

two-level switch component that makes packet forwarding decisions, unless this

has been done previously by some other Floodlight module. In Floodlight, the

modules are run sequentially as shown in Figure 2.5, where the modules can

decide whether to allow further packet processing or not. For instance, the

Firewall module can decide not to allow the Learning switch to participate in

the �nal �ow generation.

The SDN controller o�ers a northbound API that connects the applications

and the control-layer software together. The Representational State Transfer

31

Incoming OpenFlow
message

Firewall
module

Learning switch
module

Push flows to switches

Figure 2.5 Example of possible Floodlight module pipeline [49].

(REST) API [142] approach is usually used to provide an easy method for

applications to communicate with the SDN controller [153]. The Application

layer holds third-party applications that the network administrators have de-

ployed alongside the SDN controller. These applications might provide e.g.

precise instructions how some speci�c packets are forwarded in the network, or

a statistical analysis of network usage. Thus the applications are a method to

automate various task related to network and packet forwarding.

Finally, the infrastructure layer contains the network devices, such as switch-

es. Messaging between the controller and the switches uses a southbound API.

OpenFlow is a communication protocol especially designed for this purpose

[107]. OpenFlow de�nes a message's structure and how the switches and con-

troller should interact. It o�ers various options as to how the packet-forwarding

rules in the switches can be con�gured [154]. At the time of writing, the newest

version of OpenFlow, 1.5.1, o�ers the richest feature-set yet for packet handling.

For example, usually packets are forwarded based on their source and destina-

tion IP addresses. However, there are yet more advanced forwarding policies.

For instance, OpenFlow version 1.5 includes egress port packet-processing, in

which a packet is processed after determining its outgoing port [107].

Even though the communication from the SDN controller to the switches

tends to use the OpenFlow protocol, it is not essential. Cisco has speci�ed the

Cisco OpFlex protocol [27] as an alternative to OpenFlow, while the OpenDay-

light SDN controller speci�es the use of Netconf instead of OpenFlow.

Thus, there are a range of implementation combinations for SDN. Neverthe-

less, they all utilize the underlying approach of separating the control and data

planes in the network. This all replies on automation, so the next section will

consider the pros and cons of this new networking approach in that context.

32

2.2.3 SDN: a worthy endeavor or a waste of effort?

The centralization o�ered by an SDN controller gives a lot of bene�ts. The

most signi�cant ones are:

• Ease of management

• Better visibility of the network structure

• Elastic packet forwarding in the network

• Applying applications to network level

There is no doubt that SDN greatly facilitates network management [42,

81]. It provides a central point where administrators can manage the network

as a complete entity, instead of having to deal with single devices. Further

modi�cations such as innovative packet-forwarding policies, or even new ap-

plications, can be easily applied, and automated, from this controller. New

applications can participate in the �ow generation so that, e.g., deploying a

�rewall application initiates �rewalling at the switch level Automated applica-

tions can also provide elastic packet forwarding. This is an extremely useful

and important feature which enables the inclusion of additional devices that

are attached to the network in the network packet path. For instance,in the

case of Figure 2.3, when PC A sends a packet to PC B, an application in the

SDN controller can order the packet to be redirected to Middlebox X, instead

of going straight to PC B. After the packet has been released from Middlebox

X back to the network, it can then be forwarded to its original destination, PC

B. There are a number of di�erent parameters that can be utilized to redirect

network packets in SDN. These include the Ethernet address,the IP address,

the TCP/UDP port number and the switch port, to name just a few [50, 106].

In traditional networking without SDN, it is mainly the physical infrastruc-

ture that de�nes a packet's path through the network. When the network

structure needs an update, the network administrators usually have to physi-

cally modify the network equipment interconnections, or make static changes in

the routing table. If the network restructuring process is particularly thorough,

it might require closing the network for a time (usually in the middle of the

night in order to minimize the impact to the users).

33

In SDN, the physical infrastructure of the network does not play such a

signi�cant role. Once the packet path is de�ned by SDN, only the necessary

network devices are included in the path. New devices can be added to the

network at any time, and once they are in place they can participate in the

packet processing by changing the way the �ows are generated. Added devices

can be tested beforehand with a small set of end devices, and the network

operation can be expanded step by step. This is an especially useful feature in

situations when a problem occurs, as most of the network is still using the old

packet path. So, if a modi�ed network encounters a problem, �ow generation

can be reverted back to the old functional path until the problem has been

solved, with as little disruption as possible to the network users. Most of these

tasks can be done during normal working hours, and at worst the network

modi�cation will just cut out the existing TCP connections.

Therefore the infrastructure in SDN can be considered to have a virtual

topology [126]. This, in turn, makes tracing network packets much more chal-

lenging than it is in traditional networks. The physical topology of the network

remains the same. Thus, debugging in operational networks might get very

complex. However, the situation in research and development networks is al-

most the opposite: SDN o�ers great debugging capabilities for development

purposes since the packets can be freely redirected in the network. This would

be risky in an operational network since the debugging redirections could create

huge problems which could have a devastating impact on vital network tra�c.

The importance of the virtual topology is even more marked when software

switches are added to the picture. A software switch, for instance OpenvSwitch

[110], is often deployed to a hypervisor in order for the VMs to have network

connectivity. When these switches are added to the SDN architecture, the

visibility of the SDN controller is extended to include the VMs. This is highly

bene�cial, especially in a Cloud environment. In such an environment, the

networks tend to be highly complex, but since the network is managed centrally

via an SDN controller, individual VMs can be identi�ed from the network.

Furthermore,VMs can provide a number of useful network functions, such as

a �rewall, Deep Packet Inspection (DPI) or a Dynamic Host Con�guration Pro-

tocol (DHCP) server, to name but a few. This concept is called Network Func-

tion Virtualization (NFV) [40]. Its purpose is to reduce costs by using Com-

34

mercial O�-the-Shelf (COTS) solutions, instead of using highly-customized,

dedicated devices to run the services in the network, which can be very ex-

pensive [13]. SDN and NFV together are a powerful combination, enabling

the possibility to run a great number of network functions in the servers and

provide such functions to the whole network automatically using SDN �ows.

Inevitably, automated network management has its downsides. One of the

greatest drawbacks to SDN is that unless the network is designed and built

carefully, it might end up having a single point of failure: the controller. An in-

accessible controller might cause very severe damage to the network, especially

if the switches have not been carefully con�gured to tolerate faulty situations.

Packets could easily be directed to the wrong parts of the network, and the

network could become unusable. Once it is accepted that the controller holds

the virtual topology of the network, then it is clear that if the controller goes

wrong, so will the network.

Another important issue with the SDN controller security is the trustworthi-

ness especially in regard to third party applications and in the control plane as

stated by Scott-Hayward, O'Callaghan and Sezer [150]. A compromised SDN

controller will place the network at the mercy of an attacker. Malicious appli-

cations may take over packet forwarding, or impair the network in some other

way. In this context, the control plane is very fragile as it o�ers a great place

for an attacker to cause harm for instance by modifying network con�gurations,

by causing denial-of-service (DoS) attack against the controller itself or sni�-

ing packets to steal information, to name just a few possibilities. The SDN

controller access control mechanisms are still weak and should receive more

attention from the research community [83, 125].

Missing security in access control is not the only problem SDN faces. In a

2013 workshop, Metzler [94] pointed out some politico-economic problems with

SDN. According to him, because consumers are not really aware of the poten-

tial bene�ts of SDN technology, businesses are not investing heavily enough in

SDN technology. This is re�ected in the lack of use cases and vendor strategies,

and the immaturity of many of the commercial products on o�er, as Metzler

also points out. Another problem is that vendors tend to sell old devices as

new innovation-enablers once the SDN logo has been printed on the packaging.

Metzler calls this �SDN-washing� and de�nes it as when: �a vendor re-labels

35

its legacy products and services with SDN-based vocabulary.� Despite these

problems, however, Metzler sees the future of SDN as bright, and thinks that

it o�ers the possibility to reduce provisioning work by 95 % compared to tra-

ditional networks.

SDN has many attractive features. It is easy to automate, easy to man-

age and it is cloud-ready. However, its greatest vulnerability lies in its greatest

strength. Centralized control means that it will always contain a possible single-

point-of-failure device, one that would also be extremely vulnerable to hostile

attack from an adversary. The security of the SDN controller cannot be em-

phasized enough: whoever controls the controller, controls the network. These

negative points could well be just the initial friction which accompanies the

commercial development of any new product on the market. It seems reason-

able to hope that they will disappear as SDN technology becomes more mature

and �nds its own niche in the �eld of modern networking.

2.3 VPN technologies

VPN in technology vise is aimed at securing connectivity for two or more net-

works, or computers, through an untrusted network such as the Internet. VPNs

are especially useful in cases where a lot of di�erent style network tra�c takes

place and the protocol used for communication does not, in itself, provide any

con�dentiality, integrity or authenticity. These are provided by the VPN solu-

tions since VPNs are in fact protocol suites that include for instance encryption

primitives as a part of the provided set of services.

Most common VPN technologies can be categorized into three di�erent

classes based on their implementation mechanism [122]:

1. PPTP

2. TLS

3. IPsec

The Point-to-Point Tunneling Protocol (PPTP) [56] is a rather old-fashioned

approach to VPN connection that, as Schneier [148] points out, is vulnerable

to relatively poor levels of security. It still has its uses, especially because of

36

its support for legacy devices, but it is not highly-recommended and is thus

omitted from further discussion in this thesis.

IPsec stands for Internet Protocol Security and is a complete suite consisting

of di�erent protocols for building secure communication channels. Even though

the RFCs for IPsec can be traced back to 1995, it is still very widely used and

is considered to be an e�cient method for building VPN connections [7, 8].

Transport Layer Security (TLS) protocol can also be used for creating VPN

connections [122]. In practice, TLS VPN is often con�ated with OpenVPN

[118], which is a very popular open-source VPN solution. Vendors such as

Barracuda [10] and Cisco [29] have their own commercially-available imple-

mentations for TLS-based VPN solutions. Some of these solutions might be

attached with Secure Sockets Layer (SSL) term instead of TLS. The reason

is that the SSL is the old version of the TLS protocol and therefore the SSL

term still exists as a colloquial name even though the SSL should not be used

anymore. Further, for instance in Cisco products, the VPN can even operate

using the Datagram Transport Layer Security (DTLS) protocol [22, 143, 144].

The DTLS is based on TLS, but uses the UDP protocol instead of the TCP.

This thesis mainly focuses on OpenVPN due to its wide variety of features and

its open-source implementation.

Although IPsec is very e�cient when connecting complete networks together,

the advantages of an OpenVPN are particularly apparent when connecting sin-

gle devices to a corporate internal network. Of course, both systems have their

own advantages, and there are cases where one technology has clear advantages

over the other.

Figure 2.6 depicts the two most common VPN setups: site-to-site [172],

which in this case is built using IPsec, and remote access [171], here built using

OpenVPN. In the diagram, the headquarters (HQ) network has a server, a

PC C, and a �rewall to host IPsec and OpenVPN tunnels. The Company o�ce

network contains two PCs: A and B, and a �rewall. The home network consists

of a laptop and a NAT-enabled �rewall.

Site-to-site means that there is a connection between the Company o�ce

and the HQ networks. IPsec would be the typical VPN technology for this

usage. It enables �uent communication between the networks. The PCs A,

B and C and the Server do not require any special client software since the

37

Home network

Company office Company headquarters
 network

Internet

PC A Server

Laptop

Firewall

IPsec tunnel

Firewall

Firewall
OpenVPN tunnel

NAT

PC B
PC C

Figure 2.6 An illustration of Site-to-Site and remote access VPN setups.

Firewalls handle all the required packet-encapsulation procedures.

The Laptop in the Home network is a good example of a remote access

setup. The connection to the HQ network is built through a Firewall with

NAT. The laptop has an OpenVPN client software and negotiates the tunnel

with the Firewall of the HQ network, which is running an OpenVPN server.

Therefore, at least the Server and PC C can communicate securely with the

laptop. The connectivity can be further extended with appropriate routing and

forwarding decisions taken in the Firewall in order to connect to the Company

o�ce devices as well. These two di�erent VPN technologies are explained in

more depth in the following sections.

Secure networking is a broad concept. Even though they are not pure VPN

solutions, it is worth pausing here to include MACsec [145] as it is a very

attractive and much-discussed technology. MACsec is a layer-2 protocol aimed

at providing con�dentiality and integrity in LAN networks, and as such it is not

directly usable over WAN networks. Nevertheless, it can be used with IPsec

or TLS VPN to achieve end-to-end security [73]. MACsec is mainly used in

point-to-point links between switches or from a switch to a host. It can prevent

both security threats like Man-in-the-Middle (MitM), and playback attacks,

[73] since any tra�c which fails the integrity check is dropped.

Three indispensable requirements in the VPN networking can be address.

38

First is con�dentiality that is achieved by using encryption. Second and third

are integrity and authenticity which both are provided by message authentica-

tion. Thus, before discussing IPsec and the OpenVPN in more detail, some of

the most common encryption algorithms and their operational modes need to

be explained.

2.3.1 Encryption algorithms and modes for IPsec and
OpenVPN

Tra�c in VPN can be encrypted using several di�erent cipher suites. Even

though other ciphers surely can be used, the following list contains the most

common ones and their equivalent modes for VPN use. The list is gathered

from [161, 162] and from a Linux server running OpenVPN via the command

openvpn --show-ciphers.

• AES-CBC/CTR/CCM/GCM

• Blow�sh-CBC

• Camellia-CBC/CTR/CCM

• ChaCha20/Poly1305

The most popular of these is arguably the AES -suite, which was published

in 2001 by the NIST [139]. It uses three di�erent key sizes: 128, 192 and 256

bits. Strongswan IPsec [163] can use AES with multiple modes: Cipher Block

Chaining (CBC) [34, 51], Counter (CTR) [62], Counter with CBC-Message

Authentication Code (CCM) [63] and Galois Counter Mode (GCM) [35, 174].

OpenVPN, on the other hand, only supports the AES modes of CBC, Cipher

Feedback (CFB) [34], Output Feedback (OFB) [34] and GCM in version 2.4.5.

Another cipher is Blow�sh (1993), which uses variable key lengths between

40-448 bits with IPsec and OpenVPN as speci�ed in RFC2451 [130]. However,

the RFC has reported that weak keys have been detected for Blow�sh, raising

doubts about its security. Blow�sh does have a successor, Two�sh, but this can

be used with IKE version 1 only in the Strongswan suite [161].

Camellia, published in 2000, is regarded as being equivalently safe to the

AES suite, but it is not as popular [90]. It supports 128, 192 and 256 bit key

39

sizes and is integrated in OpenSSL 1.1.1c and OpenVPN 2.4.7. Camellia is also

supported for IPsec ESP packet encryption based on [75, 162].

All of the aforementioned suites work on the block cipher principle and uses

Hashed Message Authentication Code (HMAC) for authentication [84]. The

ChaCha20/Poly1305 is a stream cipher suite in which the Chacha20 handles

the encryption and the Poly1305, the authentication. Support for ChaCha20/

Poly1305 in IPsec is from 2015 and is speci�ed in [101]. It uses 256-bit keys

and is limited to IKEv2 in IPsec. The combination of ChaCha20/Poly1305 can

be found in OpenSSL 1.1.0, released in 2016. The OpenVPN also has support

for it from Version 2.5 onwards.

The AES, Blow�sh and Camellia suites have di�erent block cipher modes

that specify how the blocks are encrypted using the desired cipher method. The

mode a�ects the security level and performance of the speci�ed cryptographic

algorithm and each have their own pros and cons.

The Cipher Block Chaining (CBC) mode originated in 1976 and is the oldest

mode still in use [37]. It is known to have a number of vulnerabilities [129].

and is relatively slow in operation because it uses an initialization vector (IV)

value from the previous encrypted block for the next one, i.e its operation is

sequential. Its greatest advantage is its legacy �tness as the CBC mode has

been built into virtually every IPsec-supporting device in the past, which makes

it compatible with a lot of old devices.

The Cipher Feedback (CFB) mode is similar to CBC, but the plaintext is

added into an encrypted IV value using the XOR operation. The IV for the

next block is then fetched from this ciphertext. The Output Feedback (OFB)

mode is, in turn, very similar to the CFB mode. The only di�erence is that

the IV for the next block is fetched before the XOR operation of the plaintext

value and the encrypted IV [34].

Counter mode (CTR) uses a completely di�erent approach in which an IV

and a counter value are concatenated and encrypted. The XOR operation takes

place afterwards with the plaintext to generate the ciphertext. CTR mode is

signi�cantly faster than CBC because its operations can be parallelized, as

explained in [38].

CCM is a combination of the CTR mode with CBC-MAC (CBC-Message

Authentication Code (MAC)). It uses the output from the AES-CBC-MAC as

40

the MAC input for the CTR process as explained in [3]. Crypto++ benchmark

[30] found CCM to be slower than CBC.

GCM combines the CTR mode with Galois �eld multiplication. It is no-

table that GCM tends to use its own TAG value instead of HMAC for the

authentication code [35]. The basic operation of GCM relies on IV, which is

combined with a counter that increases along the blocks to be encrypted. An

XOR operation with encrypted value and plain text generates the ciphertext.

The GCM mode is gradually replacing many of the other modes. For instance,

Cisco recommends AES-GCM highly and predicts it will be valid until at least

2035 [26].

2.3.2 IPsec

IPsec is a protocol suite that provides a secure communication channel by

encrypting the desired tra�c. It is located in layer 3 of the Open Systems

Interconnection (OSI) model and thus can easily carry the upper level protocols

such as TCP and UDP through the Internet. As presented in Figure 2.6, it

is an e�cient method to securely connect networks together. The IPsec suite

has two major protocols to use: Internet Key Exchange (IKE) [76, 133] and

Encapsulation Secure Payload (ESP) [79].

IKE's purpose is to use public key cryptography to securely create keys for

the ESP protocol. The ESP protocol carries the real payload from the end de-

vices and encrypts the packets using symmetric cryptography. The symmetric

encryption is much faster than with a public key, and therefore it facilitates the

demanding ESP process.

IKE has two versions: IKEv1 [57] and IKEv2 [77]. IKEv2 has many advan-

tages over IKEv1. For example, it uses fewer messages, it simpli�es negotiation,

it decreases latency and it �xes weaknesses to name but a few [77]. So, only

IKEv2 is considered in this thesis.

The message sequence in Figure 2.7 describes how IPsec builds a tunnel. It

de�nes which processes handle which part of the tunneling when there have not

been any prior packets between the IPsec endpoints [11]. Signaling in Figure 2.7

illustrates the IPsec setup presented in Figure 2.6.

In this example, the PC in O�ce 1 needs to communicate with a Server in

41

Packet to Server
(Plaintext)

PC

IKE SA INIT Request

Deliver CHILD SA info

IKEv2

Encrypted packet to Office 2

Response to PC
(Plaintext)

ESP

Response to PC
(Plaintext)

Server

Packet to Server
(Plaintext)

Encrypted packet to Office 1

ESP

IKE SA INIT Response

IKEv2

IKE AUTH Request

IKE AUTH Response

Create CHILD SA Request

Create CHILD SA Response

Deliver CHILD SA info

Office 1 IPsec endpoint Office 2 IPsec endpoint

Figure 2.7 IPsec tunnel from zero to up with separate processes for IKE and ESP
packets [11].

O�ce 2. This initiates the IPsec tunnel negotiation between the IPsec endpoints

using the IKEv2 module. The IKE in O�ce 1 sends an SA initialization (INIT)

request message to the IPsec endpoint in O�ce 2. After a successful response,

this is followed by authentication (AUTH). Finally a CHILD SA setup take

place. This CHILD SA holds the information that the ESP process needs, so

it is delivered to the ESP process. Every IPsec endpoint actually holds two

separate Security Associations (SAs): one for the IKE and another for the ESP

(or IPsec as it is often called).

Finally, the ESP process encrypts the plaintext packet received from the PC

and delivers it to the IPsec endpoint in O�ce 2, where the packet is decrypted

and delivered to the Server. The Server responds to the PC and sends the

packet to the IPsec endpoint for encryption in the ESP process. This ESP

packet is sent to O�ce 1 IPsec endpoint for decryption and delivery to the PC.

In the example shown in Figure 2.7, all the ESP packets were encrypted. It

is also possible to use only authenticated messages by using an Authentication

Header (AH) and not to use encryption at all with the payload [78]. However,

because ESP provides authenticity as well, AH mode is regarded as a legacy

method since encryption is a must for a VPN.

IPsec has two di�erent communication modes at the network level: the

42

transport, and the tunnel mode [79]. The transport mode is mainly used for

two machines that require data encryption between them, using IPsec. Tunnel

mode, on the other hand, is for much broader use as it connects whole networks

together. Tunnel mode is also a valid method to connect networks that use a

private IP addressing range since the non-routable IP addresses are hidden in

the ESP packets and only the tunnel endpoint IP addresses are visible.

The example in Figure 2.6 uses tunnel mode since there is an external IPsec

endpoint that conducts cryptographic operations for the whole network. In

Transport mode the generated ESP packet retains the original IP addresses

and only the payload of the received IP datagram is encrypted.

Unfortunately, IPsec struggles with the NAT described in section 2.1. Since

the NAT modi�es the IP address header of the network packets, it breaks the

IPsec tunnels traveling through the NAT in several ways, as described in [2].

This is especially problematic in one speci�c use case: a remote access setup.

Connections are often made from a home network, or from public networks as

found in hotels, all of which use NAT. So, a connection is thus established

between e.g. an IPsec router with a public IP address and a laptop having

a private IP address. The IPsec tunnels are usually required to have static

endpoint IPs and in this case the client IP is being translated from a private to

a public one in the NAT. Therefore IPsec is not usable as is for this purpose.

The use of NAT Traversal (NAT-T) can help the situation by allowing IKE

operation through the NAT [82]. The ESP packets in tunnel mode should pass

the NAT (and �rewall) with small modi�cations including disabled address val-

idation as described in [2]. Still more workarounds like the UDP encapsulation

of IPsec ESP packets presented in [67] have been developed to counter the

problems of NAT.

Thus it is very tricky to build IPsec tunnels through NAT and one solution

described in RFC3715 well illustrates the problem width: It recommends to use

6to4 tunneling and to build IPsec on top of that tunnel, which is to say that it

tunnels the tunneling to achieve the desired tunneling.

These aforementioned problems in IPsec are probably one of the reasons

why the open source community started to work with a VPN solution called

OpenVPN. This technology uses a completely di�erent technical approach as

described in subsection 2.3.3.

43

2.3.3 OpenVPN

OpenVPN is commercial open source software for virtual private networking.

The initial release is from 2001 and it is heavily community-supported software

[118]. The OpenVPN software works on several platforms including Linux,

Windows and Android, and it has been included in �rewall/router distributions

such as pfSense [132], IPFire [71] and OpenWRT [123].

OpenVPN operates in layer 4 of OSI and therefore requires some extra work

to carry the TCP and UDP messages compared to IPsec. The principle is still

the same as in IPsec: a received plaintext network packet gets encrypted and

encapsulated in the carrier protocol, in this case UDP or TCP [140].

The use of UDP or TCP is in fact the key to successful operation through

the NAT, which is where IPsec struggles. From the NAT viewpoint, OpenVPN

tra�c is like any UDP- or TCP-related tra�c, such as browser tra�c. This is

the main reason why OpenVPN is so popular for remote access setups. [122]

OpenVPN is a valid technology for site-to-site setups as well [121]. An

especially handy feature is that it can create secure tunnels between routers

and the tunnel interfaces to have IP addresses. The bene�t of IPs is that they

can be used in routing decisions. This is not possible in the IPsec case since

IPsec does not have tunnel IPs.

Figure 2.8 shows the message exchange when a PC connects to an OpenVPN

server and sends messages with a Server in the company's internal network

[140]. The client starts by resetting the tunnel parameters to request a new

session from the OpenVPN server, and this is followed by an acknowledgement

(ACK) message. Next, a Transport Layer Security (TLS) handshake take place

with the required exchange of secrets. Finally the CONTROL message is sent

containing key lengths and any other possible options which the OpenVPN

server needs to inform the client about. Finally, the client sends an ACK

message to con�rm negotiation completion.

After the PC has negotiated the OpenVPN tunnel with the OpenVPN server,

the PC sends an encrypted packet to the Server in the company network. This

packet gets decrypted in the OpenVPN server and is delivered to the Server.

The response from the Server is sent to the OpenVPN server for encryption

and delivery to the PC, as shown in Figure 2.8.

44

Company networkInternet

Plaintext Packet to Server

PC

P_CONTROL_HARD_RESET_CLIENT

Encrypted packet to Server

Plaintext Response to PC

Server

Encrypted response to PC

P_CONTROL_HARD_RESET_SERVER

OpenVPN server

P_ACK

P_CONTROL
TLS handshake, secret exchange

P_ACK

Figure 2.8 OpenVPN tunnel from zero to up [140].

As with IPsec, OpenVPN creates two SAs for a connection and uses TLS for

tunnel setup negotiation and, usually, a block cipher like AES for the real pay-

load delivery. OpenVPN supports several ciphers for tunnel negotiation since it

leverages TLS. It is possible to use various Digital Signature Algorithms (DSAs)

[45] including Digital Signature Standard (DSS) [45], Rivest�Shamir�Adleman

(RSA) [74] and Elliptic Curve Digital Signature Algorithm (ECDSA) [46]. Var-

ious versions of block ciphers like AES-CBC/GCM are also supported. The

newer versions of OpenVPN limit the use of cipher suites to enhance security

[117]. This might cause connection problems in older clients. This mainly con-

cerns platforms which do not receive frequent VPN client software updates,

such as Android.

2.3.4 Speed, security and high availability considerations
for IPsec and OpenVPN

The cipher and its encryption mode strongly a�ect the performance of a VPN.

A number of groups have measured the throughput in open source IPsec so-

lutions. Libreswan is reported to have reached 5.25 Gbps throughput using

AES-GCM-128 and 1.39 Gbps using AES-128-CBC in [87]. In turn, [169] has

measured Strongswan as reaching 9.6 Gbps using AES-GCM in New Instruc-

tion (AES-NI) mode. The Wireguard project has measured the performance of

45

an unspeci�ed IPsec solution as reaching 881 Mbps with the AES-256-GCM-

128 cipher using AES-NI [176]. The choice of hardware has a signi�cant e�ect

and thus explains the wide range of di�erent results. In order to determine the

maximum throughput, it is even more important to see whether they were all

using GCM mode rather than CBC or some other mode. This clearly indicates

that the use of GCM mode is preferred to gain higher throughput for VPN

solutions.

OpenVPN is not regarded as the fastest VPN tunneling solution based on

benchmarks like [176] and [16]. The Wireguard project [176] has benchmarked

OpenVPN reaching 258 Mbps with their setup using some 256-bit AES cipher.

OpenVPN was also benchmarked by the BSD Router Project (BSDRP) [16].

They achieved 550 Mbps throughput using AES-GCM-128 mode in their test

setup.

OpenVPN has a number of known vulnerabilities as reported in, for instance,

[120] and [116]. Some of these vulnerabilities are not speci�c to OpenVPN but

a�ect a wide range of services through a common library like OpenSSL instead.

OpenVPN often utilizes OpenSSL as well, but alternative TLS libraries can be

used. Furthermore, OpenVPN is vulnerable to DoS attacks, as is almost any

public service.

The IPsec suite has been heavily criticized by Ferguson and Schneier [44] be-

cause of its very complex structure, which can even decrease the overall security.

There have been actual attacks against IPsec, as in Felsch et al. [43], for exam-

ple, who found that it is possible to break into the IKE protocol and achieve

authentication bypasses. In addition to these protocol weaknesses, software

projects providing IPsec suites often su�er from a number of vulnerabilities.

For instance, Strongswan has been reported as having remote denial of service

up to version 5.6.0 [102].

In addition to targeted attacks, devices running VPNs are also susceptible

to possible hardware or software failures, which can cause the service to be

temporarily unreachable. To mitigate these problems, a High Availability (HA)

[66] feature has been added to the picture. Its purpose is to run another instance

of the service on another device. Although HA does not guarantee 100% uptime,

it does guarantee 99.999% , which means that only minimal service breaks of

a few seconds need occur in an error situation [53]. HA can also be extended

46

to include load balancing [66]. The main di�erence here is that HA provides

a service to stay up even if some part of the infrastructure running the service

crashes. The load balancing ensures that the workload will be shared among

the available resources.

HA and load balancing are quite cumbersome in IPsec cases, as stated in

[100]. Document scopes the problem of an IPsec cluster o�ering both fea-

tures. First of all, the SAs of an IPsec should be synchronized between the

cluster nodes to ensure seamless operation. That is still only a minor prob-

lem compared to the di�culty of synchronizing the ESP packet SA counters.

These counters are incrementally numbered, making the packets unique and

thus adding an anti-replay feature to the protocol. However, their exact syn-

chronization requires a lot of overhead from the servers, even if it is possible at

all [100].

Instead of counter synchronization after every ESP packet, Nir [100] suggests

synchronizing the outbound SA counters after every 10,000 packets or so, and

learning the counter value from the packets going to the incoming SA counter.

So, the anti-replay feature makes load balancing cumbersome, or even impos-

sible. The other cluster members cannot process the packets �uently without

updated SA counter values. It is possible to disable the anti-replay feature as

permitted in [80] but this is very risky due to the security vulnerabilities that

this exposes.

While acknowledging that IPsec �ts poorly into an HA setup, the Strongswan

project has nevertheless looked at HA deployment in [164]. Their solution re-

lies on having one virtual IP throughout the cluster servers to run the IPsec.

A customized high-availability plug-in is used to to share state information

and the SA of IKE with the IPsec SAs throughout the cluster. The outgoing

ESP packets are kept on one node to enable sequential numbering. When this

node goes down, the number is lost and in the re-join phase new IPsec SA (or

CHILD_SA) re-keying takes place. The incoming SA counters on the clus-

ter nodes are updated from the incoming packets every now and then, which

provides adequate counter information and therefore the essential anti-replay

security feature [100].

The OpenVPN community edition presents a load balancing and failover

con�guration in [119]. The principle is to have multiple remote server ad-

47

dresses for the client con�guration, and the client picks one from the list to

connect to. However, this kind of approach is not regarded as true load balanc-

ing since the clients randomly pick a server without knowing its load status.

Such a mechanism creates an uneven distribution of clients to the pool of Open-

VPN servers. Furthermore, the server software is unaware of the other possible

servers in the cluster and thus cannot make client hand overs in order to share

the load equally. Although the failover feature is present, if a server goes down

the OpenVPN tunnel must be re-negotiated with some other server.

2.4 Time to make tasks faster: Hardware
acceleration

Hardware (HW) acceleration is a method to speed up the processing of any task

that would require a lot of computation from a typical Central Processing Unit

(CPU) in a workstation or a server. Such tasks can be o�oaded to a speci�c

processing unit, an accelerator, that has been specially developed for the given

task.

Hardware acceleration can take place in either a Graphics Processing Unit

(GPU), a special section in the CPU, a Field Programmable Gate Array (FPGA)

or in an Application-Speci�c Integrated Circuit (ASIC). Usually though, a GPU

or some instruction set in a CPU are used because they are relatively easy to

set up. Although the FPGA and ASIC solutions are very e�cient, they often

require a lot of work.

In fact, a GPU is a very good example of a HW accelerator, as its main

purpose is to help the PC's CPU generate an image on the screen. Image-

processing tasks are o�oaded from the CPU to the GPU. Additionally, the

GPU may aid the CPU with, for instance, video encoding/decoding tasks [4].

Task acceleration with a General Purpose GPU (GPGPU) [52] means that

the GPU is not just con�ned to video. For instance Nvidia has developed a

�parallel computing platform�, which is a Compute Uni�ed Device Architec-

ture (CUDA), that can run a vast number of computationally heavy processes

concurrently in their GPUs [104]. The CUDA can be used with machine learn-

ing, for example with the TensorFlow neural network [166] or with a network

48

Intrusion Detection System (IDS) [173].

Even though a CPU is generally regarded as a non-accelerated device, it

might have some special logic section that can be regarded as an accelerator.

The AES-NI presented in 2.3.4 is actually a HW accelerated version of the AES

suite, e.g. in Intel CPUs [69]. AES-NI was used in a case study by Intel and

was proved to have signi�cant performance gain as compared to traditional

AES usage [70]. The QuickAssist Technology (QAT) HW accelerator block

is another CPU-integrated HW accelerator. It was developed by Intel and

used, for instance, in their Xeon D-1600 series [149]. The QAT o�ers a set of

accelerators for [97] for cryptographic and data-compression operations. The

use of a CPU-integrated HW accelerator is ingenious since the CPU can o�oad

data to it whenever possible. The data stays inside the CPU, which not only

decreases the time spent on data transfer but also reduces the risk of data leaks

compared to an external HW accelerator.

FPGA is an integrated circuits device that holds a number of con�gurable

blocks and input/output (I/O) ports [159]. With these blocks and ports, it

is possible to con�gure the FPGA to work on a particular task, such as a

calculation. An FPGA runs on a relatively low clock frequency compared to a

PC, but its e�ciency stems from the highly parallel hardware operation of the

task [159].

The ASIC is another integrated circuit, although unlike an FPGA, it is

not recon�gurable. ASIC chips are built to perform their own function, and

nothing else. However, their performance is much better than an FPGA's and

they consume much less power [157]. Probably the best-known standalone

ASIC accelerators are the ones that have been created for Bitcoin mining [175].

A System on a Chip (SoC) is an ASIC design that holds a number of

smaller elements including processors, memory, and also sometimes accelera-

tors. Mathew et al. [89] has presented an AES HW accelerator called nanoAES

that is especially targeted for mobile SoC platforms with only 13 mW total

power consumption. The nanoAES is capable of AES-128 encryption of 432

Mbps. This kind of low-power solution is especially important in relation to

the Internet of Things (IoT), as IoT devices can vary greatly, from large, high-

performance devices to hand-held, ultra-low-power constrained devices.

In summary, there are several choices as to where to run accelerators. The

49

FPGA solution outdoes the GPU solution due to its combination of recon�g-

urability and performance [20]. A GPU su�ers from its static architecture, such

as the CPU, whereas an FPGA can freely be edited. On the other hand, build-

ing an accelerator for a GPU is a much simpler task than it is for an FPGA. An

FPGA solution requires a lot of extra work from the developer team [20]. The

drawback with ASICs is that they are extremely expensive unless the produc-

tion numbers are huge. For these reasons, the FPGA suits most purposes and

is an almost universal accelerator in that it can be freely con�gured to perform

almost any desired task. For instance, Salman, Rogawski and Kaps [147] have

used FPGAs for IPsec cryptographic operations and Sjovall et al. [158] for 4K

video encoding.

FPGA accelerators usually use either a Universal Serial Bus (USB), a PCI

express (PCIe) or the Ethernet network to transfer data from, e.g. a PC to

an FPGA. Neil and Liu [99] presented a neural network FPGA accelerator

and implemented it in a USB-attached FPGA development board. In contrast,

Sjovall et al. [158] used a PCIe interface in their video accelerator to insert

the FPGA accelerator into a rack-installable server. A much more ambitious

approach aimed at providing FPGA acceleration for a whole network in one

go was considered by Caul�eld et al. [19]. They installed FPGA accelerator

boards between the servers and switches in a Cloud platform. This provided

direct, dedicated, accelerators for every single bare-metal server in the cloud.

It seems that in the long run it is better to run accelerators directly in

the network. The SDN then becomes an e�cient method for redirecting the

network packets, as stated earlier in subsection 2.2.3. As an FPGA is a freely

con�gurable platform, Naous et al. [98] has implemented an OpenFlow switch

on one. Their solution is capable of line-rate switching and the writers found

their solution to be very feasible due to its relatively low area consumption of

34% in a netFPGA platform [98].

50

3 ANSWERS TO QUESTIONS:
PUBLICATIONS GET TIED UP

This chapter will establish the links between the publications for this thesis.

Publication I and Publication II discuss the SME business and thus answer the

�rst research question, the approach to which is explained in section 3.1.

The second research question is more about enterprise VPN solutions, which

are discussed in section 3.2 and are based on Publication III and Publication V.

3.1 Resilient VPN connections with an IP zero
configuration

Using VPN to provide secure networking between company o�ces is now fairly

standard practice. Although Publication I might not appear to be directly re-

lated to VPN networking, the network structure for the experiments was part

of a much larger setup. Publication I presented the results of the detection of

network attacks on the home portion of this large network structure. Detection

was based on measuring the power consumption of the Wi� router. Two dif-

ferent kinds of attacks were performed against the network. The �rst of these

was a Wi� de-authentication attack against a Wi� based mesh network. The

second was a route injection attack against a Babel routing protocol that was

running on the routers. The results clearly showed that these attacks caused

medium to heavy loads on the wireless router and can be recognized using an

external sensor measuring the power consumption level of the wireless router.

Even though the scope of Publication I was limited to these power con-

sumption measurements, a comprehensive testbed network had to be set up to

obtain the results. After expanding the testbed to its full scale, it was then used

51

The microInternet

Lab-R2

Lab-R3

Lab-R1 Lab-GW

PC A

Lab site

Wifi mesh

ISP-1
with IPv6

DHCPv6
server

Figure 3.1 Testbed to examine the IPv6 prefix delegation for a small company with
four wireless routers and a PC.

for experiments aimed at gaining a precise understanding of secure networking

using OpenVPN between di�erent sites, zeroconf for the route updates and for

IPv6 deployment, and IPv6 pre�x delegation.

This testbed was created in Tampere University's Cyberlab premises and

was connected to a network segment dubbed microInternet in the Cyberlab.

The microInternet is a private network entity containing several Autonomous

Systems (ASs) and several networks, just like the global Internet. Thus, the

microInternet has been specially developed for experiments dealing with setups

that are geographically distributed, and sometimes even built through a hostile

network.

The �rst version of the testbed is shown in Figure 3.1. The lab site includes

four wireless routers and a PC. The ISP network has a DHCPv6 server with a

router (ISP-1) that acts as an upstream router for the lab site into the microIn-

ternet. The ISP-1 router was a relatively old Cisco 7600 (End-of-Life in 2016)

but was still was capable of IPv6 pre�x delegation. The ISP-1 router requested

IPv6 addressing from the DHCPv6 server running on a Linux with an Internet

Systems Consortium (ISC) DHCP server. This version of the testbed is exactly

the one that was used for the experiments in Publication I.

As explained in Publication I, the ISP-1 router delivers a /56 IPv6 pre�x

from the DHCPv6 server to the Lab-GW. All the wireless routers used were

the TP-Link AC1200 model with an OpenWRT �Designated Driver� router OS

52

distribution using Linux kernel 4.1.16.

Publication I required a Wi�, ad-hoc, mesh-based, IPv6-enabled routing

network that could be targeted using Wi�-based attacks. The project Homenet

which combined HNCP and Babel was chosen as the network. This package

provided a zeroconf approach for the wireless ad-hoc network and IPv4/IPv6

address distribution.

The testbed network operation relies heavily on the Homenet package. On

the WAN side, with the Homenet the upstream ISP connection is automatically

identi�ed as being on the Lab-GW router. DHCPv6-PD request messages are

exchanged with the ISP-1 to obtain the IPv6 pre�x. The Homenet distributes

the received pre�x throughout the testbed networks so that they all have an /64

IPv6 network. The Wi� routers joining the mesh network triggers the HNCP

protocol to act on the wireless interface of the router and exchange information

regarding addressing space for the newly-joined device. It is important to note

that with the Homenet package, none of the wireless routers in this setup had

static IP addresses assigned. Instead, all the addressing was negotiated by the

HNCP. The Babel routing protocol handled the proper routing information for

the network.

The combination of HNCP and Babel was extremely e�cient, only requiring

that the corresponding software packages be installed on the OpenWRT routers

and the interfaces be con�gured for the hnet protocol. Thus, the network

combination used in Publication I is a perfect solution for a single o�ce's need

for a wireless multi-router network that supports IPv4 and IPv6.

The next task was to extend this network over multiple sites. This exceeds

the scope of Publication I, so to better elaborate the possibilities, the testbed

was expanded as depicted in Figure 3.2. The Home site is completely identical

to the Lab site in terms of structure and the devices and software that were used.

The Lab-GW no longer receives IPv6 addressing or pre�xes from the upstream

router. Instead the Lab-GW and Home-GW only have IPv4 addressing in their

microInternet WAN links through ISP-2 and ISP-3. IPv6 ISP is transferred

to the host Master-GW router which becomes a new root router for the whole

site and is located in a Server room. The Master-GW does not have any other

devices in its LAN network. Thus the Server room site represents the case where

a single router device is operating in a Cloud with public IPv6 addressing and

53

The microInternet

Lab-GW

Lab-R3

Lab-R1 Lab-R2

PC A

Lab site

Wifi mesh

ISP-2

DHCPv6
server

Home-GW

Home-R3

Home-R2Home-R1

PC B

Home site

Wifi mesh

ISP-3

ISP-1
with IPv6

Master-GW

Public IPv4
Public /58 IPv6 network

Server room
site

OpenVPN
tunnel

OpenVPN
tunnel

OpenVPN
tunnel

Figure 3.2 Two geographically separated Wifi mesh networks and a central gateway
that redistributes IPv6 addressing through OpenVPN tunnels to Lab and
Home sites.

IPv6 pre�x available.

The Lab and Home sites are connected to the Server room site and each

other using OpenVPN tunnels. The OpenVPN was con�gured to use virtual

routing (tun) interfaces on which the Homenet stack was enabled. The /56

IPv6 pre�x received by the Master-GW is shared among the networks in all the

sites through the OpenVPN tunnels. Experiments conducted in this network

revealed that the Homenet worked �awlessly through the tunneling and to

provide public IPv6 addressing from the Master-GW to both the Lab and Home

sites. The Babel routing protocol was able to manage this complex routing

scenario between the di�erent sites.

Naturally, in this scenario the IPv6 packets cannot be directly released from,

e.g. Lab-GW to the microInternet. The packets need to be delivered through an

OpenVPN tunnel to the Master-GW, which is responsible for the IPv6 network

for the all sites. The relatively small overhead and increase in latency for the

IPv6 packets can be recognized since the packets from the Lab and Home sites

must always be routed through the Master-GW.

The complete network described in Publication I is especially targeted at

54

constrained devices such as smart consumer devices, sensors or practically any

IoT device that needs global IP addressing. These devices often tend to be new

enough to have IPv6 support in their software. The network presented in Fig-

ure 3.2 is e�cient for this purpose but also proved to work during experiments

for regular small o�ce / home o�ce tra�c. No performance measurements

were conducted since the target was not to �nd a high performance and low

latency solution, but instead to develop a highly practical setup that requires

minimal e�ort from an administrative point of view.

Because the �rst network did not always answer the need for a tunneling

solution over the WAN, Publication II proposes a completely di�erent tunneling

option that utilizes a layer 2 overlay. The publication speci�es three di�erent

use cases that might require this kind of L2 connectivity: a LAN-connected

water pump, a traveling salesman and an ambulance. There are many other

cases in which the L2 WAN overlay may be useful, such as for Industrial Control

System (ICS) networks where it is mandatory for some devices to be located

in the same LAN. A uniform LAN for these kind of ICS devices, i.e. those that

are geographically distributed, can be built using the L2 overlay solution. As

the current trend is to push services into a Cloud, many existing critical ICS

devices might suddenly need a seamless connection to the Cloud as well. In such

cases, changes to the network are inevitable. However, changing the structure

of an ICS network might be very cumbersome, costly and even dangerous for

the process the ICS devices are responsible for. The VPN setup presented in

Publication I is not viable for these use cases since it is based on routing, but

the overlay VPN setup presented in Publication II is �t for such a purpose.

Publication II de�nes a layer 2 WAN overlay solution that is resilient and

can cope with several of the problems that may occur in any best-e�ort ISP

connections, such as link loss, NAT and ISP outage. In essence, the entire solu-

tion consists of the overlay solution itself, securing it, and creating a redundant

loop-free datapath.

Once it was clear that an L2 overlay networking solution was required, the

following technologies, as explained in Publication II, were considered.

• Transparent Interconnection of Lots of Links (Trill)

• Virtual eXtensible LAN (VXLAN)

• Generic Network Virtualization Encapsulation (Geneve)

55

• Overlay Transport Virtualization (OTV)

• Network Virtualization using Generic Routing Encapsulation (NVGRE)

In the end, the VXLAN was selected due to its maturity and good support

in virtual Open vSwitch. VXLAN works by encapsulating an L2 frame in an

L4 UDP frame. It is perfectly feasible to carry such a frame over a WAN link

and easy to use with secure tunneling mechanism.

In Publication II, OpenVPN, IPsec and Datagram Transport Layer Security

(DTLS) were brie�y discussed as candidates for the secure tunneling mecha-

nism. The DTLS and IPsec are more lightweight solutions than OpenVPN,

but they su�er from the NAT incompatibility problem. As the connections

are designed to work through any best-e�ort ISP, it soon became clear that

OpenVPN was the only feasible choice, and thus it was selected.

In a complex network with an arbitrary topology SDN is a key technology

for enabling comprehensive packet forwarding control. The topology in our

overlay network is expected to have multiple loops caused by the redundant

paths between sites. Therefore, our proposal utilizes OVS for the datapath

because it has good support in both SDN and many other platforms. The

packet forwarding in all OVS switches is controlled by an SDN controller, in

this case, Floodlight. The SDN controller has perfect visibility over the whole

network and thus can e�ectively forward network packets between di�erent

sites.

Figure 3.3 shows the proposed datapath in Publication II between three dif-

ferent locations. Two of those are Cloud platforms, Hypervisor-1 and Hypervi-

sor-2, running VMs. The LAN (192.168.xx.x/24) network depicts the company

network that has two gateways (GW-1, GW-2) to the Internet both using two

separate ISPs: ISP1 and ISP2. The Wireless WAN (WWAN) connections be-

tween the GWs and the ISPs are established using 4G cellular modems. The

gateways are the same TP-Link devices with OpenWRT that were used for the

experiments in Publication I.

Both gateways establish one OpenVPN tunnel to each Cloud using di�er-

ent ISPs. The tunnels bind to the correct WWAN interface using a more

speci�c route and are terminated to tun interfaces which have routable IP ad-

dresses. The VXLAN connections are in turn built between the OVS bridges

(br0,CustBr0) with the tun interface endpoint IPs, as can be seen in Figure 3.3.

56

Internet

Hypervisor-1

CustBr0

vxlan0..n

eth0

tun1

VM

tun0

Hypervisor-2

CustBr0

vxlan0..n

eth0

tun0

VM

ISP1 ISP2

GW-1

br0
eth1

vxlan0 vxlan1

WWAN2WWAN1

tun1tun0 GW-2

br0
eth1

vxlan0 vxlan1

WWAN2WWAN1

tun1tun0

Lan, 192.168.xx.x/24

4G
4G

4G
4G

OpenVPN

VxLAN

Network

Figure 3.3 SDN controlled overlay network over multiple WAN links.

Office site

Hypervisor-2 Hypervisor-1

CustBr0

VM

OpenVPN

OpenVPN

 CustBr0

VM

OpenVPN

Office LAN

br0 in GW-1

OpenVPN

br0 in GW-2

Figure 3.4 Logical network structure from the SDN controller viewpoint.

The GW-1 and GW-2 have their eth1 interfaces connected to the physical LAN

switches in the o�ce. The �nal logical network structure which the SDN con-

trol recognizes is shown in Figure 3.4. The full-mesh topology is achieved with

several OpenVPN connections and an O�ce LAN connection between the br0

switches in GW-1 and GW-2.

The upstream connection on gateways using WWAN interfaces does not

provide any load balancing. The OpenWRT has e.g. mwan3 package [124]

available, which provides a relatively rich feature set to balance the outgoing

57

packets over several WAN interfaces simultaneously. However, our proposal did

not use that but instead relied solely on the route metric value. The WWAN2

interface has a higher metric for the default route and thus it is not used actively.

When WWAN1 connectivity drops, the route with the higher metric is taken

into use.

The resiliency of this network was veri�ed by conducting a set of ISP connec-

tion breaks and glitches for the VPN tunnel. The L2 overlay network could not

recover by itself as desired in the �rst case. The OVS seemed to lack the link

status information for the VXLAN interfaces, as is described in Publication II.

The problem was especially noticeable because of missing PORT_DOWN mes-

sages in the OVS. The Port Down Reconciliation (PDR) module in Floodlight

should be aware of any network changes but it malfunctioned with the VXLAN

interfaces in the OVS.

The solution was to build a customized watchdog script as described in

Publication II. This script watches the tunnel endpoint IPs every two seconds

using ICMP Echo messages [135]. Once a faulty connection between OVS

switches is recognized, its VXLAN interface gets removed from the OVS and

the related �ows are �ushed away. After the tunnel has been re-negotiated,

the corresponding VXLAN interfaces are added to the OVS once again. The

Floodlight controller responds rapidly to the interface removal as expected.

With the given script, re-convergence time for the network turned out to be

between 4-6 seconds. The time is not as good as it could be, still we have to

remember that this kind of re-convergence is required only when a large scale

error, such as router or ISP breakdown, occurs. Therefore the error occurrence

probability is relatively low making the 4-6 seconds tolerable re-convergence

time.

During the experiments it was noticed that somehow the network packets

with a near-MTU value did not pass through the tunnel. The reason was that

OpenVPN was incapable of dealing with the 36 B overhead caused by the extra

IP+UDP+VXLAN headers. This was solved by setting the OpenVPN tunnel

MTU to 2000 B. The OpenVPN copes well with the fragmentation of network

packets exceeding the underlying network MTU of 1500 B.

The control plane has several problems in the presented setup. First of all,

stunnel [165] had to be used to achieve secure connectivity between the OVS

58

switches and the SDN controller. Incoming connections from the switch to

the controller are caught by the stunnel server and redirected unencrypted to

the SDN controller. The SDN controller, Floodlight, includes TLS support as

stated in [112], but at the time of writing Publication II, the documentation

lacked a clear approach to mutual TLS con�guration, which was the reason for

using stunnel.

The second problem lies with the connection between the OVS and the

controller itself through the stunnel since the connection is established between

the OVS and the Floodlight controller using best-e�ort ISP without any active

redundancy. In the IP level, all the OVS switches use TLS to connect to a

public IP address of a VM running a Floodlight daemon that is hosted in a

Cloud (e.g. Hypervisor-1). Link-loss occurring on an active WAN link causes

the OVS switch to lose connectivity with the controller. The connection is cut

after the TCP timeout and another is established through the active secondary

ISP. A faster control-plane link renegotiation process can be implemented to the

developed watchdog script to speed up the process. Furthermore, the lost WAN

link will be reconnected at some point and then the egress packets will again

choose the WAN link that has the smaller route metric value. If the stunnel

packets are then changed to use the newly repaired WAN link, the OVS loses

connectivity to the Floodlight again since the source IP changes. Therefore,

the developed watchdog script should include a comprehensive and exact route

table update mechanism for stunnel in order to use the existing path to the

Floodlight controller. Added static routing ensures that the stunnel will use a

functional ISP connection and thus prevents unnecessary link changes for the

existing connection.

The third, and �nal, problem in the control plane is the single instance of

the SDN controller. This produces a single-point-of-failure that could have dev-

astating results for the whole network being out-of-order when the controller

is lost. Therefore, having a redundant controller pair in a Cloud would greatly

enhance the reliability of the network. As stated in Publication II, the Flood-

light controller did not have high availability support at the time of writing. As

the controller side was not the main goal of the work for that publication, the

SDN controller was not changed, although this missing feature in Floodlight

is reported. Notable is that in some other SDN controllers, like Faucet, high

59

availability support is available [41].

The complete protocol structure for this network is quite complex. The

routed OpenVPN solution presented earlier with Publication I is much more

lightweight since only OpenVPN is used. As explained in Publication II, us-

ing IPsec or DTLS instead of OpenVPN would reduce the protocol overhead.

In fact, using technology like MACsec to carry the VXLAN, as was brie�y

discussed in Publication II, would reduce the overhead even more.

In summary: Publication I presented a routed VPN setup with zeroconf

routing and IP deployment, while Publication II focused on VPN resiliency be-

tween multiple sites. The approaches ranged from a routed scenario to layer 2

overlay technology. Both have their use cases, which can vary from an IoT net-

work to an ICS network, and even to a regular SME company network. The L2

overlay in Publication II bene�ts from the addressing approach of Publication I

. The zeroconf, which enables automatic IPv6 networking, would facilitate a

combination of these two approaches. Whereas the L2 overlay using VXLAN,

SDN and OpenVPN provides the same LAN over multiple sites for devices that

are sensitive to the network structure, the Homenet package provides zeroconf

addressing and routing for the rest of the network, including the L2 overlay

network.

3.2 Tunneling enhancements for large enterprise
VPNs

Publication I and Publication II were largely targeted at examining network so-

lutions for small and medium-sized companies, (SMEs). Large companies tend

to go for more mature and reliable solutions for their VPN connections, such as

IPsec rather than OpenVPN. As the elastic SDN �ow creation in Publication II

turned out to be very e�cient, even though it only utilized a fraction of the

SDN capabilities, What might be achieved if SDN were to be used with IPsec?

So, the next step was to examine IPsec and SDN together to better under-

stand the possibilities of such a combination. It soon became clear that the IKE

and ESP process separation looked like a promising enhancement for IPsec, as

was explained in Publication III. The IPsec process could be made faster using

60

separated IKE and ESP processes on di�erent servers in the network while the

SDN �ows could manage the connections to the correct devices. This immedi-

ately raised the questions, �Does it �t with SDN?�, �Does it scale?�, �Is there

high availability or load balancing for ESP?�, and �How fast can we process

ESP packets?�.

In fact, IPsec conforms nicely to the SDN paradigm, as stated in Publica-

tion III. There is a clear separation between the signaling and forwarding, and

being more a service in the network layer than, for example TLS, which is more

application speci�c, this boosted the research. There did not appear to be any

other research into this idea, nor were there any commercial implementations

using the same design with IPsec and SDN.

In traditional networking, IPsec devices require routing and topology changes.

SDN networking changes the picture completely because it allows the IPsec de-

vice to be implemented freely on the network and uses SDN to include the

device in the packet path as shown in Figure 3.5. The �gure only includes the

devices needed to illustrate the required network structure. Thus only the SDN

controller, an SDN switch, an IPsec endpoint and a PC are used for a local net-

work. The Branch o�ce network only contains a Firewall with an inbuilt IPsec

endpoint.

In Figure 3.5, the IPsec tunnel is established through the Internet between

the IPsec endpoint and the Firewall. The SDN controller manages the �ow

generation in the SDN switch. A PC in the network operates as the end device

to communicate through the IPsec tunnel. When the PC sends packets to the

Branch o�ce, the SDN controller creates �ows to the SDN switch which for-

wards these packets to the IPsec endpoint for encryption. These encrypted ESP

packets are then sent through the Internet as far as the Firewall (IPsec end-

point) in the Branch o�ce. The ESP packets from the Branch o�ce are again

forwarded to the IPsec endpoint and after decryption to their �nal destination,

the PC.

The network with separated IPsec functions used for Publication III is de-

picted in Figure 3.6. The IPsec appliance has been replaced by a standalone

device holding the IKE function with an IPsec orchestrator module, and several

ESP function devices that handle the ESP packet encryption and decryption.

The IKE negotiation in this network takes place between the IKE function

61

Internet

SDN Switch
PC

IPsec
Endpoint

Branch office

SDN
Controller

Firewall,
IPsec endpoint

ESP Traffic

Unencrypted
traffic

IKE
negotiation

Figure 3.5 Traditional placement for IPsec appliance in SDN network.

Internet

SDN Switch
PCs

ESP function

Branch office

SDN Controller

Firewall,
IPsec appliance

ESP function

IKE function and
IPsec orchestrator

ESP Traffic

Unencrypted
traffic

IKE
negotiation

Figure 3.6 IPsec with distributed IKE module and two ESP functions for ESP packet
processing in an SDN network.

server and the Branch o�ce Firewall.

The IPsec orchestrator plays a major role in this setup. First, the orches-

trator orders SDN �ow creation for the UDP port 500 tra�c to reach the IKE

function. Second, the orchestrator needs to deliver the negotiated IKE CHILD

SA values to the ESP device(s). Third, all the ESP tra�c has to be forwarded

to ESP devices. Fourth, the orchestrator must handle a re-keying process when

required. The CHILD SA value is considered extremely sensitive information

and for this reason the orchestrator is placed on the same server as the one

on which the IKE daemon is running. To be more precise, the orchestrator

only needs to know the lifetime of an IPsec CHILD SA. Therefore all the other

62

information, except the lifetime, can be delivered from the IKE daemon up to

the ESP devices in encrypted form. Whether the SA information is encrypted

or not, the packet transmission between the ESP devices and the orchestrator

should take place on a closed network using TLS authentication and encryption

to prevent any possible information leaks.

The network is ready for real packet transmission after the IKE negotiation,

the delivery of the CHILD SA value and the SDN �ow generation is complete.

When the PC sends a network packet heading for the Branch o�ce network,

the SDN controller creates �ows to the network based on the IPsec orchestrator

instructions to include one of the ESP devices in the packet path. The encrypted

packet is forwarded to the Internet towards the Branch o�ce. Returning packets

from the branch o�ce are redirected to the ESP devices for decryption and then

back to its �nal destination.

Given the IPsec SDN network structure presented in Publication III, the

implementation is next discussed based on the original combination of devices

and software listed below that was planned to be used for the experiments in

Publication III.

• HP 5900 series SDN switch

• Floodlight SDN controller [48]

• Strongswan for IKE daemon [163]

• DPDK IPsec-secgw as ESP process [32]

• DPDK process virtualized in NFV style

• Open vSwitch for NFV instances [110]

The HP 5900 switch was used as an SDN switch for the experiments because

of its OpenFlow support. Floodlight turned out to be an extremely unviable

controller for the HP 5900 and HP 3800 switches with which the CyberLab was

equipped. Floodlight was unable to write even simple �ows to the switch �ow

table. The reason for this was that Floodlight was trying to use wrong �ow

table ID. As the main objective in Publication III only required the basic SDN

function of redirecting network packets with �ows, the HP VAN SDN controller

that supported HP switches was selected, instead of Floodlight.

63

The Strongswan IPsec daemon was used for the IKE negotiations. The

security parameters for the CHILD SA can easily be extracted from the IKE

and delivered for the orchestrators as described in Publication III.

ESP functionality was designed to work on the Intel Data Path Development

Kit (DPDK) IPsec-secgw [32] application in a virtualization platform. This way,

more ESP processes could be launched on-demand in an NFV style. However,

a search of the DPDK documentation revealed that it would not work. The

DPDK relies on o�oading the IP header checksum generation from the software

application to the network interface card (NIC). DPDK does not support this

feature for any virtual NIC as speci�ed in [32]. For this reason the IPsec-secgw

was moved to operate on a physical Intel Atom C2000-based platform.

Two of these Atom platforms using IPsec-secgw were attached to the net-

work. The results listed in Publication III are clear: adding more ESP devices

to the network really does speed up the total packet processing. Network tra�c

that needs to be encrypted can be redirected as wished to the ESP device with

smallest load. If an ESP device crashes, it can be just dropped from the pool of

available devices until it has recovered. The experiments also showed the gen-

erally acknowledged fact that the AES-GCM mode outperforms the AES-CBC

mode. In the experiments, the AES-GCM used the Intel IPsec crypto software

library that optimizes the CPU AES routines [54]. The raw 64-byte packet

transfer rate for this setup with single ESP function and one PC is 600 Mbps,

rising to 1300 using two ESP functions and two PCs. Even though the perfor-

mance numbers were relatively good for such poor hardware, that comes at a

cost: we encountered several obstacles which made the parallel ESP processing

device architecture unsuitable for use in a real network.

The load balancing turned out to be too complicated and cumbersome for

a single IPsec tunnel. As explained in Publication III, the proposed structure

provides HA, but not full load balancing. The load balancing is path-based,

i.e. it relies on IP addresses. Therefore, network packets from one PC cannot

be shared between multiple ESP processes in, for example, a round-robin style.

Another solution such as combining multiple ESP devices using link aggregation

was required.

Path-based load balancing also poses problems for the incoming connections.

A single tunnel is always redirected to the same ESP device since the tunnel

64

endpoints are constant. Equal-Cost Multi-Path (ECMP) with SDN can change

this since it uses the least congested available port. Multiple IPsec tunnels, each

with their own source and destination IP addressing can of course be shared

among multiple ESP devices. Free IPsec tunnel distribution from IP addresses

could be done using the Security Parameter Index (SPI) value, but at the time

of writing, the Open�ow still does not have this feature. Heydari Fami Tafreshi

et al. [60] also pointed out the importance of this feature for Open�ow SDN.

The load balancing also caused problems for the replay-attack protection.

Every ESP device has its own sequence number counter for network packets.

Thus, the receiving end of a tunnel will receive duplicated sequence numbers

when parallel ESP devices are used. The packets with duplicated numbers will

be regarded as replayed, and therefore are discarded. The sequence numbering

could be �xed by synchronizing the packet counters on all the ESP devices that

work in parallel. However, as is also stated in Publication III, this is not a feasi-

ble solution because the ESP operation is often very dense and synchronization

would signi�cantly slow the process down. The replay-attack protection can

still be disabled, but this is de�nitely not recommended [80].

So, if this kind of networking architecture with separated IKE and ESP

functions is to be used, some other workaround is needed to balance the load

of the incoming packets.

To be more precise, the problem is not just the load balancing. What is

needed is a platform which can meet the rigorous performance requirements

for the IPsec ESP. Furthermore, high availability is more important than load

balancing. Without active load balancing, the platform could still provide the

necessary replay-attack protection.

The �nal conclusion to be drawn from the work in Publication III is that

the network structure and separated IPsec IKE and ESP processes were unique

and novel at the time of writing Publication III. The architecture used does

have a number of bene�ts: the management of the IPsec tunnels is in a single

point, the pool of ESP devices o�ers passive redundancy, and SDN removes the

need for network layer modi�cations when an IPsec device is attached to the

network.

Regarding the original question presented at the beginning of section 3.2 as

to whether IPsec and SDN can work together, there are a number of positive

65

 Internet

Network
Director
server

FPGA

Data plane

Control plane

End
devices

SDN Switch

Switch

Router /
Firewall

Figure 3.7 Complete network architecture for FPGA accelerated IPsec with FPGA
for ESP processing and Network Director server for IKE.

points. IPsec �ts nicely into the SDN paradigm and it can be scaled by adding

more ESP devices. There is some degree of high availability, but this is achieved

without load balancing. However, the performance numbers with the test setup

were not su�cient. As a point of comparison, the Libreswan IPsec project

measured 5.25 Gbps ESP packet throughput on AES-GCM [87]. Still, a more

important objective in Publication III was to carefully examine and verify the

SDN network structure and any possible HA and load balancing features rather

than to develop a high-speed implementation.

In the �related work� section of Publication III, the performance numbers,

especially those with a dedicated IPsec accelerator device, were signi�cantly

higher than they were for the presented design. In fact, there has been a con-

siderable amount of research into using IPsec on an FPGA. Still, as the �related

work� section in Publication V indicates, the approaches in these studies vary,

but they often do not consider production readiness and complete system mod-

els. Therefore, Publication V is particularly aimed at �nding the answers to

such points. The target, which was successfully achieved, was to replace the

software solution presented in Publication III with an FPGA ESP accelerator

device to host 1000 concurrent tunnels providing 10 Gbps throughput with only

10 µs latency.

So, Publication V utilizes the network structure presented in Publication III.

and investigates the feasibility of an FPGA-based, dedicated IPsec processing

device for ESP packets. The solution relies on a separate software-based IKE

solution as in Publication III, thus saving a valuable FPGA area for ESP pro-

cessing. The main di�erence is the use of the FPGA instead of the software

66

IPsec ESP function. The architecture is shown in Figure 3.7. It contains end

devices, such as PCs, whose network connectivity is through SDN switches and

a Router/Firewall to the Internet. The SDN switch is managed by an SDN

controller in the Network Director server which also hosts the IKE service. All

tra�c between the Network Director server, the FPGA and the SDN switch

takes place on a Control plane network that uses traditional switches. Precisely

the same network packet forwarding occurs in Figure 3.7 as it did for the net-

work presented in Publication III and the end device tra�c which requires ESP

processing is forwarded to the FPGA using SDN �ows.

Figure 3.8 presents the FPGA architecture proposed for Publication V. This

has three main parts: a Control plane, a Data plane and IPsec Accelerator logic.

The purpose of the Control plane is to have a dedicated interface for updating

the Security Association Database (SAD) in the IPsec Accelerator. The Control

plane has an Ethernet interface and a User logic control block containing the

TCP/IP stack with TLS support. It is implemented on a soft core processor.

The ESP tra�c takes place in the Data plane. The Data plane has a Fiber

optics module that physically connects it to the network. The Packet client is a

protocol parser which processes the Ethernet headers and pushes the Ethernet

payload to the IPsec Manager in the IPsec Accelerator Logic. The IPsec man-

ager chooses which Encryption or Decryption block to use. Every block has

its own AES-GCM + AES block which encrypts or decrypts the given data.

furthermore, the Encryption and Decryption blocks read and write data to the

IPsec Enc & Dec SADs that store all the information needed for an IPsec tun-

nel. Even though Figure 3.8 only shows two Encryption and Decryption blocks,

there can be more parallel blocks as long as they �t to the FPGA.

Replacing the software ESP device used in Publication III with the FPGA

presented in Publication V might seem straightforward. Nevertheless, build-

ing such an accelerator needs a lot of attention to detail in order to produce

a properly working solution where all the di�erent parts including the FPGA,

SDN controller and the IKE daemon cooperate properly. Therefore, the fea-

sibility for, and details of, an FPGA based IPsec accelerator as presented in

Publication V are explained below.

At the network architecture level, some modi�cations are �rst required to

�t the FPGA into the network. Publication V describes these modi�cations in

67

Data plane

Control plane

Ethernet

Fiber
optics

SDN / User
logic control

Packet client

IPsec Accelerator logic

Encrypt
#1

IPsec
Manager

AES-GCM
+ AES

IPsec
Enc &
Dec

SADs

Decrypt
#1

AES-GCM
+ AES

AES-GCM
+ AES

AES-GCM
+ AES

Encrypt
#2

Decrypt
#2

Figure 3.8 Architecture of the proposed IPsec FPGA implementation.

Sections 4.2 and 4.3 therein. The proposal in Publication V did not contain

an Address Resolution Protocol (ARP) or a MAC address in the FPGA. This

was because the ARP implementation would require more logic and area on

the FPGA and it was desirable to reserve area as much as possible for the ESP

processing. Therefore the FPGA does not modify the original source MAC

address �eld, and the SDN switch learns a load of MAC addresses behind the

FPGA switch, even though they are not there. Our suggestion is to disable the

MAC address learning feature in the SDN switch port to which the FPGA is

connected. This way the network packets can freely be forwarded to the FPGA

using SDN �ows.

On the other hand, without the ARP implementation the FPGA may en-

counter problems since it cannot identify the destination device's MAC address

once ESP packet decryption has taken place, as described in Publication V.

The solution is to have a Lookup table (LUT) on the FPGA to store the MAC

and IP address pairs so that the correct MAC address can be written for the

leaving packets. Having a LUT for /16 network with approximately 65,000 IP

addresses would require 400 kB of memory, which can be done with the FPGA

on-chip memory. The on-chip memory is crucial since it can be read in every

clock cycle, thus signi�cantly reducing the latency for any outgoing packets.

Another way to tackle the destination MAC address problem is to rewrite the

false addresses using proper SDN �ows in the SDN switch.

Both of the above solutions are more e�cient than having an ARP imple-

mentation on the FPGA. The reason is the long and unpredictable ARP request

time, and the consequent need for packet bu�ering while waiting for someone in

68

the network to respond to an ARP request. The platform must operate �uently

even when it has to deal with data with a line-rate speed and the destination

MAC address is missing. We estimate that e.g. an ARP request which takes 2

seconds will need a bu�er of 2 Gb if the line-rate is only 1 Gbps. Therefore,

the bu�ering can not be scaled to an FPGA with limited memory.

Publication II described the fragmentation issues at the network level. Frag-

mentation also occurs in this scenario for network packets of 1445 B or more

due to the ESP overhead. Thus, the FPGA-based ESP device needs to han-

dle proper fragmentation for MTU-sized network packets on encryption. Our

suggestion is that when the local network MTU is set to 1500 B, any pack-

ets requiring fragmentation should be split in two. It would be su�cient to

have a �rst packet containing 1024 B and then another packet with the rest of

the data bytes. On the receiving side, packet reassembly would only require

500 Mb memory for 41k packets with a size of 1500 B. DDR RAM from the

FPGA is to be used because it has a large capacity and its operation is non

time-critical. The ring bu�er method would be useful since it automatically

overwrites any possible missing fragments. Packets with missing fragments can

be discarded, even though no retransmission is provided by the ESP. The upper

level protocols should be able to �x this problem.

The anti-replay feature is a must for IPsec and thus a desirable feature for

an FPGA-based ESP device. An anti-replay algorithm like the one presented

in [180] can be used. Publication V discusses this topic in Section 4.5 and

presents a simple anti-replay mechanism. The FPGA has to store the sequence

numbers for already-seen packets within a sliding window time frame. The

sliding window mechanism reduces the need for memory to store the sequence

numbers. An e�cient window size is as low as 1024, which would only require

10 bits of memory. It should be noted that in [174] for instance, a window size

of only 64 is recommended. However, this is too small for high speed operation

so a larger value should be used, as stated in [25].

The sequence number synchronization problem described in [79] is also ad-

dressed in Publication V. When large packet loss occurs, the sequence number

counter can get out of sync with the tunnel endpoints. Building a mechanism

directly onto an FPGA to detect this kind of desynchronization would require

more area and would be quite complicated. Whenever such a large packet loss

69

occurs, the ESP process is halted anyway. The time consumed in the IKE

re-negotiation process is a fraction of the total service timeout, so the most

cost-e�ective solution would be to request re-negotiation from the IKE.

In normal operation, the IKE daemon needs to establish a CHILD SA and

deliver the keys to the FPGA prior to the start of the packet transfer in the data

plane. In a re-negotiation phase the CHILD SA information must be delivered

to the decryption SAD �rst, before changing the encryption SAD parameters.

This ensures the receiving end will be ready when new keys are applied to the

encryption SAD and taken into use.

Indeed, the CHILD SA negotiation is non time-critical and thus can be done

using software in a server. Another such process is the initialization vector (IV)

generation. Generating random numbers on an FPGA is quite cumbersome due

to the lack of an entropy source. For these reasons, IV generation is extremely

feasible in the Network Director server using, say, OpenSSL.

The SAD in the FPGA stores all the sensitive information for ESP process.

Our calculations in Publication V show that only 69 kB of memory is required

for the encryption SAD and 109 kB for the decryption SAD in order to host

1000 concurrent IPsec tunnels. The decryption SAD is much larger than the

encryption SAD since it stores duplicate information for every SA. This ensures

that in the re-key phase it is possible to store the newly negotiated key to the

SAD while maintaining the functionality of the old key (and the whole SA).

Thus, when the encryption process updates its keys, the receiving end is ready

for action.

The SAD memory is a problem area, especially with the latency. The re-

quired 178 kB can �t in to the on-chip memory, but even though the reading

only takes one clock cycle per line it is still too slow. Even in its simplest form,

with 1000 concurrent entries it could take 1000 clock cycles to read the correct

SA value. Having a 1000-cycle latency in this kind of IPsec accelerator would

be too much. The solution presented in Publication V is to use a Content Ad-

dress Memory (CAM). Although using CAM on an FPGA is quite complicated

and costly, it is still the only feasible solution for SAD. In fact, our proposal

does not cover the CAM implementation as it is a whole research topic in itself,

and thus beyond the scope of this thesis.

Table 3.1 gives a clear illustration of the distribution of the IPsec functions

70

Table 3.1 Function distribution between hardware (HW) and software (SW) and any
requirements they need regarding the architecture.

Function Run in Requirements

IKE SW Prior operation

IV generation SW Prior operation

AES HW -

Fragmentation HW Bu�er size > 500 Mb

SAD HW Response time critical

memory required 178 kB

parallel access needed

Integrity check HW -

Anti-replay HW -

Anti-replay SW Use IKE to re-negotiate

resync

Ethernet stack HW 400 kB of fast response memory

SDN / User HW < 2 MB of instruction

logic control and data memory

between the hardware and the software. Based on Publication V, the ESP

is a feasible and e�cient function to be accelerated on an FPGA. Still, as

Table 3.1 shows, there are a number of details that need to be taken care of.

Some of them, such as the anti-replay feature, would just require a few hours

of implementation but the SAD would need careful planning and a good deal

of background work.

The security of the FPGA-based IPsec ESP device itself is essential. Most

potential attacks against the ESP device would occur on the data plane since

that is accessible from the Internet. Therefore it is vital to ensure the data

plane does not leak any sensitive information. The IPsec Accelerator logic

should do this by default due to its design, since SAD is not directly accessible

from the data plane. The CAM SAD can be considered as safe enough in terms

of data leakage. Attacks against it would require physical access and are thus

unlikely. Still attacks against the whole ESP device, such as denial of service,

might cause some damage.

71

Network Director server

IKE
negotiator

SDN
controller

Network
Director

orchestrator

Data plane
interface

Control plane
interface

Figure 3.9 The network director server modules and their corresponding network
interfaces.

The control plane is extremely susceptible to any adversary since it car-

ries the CHILD SA information between the FPGA and the Network Director

server. Indeed, the control plane security is essential for all the setups pre-

sented in Publication II, Publication III and Publication V. Isolation of the

data and control planes must be veri�ed to prevent possible tra�c injection into

the control plane. In addition, the Network Director server presented in both

Publication III and in Publication V should be secured well. The server must

at least run IKE daemon, an SDN controller and the orchestrator, all of which

have some APIs that accept tra�c. Exposing these APIs on a public interface

could lead to catastrophic results. The server is an attractive target because it

plays such a big role. The old saying, �Divide and conquer� might sound like

a solution for this, i.e. the IKE, the orchestrator and the SDN controller could

be distributed to di�erent servers. However, this would not work.

Figure 3.9 explains this as it shows the three di�erent services in the Network

Director server. The Data plane interface only hosts the IKE negotiator service.

The Network Director orchestrator and the SDN controller services operate on

the Control plane interface. These services need to communicate with each

other a lot, as described in Publication III and Publication V. Dividing these

services between three individual servers would require much more network

tra�c between them, thus exposing more interfaces to the risk of attack. As the

tra�c between the three services contains a lot of sensitive material, including

the IPsec keys, it is highly recommended to keep them in a single server and

have a separate network segment for communication with the ESP devices and

switches.

The FPGA turned out to be extremely e�cient for IPsec processing as a

72

standalone device in the network. As the calculations in the evaluation section

of Publication V show, a single encryption or decryption block on an Intel Arria

10 FPGA reaches 2 Gbps throughput rate on any network packet size. There-

fore the proposed FPGA architecture with parallel encryption or decryption

blocks can reach 10 Gbps throughput rate while keeping the latency below 10

µs. The network packet size signi�cantly a�ects throughput, so if MTU sized

packets are used a single block can achieve a throughput rate of 15.6 Gbps.

The SDN is the key function to run IKE separately on a software, and ESP

on an FPGA. Even though load balancing with a single IPsec tunnel between

multiple FPGAs was not feasible, one device can handle a considerable amount

of tra�c and meet the high speed performance goal.

73

74

4 REFLECTIONS AND LESSONS
LEARNED OF THE CONDUCTED
RESEARCH

The purpose of this section is to evaluate the signi�cance of the research and

see what can be learned from it. We begin with a discussion of the real world

status of the SDN. Then we assess the implications of being able to have a

single network controller and two separate planes in networking. We move

on to consider hardware acceleration in the Cloud context, and the issues of

orchestration.

4.1 Real world SDN stuff

Even though the virtues of SDN are well publicised, its real power lies in its

applications. Therefore, this chapter �nishes with an assessment of some (se-

curity) applications based on the research.

4.1.1 One controller to rule them all

A single controller watching over the whole network and making forwarding

decisions is a signi�cant bene�t to be gained through SDN networking. Cen-

tralized packet handling enables accurate packet forwarding in networks with

loops.

The network setup presented in section 3.1 and shown in Figure 3.4 has

a single SDN controller which manages several geographically isolated SDN

switches and the packet �ows between them. Although not explicitly de�ned

as such, the overlay network presented in Publication II also clearly �ts the

75

SDN Controller

SD-WAN
router

SD-WAN
router

The Internet

MPLS

LTE

Broadband

Fiber

Ethernet

Branch Office Headquarters

Broadband

Fiber

Ethernet

Figure 4.1 SD-WAN network architecture with two sites both using SD-WAN router
that is being managed centrally using an SDN controller [168].

description of an SD-WAN, and turned out to be a very e�cient method of

connecting several sites together, including a Cloud. The presented architecture

creates a single broadcast domain over several locations, in addition to this,

the network can easily be modi�ed with additional paths between the sites

as desired. It is almost impossible to discuss SDN nowadays without coming

across the term software-de�ned WAN, or SD-WAN. So, what exactly is an

SD-WAN?

One of the best presentations of an SD-WAN is given in Thompson and

Hollar [168]. In this work, an SD-WAN is de�ned as a network that provides

high redundancy by securely connecting di�erent company sites through mul-

tiple connections. In its simplest form, the SD-WAN router creates an overlay

networking layer between di�erent sites and balances the load using software-

managed �ows with a central controller.

Figure 4.1 shows such a network scenario with two sites, i.e a Branch o�ce

and a Headquarters. The Branch o�ce has an SD-WAN router with Long-

Term Evolution (LTE) and Fiber and Broadband Internet ISP connections.

The Headquarters is equipped with a similar SD-WAN router and also uses

Fiber and Broadband for Internet connectivity. These two sites have also been

connected together using a Multiprotocol Label Switching (MPLS) network.

The SD-WAN routers in both networks are managed by a central SDN con-

troller. The SDN controller manages the network tra�c using �ows between

the sites in order to select the best available path for the packets. Paths going

through the Internet can be encrypted as explained in [155] using, for example,

IPsec VPN.

One of the greatest bene�ts of SD-WAN networking is that it opens up the

76

possibility of adding network-level applications to all the o�ces simultaneously.

When an application is installed on the SDN controller, it is also enabled on all

the SD-WAN routers. A good example of such an application is policy-based

routing between the sites. All end user applications requiring low-latency op-

eration can be directed to use the path with the lowest latency, not LTE. It

is worth noting that with SD-WAN, and our solution presented in Publica-

tion II, only the tra�c between sites can be a�ected; not the tra�c towards

the Internet.

It has been clearly demonstrated that IPsec tunneling can be used for the

tra�c between sites. The IPsec acceleration described in section 3.2 can speed

up the packet processing and ease the management for such SD-WAN scenarios.

Instead of pushing the SD-WAN router to its limits with a heavy IPsec encryp-

tion load, another device in the network can do the required ESP processing.

It is almost axiomatic in the computing to make the most common case the

fastest. ESP processing is a very common case for an SD-WAN.

Since the ESP devices in an SD-WAN are managed centrally from a single

SDN controller, there is some dispute about the use of the IKE. It is possible

to build an IKE-less IPsec, as was shown in [58]. The controller generates the

required SA material, such as the SPI and the keys, and delivers them to the

selected ESP devices. This eliminates the need for one of the services of the

network, i.e. the IKE.

The use of SDN in this kind of distributed network environment pushes the

control plane to its limits. Therefore, the whole issue of SDN networking is

discussed in terms of the control plane, based on the lessons learned during this

research.

4.1.2 Future prospects for the control plane and the
controllers

For researchers and developers in the �eld, the separate control plane and cen-

tral management is a refreshing wind of change. The use of a control plane and

a centrally managed controller o�ers a completely new level of visibility to the

network.

The work presented in Publication II, Publication III and Publication V

77

used the OpenFlow protocol. However, as explained in subsection 2.2.2, the

control protocol in SDN is not limited to OpenFlow, and SDN does not nec-

essarily mean OpenFlow, (although perhaps it should). The control protocol

will need to be standardized. At present there are numerous groups of network

developers, both open source groups and vendors, who are all working away in

their own little segment of the secure networking �eld. Until they can all agree

on the controlling protocol, regardless of whether or not it is OpenFlow, the

whole networking �eld will su�er.

Interoperability is the key. There is a good example of this in section 3.2.

Our Cyberlab was already equipped with OpenFlow-enabled HP switches. It

was easiest to use some popular open source SDN controller and thus Flood-

light was chosen. Even though the OpenFlow protocol was used, the Floodlight

and the HP switches did not work together as expected. Without proper inter-

operability between the open source projects and the vendors, the companies

who build SDN networks are forced to reinvent some of the basic functions that

should be there by default.

During the experiments conducted in the Cyberlab, OpenFlow performed

the basic operations well. Still, it is less reliable in cases like the one discussed

in section 3.1 where an SDN controller manages switches over WAN links. If

resilient operation cannot be guaranteed, this will hinder the usability of central

management. Although in this work the topic is discussed using OpenFlow as

an example, the same principles apply to all SDN management protocols over

WAN links.

Although SDN was developed especially for LAN networks, its use might

well expand over WANs as well, if it has not done so already. This has changed

the original assumption of having reliable network connectivity between the

controller and the network equipment. The OpenFlow protocol should thus

be �tted into these use cases as well. Building a completely new protocol for

SD-WAN makes no sense, as OpenFlow serves it purpose well and its basic

operation is functional over WANs. In fact, separating SDN and SD-WAN at

the protocol level would result in a more fragmented SDN �eld.

Possible connectivity problems between the SDN controller and the switches

require some extra features, such as active parallel redundancy as provided by

the Parallel Redundancy Protocol (PRP) [127]. As explained for the data

78

plane in Publication II, the PRP can be used to �x control plane connectivity

problems for multiple WAN locations. Implementing such a redundancy feature

directly into OpenFlow could solve some of the connectivity problems. The

PRP would create several connections between the SDN controller and the

switches, o�ering more resilient connectivity. One challenge with this is that

the endpoints should be aware of duplicate packets, and thus a unique identi�er

for every OpenFlow packet is needed. Therefore, implementing such a feature

in OpenFlow would mean adding it to the core structure of the protocol. The

only solution would be to add this feature to future OpenFlow versions, which

would make all the older versions obsolete for SD-WAN purposes. Although

this would not be ideal, some solution is nonetheless required since, for instance,

when a fault occurs those SD-WAN routers without an active connection to the

controller would not be able to make any new �ow modi�cations, and would

have to wait for the connection to be repaired. Cisco has approached the

problem using an Overlay Management Protocol (OMP) [28] in their Viptela

based SD-WAN solutions. Even though the exact technical details of the OMP

resiliency are not available, their use of an OMP here indicates that Cisco

(and Viptela) are also addressing the problem of the SD-WAN routers losing

connectivity with the controller.

The use of TLS for the management protocol is mandatory. As described in

3.1, TLS was used for control plane connectivity with stunnel, which ensured the

con�dentiality of the connection. As the OpenFlow protocol already supports

TLS, there is, in fact, no need for the stunnel. Still, as long as vendors and

open source projects do not implement TLS support in devices and controllers,

or provide the necessary documentation for them, solutions like stunnel will

continue to be used.

In addition to smoother operation over WAN links, some solution is required

to better �t the SA management to the SDN paradigm. The IKE-less opera-

tion of IPsec was brie�y mentioned in Figure 4.1.1. There is little doubt that

OpenFlow does need better IPsec support. It should be able to carry the re-

quired SA information from the SDN controller to the ESP devices. This would

mean that the SDN controller could use OpenFlow directly to manage the ESP

devices [60].

Our research in Publication III and Publication V, highlighted the need for

79

a �ow-matching rule for the ESP SPI values. If that were achieved, it would

be possible to direct ESP packets in the network with SPI instead of relying

on the tunnel endpoint IPs. Therefore it would allow the use of several tunnels

(CHILD SAs) between the same public IPs but terminate them on separate ESP

devices. Incoming ESP packets could thus be shared among several ESP devices

which would enhance the ESP packet processing rate with parallel processing.

Meanwhile, the outgoing packets could instead use the least-congested FPGA

for the destination, either with ECMP or with some other method as described

in Publication III.

The future for the control plane looks very promising and it seems certain

that centralized management is a step in the right direction. However, un-

til the industry can reach some mutual agreement on its structure, and the

technologies to use, the control plane will continue to be rather complex and

cumbersome. Nevertheless, networks with central management will save money,

o�er new features and be more reliable with SDN.

4.1.3 The future for the data plane

The future for the data plane looks even more promising than for the control

plane. Arbitrary network topology is no longer bound to physical infrastructure

while the �ows can be freely created to the network. Flows can include various

network devices in a packet's path, such as �rewalls, IDS:s or VPN endpoints, as

long as they are connected to some switch in the network. We have shown that

the use of SDN removes the need for ARP implementation from the FPGA

in Publication V, thus showing how SDN is also very e�cient for research

purposes.

Publication II drew attention to the link recovery issue, and the problem

of recreating a �ow in the data plane as described in section 3.1. Although

in that case we used a custom script as a �x, a parallel redundancy protocol

would be a much better approach, especially in terms of high availability. Fixing

the missing PORT_DOWN information messages in the OVS is not the best

solution from a speed perspective as the SDN controller is required to change

the �ows. If the original breakdown occurred on a link where there is an active

connection between the SDN controller and the OVS, it can take quite a long

80

time to �x a malfunctioning �ow. Merling, Braun and Menth [92] presented

a solution for this in which the �ows are changed to operational links directly

in the switches, without the need for any SDN controller intervention. This

approach can signi�cantly improve the quality and reliability of such an OVS-

based L2 overlay without active redundancy �ows. Thus stakeholders, e.g. Open

Network Foundation, should carefully consider implementing such features into

the OpenFlow and SD-WAN-related technologies of the future.

Despite the issue of the missing PORT_DOWN status information, the

OVS turned out to be an extremely �exible solution and worked well for all

the experiments conducted for Publication II. It not only has a wide range of

di�erent features, as listed in [111], but it also o�ers support for a variety of

virtualization platforms.

A search of the Internet for examples of SDN controllers or SDN applications

for Publication II revealed that Mininet [95] is often regarded as being the main

topic for any �rst tutorial. For instance, Mininet is used to create the test

network in the ONOS SDN controller tutorial [105]. The same phenomenon

has been acknowledged by Lantz, Heller and McKeown [85] as well.

As a �rst step, this kind of testing with a software-based network is ideal:

the Mininet leans against the OVS and con�gures the links for it automatically.

This removes the need for any expensive hardware, and thus makes research

into SDN networking much more accessible to the wider networking community.

Still, it is questionable that many projects, including purely scienti�c research

ones, solely rely on a software data plane utilising Mininet and OVS.

The OVS is very tolerant of di�erent SDN controllers, applications and

packet processing features. However, do the currently used physical switches

provide the same features as OVS? Judging by the earlier example section 3.2

where the open source SDN controller could not communicate properly with

the HP switches, the answer has to be �no, they do not�.

Support for the packet processing features the in physical switches was eval-

uated from the documentation and with a few quick and simple experiments.

Publication V explained the case where the MAC address destination �eld can

be overwritten using SDN �ows. Based on the documentation [64] at least, this

feature is supported. Interestingly, rewriting the IP address �eld for HP/Aruba

switches is not speci�cally explained [6, 64]. In fact, experiments conducted in

81

the Cyberlab revealed that the IP address could not be rewritten using REST

API [65], at least not for the devices used for Publication III and Publication V.

And, according to [86], the Lenovo RackSwitch G8272 does not support IP ad-

dress rewriting either. Furthermore, the Juniper Junos OpenFlow feature guide

[72] does not even include the MAC address rewriting �ow action feature. On

the other hand, a combination of OVS and the Floodlight SDN controller was

proved to be able to o�er the IP rewriting feature. This indicates that the

device vendors do not necessarily provide all the features in their devices that

the OpenFlow protocol allows. So, it is possible that the example networks

built using OVS cannot be directly converted to the physical infrastructure.

Bosshart et al. [15] approach the problem of the missing packet processing

feature by specifying a P4 programming language to describe how switches

should process network packets. This was later taken under the Open Network

Foundation umbrella [108]. One of the main goals in P4 is to make the data

plane programmable and recon�gurable by the network administrators. This

would allow new feature like �rewalls, IDS etc. to be implemented directly onto

the switches. Barefoot Networks has taken up the concept by releasing prod-

ucts that support Protocol Independent Switch Architecture (PISA) and P4 [9],

which are mandatory features for data plane programmability. Versatile hard-

ware blocks in the switches will mean more applications can be implemented

there directly, and this will reduce the need for external, dedicated network

devices.

Even though switches are becoming more programmable, external devices

still have their place in a network. Publication V presented a dedicated FPGA-

based IPsec ESP device for the network. The FPGA was con�gured to act as

one device in the data plane and our estimates showed that the performance

was su�cient for even such a heavy process as ESP. This kind of approach

accords with the idea of having a programmable data plane, even if it is in the

form of an FPGA. While P4 allows the switch hardware to be used directly

instead of an external FPGA, it is important to remember that devices get

faster over increasingly short timespans. As new and more powerful devices

such as switches or FPGAs come to the market, they will be installed into the

network. Changing a single FPGA for a more powerful one is a much easier

operation than using a 48-port switch to achieve faster packet processing for

82

an application like IPsec. Basic functions that are not immediately in need of

performance enhancement should be pushed directly to the switch plane. Ad-

vanced applications with rigorous performance requirements will bene�t from

their own con�gurable hardware platform in SDN networks. The combination

of two device families is going to be extremely e�cient: the switches handle the

core functions while the FPGAs (or similar) can deal with the heavy processing.

Together, they provide the desired level of recon�gurability.

There might already be performance problems in the OpenFlow switches

in its basic operation. The reason is that the �ows generated in the switches

cannot be executed in the switch hardware. Instead, they are provided in the

software mode as explained in [6]. However, using software �ows in switches

is relatively slow, as shown in [146]. This study benchmarked the HP 3500yl

switch throughput for hardware �ow at 1 Gbps, while the software �ow was

measured at 80 Mbps. It is uncertain whether this only applies to HP switches

as neither the Lenovo RackSwitch application guide [86] nor the Junos Open-

Flow feature guide [72] have anything to say about the software/hardware �ow

implementation. This kind of performance evaluation needs further clari�cation

since an SDN network with low throughput is virtually useless.

4.1.4 (Security) applications for the SDN

The value of SDN lies in the breadth and variety of applications that it can o�er.

Publication III and Publication V presented an IPsec ESP application. This

kind of approach, combining IKE and ESP, is especially practical for enterprises

hosting a vast number of tunnels due to the central management of tunnels. A

software solution would be relatively easy to set up, while an FPGA solution

would o�er higher bandwidth. Whatever the case, IPsec is de�nitely a good

application to be implemented with SDN.

Hauser et al. [58] were clearly well aware of this as they �rst implemented

IPsec directly onto a switch data plane using P4 language, and then onto an

external server similar to the one used in Publication III. The reason they

changed from the switch to an external server was that a bandwidth of only

1.4 Gbps could be implemented directly on a switch. This was due to fact

that the switch lacked any hardware acceleration for the AES processing. The

83

concept itself is inspired: IPsec is directly implemented on a switch which

allows immediate encryption for incoming packets from the end devices. High

speed operation can be achieved by attaching an FPGA solution directly to

the switches as in Publication V. Unfortunately, this solution cannot be not

scaled since every switch would require its own external FPGA. Any really

scalable solution would require switches that either have an integrated hardware

accelerator, or full FPGA, such as Arista 7130 [5].

Still the encryption in local networks can be done using other protocols

like MACsec. Hauser et al. [59] implemented MACsec using P4 and centrally

deployed the MACsec to the SDN network using an SDN controller. Their

application �ts well into the SDN paradigm. This emphasizes the importance of

having programmable physical SDN switches. In Publication II the L2 overlay

network used OpenVPN for the connections between SDN switches. In that

study, MACsec was brie�y discussed as being a viable alternative to OpenVPN.

Although the authors of [52] did not cover the use of MACsec over a WAN link,

but instead focused on the implementation for local networks, this kind of SDN-

controlled integrated security mechanism clearly demonstrates the power and

versatility of SDN and points in the right direction for future research.

There are also a number of proprietary SDN applications, such as the one

presented in [14]. In this product, the SDN network forwards all the Domain

Name System (DNS) requests to the company's internal DNS server regardless

of their original destination. This ensures that only company internal DNS

servers are used, even if the users wanted to use some other, global, DNS server.

SDN is thus a good application directly at the network level. As the Bring Your

Own Device (BYOD) ideology continues to spread, the SDN network can repel

some of the possible adversaries that these random devices could bring in.

In summary, SDN networking o�ers a versatile platform on which to deploy

security applications and should be closely considered for any network requir-

ing a high level of security. Traditionally, the switch plane (or the broadcast

domain) have been the sweet spot for malware to spread because of the free

packet transaction between devices. With SDN, it is possible to add the de-

sired security layer directly onto the broadcast domain. This would allow the

implementation of an application directly on the SDN controller, which would

be able to permit or deny some speci�ed network tra�c. Thus an SDN network

84

can be used to e�ectively prevent anomalies spreading throughout the whole

network via a single application in the controller.

4.1.5 Does the designed IPsec setup work in the real
world?

While the example networks in Publication III and Publication V present a

basic setup which veri�es the network structure, a real-world setup might look

di�erent due to IPv4 NAT. In subsection 4.1.3 we discuss the possibility of

rewriting the IP addresses directly in the SDN switches, using proper �ows.

This allows more customized network setups to be used. Figure 4.2 shows an

advanced example of a network with the ESP and IKE services located outside

the inner �rewall. The internal network contains several PCs and a Server

connected to SDN switches and is managed by an internal SDN Controller.

This kind of internal network frequently uses private IPv4 addressing space.

The inner �rewall performs a NAT to this network from one public IPv4 address

that is located in a �Middle network� depicted in Figure 4.2. This middle

network is protected by an outer �rewall to reduce tra�c noise and can operate

either in transparent or routed mode.

The setup presented in Figure 4.2 assumes that the ISP dedicates only one

usable IPv4 address to the company and that this needs to be allocated at the

inner �rewall to achieve NAT functionality and Internet connectivity to the

devices in the internal network. The ESP devices can be either DPDK-based

ones as in Publication III or FPGAs as in Publication V. They o�er the ESP

encryption and decryption function for the network packets that they receive.

Forwarding tra�c to the ESP devices is managed from the SDN controller EXT.

The ESP functionality uses the public IPv4 address from the inner �rewall in

its processing. This can be done since the SW 4 forwards all the incoming ESP

tra�c to the ESP devices based on the protocol. Outgoing packets requiring

ESP processing are forwarded based on the destination IP address.

However, this approach slightly violates best practice, as illustrated in the

following example of a packet transaction. PC A (10.3.3.7) is communicating

to branch o�ce server (192.168.1.2) through the VPN. The network packets

enter the inner �rewall with IP SRC: 10.3.3.7 and IP DST: 192.168.1.2. Since

85

Public IPv4
addressing

Private IPv4
addressing
using NAT

e.g. 10.3.0.0/16

PC A

Openflow

SDN Controller INT

PC B

SW 1

SW 2

SW 3

Firewall
inner

Server X

SW 4

SDN Controller EXT

Firewall
outer

The Internet

ESP devices

SAs

IKE Service

OpenFlow

Public server

Internal network Middle network

Figure 4.2 Example network with IKE and ESP services outside the company fire-
wall.

NAT is implemented in the inner �rewall, the packets leave with the IP SRC

that is the public IP address of the �rewall, say 130.230.112.227 while the IP

destination is still 192.168.1.2. The packets are forwarded to the ESP function

and leave it with the IP address pair of IP SRC: 130.230.112.227 and IP DST:

130.230.113.2, which is the branch o�ce VPN endpoint IP address. The NAT

gives rise to the unusual situation where the destination IP address is private

while the source is already public for a packet leaving the network. Despite this

scenario, the network is usable since the SDN �ows can be created as desired

and the functionality does not su�er.

Importantly, it is not necessary to rewrite the IP addresses. However, the

IKE service does need rewriting to ensure �uent operation. If the company

has only one public IP address in use (130.230.112.227), some workaround is

needed get the packets going to the IKE as well. This is done using a private

IP address in the IKE Service, say 10.1.100.22. This is not routable, and nor do

any other devices in the Middle network hold IP addresses from the same area.

This is where the rewriting occurs. Any IKE-related packets, as described in

Publication III, enter the SW 4 while the SDN Controller EXT creates �ows

in the network that change the 130.230.112.227 to 10.1.100.22 and vice versa.

86

This then pushes the packets to the IKE Service or to the outer Firewall.

In this way, a single public IP address can be used concurrently in several

devices. Furthermore, the Public server can host, e.g., SSH service and use the

same public IP address with a similar SDN �ow setup. Even without several

public IP addresses, NAT functionality can be achieved at the switch level,

outside the inner �rewall, thus enhancing the security in the core network. This

kind of address modi�cation is highly transparent and might cause di�culty

in debugging but simultaneously, could complicate possible adversary reverse-

engineering attempts on the network.

There are, of course, alternatives to the network setup depicted in Figure 4.2.

Another option is to use two interfaces from the ESP device and connect them

to the SDN switch planes in the internal network (e.g. SW 1) and in the middle

network. This way the ESP device starts to act as a gateway, but one that only

transfers the IPsec VPN tra�c. It might be thought that this would require

some complicated routing setup, but that's not the case when the SDN con-

troller makes packet-forwarding decisions in the networks. As for any security

concerns arising from having another gateway device in the internal network,

security is still good since only the tra�c related to the IPsec is forwarded to

the ESP device. The use of AES-CBC or AES-GCM provides the all-important

con�dentiality and authenticity [174] for the ESP packets. Therefore only traf-

�c which is veri�ed as coming from the VPN peer is processed, decrypted and

sent on to the internal network. Network packets using another protocol should

not even reach the gateway because the SDN �ows will push them to the inner

�rewall. Some broadcast messages may be the exception, and these must be

terminated in the ESP device via e.g. a white list that only allows ESP packets.

In summary, in a real-world network, any external ESP device would require

careful planning and implementation because of the problems that might be

caused by the addressing limitations. Achieving the desired level of security

also requires careful planning. Some workarounds will certainly be needed, and

there is as yet no best practice available. The best solution is to approach the

implementation with security as a priority, and then to compromise with the

needs of the network design administrators.

87

4.2 Hardware backed IaaS Cloud

Publication V presented an FPGA-accelerated ESP device that was ten times

faster than the one in Publication III. Therefore, our research strongly indi-

cates that it would make sense to extend the hardware accelerator in SDN to

include other heavy processes as well. Che et al. [20] researched the bene�ts

of hardware acceleration using three di�erent applications: Gaussian Elimina-

tion, Data Encryption Standard (DES), and Needleman-Wunsch. Their results

show that while some applications, like DES, �t well to FPGAs, others, such

as Gaussian Elimination, are better handled on a GPU.

The importance of hardware acceleration has been acknowledged by many

groups. Abadi et al. [1] state that the machine learning platform, TensorFlow,

bene�ts greatly from accelerators. The famous cloud operating system Open-

stack [113] has launched a project called Cyborg [114] to address the need for

acceleration. Cyborg provides a management framework for software accelera-

tors like DPDK and hardware accelerators like GPUs and FPGAs [114]. One

FPGA accelerator installation by Caul�eld et al. [19] resulted in performance

gains for Bing search rankings and data encryption. These �ndings clearly

indicate that Cloud networks, be they public or private, are moving towards

accelerated services.

As described in subsection 4.1.3, accelerators �t well with an SDN. Only one

single FPGA was used in Publication V. If it were to be scaled up for the Cloud,

it would incorporate any number of accelerators that could be inserted into the

Cloud SDN network to serve the VMs. There are three di�erent options for

such a layout.

The �rst of these options is to install a rack full of accelerator devices onto

the network and use SDN �ows to utilize these accelerators for all the machines

around the data center requesting HW acceleration. This mean a lot of east-

west tra�c between racks, which could mean an increase in latency. On the

other hand, the centralized location of the HW accelerators might help with

their management and installation of them to the network.

The second option is to distribute the accelerators through the data center

racks so that any servers in a single rack would try to use their nearest accel-

erator, preferably from their own rack. This, however, requires an orchestrator

88

on the SDN network and precise information regarding the nearest accelerator.

The SDN controller and the accelerator orchestrator would then control the

available resources together.

The third option is to implement the accelerators as Caul�eld et al. [19] did.

Their approach did not need any intelligence from the network since the FPGA

was just a �Bump-in-a-Wire�. The authors noted in their conclusions that �The

most important problem to solve is the design of scalable accelerators� and go

on to mention that the physical location and interface in the infrastructure is

one pressing challenge.

Scalability is indeed an important feature. Using the �rst or second of the

above options to distribute the accelerators in the infrastructure seems more

likely to provide the required scalability as more accelerators can be attached

to the network when required. The network interface is one of the best choices

for accelerators to be connected into the Cloud infrastructure. Compared to

local access such as that o�ered by PCI-E, the network-attached accelerators

can be made usable for all devices in the data center, rather than just to a local

server. Furthermore, if the accelerators are attached to the network, a pipeline

can be built in which data �ows from one accelerator to another.

Publication V investigated using the Cloud for the IPsec accelerator. One

use-case for the presented platform is to host tunnels for a vast number of IoT

devices. According to [24] the amount of data that �ows between IoT devices

and the Cloud is growing fast. Thus in Cloud environments, a single software

IPsec or even an FPGA cannot handle all the incoming IPsec tra�c, so a pool

of IPsec tunnel endpoints is needed. The architecture in Publication V allows

central management for numerous IoT devices from a single server (orchestra-

tor) while the ESP tra�c is processed in other devices. However, some legacy

IoT devices might only support the AES-CBC encryption mode, which would

make the proposed FPGA solution in Publication V unusable. Interestingly,

the DPDK-based approach presented in Publication III could be used since it

supports several di�erent encryption modes, including AES-CBC.

A closer look at IoT devices reveals they also might be creating new chal-

lenges for Cloud platforms. Cloud data centers are constantly receiving in-

creasing amounts of tra�c causing extremely heavy loads to the network, not

to mention the CPUs and storages. Edge (or fog) computing can reduce the

89

load from the data centers by moving the processing closer to the edge of the

network and thus closer to the end devices, as described in [156]. Our proposed

FPGA accelerator architecture is suitable to be implemented on the edge as

well. It can provide the necessary connectivity between the edge and the Cloud,

or the edge and the IoT device. Another bene�t of FPGAs is their relatively

small physical size, and their standalone function without any host server. This

makes their physical installation on the edge site relatively easy. In this location

they are also less likely to increase the heat dissipation or energy consumption

compared to a rack-installable server. Other accelerator applications can pro-

vide data modi�cation functions for desired IoT origin data on-the-�y, which is

bene�cial because, as stated in [156], it reduces the bandwidth and load from

the Cloud platform itself.

A good SDN controller and orchestrator combination can make the use of

accelerators transparent. The orchestrator should be aware of the physical

locations of the accelerators and their capabilities. Furthermore, utilising only

the SDN �ows in the network, several parallel or concurrent accelerators could

be used. For enterprises doing heavy data processing this means that their

work can be made faster either in their own data centers, or in public Clouds

via accelerator architecture. Accelerators will not supersede high-performance

CPU servers, but they can support them by providing a platform to run heavy

processes, thereby freeing up more computational power on the servers, all of

which is possible with good orchestration.

4.3 An orchestrator to glue it all together

Even though the original research questions were not speci�cally about orches-

tration, it is an unavoidable topic with this kind of research. The orchestrator

is a management tool, the conductor for a complex computerised entity and its

job is to make sure every part of that entity works together in harmony. All

the network setups presented in Publications II-V relied on orchestration, at

least to a certain extent.

In Publication II, the setup especially bene�ted from an orchestrator as the

number of sites increased. Multi-tunnel OpenVPN-based setups can use central

management for the OpenVPN tunnels. The number of these tunnels rapidly

90

rises (quadratically), as in the setup the full-mesh topology was needed, which

made the management work heavy. The number of required tunnels can be

calculated with Equation 4.1 where n is the number of tunnels.

Ntunnels =
n(n− 1)

2
(4.1)

This means, for example, that while only three tunnels are required for

three sites, 15 tunnels would be required for six sites. Setting up the tunnels

can be time-consuming, while proper orchestration may reduce the time and

con�guration errors signi�cantly. This kind of orchestration could just be a

few scripts. These are used to build the necessary con�guration, including

keys between sites, and to deploy the keys to the OpenVPN endpoints, even

for routed scenarios like in Publication I. The Homenet solution presented

in Publication I handles all the necessary IP address assignments, and routes

them between the sites, which greatly reduces the amount of con�guration.

The drawback with using Homenet between many sites is that it can lead to

overlapping IP ranges, especially in IPv4 which uses the 10.0.0.0/8 range [61],

since the addresses are managed independently in every site. Thus, central IP

address management through an orchestrator is bene�cial, even crucial, as the

number of di�erent sites increases.

As with the VPN solutions presented in Publication III and in Publica-

tion V, orchestration is often related to the Cloud. In Publication III, an IPsec

orchestrator with its own sub-orchestrators worked as a central information

exchange point for the IPsec process. Its main purpose is to make sure the

process operates as needed: IKE provides CHILD SA, keys that are distributed

to ESP devices and generate �ows in the network. Therefore, the orchestrator

can be regarded as having security associations with all the ESP devices in the

network, as well as with the IKE daemon and the SDN controller. All the de-

vices and the orchestrator must trust each other and keep their communication

secure to prevent possible anomalies. For example, sensitive information such

as the IPsec SA keys �ows through the orchestrator, although the orchestrator

does not need to know their values.

The IPsec orchestrator in Publication III can be considered as the main

building block which oversees all the sub-level orchestrators. It would have

been desirable in Publication III to launch the ESP processes in NFV fashion.

91

Having this additional feature would have required a new sub-orchestrator to

manage the automatic VM launching in the NFV platform. The NFV platform,

or a Cloud, usually has its own orchestrator with one or more APIs already.

Does it manage the virtual network inside the Cloud as well? If yes, it should be

manageable from the orchestrator, which is responsible for IPsec �ow generation

in the rest of the network as well. These VMs are in fact ESP devices and need

management from the IPsec orchestrator. As any scenario is developed, the

role of the orchestrator expands heavily and generates highly-complex, nested

orchestration.

If one adds the hardware acceleration from Publication V to the design, the

packet crypto function (or ESP device) orchestrator from Publication III should

also oversee these HW accelerators. The orchestrator also has to understand

the function and location of any HW accelerator in the network in order to give

the best service to the customers.

Furthermore, when technologies like P4-MACsec [59] are implemented to the

network, this places more demands on it. What sort of orchestrator can support

all of these features? It is either a proprietary one from a company who o�er

all the desired services in their product portfolio, or it is a nested orchestrator,

where the main orchestrator has several sub-orchestrators. The problem with

the former is that it is very likely only to work with other products from the

same vendor, while the problem with the latter is that because it is highly

complex with several orchestrators the APIs must be carefully standardized to

ensure interoperability between all the di�erent parts.

A promising direction for orchestration is to rely on a single open source

platform which allows the use of middleware software to �t with di�erent en-

tities under the orchestrator. One example of such a platform is ManageIQ,

which has providers e.g. for Clouds, containers, networking and storage, to

name but a few. Openstack has also approached orchestration by having one

central service, Heat, and several sub-services each responsible for one segment,

such as clustering [115].

The complete orchestrator setup would already be complex, even without

IaaS Cloud. Building such �uently working orchestration, even for a sim-

ple network-attached accelerator, will almost certainly require a great deal of

knowledge and expertise from the designers, but on the other hand, in the

92

end it would provide all the desired features. However, there can be no doubt

that orchestration at some level will be required when accelerators like the ones

presented in Publication V are attached to the network.

93

94

5 CONCLUSION

VPN technologies o�ers companies, and individuals, secure communication be-

tween their desktop machines, servers, handheld devices and other devices. If

implemented well, VPN provides con�dentiality, integrity and authenticity for

network packets over untrusted networks, such as the Internet. The spread of

Cloud computing means that more and more services are pushed to work from

Cloud VMs. This emphasizes the need for secure communication to the Cloud,

and often the most practical way to achieve this is by using a VPN solution.

Much of the time, there are no special requirements for a VPN tunnel and

thus practically any software solution is su�cient. Still, at some point the

basic setup is no longer adequate, so a more sophisticated VPN solution is

required providing, perhaps, better resiliency or high speed operation. Recent

advances in networking include SDN, which provides comprehensive visibility

to the network and thus precise packet forwarding capabilities. As our research

indicates, more advanced VPN tunneling solutions can be achieved using SDN

technology.

The work done for Publication I did not cover the use of SDN, but the main

structure of the network setup provided IPv4 and IPv6 networking over multiple

sites using the zeroconf approach. The routed setup presented in section 3.1

has an adequate tunneling setup for the use of SOHO and SME, as these do

not require any higher resiliency than the always-available best-e�ort.

A more resilient VPN network setup was achieved using L2 overlay technol-

ogy in Publication II. This research was also targeted at the use of SOHO and

SME. This tunneling solution relied on a dedicated SDN controller to build net-

work �ows through multiple tunnels between sites. This provided more reliable

packet transfer than the setup in Publication I, even though only best-e�ort

ISP connections were used. The setup is usable, for instance, in connecting ICS

networks together, and also for connecting to Cloud VMs. However, this solu-

95

tion did su�er from a fragile control plane and from problems in reallocating

�ows when errors occur in the underlying network.

While the former publications relied on OpenVPN tunneling technology,

larger enterprises tend to opt for IPsec because of its maturity, reputation and

higher performance. In Publication III we presented a novel approach to IPsec

where the IKE and ESP functionality is separated and operated from di�erent

boxes in the network. This functionality was achieved using proper SDN �ow

con�guration that redirects tra�c directly in the switch plane. It even allows

the use of several high-speed ESP devices, albeit under certain conditions and

with some limitations, while the IPsec IKE is managed from a single endpoint.

The distributed IPsec is e�cient enough, for instance, for Cloud providers to

run IPsec endpoints to a vast number of customers. The design su�ers from

a missing anti-replay feature which is the trade-o� for parallel operation for a

single IPsec tunnel. By assigning a single tunnel to a dedicated ESP device, the

anti-replay feature would be enabled. The high availability goal could then be

reached through several ESP devices in the network by distributing the IPsec

tunnels between them and moving the ESP processing from any faulty ones

using SDN �ows to the operational devices. Thus, the ESP device needs to be

extremely powerful and able to host a great number of concurrent tunnels.

Publication V discusses the IPsec tunnel from this viewpoint. It explains

the feasibility of FPGA-accelerated IPsec on the Cloud. It utilises the same

network design as in Publication III, while the ESP processing is done on an

FPGA platform. That work indicated that an FPGA can provide exactly the

right platform for such a high speed IPsec ESP device. An FPGA such as

the Intel Arria 10 can host roughly 1000 concurrent tunnels and o�er 10 Gbps

throughput with any packet size while keeping the latency below 10 µs. This

is achieved using a purely hardware approach on the FPGA and by removing

any function from the FPGA that could possibly operate on commodity server

software. There are a wide variety of use cases for this kind of solution due to

its great design performance: Cloud operators, audio/video transfer, endpoints

for IoT devices and edge computing to name but a few.

SDN still divides opinion as to whether it really is a useful new technology,

or just another marketing trick. Traditional networking solutions like in Pub-

lication I are often su�cient, in which case SDN is not needed. However, our

96

research shows that SDN comes into its own when elastic packet forwarding is

required. With SDN it is possible to implement highly complex setups and even

transparently obfuscate the network tra�c from the end devices. Even though

Publication I and Publication II targeted the SME level, larger enterprises

might require more use cases than the presented SDN and IPsec combination

before they will be persuaded to use SDN. These could include, for instance,

avoiding downtime for maintenance by using a virtual topology.

Corporations running a great number of virtual machines, e.g. Cloud op-

erators, bene�t greatly from SDN since the visibility of the physical network

infrastructure can be extended inside the hypervisors. This provides rich control

for the network packets using SDN �ows all the way up to the VMs. Services

can thus be provided in an NFV style as desired in Publication III. Further-

more, a number of hardware accelerators like the ones used in Publication V

can be attached to the network and the network packets from the VMs pushed

to use them via SDN �ows.

Besides the research on secure networking with SDN, it turns out that SDN

is in fact an e�ective �shortcut� tool for researchers, too. In Publication V the

intention was not to run ARP on the FPGA. Removing the implementation

need from the hardware provided savings for the FPGA area, and simultane-

ously conferred elasticity on the network. Thus it is highly probable that other

research projects dealing with network and non-standard devices will bene�t

from conducting their experiments using an SDN platform.

It is to be hoped that the future will hold much more research related to

improving secure networking in the SDN �eld. Another topic for future research

is hardware acceleration techniques, especially for use at the enterprise level,

but also for smaller companies that run heavy data processing. Innovative

and highly e�cient solutions could be achieved with combinations of SDN and

FPGAs, especially if some open source projects look in that direction.

Here is my thesis in a nutshell. SDN-based approach can improve the relia-

bility, resiliency and performance of VPN connections. There are surely other

equally convenient options for VPNs. Research shows that companies can build

complicated, fast, IPsec scenarios or self-managed SD-WANs using open source

tools. The work presented here clearly shows that SDN has its place in net-

working. How quickly that will spread and what the networks will look like in

97

the future is up to the vendors. For researchers, SDN will continue to provide

a rich and interesting �eld to be harvested for the variety of new, sweet topics

it may yield. This researcher, for one, strongly encourages others to carry on

the good work with SDN.

98

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.

Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,

S. Moore, D. G. Murray, B. Steiner, P. A. Tucker, V. Vasudevan, P.

Warden, M. Wicke, Y. Yu and X. Zheng. TensorFlow: A System for

Large-Scale Machine Learning. 12th USENIX Symposium on Operating

Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,

November 2-4, 2016. Ed. by K. Keeton and T. Roscoe. USENIX Asso-

ciation, 2016, 265�283. url: https://www.usenix.org/conference/

osdi16/technical-sessions/presentation/abadi.

[2] B. Aboba and W. Dixon. IPsec-Network Address Translation (NAT)

Compatibility Requirements. RFC 3715 (2004), 1�18. doi: 10.17487/

RFC3715.

[3] I. Algredo-Badillo, C. F. Uribe, R. Cumplido and M. Morales-Sandoval.

FPGA Implementation and Performance Evaluation of AES-CCMCores

for Wireless Networks. ReConFig'08: 2008 International Conference

on Recon�gurable Computing and FPGAs, 3-5 December 2008, Can-

cun, Mexico, Proceedings. IEEE Computer Society, 2008, 421�426. doi:

10.1109/ReConFig.2008.54.

[4] Archlinux wiki. Hardware Video Acceleration. https://wiki.archlinu

x.org/index.php/Hardware_video_acceleration. Online; accessed

12 December 2019.

[5] Arista. 7130 FPGA-enabled Network Switches. Quick Look.

https : / / www . arista . com / en / products / 7130 - fpga - enabled -

network-switches-quick-look. Online; accessed 12 December 2019.

[6] ArubaOS-Switch OpenFlow v1.3 Administrator Guide for 16.04. 2017.

99

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.17487/RFC3715
https://doi.org/10.17487/RFC3715
https://doi.org/10.1109/ReConFig.2008.54
https://wiki.archlinu
x.org/index.php/Hardware_video_acceleration
https://www.arista.com/en/products/7130-fpga-enabled-network-switches-quick-look
https://www.arista.com/en/products/7130-fpga-enabled-network-switches-quick-look

[7] R. J. Atkinson. IP Encapsulating Security Payload (ESP). RFC 1827

(1995), 1�12. doi: 10.17487/RFC1827.

[8] R. J. Atkinson. Security Architecture for the Internet Protocol. RFC

1825 (1995), 1�22. doi: 10.17487/RFC1825.

[9] Barefoot networks. Technology. https://www.barefootnetworks.com/

technology/. Online; accessed 12 December 2019.

[10] Barracuda networks. Barracuda SSL VPN & Remote Access. https:

//www.barracuda.com/products/sslvpn/models. Online; accessed

12 December 2019.

[11] A. Basu and J. Young. Cisco Document ID:115936. IKEv2 Packet Ex-

change and Protocol Level Debugging. https://www.cisco.com/c/

en/us/support/docs/security- vpn/ipsec- negotiation- ike-

protocols/115936- understanding- ikev2- packet- exch- debug.

html. Online; accessed 12 December 2019. 2013.

[12] T. Benson, A. Akella and D. A. Maltz. Network tra�c characteristics

of data centers in the wild. Proceedings of the 10th ACM SIGCOMM

Internet Measurement Conference, IMC 2010, Melbourne, Australia -

November 1-3, 2010. Ed. by M. Allman. ACM, 2010, 267�280. doi:

10.1145/1879141.1879175.

[13] C. J. Bernardos, A. Rahman, J. C. Zúñiga, L. M. Contreras, P. Aranda

and P. Lynch. Network Virtualization Research Challenges. RFC 8568

(2019), 1�42. doi: 10.17487/RFC8568.

[14] Bluecat. Making the Case for SDN: A Real-World Example. https:

//www.bluecatnetworks.com/blog/making-case-sdn-real-world-

example/. Online; accessed 12 December 2019.

[15] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese and D. Walker.

P4: programming protocol-independent packet processors. Computer

Communication Review 44.3 (2014), 87�95. doi: 10.1145/2656877.

2656890.

100

https://doi.org/10.17487/RFC1827
https://doi.org/10.17487/RFC1825
https://www.barefootnetworks.com/technology/
https://www.barefootnetworks.com/technology/
https://www.barracuda.com/products/sslvpn/models
https://www.barracuda.com/products/sslvpn/models
https://www.cisco.com/c/en/us/support/docs/security-vpn/ipsec-negotiation-ike-protocols/115936-understanding-ikev2-packet-exch-debug.html
https://www.cisco.com/c/en/us/support/docs/security-vpn/ipsec-negotiation-ike-protocols/115936-understanding-ikev2-packet-exch-debug.html
https://www.cisco.com/c/en/us/support/docs/security-vpn/ipsec-negotiation-ike-protocols/115936-understanding-ikev2-packet-exch-debug.html
https://www.cisco.com/c/en/us/support/docs/security-vpn/ipsec-negotiation-ike-protocols/115936-understanding-ikev2-packet-exch-debug.html
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.17487/RFC8568
https://www.bluecatnetworks.com/blog/making-case-sdn-real-world-example/
https://www.bluecatnetworks.com/blog/making-case-sdn-real-world-example/
https://www.bluecatnetworks.com/blog/making-case-sdn-real-world-example/
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890

[16] BSD Router Project OpenVPN benchmark.

https://bsdrp.net/documentation/examples/openvpn_performanc

e_lab_of_an_ibm_system_x3550_m3_with_intel_82580. Online;

accessed 12 December 2019.

[17] M. Casado, N. Foster and A. Guha. Abstractions for software-de�ned

networks. Commun. ACM 57.10 (2014), 86�95. doi: 10.1145/2661061.

2661063.

[18] J. D. Case, M. S. Fedor, M. L. Scho�stall and J. R. Davin. Simple Net-

work Management Protocol. RFC 1067 (1988), 1�33. doi: 10.17487/

RFC1067.

[19] A. M. Caul�eld, E. S. Chung, A. Putnam, H. Angepat, D. Firestone, J.

Fowers, M. Haselman, S. Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo,

T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D.

Chiou and D. Burger. Con�gurable Clouds. IEEE Micro 37.3 (2017),

52�61. doi: 10.1109/MM.2017.51.

[20] S. Che, J. Li, J. W. Shea�er, K. Skadron and J. Lach. Accelerating

Compute-Intensive Applications with GPUs and FPGAs. Proceedings

of the IEEE Symposium on Application Speci�c Processors, SASP 2008,

held in conjunction with the DAC 2008, June 8-9, 2008, Anaheim, Cal-

ifornia, USA. IEEE Computer Society, 2008, 101�107. doi: 10.1109/

SASP.2008.4570793.

[21] J. Chroboczek. The Babel Routing Protocol. RFC 6126 (2011), 1�45.

doi: 10.17487/RFC6126.

[22] Cisco ASA 5500 Series Con�guration Guide using the CLI, 8.4 and 8.6.

https://www.cisco.com/c/en/us/td/docs/security/asa/asa84/

configuration/guide/asa_84_cli_config/vpn_anyconnect.html.

Online; accessed 12 December 2019. 2019.

[23] Cisco Document ID:5234. Understanding and Con�guring Spanning

Tree Protocol (STP) on Catalyst Switches. https://www.cisco.com/

c/en/us/support/docs/lan-switching/spanning-tree-protocol/

5234-5.html. Online; accessed 12 December 2019. 2006.

101

https://bsdrp.net/documentation/examples/openvpn_performanc
e_lab_of_an_ibm_system_x3550_m3_with_intel_82580
https://doi.org/10.1145/2661061.2661063
https://doi.org/10.1145/2661061.2661063
https://doi.org/10.17487/RFC1067
https://doi.org/10.17487/RFC1067
https://doi.org/10.1109/MM.2017.51
https://doi.org/10.1109/SASP.2008.4570793
https://doi.org/10.1109/SASP.2008.4570793
https://doi.org/10.17487/RFC6126
https://www.cisco.com/c/en/us/td/docs/security/asa/asa84/configuration/guide/asa_84_cli_config/vpn_anyconnect.html
https://www.cisco.com/c/en/us/td/docs/security/asa/asa84/configuration/guide/asa_84_cli_config/vpn_anyconnect.html
https://www.cisco.com/c/en/us/support/docs/lan-switching/spanning-tree-protocol/5234-5.html
https://www.cisco.com/c/en/us/support/docs/lan-switching/spanning-tree-protocol/5234-5.html
https://www.cisco.com/c/en/us/support/docs/lan-switching/spanning-tree-protocol/5234-5.html

[24] Cisco Global Cloud Index: Forecast and Methodology, 2016�2021. White

Paper. Document ID: 1513879861264127. https://www.cisco.com/c/

en/us/solutions/collateral/service-provider/global-cloud-

index- gci/white- paper- c11- 738085.html. Online; accessed 12

December 2019. 2018.

[25] Cisco. IPSec Anti-Replay Check Failures. Document ID:116858. https:

//www.cisco.com/c/en/us/support/docs/ip/internet- key-

exchange-ike/116858-problem-replay-00.html. Online; accessed

12 December 2019. 2016.

[26] Cisco. Next Generation Encryption. https://www.cisco.com/c/en/

us/about/security-center/next-generation-cryptography.html.

Online; accessed 12 December 2019. 2015.

[27] Cisco OpFlex: An Open Policy Protocol. Declarative Control. White

paper. https://www.cisco.com/c/en/us/solutions/collateral/

data-center-virtualization/application-centric-infrastructu

re/white- paper- c11- 731302.pdf. Online; accessed 12 December

2019. 2015.

[28] Cisco SD-WAN. Product Documentation. Viptela Overlay Management

Protocol. https://sdwan-docs.cisco.com/Product_Documentation/

vManage_Help/Release_18.3/Configuration/Templates/OMP. On-

line; accessed 12 December 2019. 2019.

[29] Cisco. SSL VPN Security. https://www.cisco.com/c/en/us/about/

security-center/ssl-vpn-security.html. Online; accessed 12 De-

cember 2019. 2019.

[30] Crypto++ benchmark. https://www.cryptopp.com/benchmarks.

html. Online; accessed 12 December 2019. 2009.

[31] J. L. Cummings, K. R. Hickey and B. D. Kinney. AT&T network ar-

chitecture evolution. AT&T technical journal 66.3 (1987), 2�12.

[32] Data Plane Development Kit. Documentation. Version 19.08.0-rc0.

https://doc.dpdk.org/guides/. Online; accessed 12 December 2019.

[33] S. E. Deering and R. M. Hinden. Internet Protocol, Version 6 (IPv6)

Speci�cation. RFC 2460 (1998), 1�39. doi: 10.17487/RFC2460.

102

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/support/docs/ip/internet-key-exchange-ike/116858-problem-replay-00.html
https://www.cisco.com/c/en/us/support/docs/ip/internet-key-exchange-ike/116858-problem-replay-00.html
https://www.cisco.com/c/en/us/support/docs/ip/internet-key-exchange-ike/116858-problem-replay-00.html
https://www.cisco.com/c/en/us/about/security-center/next-generation-cryptography.html
https://www.cisco.com/c/en/us/about/security-center/next-generation-cryptography.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructu
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructu
re/white-paper-c11-731302.pdf
https://sdwan-docs.cisco.com/Product_Documentation/vManage_Help/Release_18.3/Configuration/Templates/OMP
https://sdwan-docs.cisco.com/Product_Documentation/vManage_Help/Release_18.3/Configuration/Templates/OMP
https://www.cisco.com/c/en/us/about/security-center/ssl-vpn-security.html
https://www.cisco.com/c/en/us/about/security-center/ssl-vpn-security.html
https://www.cryptopp.com/benchmarks.html
https://www.cryptopp.com/benchmarks.html
https://doc.dpdk.org/guides/
https://doi.org/10.17487/RFC2460

[34] M. Dworkin. SP 800-38A. Recommendation for Block Cipher Modes of

Operation: Methods and Techniques. Federal Information Processing

Standards Publication 197 (2001), 1�51. doi: 10.6028/NIST.SP.800-

38A.

[35] M. Dworkin. SP 800-38D. Recommendation for Block Cipher Modes of

Operation: Galois/Counter Mode (GCM) and GMAC. Federal Infor-

mation Processing Standards Publication (2007), 1�37. doi: 10.6028/

NIST.SP.800-38D.

[36] K. B. Egevang and P. Francis. The IP Network Address Translator

(NAT). RFC 1631 (1994), 1�10. doi: 10.17487/RFC1631.

[37] W. F. Ehrsam, C. H. Meyer, J. L. Smith and W. L. Tuchman. Mes-

sage veri�cation and transmission error detection by block chaining. US

Patent 4,074,066. 1976.

[38] A. M. El-Semary, M. M. A. Azim and H. Diab. SPCBC: A Secure

Parallel Cipher Block Chaining Mode of Operation based on logistic

Chaotic Map. TIIS 11.7 (2017), 3608�3628. doi: 10.3837/tiis.2017.

07.017.

[39] R. Enns. NETCONF Con�guration Protocol. RFC 4741 (2006), 1�95.

doi: 10.17487/RFC4741.

[40] ETSI Network Function Virtualization (NFV) introduction.

https://www.etsi.org/technologies/689-network-functions-

virtualisation. Online; accessed 12 December 2019.

[41] Faucet SDN controller. https://faucet.nz. Online; accessed 12 De-

cember 2019.

[42] N. Feamster, J. Rexford and E. W. Zegura. The road to SDN: an intel-

lectual history of programmable networks. Computer Communication

Review 44.2 (2014), 87�98. doi: 10.1145/2602204.2602219.

[43] D. Felsch, M. Grothe, J. Schwenk, A. Czubak and M. Szymanek. The

Dangers of Key Reuse: Practical Attacks on IPsec IKE. 27th USENIX

Security Symposium, USENIX Security 2018, Baltimore, MD, USA,

August 15-17, 2018. Ed. by W. Enck and A. P. Felt. USENIX Associ-

103

https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.17487/RFC1631
https://doi.org/10.3837/tiis.2017.07.017
https://doi.org/10.3837/tiis.2017.07.017
https://doi.org/10.17487/RFC4741
https://www.etsi.org/technologies/689-network-functions-virtualisation
https://www.etsi.org/technologies/689-network-functions-virtualisation
https://faucet.nz
https://doi.org/10.1145/2602204.2602219

ation, 2018, 567�583. url: https://www.usenix.org/conference/

usenixsecurity18/presentation/felsch.

[44] N. Ferguson and B. Schneier. A cryptographic evaluation of IPsec.

Counterpane Internet Security, Inc 3031 (2000), 14. url: https://

www.schneier.com/academic/paperfiles/paper-ipsec.pdf.

[45] N. FIPS. 186 digital signature standard. 1994.

[46] N. FIPS. 186-3 digital signature standard. 2009.

[47] Floodlight controller modules. https://floodlight.atlassian.net/

wiki/spaces/floodlightcontroller/pages/1343528/Applications.

Online; accessed 12 December 2019.

[48] Floodlight SDN controller.

http://www.projectfloodlight.org/floodlight/. Online; accessed

12 December 2019.

[49] Floodlight SDN controller. Developers. How to Write a Module. https:

//floodlight.atlassian.net/wiki/spaces/floodlightcontroller/

pages/1343513/How+to+Write+a+Module. Online; accessed 12 Decem-

ber 2019.

[50] Flowgrammable. OpenFlow classi�er �elds. http://flowgrammable.

org/sdn/openflow/classifiers. Online; accessed 12 December 2019.

[51] S. Frankel, R. Glenn and S. G. Kelly. The AES-CBC Cipher Algo-

rithm and Its Use with IPsec. RFC 3602 (2003), 1�15. doi: 10.17487/

RFC3602.

[52] J. Ghorpade, J. Parande, M. Kulkarni and A. Bawaskar. GPGPU Pro-

cessing in CUDA Architecture. CoRR abs/1202.4347 (2012). arXiv:

1202.4347. url: http://arxiv.org/abs/1202.4347.

[53] J. Gray and D. P. Siewiorek. High-Availability Computer Systems.

IEEE Computer 24.9 (1991), 39�48. doi: 10.1109/2.84898.

[54] J. Guilford, S. Gulley, E. Ozturk, K. Yap, V. Gopal and W. Feghali.

Intel White Paper: Fast Multi-bu�er IPsec Implementations on Intel

Architecture Processors. https://www.intel.com/content/dam/www/

public/us/en/documents/white- papers/fast- multi- buffer-

104

https://www.usenix.org/conference/usenixsecurity18/presentation/felsch
https://www.usenix.org/conference/usenixsecurity18/presentation/felsch
https://www.schneier.com/academic/paperfiles/paper-ipsec.pdf
https://www.schneier.com/academic/paperfiles/paper-ipsec.pdf
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343528/Applications
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343528/Applications
http://www.projectfloodlight.org/floodlight/
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343513/How+to+Write+a+Module
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343513/How+to+Write+a+Module
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343513/How+to+Write+a+Module
http://flowgrammable.org/sdn/openflow/classifiers
http://flowgrammable.org/sdn/openflow/classifiers
https://doi.org/10.17487/RFC3602
https://doi.org/10.17487/RFC3602
http://arxiv.org/abs/1202.4347
http://arxiv.org/abs/1202.4347
https://doi.org/10.1109/2.84898
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-multi-buffer-ipsec-implementations-ia-processors-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-multi-buffer-ipsec-implementations-ia-processors-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-multi-buffer-ipsec-implementations-ia-processors-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-multi-buffer-ipsec-implementations-ia-processors-paper.pdf

ipsec- implementations- ia- processors- paper.pdf. Online; ac-

cessed 12 December 2019. 2012.

[55] E. Haleplidis, K. Pentikousis, S. G. Denazis, J. H. Salim, D. Meyer and

O. G. Koufopavlou. Software-De�ned Networking (SDN): Layers and

Architecture Terminology. RFC 7426 (2015), 1�35. doi: 10.17487/

RFC7426.

[56] K. Hamzeh, G. S. Pall, W. Verthein, J. Taarud, W. A. Little and G.

Zorn. Point-to-Point Tunneling Protocol (PPTP). RFC 2637 (1999),

1�57. doi: 10.17487/RFC2637.

[57] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). RFC

2409 (1998), 1�41. doi: 10.17487/RFC2409.

[58] F. Hauser, M. Häberle, M. Schmidt and M. Menth. P4-IPsec: Imple-

mentation of IPsec Gateways in P4 with SDN Control for Host-to-

Site Scenarios. CoRR abs/1907.03593 (2019). arXiv: 1907.03593. url:

http://arxiv.org/abs/1907.03593.

[59] F. Hauser, M. Schmidt, M. Häberle and M. Menth. P4-MACsec: Dy-

namic Topology Monitoring and Data Layer Protection with MACsec

in P4-SDN. CoRR abs/1904.07088 (2019). arXiv: 1904.07088. url:

http://arxiv.org/abs/1904.07088.

[60] V. Heydari Fami Tafreshi, E. Ghazisaeedi, H. Cruickshank and Z. Sun.

Integrating IPsec within OpenFlow architecture for secure group com-

munication. ZTE COMMUNICATIONS JOURNAL 12.2 (2014), 41�

49.

[61] Homenet Project homepage. http://www.homewrt.org. Online; ac-

cessed 12 December 2019. 2017.

[62] R. Housley. Using Advanced Encryption Standard (AES) Counter Mode

With IPsec Encapsulating Security Payload (ESP). RFC 3686 (2004),

1�19. doi: 10.17487/RFC3686.

[63] R. Housley. Using Advanced Encryption Standard (AES) CCM Mode

with IPsec Encapsulating Security Payload (ESP). RFC 4309 (2005),

1�13. doi: 10.17487/RFC4309.

105

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-multi-buffer-ipsec-implementations-ia-processors-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-multi-buffer-ipsec-implementations-ia-processors-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-multi-buffer-ipsec-implementations-ia-processors-paper.pdf
https://doi.org/10.17487/RFC7426
https://doi.org/10.17487/RFC7426
https://doi.org/10.17487/RFC2637
https://doi.org/10.17487/RFC2409
http://arxiv.org/abs/1907.03593
http://arxiv.org/abs/1907.03593
http://arxiv.org/abs/1904.07088
http://arxiv.org/abs/1904.07088
http://www.homewrt.org
https://doi.org/10.17487/RFC3686
https://doi.org/10.17487/RFC4309

[64] HP OpenFlow 1.3 Administrator Guide. Wired Switches K/KA/KB/WB

15.15. 2014.

[65] HPE VAN SDN Controller 2.7 REST API Reference. 2016.

[66] J. Hudgens. Crondose. Code Interview Question: Load Balancing vs

High Availability. https : / / www . crondose . com / 2016 / 08 / load -

balancing-vs-high-availability/. Online; accessed 12 December

2019. 2016.

[67] A. Huttunen, B. Swander, V. Volpe, L. DiBurro and M. Stenberg. UDP

Encapsulation of IPsec ESP Packets. RFC 3948 (2005), 1�15. doi:

10.17487/RFC3948.

[68] IETF Zeroconf Working Group. http://www.zeroconf.org. Online;

accessed 12 December 2019.

[69] Intel. AES-NI. https : / / www . intel . com / content / www / us / en /

architecture-and-technology/advanced-encryption-standard-

aes/data-protection-aes-general-technology.html. Online; ac-

cessed 12 December 2019.

[70] Intel. Case study. Intel AES-NI hardware-accelerated encryption boosts

security and performance of GenoSpace Population Analytics applica-

tion. https : / / www . intel . com / content / dam / www / public / us /

en / documents / case - studies / aes - ni - boosts - security - and -

performance-genospace-study.pdf. Online; accessed 12 December

2019.

[71] IPFire, a Linux based �rewall distribution. https://www.ipfire.org.

Online; accessed 12 December 2019.

[72] Juniper networks. Junos OS. OpenFlow Feature Guide. https://www.

juniper.net/documentation/en_US/junos/information-products/

pathway-pages/junos-sdn/junos-sdn-openflow.pdf. Online; ac-

cessed 12 December 2019.

[73] Juniper networks. Techlibrary. Understanding MACsec Bene�ts. https:

//www.juniper.net/documentation/en_US/release-independent/

nce/topics/concept/macsec-benefits-understanding.html. On-

line; accessed 12 December 2019. 2014.

106

https://www.crondose.com/2016/08/load-balancing-vs-high-availability/
https://www.crondose.com/2016/08/load-balancing-vs-high-availability/
https://doi.org/10.17487/RFC3948
http://www.zeroconf.org
https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes/data-protection-aes-general-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes/data-protection-aes-general-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes/data-protection-aes-general-technology.html
https://www.intel.com/content/dam/www/public/us/en/documents/case-studies/aes-ni-boosts-security-and-performance-genospace-study.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/case-studies/aes-ni-boosts-security-and-performance-genospace-study.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/case-studies/aes-ni-boosts-security-and-performance-genospace-study.pdf
https://www.ipfire.org
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-sdn/junos-sdn-openflow.pdf
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-sdn/junos-sdn-openflow.pdf
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-sdn/junos-sdn-openflow.pdf
https://www.juniper.net/documentation/en_US/release-independent/nce/topics/concept/macsec-benefits-understanding.html
https://www.juniper.net/documentation/en_US/release-independent/nce/topics/concept/macsec-benefits-understanding.html
https://www.juniper.net/documentation/en_US/release-independent/nce/topics/concept/macsec-benefits-understanding.html

[74] B. Kaliski. PKCS #1: RSA Encryption Version 1.5. RFC 2313 (1998),

1�19. doi: 10.17487/RFC2313.

[75] A. Kato, S. Moriai and M. Kanda. The Camellia Cipher Algorithm and

Its Use With IPsec. RFC 4312 (2005), 1�8. doi: 10.17487/RFC4312.

[76] C. Kaufman. Internet Key Exchange (IKEv2) Protocol. RFC 4306

(2005), 1�99. doi: 10.17487/RFC4306.

[77] C. Kaufman, P. E. Ho�man, Y. Nir, P. Eronen and T. Kivinen. Internet

Key Exchange Protocol Version 2 (IKEv2). RFC 7296 (2014), 1�142.

doi: 10.17487/RFC7296.

[78] S. T. Kent. IP Authentication Header. RFC 4302 (2005), 1�34. doi:

10.17487/RFC4302.

[79] S. T. Kent. IP Encapsulating Security Payload (ESP). RFC 4303 (2005),

1�44. doi: 10.17487/RFC4303.

[80] S. T. Kent and K. Seo. Security Architecture for the Internet Protocol.

RFC 4301 (2005), 1�101. doi: 10.17487/RFC4301.

[81] H. Kim and N. Feamster. Improving network management with soft-

ware de�ned networking. IEEE Communications Magazine 51.2 (2013),

114�119. doi: 10.1109/MCOM.2013.6461195.

[82] T. Kivinen, B. Swander, A. Huttunen and V. Volpe. Negotiation of

NAT-Traversal in the IKE. RFC 3947 (2005), 1�16. doi: 10.17487/

RFC3947.

[83] F. Klaedtke, G. O. Karame, R. Bifulco and H. Cui. Access control

for SDN controllers. Proceedings of the third workshop on Hot topics

in software de�ned networking, HotSDN '14, Chicago, Illinois, USA,

August 22, 2014. Ed. by A. Akella and A. G. Greenberg. ACM, 2014,

219�220. doi: 10.1145/2620728.2620773.

[84] H. Krawczyk, M. Bellare and R. Canetti. HMAC: Keyed-Hashing for

Message Authentication. RFC 2104 (1997), 1�11. doi: 10 . 17487 /

RFC2104.

107

https://doi.org/10.17487/RFC2313
https://doi.org/10.17487/RFC4312
https://doi.org/10.17487/RFC4306
https://doi.org/10.17487/RFC7296
https://doi.org/10.17487/RFC4302
https://doi.org/10.17487/RFC4303
https://doi.org/10.17487/RFC4301
https://doi.org/10.1109/MCOM.2013.6461195
https://doi.org/10.17487/RFC3947
https://doi.org/10.17487/RFC3947
https://doi.org/10.1145/2620728.2620773
https://doi.org/10.17487/RFC2104
https://doi.org/10.17487/RFC2104

[85] B. Lantz, B. Heller and N. McKeown. A network in a laptop: rapid

prototyping for software-de�ned networks. Proceedings of the 9th ACM

Workshop on Hot Topics in Networks. HotNets 2010, Monterey, CA,

USA - October 20 - 21, 2010. Ed. by G. G. Xie, R. Beverly, R. T. Morris

and B. Davie. ACM, 2010, 19. doi: 10.1145/1868447.1868466.

[86] Lenovo. Lenovo RackSwitch G8272 Application Guide For Networking

OS 8.2. https : / / systemx . lenovofiles . com / help / topic / com .

lenovo.rackswitch.g8272.doc/G8272_AG_8-2.pdf. Online; accessed

12 December 2019. 2015.

[87] Libreswan IPSec benchmarking and performance testing.

https://libreswan.org/wiki/Benchmarking_and_Performance_

testing. Online; accessed 12 December 2019. 2016.

[88] L. Mamushiane, A. Lysko and S. Dlamini. A comparative evaluation

of the performance of popular SDN controllers. 2018 Wireless Days,

WD 2018, Dubai, United Arab Emirates, April 3-5, 2018. IEEE, 2018,

54�59. doi: 10.1109/WD.2018.8361694.

[89] S. Mathew, S. Satpathy, V. Suresh, H. Kaul, M. Anders, G. K. Chen,

A. Agarwal, S. Hsu and R. Krishnamurthy. 340mV-1.1V, 289Gbps/W,

2090-gate NanoAES hardware accelerator with area-optimized encryp-

t/decrypt GF(24)2 polynomials in 22nm tri-gate CMOS. Symposium

on VLSI Circuits, VLSIC 2014, Digest of Technical Papers, Honolulu,

HI, USA, June 10-13, 2014. IEEE, 2014, 1�2. doi: 10.1109/VLSIC.

2014.6858420.

[90] M. Matsui, J. Nakajima and S. Moriai. A Description of the Camel-

lia Encryption Algorithm. RFC 3713 (2004), 1�15. doi: 10.17487/

RFC3713.

[91] P. Mell, T. Grance et al. The NIST de�nition of cloud computing.

(2011).

[92] D. Merling, W. Braun and M. Menth. E�cient Data Plane Protection

for SDN. 4th IEEE Conference on Network Softwarization and Work-

shops, NetSoft 2018, Montreal, QC, Canada, June 25-29, 2018. IEEE,

2018, 10�18. doi: 10.1109/NETSOFT.2018.8459923.

108

https://doi.org/10.1145/1868447.1868466
https://systemx.lenovofiles.com/help/topic/com.lenovo.rackswitch.g8272.doc/G8272_AG_8-2.pdf
https://systemx.lenovofiles.com/help/topic/com.lenovo.rackswitch.g8272.doc/G8272_AG_8-2.pdf
https://libreswan.org/wiki/Benchmarking_and_Performance_testing
https://libreswan.org/wiki/Benchmarking_and_Performance_testing
https://doi.org/10.1109/WD.2018.8361694
https://doi.org/10.1109/VLSIC.2014.6858420
https://doi.org/10.1109/VLSIC.2014.6858420
https://doi.org/10.17487/RFC3713
https://doi.org/10.17487/RFC3713
https://doi.org/10.1109/NETSOFT.2018.8459923

[93] R. Metcalfe and D. Boggs. Ethernet: Distributed Packet Switching for

Local Computer Networks (Reprint). Commun. ACM 26.1 (1983), 90�

95. doi: 10.1145/357980.358015.

[94] J. Metzler. Five SDN problems aired by analyst Jim Metzler. https:

/ / searchnetworking . techtarget . com / news / 2240183823 / Five -

SDN-problems-aired-by-analyst-Jim-Metzler. Online; accessed 12

December 2019. 2013.

[95] Mininet. An Instant Virtual Network on your Laptop (or other PC).

http://mininet.org. Online; accessed 12 December 2019.

[96] A. Morton. IMIX Genome: Speci�cation of Variable Packet Sizes for

Additional Testing. RFC 6985 (2013), 1�10. doi: 10.17487/RFC6985.

[97] D. Mulnix. Intel. QuickAssist Technology use cases. https://software.

intel.com/en-us/articles/how-intel-quickassist-technology-

accelerates- nfv- use- cases. Online; accessed 12 December 2019.

2017.

[98] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller and N. McK-

eown. Implementing an OpenFlow switch on the NetFPGA platform.

Proceedings of the 2008 ACM/IEEE Symposium on Architecture for

Networking and Communications Systems, ANCS 2008, San Jose, Cal-

ifornia, USA, November 6-7, 2008. Ed. by M. A. Franklin, D. K. Panda

and D. Stiliadis. ACM, 2008, 1�9. doi: 10.1145/1477942.1477944.

[99] D. Neil and S. Liu. Minitaur, an Event-Driven FPGA-Based Spiking

Network Accelerator. IEEE Trans. VLSI Syst. 22.12 (2014), 2621�2628.

doi: 10.1109/TVLSI.2013.2294916.

[100] Y. Nir. IPsec Cluster Problem Statement. RFC 6027 (2010), 1�12. doi:

10.17487/RFC6027.

[101] Y. Nir. ChaCha20, Poly1305, and Their Use in the Internet Key Ex-

change Protocol (IKE) and IPsec. RFC 7634 (2015), 1�13. doi: 10.

17487/RFC7634.

[102] NIST. National Vulnerability Database. CVE-2018-10811. Strongswan

Remote Denial of Service. https://nvd.nist.gov/vuln/detail/CVE-

2018-10811. Online; accessed 12 December 2019. 2018.

109

https://doi.org/10.1145/357980.358015
https://searchnetworking.techtarget.com/news/2240183823/Five-SDN-problems-aired-by-analyst-Jim-Metzler
https://searchnetworking.techtarget.com/news/2240183823/Five-SDN-problems-aired-by-analyst-Jim-Metzler
https://searchnetworking.techtarget.com/news/2240183823/Five-SDN-problems-aired-by-analyst-Jim-Metzler
http://mininet.org
https://doi.org/10.17487/RFC6985
https://software.intel.com/en-us/articles/how-intel-quickassist-technology-accelerates-nfv-use-cases
https://software.intel.com/en-us/articles/how-intel-quickassist-technology-accelerates-nfv-use-cases
https://software.intel.com/en-us/articles/how-intel-quickassist-technology-accelerates-nfv-use-cases
https://doi.org/10.1145/1477942.1477944
https://doi.org/10.1109/TVLSI.2013.2294916
https://doi.org/10.17487/RFC6027
https://doi.org/10.17487/RFC7634
https://doi.org/10.17487/RFC7634
https://nvd.nist.gov/vuln/detail/CVE-2018-10811
https://nvd.nist.gov/vuln/detail/CVE-2018-10811

[103] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka and T.

Turletti. A Survey of Software-De�ned Networking: Past, Present, and

Future of Programmable Networks. IEEE Communications Surveys and

Tutorials 16.3 (2014), 1617�1634. doi: 10.1109/SURV.2014.012214.

00180.

[104] Nvidia Cuda-zone. https : / / developer . nvidia . com / cuda - zone.

Online; accessed 12 December 2019.

[105] Open Network Foundation. Basic ONOS Tutorial.

https : / / wiki . onosproject . org / display / ONOS / Basic + ONOS +

Tutorial. Online; accessed 12 December 2019.

[106] Open Networking Foundation, OpenFlow 1.5.1 protocol speci�cation.

https://www.opennetworking.org/wp-content/uploads/2014/10/

openflow-switch-v1.5.1.pdf. Online; accessed 12 December 2019.

2018.

[107] Open Networking Foundation, OpenFlow standards.

https://www.opennetworking.org/software-defined-standards/

specifications/. Online; accessed 12 December 2019. 2018.

[108] Open Networking Foundation. P4 language.

https://www.opennetworking.org/p4/. Online; accessed 12 Decem-

ber 2019.

[109] Open Networking Foundation, SDN De�nition.

https://www.opennetworking.org/sdn-definition/. Online; ac-

cessed 12 December 2019.

[110] Open Virtual Switch (OpenvSwitch) project. https://www.openvswitch.

org. Online; accessed 12 December 2019.

[111] Open Virtual Switch (OpenvSwitch) project. Features. https://www.

openvswitch.org//features/. Online; accessed 12 December 2019.

[112] OpenFlow and REST API Security. https://floodlight.atlassian.

net/wiki/spaces/floodlightcontroller/pages/5636115/OpenFlow+

and+REST+API+Security+Configuration. Online; accessed 12 Decem-

ber 2019.

110

https://doi.org/10.1109/SURV.2014.012214.00180
https://doi.org/10.1109/SURV.2014.012214.00180
https://developer.nvidia.com/cuda-zone
https://wiki.onosproject.org/display/ONOS/Basic+ONOS+Tutorial
https://wiki.onosproject.org/display/ONOS/Basic+ONOS+Tutorial
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/p4/
https://www.opennetworking.org/sdn-definition/
https://www.openvswitch.org
https://www.openvswitch.org
https://www.openvswitch.org//features/
https://www.openvswitch.org//features/
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/5636115/OpenFlow+and+REST+API+Security+Configuration
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/5636115/OpenFlow+and+REST+API+Security+Configuration
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/5636115/OpenFlow+and+REST+API+Security+Configuration

[113] Openstack cloud operating system. https://www.openstack.org. On-

line; accessed 12 December 2019.

[114] Openstack cloud operating system. Cyborg project.

https://docs.openstack.org/cyborg/latest. Online; accessed 12

December 2019.

[115] Openstack. Components. https://www.openstack.org/software/

project-navigator/openstack-components. Online; accessed 12 De-

cember 2019.

[116] OpenVPN Community.OpenVPN and SWEET32. https://community.

openvpn.net/openvpn/wiki/SWEET32. Online; accessed 12 December

2019.

[117] OpenVPN, hardening. https://community.openvpn.net/openvpn/

wiki/Hardening. Online; accessed 12 December 2019.

[118] OpenVPN home page. https : / / openvpn . net. Online; accessed 12

December 2019.

[119] OpenVPN. Implementing a load-balancing/failover con�guration.

https://openvpn.net/community- resources/implementing- a-

load-balancing-failover-configuration/. Online; accessed 12 De-

cember 2019.

[120] OpenVPN, Security Advisories. https://openvpn.net/security-

advisories/. Online; accessed 12 December 2019.

[121] OpenVPN. Site-to-site VPN routing explained in detail.

https://openvpn.net/vpn- server- resources/site- to- site-

routing-explained-in-detail/. Online; accessed 12 December 2019.

[122] OpenVPN. Why SSL VPN? https://openvpn.net/faq/why-ssl-

vpn/. Online; accessed 12 December 2019.

[123] OpenWRT, a Linux based wireless router distribution. https://www.

openwrt.org. Online; accessed 12 December 2019.

[124] OpenWRT documentation, Mwan3 (use multiple WAN connections to-

gether). https://openwrt.org/docs/guide- user/network/wan/

multiwan/mwan3. Online; accessed 12 December 2019.

111

https://www.openstack.org
https://docs.openstack.org/cyborg/latest
https://www.openstack.org/software/project-navigator/openstack-components
https://www.openstack.org/software/project-navigator/openstack-components
https://community.openvpn.net/openvpn/wiki/SWEET32
https://community.openvpn.net/openvpn/wiki/SWEET32
https://community.openvpn.net/openvpn/wiki/Hardening
https://community.openvpn.net/openvpn/wiki/Hardening
https://openvpn.net
https://openvpn.net/community-resources/implementing-a-load-balancing-failover-configuration/
https://openvpn.net/community-resources/implementing-a-load-balancing-failover-configuration/
https://openvpn.net/security-advisories/
https://openvpn.net/security-advisories/
https://openvpn.net/vpn-server-resources/site-to-site-routing-explained-in-detail/
https://openvpn.net/vpn-server-resources/site-to-site-routing-explained-in-detail/
https://openvpn.net/faq/why-ssl-vpn/
https://openvpn.net/faq/why-ssl-vpn/
https://www.openwrt.org
https://www.openwrt.org
https://openwrt.org/docs/guide-user/network/wan/multiwan/mwan3
https://openwrt.org/docs/guide-user/network/wan/multiwan/mwan3

[125] N. Paladi and C. Gehrmann. SDN Access Control for the Masses. Com-

puters & Security 80 (2019), 155�172. doi: 10.1016/j.cose.2018.10.

003.

[126] C. A. Papagianni, G. Androulidakis and S. Papavassiliou. Virtual Topol-

ogy Mapping in SDN-Enabled Clouds. IEEE 3rd Symposium on Net-

work Cloud Computing and Applications, NCCA 2014, Rome, Italy,

February 5-7, 2014. Ed. by F. Quaglia, B. Ciciani and D. R. Avresky.

IEEE Computer Society, 2014, 62�67. doi: 10.1109/NCCA.2014.18.

[127] Parallel redundancy protocol (PRP). International Standard IEC 62439-

3. (2016).

[128] J. Park, W. Jung, G. Jo, I. Lee and J. Lee. PIPSEA: A Practical IPsec

Gateway on Embedded APUs. Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, Vienna, Aus-

tria, October 24-28, 2016. Ed. by E. R. Weippl, S. Katzenbeisser, C.

Kruegel, A. C. Myers and S. Halevi. ACM, 2016, 1255�1267. doi: 10.

1145/2976749.2978329.

[129] K. G. Paterson and A. K. L. Yau. Padding Oracle Attacks on the

ISO CBC Mode Encryption Standard. Topics in Cryptology - CT-

RSA 2004, The Cryptographers' Track at the RSA Conference 2004,

San Francisco, CA, USA, February 23-27, 2004, Proceedings. Ed. by

T. Okamoto. Vol. 2964. Lecture Notes in Computer Science. Springer,

2004, 305�323. doi: 10.1007/978-3-540-24660-2_24.

[130] R. Pereira and R. Adams. The ESP CBC-Mode Cipher Algorithms.

RFC 2451 (1998), 1�14. doi: 10.17487/RFC2451.

[131] P. P�ster, B. Paterson and J. Arkko. Distributed Pre�x Assignment

Algorithm. RFC 7695 (2015), 1�20. doi: 10.17487/RFC7695.

[132] pfSense, a FreeBSD based �rewall distribution. https://www.pfsense.

org. Online; accessed 12 December 2019.

[133] D. Piper. The Internet IP Security Domain of Interpretation for ISA-

KMP. RFC 2407 (1998), 1�32. doi: 10.17487/RFC2407.

[134] J. Postel. User Datagram Protocol. RFC 768 (1980), 1�3. doi: 10.

17487/RFC0768.

112

https://doi.org/10.1016/j.cose.2018.10.003
https://doi.org/10.1016/j.cose.2018.10.003
https://doi.org/10.1109/NCCA.2014.18
https://doi.org/10.1145/2976749.2978329
https://doi.org/10.1145/2976749.2978329
https://doi.org/10.1007/978-3-540-24660-2_24
https://doi.org/10.17487/RFC2451
https://doi.org/10.17487/RFC7695
https://www.pfsense.org
https://www.pfsense.org
https://doi.org/10.17487/RFC2407
https://doi.org/10.17487/RFC0768
https://doi.org/10.17487/RFC0768

[135] J. Postel. Internet Control Message Protocol. RFC 792 (1981), 1�21.

doi: 10.17487/RFC0792.

[136] J. Postel. Internet Protocol. RFC 791 (1981), 1�51. doi: 10.17487/

RFC0791.

[137] J. Postel. Transmission Control Protocol. RFC 793 (1981), 1�91. doi:

10.17487/RFC0793.

[138] J. Postel and J. K. Reynolds. Telnet Protocol Speci�cation. RFC 854

(1983), 1�15. doi: 10.17487/RFC0854.

[139] N. F. Pub. Announcing the advanced encryption standard (AES). Fed-

eral Information Processing Standards Publication 197 (2001), 1�51.

[140] Quarkslab, OpenVPN 2.4.0 Security Assessment. Technical report.

https://ostif.org/wp- content/uploads/2017/05/OpenVPN1.

2final.pdf. Online; accessed 12 December 2019. 2017.

[141] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi and

S. Shenker. Software-de�ned internet architecture: decoupling architec-

ture from infrastructure. 11th ACM Workshop on Hot Topics in Net-

works, HotNets-XI, Redmond, WA, USA - October 29 - 30, 2012. Ed.

by S. Kandula, J. Padhye, E. G. Sirer and R. Govindan. ACM, 2012,

43�48. doi: 10.1145/2390231.2390239.

[142] V. Redka. MLSDEV. A Beginner's Tutorial for Understanding REST-

ful API. https://mlsdev.com/blog/81-a-beginner-s-tutorial-

for - understanding - restful - api. Online; accessed 12 December

2019. 2016.

[143] E. Rescorla and N. Modadugu. Datagram Transport Layer Security.

RFC 4347 (2006), 1�25. doi: 10.17487/RFC4347.

[144] E. Rescorla and N. Modadugu. Datagram Transport Layer Security

Version 1.2. RFC 6347 (2012), 1�32. doi: 10.17487/RFC6347.

[145] A. Romanow. Media Access Control (MAC) Security IEEE 802.1 ae.

IEEE, 2006.

113

https://doi.org/10.17487/RFC0792
https://doi.org/10.17487/RFC0791
https://doi.org/10.17487/RFC0791
https://doi.org/10.17487/RFC0793
https://doi.org/10.17487/RFC0854
https://ostif.org/wp-content/uploads/2017/05/OpenVPN1.2final.pdf
https://ostif.org/wp-content/uploads/2017/05/OpenVPN1.2final.pdf
https://doi.org/10.1145/2390231.2390239
https://mlsdev.com/blog/81-a-beginner-s-tutorial-for-understanding-restful-api
https://mlsdev.com/blog/81-a-beginner-s-tutorial-for-understanding-restful-api
https://doi.org/10.17487/RFC4347
https://doi.org/10.17487/RFC6347

[146] P. Rygielski, M. Seliuchenko, S. Kounev and M. Klymash. Performance

Analysis of SDN Switches with Hardware and Software Flow Tables.

10th EAI International Conference on Performance Evaluation Method-

ologies and Tools, VALUETOOLS 2016, Taormina, Italy, 25th-28th

Oct 2016. Ed. by A. Pulia�to, K. S. Trivedi, B. Tu�n, M. Scarpa,

F. Machida and J. Alonso. ACM, 2016. doi: 10.4108/eai.25-10-

2016.2266540.

[147] A. Salman, M. Rogawski and J. Kaps. E�cient Hardware Accelerator

for IPSec Based on Partial Recon�guration on Xilinx FPGAs. 2011

International Conference on Recon�gurable Computing and FPGAs,

ReConFig 2011, Cancun, Mexico, November 30 - December 2, 2011.

Ed. by P. M. Athanas, J. Becker and R. Cumplido. IEEE Computer

Society, 2011, 242�248. doi: 10.1109/ReConFig.2011.33.

[148] B. Schneier. Schneier on security. Analysis of Microsoft PPTP Version

2. https://www.schneier.com/academic/pptp/. Online; accessed 12

December 2019.

[149] D. Schor. WikiChip. Intel Rolls Out Next-Gen Data Center Portfolio.

https://fuse.wikichip.org/news/2130/intel-rolls-out-next-

gen-data-center-portfolio-100-gigabit-ethernet-optane-dc-

hewitt-lake-and-cascade-lake-with-up-to-56-cores/6/. Online;

accessed 12 December 2019.

[150] S. Scott-Hayward, G. O'Callaghan and S. Sezer. Sdn Security: A Sur-

vey. IEEE SDN for Future Networks and Services, SDN4FNS 2013,

Trento, Italy, November 11-13, 2013. IEEE, 2013, 1�7. doi: 10.1109/

SDN4FNS.2013.6702553.

[151] SDX Central de�nition of Software-De�ned Networking (SDN). https:

//www.sdxcentral.com/networking/sdn/definitions/what-the-

definition-of-software-defined-networking-sdn/. Online; ac-

cessed 12 December 2019. 2018.

[152] SDX Central, Understanding the SDN Architecture - SDN Control Plane

& SDN Data Plane. https://www.sdxcentral.com/networking/sdn/

definitions/inside-sdn-architecture/. Online; accessed 12 De-

cember 2019. 2018.

114

https://doi.org/10.4108/eai.25-10-2016.2266540
https://doi.org/10.4108/eai.25-10-2016.2266540
https://doi.org/10.1109/ReConFig.2011.33
https://www.schneier.com/academic/pptp/
https://fuse.wikichip.org/news/2130/intel-rolls-out-next-gen-data-center-portfolio-100-gigabit-ethernet-optane-dc-hewitt-lake-and-cascade-lake-with-up-to-56-cores/6/
https://fuse.wikichip.org/news/2130/intel-rolls-out-next-gen-data-center-portfolio-100-gigabit-ethernet-optane-dc-hewitt-lake-and-cascade-lake-with-up-to-56-cores/6/
https://fuse.wikichip.org/news/2130/intel-rolls-out-next-gen-data-center-portfolio-100-gigabit-ethernet-optane-dc-hewitt-lake-and-cascade-lake-with-up-to-56-cores/6/
https://doi.org/10.1109/SDN4FNS.2013.6702553
https://doi.org/10.1109/SDN4FNS.2013.6702553
https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/
https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/
https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/
https://www.sdxcentral.com/networking/sdn/definitions/inside-sdn-architecture/
https://www.sdxcentral.com/networking/sdn/definitions/inside-sdn-architecture/

[153] SDX Central. What are SDN Northbound APIs (and SDN Rest APIs)?

https : / / www . sdxcentral . com / networking / sdn / definitions /

north-bound-interfaces-api/. Online; accessed 12 December 2019.

[154] SDX Central. What are SDN Southbound APIs?

https : / / www . sdxcentral . com / networking / sdn / definitions /

southbound-interface-api/. Online; accessed 12 December 2019.

[155] SDX Central. What is Software-De�ned WAN (or SD-WAN)? https:

//www.sdxcentral.com/networking/sd-wan/definitions/software-

defined-sdn-wan/. Online; accessed 12 December 2019.

[156] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu. Edge Computing: Vision

and Challenges. IEEE Internet of Things Journal 3.5 (2016), 637�646.

doi: 10.1109/JIOT.2016.2579198.

[157] R. Singh. Numato Lab. FPGA Vs ASIC: Di�erences Between Them

And Which One To Use? https://numato.com/blog/differences-

between-fpga-and-asics/. Online; accessed 12 December 2019. 2018.

[158] P. Sjovall, V. Viitamaki, A. Oinonen, J. Vanne, T. D. Hämäläinen and

A. Kulmala. Kvazaar 4K HEVC intra encoder on FPGA accelerated air-

frame server. 2017 IEEE International Workshop on Signal Processing

Systems, SiPS 2017, Lorient, France, October 3-5, 2017. IEEE, 2017,

1�6. doi: 10.1109/SiPS.2017.8109999.

[159] Stemmer Imaging. Introduction to FPGA acceleration. https://www.

stemmer-imaging.com/en-fi/technical-tips/introduction-to-

fpga-acceleration/. Online; accessed 12 December 2019.

[160] M. Stenberg, S. Barth and P. P�ster. Home Networking Control Pro-

tocol. RFC 7788 (2016), 1�40. doi: 10.17487/RFC7788.

[161] StrongSwan IKEv1 Cipher Suites. https://wiki.strongswan.org/

projects/strongswan/wiki/IKEv1CipherSuites. Online; accessed

12 December 2019. 2018.

[162] StrongSwan IKEv2 Cipher Suites. https://wiki.strongswan.org/

projects/strongswan/wiki/IKEv2CipherSuites. Online; accessed

12 December 2019. 2018.

115

https://www.sdxcentral.com/networking/sdn/definitions/north-bound-interfaces-api/
https://www.sdxcentral.com/networking/sdn/definitions/north-bound-interfaces-api/
https://www.sdxcentral.com/networking/sdn/definitions/southbound-interface-api/
https://www.sdxcentral.com/networking/sdn/definitions/southbound-interface-api/
https://www.sdxcentral.com/networking/sd-wan/definitions/software-defined-sdn-wan/
https://www.sdxcentral.com/networking/sd-wan/definitions/software-defined-sdn-wan/
https://www.sdxcentral.com/networking/sd-wan/definitions/software-defined-sdn-wan/
https://doi.org/10.1109/JIOT.2016.2579198
https://numato.com/blog/differences-between-fpga-and-asics/
https://numato.com/blog/differences-between-fpga-and-asics/
https://doi.org/10.1109/SiPS.2017.8109999
https://www.stemmer-imaging.com/en-fi/technical-tips/introduction-to-fpga-acceleration/
https://www.stemmer-imaging.com/en-fi/technical-tips/introduction-to-fpga-acceleration/
https://www.stemmer-imaging.com/en-fi/technical-tips/introduction-to-fpga-acceleration/
https://doi.org/10.17487/RFC7788
https://wiki.strongswan.org/projects/strongswan/wiki/IKEv1CipherSuites
https://wiki.strongswan.org/projects/strongswan/wiki/IKEv1CipherSuites
https://wiki.strongswan.org/projects/strongswan/wiki/IKEv2CipherSuites
https://wiki.strongswan.org/projects/strongswan/wiki/IKEv2CipherSuites

[163] StrongSwan, the OpenSource IPsec-based VPN Solution. https://www.

strongswan.org. Online; accessed 12 December 2019. 2018.

[164] StrongSwan. User documentation. High Availability. http://wiki.

strongswan.org/projects/strongswan/wiki/HighAvailability.

Online; accessed 12 December 2019. 2018.

[165] Stunnel. TLS encryption wrapper proxy software.

https://www.stunnel.org. Online; accessed 12 December 2019.

[166] TensorFlow machine learning project. https://www.tensorflow.org/.

Online; accessed 12 December 2019.

[167] The IEEE 802.1D standard. 1990.

[168] B. Thompson and S. Hollar. World Wide Technology. Software De-

�ned Revolution: A Look at Cisco SD-WAN O�erings. https://www.

youtube.com/watch?v=9345AqJ6oTA. Online; accessed 12 December

2019. 2018.

[169] M. Tremer. IPFire IPsec benchmark. https://blog.ipfire.org/

post/feature-spotlight-galois-counter-mode-ipsec-with-10g.

Online; accessed 12 December 2019. 2018.

[170] O. Troan and R. E. Droms. IPv6 Pre�x Options for Dynamic Host

Con�guration Protocol (DHCP) version 6. RFC 3633 (2003), 1�19.

doi: 10.17487/RFC3633.

[171] J. Tyson and S. Crawford. Howstu�works. How VPNs Work. Remote

access VPN. https://computer.howstuffworks.com/vpn3.htm. On-

line; accessed 12 December 2019. 2018.

[172] J. Tyson and S. Crawford. Howstu�works. How VPNs Work. Site-to-

site VPN. https://computer.howstuffworks.com/vpn4.htm. Online;

accessed 12 December 2019. 2018.

[173] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos and S.

Ioannidis. Gnort: High Performance Network Intrusion Detection Using

Graphics Processors. Recent Advances in Intrusion Detection, 11th In-

ternational Symposium, RAID 2008, Cambridge, MA, USA, September

15-17, 2008. Proceedings. Ed. by R. Lippmann, E. Kirda and A. Tracht-

116

https://www.strongswan.org
https://www.strongswan.org
http://wiki.strongswan.org/projects/strongswan/wiki/HighAvailability
http://wiki.strongswan.org/projects/strongswan/wiki/HighAvailability
https://www.stunnel.org
https://www.tensorflow.org/
https://www.youtube.com/watch?v=9345AqJ6oTA
https://www.youtube.com/watch?v=9345AqJ6oTA
https://blog.ipfire.org/post/feature-spotlight-galois-counter-mode-ipsec-with-10g
https://blog.ipfire.org/post/feature-spotlight-galois-counter-mode-ipsec-with-10g
https://doi.org/10.17487/RFC3633
https://computer.howstuffworks.com/vpn3.htm
https://computer.howstuffworks.com/vpn4.htm

enberg. Vol. 5230. Lecture Notes in Computer Science. Springer, 2008,

116�134. doi: 10.1007/978-3-540-87403-4_7.

[174] J. Viega and D. A. McGrew. The Use of Galois/Counter Mode (GCM)

in IPsec Encapsulating Security Payload (ESP). RFC 4106 (2005), 1�

11. doi: 10.17487/RFC4106.

[175] Wikipedia. Bitcoin. https://en.wikipedia.org/wiki/Bitcoin. On-

line; accessed 12 December 2019.

[176] Wireguard. Performance analysis of Wireguard VPN compared to Open-

VPN and IPsec. https://www.wireguard.com/performance/. Online;

accessed 12 December 2019. 2018.

[177] World Wide Web Consortium. Extensible Markup Language (XML) 1.0

(Fifth Edition). https://www.w3.org/TR/REC-xml/. Online; accessed

12 December 2019.

[178] L. Yang, R. Dantu, T. A. Anderson and R. Gopal. Forwarding and

Control Element Separation (ForCES) Framework. RFC 3746 (2004),

1�40. doi: 10.17487/RFC3746.

[179] T. Ylönen and C. Lonvick. The Secure Shell (SSH) Connection Proto-

col. RFC 4254 (2006), 1�24. doi: 10.17487/RFC4254.

[180] X. Zhang and T. Tsou. IPsec Anti-Replay Algorithm without Bit Shift-

ing. RFC 6479 (2012), 1�9. doi: 10.17487/RFC6479.

117

https://doi.org/10.1007/978-3-540-87403-4_7
https://doi.org/10.17487/RFC4106
https://en.wikipedia.org/wiki/Bitcoin
https://www.wireguard.com/performance/
https://www.w3.org/TR/REC-xml/
https://doi.org/10.17487/RFC3746
https://doi.org/10.17487/RFC4254
https://doi.org/10.17487/RFC6479

118

PUBLICATIONS

119

PUBLICATION
I

Home Network Security: Modelling Power Consumption to Detect

and Prevent Attacks on Homenet Routers

B. Silverajan, M. Vajaranta and A. Kolehmainen

11th Asia Joint Conference on Information Security, AsiaJCIS 2016, Fukuoka,

Japan, August 4-5, 2016. 2016, 9�16

doi: 10.1109/AsiaJCIS.2016.10

Publication reprinted with the permission of the copyright holders

https://doi.org/10.1109/AsiaJCIS.2016.10

Home Network Security: Modelling Power
Consumption to Detect and Prevent Attacks on

Homenet Routers
Bilhanan Silverajan, Markku Vajaranta, Antti Kolehmainen

Tampere University of Technology, Finland
Email: firstname.lastname@tut.fi

Abstract—Future home networks are expected to become
extremely sophisticated, yet only the most technically adept
persons are equipped with skills to secure them. In this paper, we
provide a novel solution to detect and prevent attacks on home
routers based on anomalous power consumption. We developed
a means of measuring power consumption that could be used in
a wide variety of home networks, although our primary focus
on is on profiling Homenet-based residential routers, specifically
to detect attacks against homenet routing infrastructure. Several
experimental results are presented when the infrastructure is
exposed to various types of attacks, which show strong evidence
of the feasibility of our approach.

Index Terms—IETF Homenet, Home Network Security, Power
Consumption.

I. INTRODUCTION

Networks in the home today consist of relatively simple
setups. In the majority of homes, a broadband router or cellular
gateway delivers connectivity to devices in the home, either
wirelessly over Wi-Fi, or using an Ethernet cable. In all these
instances, a single subnet is offered, usually behind a NAT
with private IPv4 addresses. Additional gateways are rarely
used, except as repeaters.

In recent years however, the home has rapidly emerged as
a natural convergence point for technological developments
and innovations. It is not only commonplace to have con-
nected homes contain smart consumer devices, sensors, remote
surveillance systems and home automation, but increasingly
having mobile devices and even vehicular networks joining
into a home network when needed. Additionally, better con-
nectivity options and more advanced networking possibilities,
such as support for IPv6 that provides end-to-end communi-
cation without the need for NATs, are now also made possible
from service providers and network operators.

The Home Networking Working Group (Homenet WG)
was subsequently chartered by the Internet Engineering Task
Force (IETF) as a response to the rapidly increasing arrays of
devices, computers, sensors and gateways that are constantly
being added into residential networks, as well as a means to
simplify end-to-end communication, service integration and
network management by the home network owner, network
operators and service providers. Among others, the Homenet
WG proposed that home networks need to adopt an architec-
ture that allows them to scale and evolve organically as the
complexity of the services and devices grow.

One of the most significant recommendations made is
that, with the introduction of IPv6 for home networking, a
Homenet-compliant residential network (simply referred to
from now on as “homenet”), should support multiple networks
and subnets. A homenet can therefore consist of multiple
routers forming a proper routing infrastructure complete with
its own routing protocol. The other is that, as the owners of a
homenet do not normally comprise technically adept persons,
minimal (and ideally zero) configuration of addressing and
networking needs to be performed: Users simply connect their
devices to their home subnet of choice, and the homenet in-
frastructure should automatically handle all the intrinsic details
for addressing, routing, service discovery and reachability.

In terms of home network security, several aspects of
protecting home networks and devices, such as data pri-
vacy, access control and end device protection have been
investigated in current research publications. However, apart
from well-known administrative practices such as ensuring
the use of good passphrases and passwords for wireless
connectivity, employing firewalls and access control lists in
the gateway, little if any security research on home gateway
security actually exists. For example, Geon Woo Kim et
al. [1] discuss the need to protect home networks from a
variety of malware, Distributed Denial-of-Service (DDoS) and
eavesdropping attacks through the introduction of a framework
providing guarantees of authentication, authorisation and a
rule-based security policy engine for undertaking actions when
security infractions occur. Mohamed Abid [2] studies the use
of biometric authentication to enable and personalise user
access into a home network. Also, Shaojun Qu [3] discusses
remote authentication and authorisation to provide secure
access into the home environment.

On the other hand, Lucas Dicioccio et al. [4] reveals that,
while on the whole, even if the number of connected devices
in four out of five home networks amount to less than a
dozen, home gateways in particular are always active at any
given time. This is exacerbated in homenet-based residential
networks, when a proper routing infrastructure having multiple
routers remains active at any given time. Therefore, even if
the idea of an automatically configured routed network in
the home provides convenience and significant advantages to
various kinds of users and smart devices, the homenet routers
themselves can become highly susceptible to malicious activity

unknown to the network owner. This creates new security
challenges, as now home routers and gateways can be exposed
to attacks to intercept and subvert routing and traffic, or inject
malicious router into the home network.

Therefore, the role of security for the protection of a
homenet’s routing infrastructure is important, and can fall
into several considerations. Firstly, access control is needed
to prevent unauthorised eavesdropping, and permitting only
authorised routers to join the core network. This relies on
proper policies and credentials for channel security, such as
symmetric keys, strong passphrases or certificates. Secondly,
authentication and verification of routing messages must be
performed, which allows a router to distinguish and discard
malicious or spoofed packets, particularly when a shared
wireless medium is used. Related to authorisation as well
as authentication is the need to ensure the completeness,
correctness and integrity of routing information. This deters
attackers from being able to insert a malicious router into
the homenet and subsequently inject traffic or cause data
destruction to subvert the routing network.

In conjunction with these considerations, the requirement
of availability needs to also be addressed, particularly so for
routers that could be battery powered. Such routers can exist as
gateways to vehicular networks, or to extend the homenet over
a wider area for a limited period of time. Any sort of availabil-
ity requirements have typically referred to resilience against
Denial-of-Service (DoS) attacks intended at disabling services
and network infrastructure. When battery-operated routers are
taken into account, availability also refers to resilience against
attacks designed to drain energy, by extensive or prolonged
communication or computational activity [5]. As these can be
launched at virtually any layer of the communication protocol
stack, they can often go unnoticed until power states are
diminished to near critical levels.

While attacks on simple home gateways have been mounted
remotely over the Internet, wireless attacks on homenets can
be realistically compromised by an attacker physically nearby.
Also, residential networks are normally not managed by highly
technical users, who often lack the type of knowledge and
the sophisticated tools to cope with detecting and preventing
attacks on routers.

Hence, we propose a novel approach to protect and detect
malicious activity in a homenet, particularly with regards to
the routing infrastructure. Our approach relies on profiling
the power consumption of homenet routers. By studying the
energy patterns of the routers in various scenarios, such as
during normal activity or when various kinds of attacks are in
progress, unusual behaviour in the routers can be correlated
with spikes or elevated levels of the consumed energy. This
allows network owners to detect attacks in progress to be
detected with a high level of confidence.

Using anomalous power consumption as a means to detect
attacks is a promising area of research that is at the moment
still in its infancy. However, the idea has been applied in
several mobile and wireless domains. For example, research
has been successfully performed on anomalous battery drains

on mobile phone to detect malware as well as unknown
software bugs [6], [7]. Timothy K. Buennemeyer et al. [8]
describes a battery-sensing intrusion protection system which
detects irregular communication activity over IEEE 802.11
Wi-Fi and 802.15.1 Bluetooth. However, to the extent of
our knowledge, applying anomalous power consumption as
a metric for threat detection in routers and routing systems,
has not been performed yet.

Therefore, the aim of our paper is to detail our empirical
power measurements of homenet routers and findings under
different kinds of attack scenarios designed to disrupt network
routing or drain the power from a battery operated network.
In so doing, we attempt to provide evidence of the feasi-
bility of our approach, which can then be used to ensure
further resilience and robustness of homenets. Since password-
cracking brute-force attacks as well as DoS attacks on home
networks have been well documented, our focus is instead
on the securing the routing infrastructure of the homenet.
Therefore, our investigation centers around measuring the
power consumption of homenet routers when the wireless
channel security is being compromised, or when the routing
protocol used by a homenet, called Babel, is targeted.

Section II provides a brief background of the Homenet
architecture, relevant protocols as well as expected deployment
scenarios. Section III details the experimental setup for our
measurements. Section IV provides a detailed explanation of
each experiment and obtained measurements, while Section V
then discusses our findings. Our conclusions are subsequently
given in Section VI.

II. IETF HOMENET

In this section, we describe work of the IETF Homenet WG
to standardise home networks which is relevant to this paper.
An exhaustive discussion of the entire architecture, however,
is out of scope, and the interested reader is encouraged to refer
to the relevant working group documents.

The Homenet WG’s intent is to research and standardise
networking protocols and other mechanisms useful for residen-
tial home networks [9]. Supporting IPv6 natively, providing
automatic networking and service discovery as well as sur-
viving uplink disruptions were perceived as important goals.
The home network is also envisioned to grow large enough
to require multiple network segments and subnets within the
home, therefore a critical requirement of the architecture is to
allow the existence of several routers, which then need to be
orchestrated to perform actual routing in the network, using
one more more well-known interior gateway routing protocols.

For proper operation, ISPs supporting homenet-based resi-
dential networks are required to enable IPv6 and then support
DHCPv6-based prefix delegation, so that a requesting home
router would be supplied an IPv6 address prefix, instead of
a single IPv6 address. This roughly corresponds to an ISP
supplying an IPv6 address block to the home network, and
the router subsequently delegating IPv6 addresses and address
prefixes to other home devices and routers as necessary.

When more than 1 router is present in the homenet, an
interior routing protocol is used within the home. Currently
the routing protocol of choice in Homenet WG is Babel
[10], an ad-hoc multi-hop mesh networking distance vector
protocol. Babel possesses properties such as loop avoidance,
rapid convergence and high performance. A Babel-based mesh
network is resilient to link disruptions, as the protocol adapts
and repairs the mesh topology based on measured link quality,
ensuring a high level of end-to-end reachability. Babel also
has a low memory footprint, and works well over both fixed
Ethernet links as well as wireless 802.11-based radio. These
latter properties make Babel an ideal candidate for homenet,
since a residential gateway and routing infrastructure consists
of inexpensive off-the-shelf consumer-grade hardware which
are not as powerful as enterprise-level network equipment
and generally possess the ability to provide IP connectivity
over Wi-Fi and fixed Ethernet. In some cases, these can also
be resource-constrained or battery-powered routers, allowing
the homenet to encompass vehicular gateways and extend to
peripheral residential areas for limited periods of time.

Finally, homenet routers obtain and distribute information
about the capabilities, routing protocols and services in the
homenet using the Homenet Control Protocol (HNCP) [11] .

While homenet is designed to work with IPv6, the tech-
nology is IP agnostic to end-devices, and IPv4 connectivity
works just as well too. In a homenet deployment consisting
of multiple routers, it is envisioned that typical deployments
would rely on a border router communicating with an ISP
to obtain an IPv6 prefix for the homenet. Other internal
routers would communicate with the border router over fixed
Ethernet, or over Wi-Fi using ad-hoc mode and create a mesh-
based routing network running Babel. Devices in the home
then are supplied connectivity over Wi-Fi using infrastructure
mode over a different radio. Alternatively, depending on the
router hardware, if only one physical Wi-Fi radio interface is
available, it is also possible to advertise 2 different Service
Set Identifiers (SSIDs), and hence virtual wireless interfaces:
the first for joining into the babel routing mesh using ad-hoc
mode, and the second for supplying connectivity to devices
in the home using infrastructure mode. The border router also
periodically transmits router advertisement messages into the
home network, and therefore both end-devices and internal
routers can automatically configure their IPv6 addresses using
Stateless Address Autoconfiguration (SLAAC), in addition to
obtaining private IPv4 addresses using DHCP.

In default modes, neither Babel, nor the ad-hoc mesh net-
work running over Wi-Fi, require any security extensions for
proper interworking. Any router part of the same mesh is able
to communicate and exchange routing information with any
other existing router, while the entire Wi-Fi mesh network can
be set as an open ad-hoc network which broadcasts a common
SSID specifically for connecting access points. Nevertheless, it
is prudent to employ security measures in both Babel as well as
the wireless mesh network. For Babel, message authentication
can be enabled with a Hashed Message Authentication Code
(HMAC) cryptographic authentication [12]. When HMAC is

used, two compliant hash algorithms must be supported, both
having a 160-bit digest: RIPEMD-160 and SHA-1. Additional
hash algorithms may also be supported as described in RFC
7298. For Wi-Fi, WPA2-PSK authentication, which uses a
human-readable passphrase, can be employed.

III. EXPERIMENTAL SETUP

Our test environment consisted of several portions. Firstly,
we created an ISP capable of providing Internet connectivity
to various home networks via IPv4 and IPv6. A DHCP server
delivers a single IPv4 address to home border routers (as
most ISPs do today), while IPv6 prefix delegation consisting
of a /56 prefix is provided to supply the home network
with global IPv6 addresses. Secondly, we then deployed a
Homenet-compliant residential network with four wireless
TP-Link AC-1200 routers, which each have a Qualcomm
Atheros QCA9558 CPU, 16MB of flash and 128MB of flash
memory. Routers were positioned several meters apart from
each other approximately equidistant, in order to form a fully
connected mesh. Each router was capable of dual band Wi-Fi
on both 2.4Ghz and 5GHz radio interfaces. The stock firmware
was replaced with the latest OpenWRT ”Designated Driver”
distribution, based on Linux kernel version 4.1.16. The hnetd
(for HNCP) and mdnsd (for multicast service discovery) pack-
ages were installed. Because the babeld (for Babel routing)
provided as a package in OpenWRT does not support HMAC-
based authentication, we cross-compiled a custom babeld for
OpenWRT from the source code provided by the Quagga RE
project, in which HMAC authentication was supported. The
2.4 GHz radio interfaces were dedicated towards creating the
wireless mesh network in which the Babel routing protocol
was utilised. While the 5 GHz radio interfaces can advertise
Wi-Fi connectivity to client devices, for the purpose of our
measurements, we did not enable the interface to eliminate
any measurement bias from communication with end-devices.
Thus, the power consumption figures obtained corresponded
directly to traffic originated and exchanged among the routers
themselves within the Babel-based wireless mesh network.

Fig 1 depicts the test environment. In addition to the routers,
the setup also consisted of a commercial industrial-grade load
generating tool called Ruge [13] that is capable of crafting
forged and flooding packets and simulating DoS attack loads
to intended target networks or hosts. Ruge is a LAN-based tool
and hence used directly for attacks in the homenet in which
physical access to the router is possible. For wireless attacks,
a laptop was used as a relay together with Ruge.

In addition to these components, the setup also consisted of
three Energy Monitoring Modules (EMM), each of which were
connected to a homenet router. The EMMs were built in-house
and monitored the precise power being supplied (both voltage
and current) non-invasively to the routers. The design of the
EMM was adapted from the Energino energy consumption
monitoring toolkit [14], which provides real-time, precise,
energy consumption statistics for any DC appliance. Fig 2
shows the constructed EMM.

HOMENET

EMM	

EMM	

EMM	

ISP

Figure 1: Setup for measuring power consumption. Routers are
interconnected in a full mesh topology. Blue arrows indicate
authentic Babel traffic. Red arrows depict forged traffic.

Figure 2: Energy Monitoring Module.

IV. MEASUREMENTS

This section presents our methodology and measurements
per experiment. Various kinds of attacks were targetted at
the homenet. In some cases, power measurements were taken
when Babel was used without HMAC authentication. In the
others, HMAC authentication was enabled, using the SHA1
algorithm. In IETF protocol design, HMAC-SHA-1 is the
preferred keyed-hash algorithm [15].

For each experiment, several sets of measurements were
taken to ensure data correlation. Each run was conducted once
the routers were in steady-state both before and after attacks,

and measurements were taken approximately for an hour.
Additionally, datasets for the three access points were verified
to ensure correct calibration of the EMMs. For each reading
taken from the serial interface of the EMM, the data consisted
of the average voltage, average current, an approximate sample
size of 800 voltage/current samples in the averaging window
of a single reading, each for an approximate time of 200ms
in the averaging window.

For each set, we start by describing the acquisition of our
dataset and then follow with an initial analysis of the results.
A deeper discussion of these results is presented in the next
section V.

A. Baseline Measurements

Wireshark IO Graphs: jemma

60 120 180 240 300 360 420

Time (s)

18

24

30

36

42

48

54

60

P
a
ck

e
ts

/s

60	 120	 180	 240	 300	 360	 420	

18	

24	

30	

36	

42	

2

2.2

2.4

2.6

2.8

3

0 40 80 120 160 200 240 280

Po
w
er
 (W

)

Time (s)

2

2.2

2.4

2.6

2.8

3

0 40 80 120 160 200 240 280

Po
w
er
 (W

)

Time (s)

Figure 3: Baseline graphs from top-down. a) Power consump-
tion with Babel, HMAC enabled. b) Power consumption with
Babel, no HMAC. c) mDNS traffic triggering peaks in energy
consumption. y-axis shows packet count, x-axis shows elapsed
time in seconds.

In this experiment, we took detailed power measurements
of access points in which no malicious traffic was introduced.
By default, Wi-Fi channel security was achieved by the use of
WPA2-PSK. Two types of power measurements were taken. In
the first instance, the energy was monitored when Babel was
used with HMAC authentication enabled, while in the second

Table I: Babel Protocol Messages and Sizes in a 4-router mesh

Babel Packet No HMAC With HMAC
Hello 74 106
IHU 122 154

Update 157 189

instance, Babel was used without HMAC. The aim of the
experiment was to firstly to study the impact of enabling Babel
message authentication on the overall power consumption,
and secondly, to establish a baseline measurement with which
subsequent experiments and power consumption levels can be
compared against.

Figs 3a and b show the power consumption levels for a
single router with and without HMAC enabled on Babel.
For a 300s duration of the experiment, the average power
consumption for running Babel with HMAC enabled, was
2193mW, while that of the same routing protocol without any
HMAC was 2192mW.

These two values show that there is virtually no difference,
if any, on a homenet router’s power consumption, when
HMAC authentication is enabled for Babel routing during
normal operation. This is so, even when accounted for slightly
larger packet sizes as well as computational time to check
message authenticity. Table I shows Babel packet types (Hello,
I-Heard-U, and Update) and their respective sizes in the mesh
network in which every router has 3 neighbours. For larger
numbers of routers in the mesh network, the size of the Update
packet would correspondingly increase. Consequently, should
Babel be running in a fixed Ethernet configuration, Update
packets would be smaller in size. As can be seen, with HMAC
enabled, the overhead is a constant 32-byte structure to every
Babel packet.

Periodic glitches and spikes can also be consistently ob-
served in both sets of measurements. From network traces
taken during the measurements, the cause was pinpointed to
be large bursts of packets transmitted and received at fixed
intervals over the radio interface, as shown in Figure 3c. A
specific investigation using Wireshark revealed that these were
multicast DNS (mDNS) traffic. mDNS is used in homenets
for automatic service discovery. Table II shows the relative
amount of traffic seen during a 300s interval corresponding
to measurement periods. It can be seen that in total, even if
it is bursty in nature, mDNS traffic is significant, accounting
for more than half of all traffic, having 232 packets with a
total of 84224 bytes. This is compared to 244 Babel packets
having a total of 50089 bytes (or 57897 bytes with HMAC
authentication enabled). By contrast, HNCP traffic is far less
noisy, accounting for a total of 93 packets and 12818 bytes
which accounts for between 8% to 9 % of the total traffic.

B. Wireless Channel Attacks on the Mesh Network

We undertook wireless online channel attacks to show the
power consumption of routers when Wi-Fi de-authentication
attacks are in progress. For Babel routing the homenet routers
used a WPA2-based mesh network protected with a strong
passphrase. Firstly the wireless traffic was passively monitored

Table II: Protocol, number and bytes sent and received in 300s

Protocol
Type

Bytes
Sent

Packets
Sent

Bytes
Received

Packets
Received

mDNS 16628 44 67596 188
Babel 18063 98 32026 146

Babel+HMAC 21199 98 36698 146
HNCP 1922 19 10896 74

using the airodump-ng packet capture tool in order to obtain
the Base Service Set Identifier (BSSID) of an already running
mesh network. During the same period, the BSSID of the
all communicating routers connected to the mesh were also
retrieved.

Subsequently two de-authentication attacks were mounted
simultaneously from a laptop using the aireplay-ng tool to
inject frames, for approximately 6 minutes.

• The first was aimed at disrupting the mesh network oper-
ation and causing the mesh network to become unstable,
with the routers constantly re-authenticating themselves
into the network. This attack was mounted by injecting
de-authentication messages using the BSSID of a specific
router (router 1) as the source and sending it to the BSSID
of the mesh network. The effect of this attack can be seen
in Figure 4.

2

2.2

2.4

2.6

2.8

3

0 40 80 120 160 200 240 280

Po
w

er
 (

W
)

Time (s)

Figure 4: Power consumption of Router 1 during WPA2 de-
auth attack.

• In the second attack, in addition to sending the de-
authentication messages to the BSSID of the mesh net-
work, they were also sent to the BSSID of a second router
(router 2) communicating with router 1. This directly tar-
geted the link and connectivity between the two routers,
the aim being to cause an existing connected router to
keep rejecting connection attempts from a targeted victim.
The effects were then observed on router 2 as seen in
Figure 5.

In both cases, routers reflected a higher level of power con-
sumption compared to baseline levels. The average power con-
sumption seen in Router 1 during the Wi-Fi De-authentication
attack, was 2216mW, an increase of about 23 mW for each
300s period of the attack. When Router 2 was additionally
targetted in the second attack, it exhibited a notably higher
increase in consumption of 183mW. This is clearly visible in

2.2

2.4

2.6

2.8

3

3.2

3.4

0 50 100 150 200 250 300 350 400 450 500

Po
w

er
 (

W
)

Time (s)

Figure 5: Power consumption of Router 2 during WPA2 de-
auth attack.

Figure 5 which shows the energy profile of the router before,
during and after the attack.

C. Traffic Injection Attack in Babel Network with HMAC
enabled

In this experiment, it is firstly assumed that an attacker
has penetrated the mesh network itself, either via physical
access and tampering with a router, or as an outcome of a
successful offline dictionary attack on a weak WPA2-PSK
passphrase. We look at the impact to the power consumption
of an existing router when an attacker attempts to infiltrate
a network in which the Babel routing has been enabled with
HMAC authentication, with the HMAC-SHA1 key assumed
to be unknown to the attacker. We look at how the response
of existing routers can be exhibited in our measurements,
when either a malicious router is attempted to be introduced
or malformed Babel routing messages are injected into the
network.

In order to facilitate our testing and measurement, we used
Ruge to craft Babel routing messages. Babel employs Type-
Length-Value (TLV) encoding in its packets to exchange rout-
ing information. Babel nodes can also solicit Acknowledge-
ment requests for any transmitted packets. For this scenario,
Babel Hello and I-Heard-U (IHU) messages were used for the
injection attacks. As Ruge is a wireline tool, injecting Babel
routing messages wirelessly into the mesh network required
the assistance of a laptop to capture generated messages from
Ruge over an Ethernet link and save the packet capure traces
into a file. The laptop was subsequently used to joining the
homenet wireless mesh network. The packETH command-
line tool wirelessly replayed these generated Hello and IHU
messages every 4 seconds in an infinite loop. Fig 6 shows 3
power consumption traces of the same router for three kinds
of activity for 300 seconds.

The lowest blue line in this Figure indicates the baseline
power measurement of 2193mW, which corresponds directly
to Fig 3a. The green line is the obtained measurement when
invalid Babel messages without a HMAC have been used in
an injection attack. These packets are received but discarded
immediately by the router. Here the power consumption is
calculated to be 2283mW, an increase of 90mW over non

malicious traffic. The red line obtained in the measurement
indicate the power consumed by a router receiving, processing
and subsequently discarding Babel messages which possess a
forged HMAC. Injected Babel packets appended with a forged
HMAC TLV structure induce recipients to act on the incom-
ing malicious traffic on a per-packet basis before discarding
the forged packets, thereby introducing a packet processing
overload onto the existing routers. Consequently, the power
consumed on average for this duration was calculated to be
2318mW, an increase of 125mW from the baseline reading,
and a slight increase of 35mW caused by the computational
overhead from the green line.

2.1

2.2

2.3

2.4

2.5

0 40 80 120 160 200 240 280

Po
w

er
 (

W
)

Time (s)

Figure 6: Differences in power consumption in an HMAC-
enabled Babel network. Blue line indicates baseline power
consumption. Green line indicates malicious Babel traffic with
no HMAC packet structure, Red line indicates malicious Babel
traffic with forged but invalid HMAC.

D. Route Flooding Attack in a Babel Network with no HMAC

In this experiment we explore the worst case scenario of a
homenet which becomes subjected to a flooding attack. This
can occur if both the wireless channel security as well as
the routing infrastructure become compromised. This scenario
is an extension of the previous scenario from subsection
IV-C. This could occur, for example, if the home network
owner did not secure the Babel routing protocol with HMAC
authentication and relied purely on protecting the network
using WPA2-PSK. In this sequence of attack, it is assumed that
the attacker has penetrated the mesh network itself, either via
physical access and tampering with a router, or as an outcome
of a successful offline dictionary attack on a weak WPA2-PSK
passphrase.

In addition to the Babel Hello and I-Heard-U (IHU) mes-
sages from the previous subsection, Update messages were
also generated from Ruge and used in this attack to flood
the network. The messages which were generated in Ruge for
flooding into the mesh were used in the following sequence
of events:

1) When the attack commences, a Babel Hello packet is
sent into the network

2) After a 4 second wait, an IHU packet is sent.

3) After a 1 second wait, steps 1 and 2 are repeated in an
endless loop.

4) After an initial 12 second wait from step 1, Update
messages are constantly flooded into the network every 3
ms. Each message updates current routes for the IPv4 /24
network by increasing the network address by a single
bit for each transmission. Updates start at 10.0.0.0/24.
One network advertisement is done every 3ms.

5) Sending route update messages for the entire /24 IPv4
network takes 15 seconds after which sending Updates
starts anew.

With the above steps, routing tables and information for
the entire homenet mesh was updated constantly, inducing
a heavy stress and CPU load onto the routers.This forces
routers to consider between 200 and 650 routes, depending
on the router load status. As before, a laptop was used as
a wireless relay injecting malicious traffic into the network.
Hello and IHU messages were transmitted using packETH
while Update messages were wirelessly replayed using the
tcpreplay tool. Because the malicious Babel traffic was in-
jected into the homenet where routing was not secured using
HMAC authentication, all the existing homenet routers were
unaware that the traffic was forged. Fig 7 graphically depicts
the resulting router’s energy consumption profile. From its
baseline power consumption of 2192 mW, the router begins
consuming an average of 2802 mW during the attack. The
graph also shows an interval during the sequence of events
where there is a momentary pause before the flooding attack
replay loop resumes, and reaches a similarly consistent state of
high power consumption for a second time during the attack.

2

2.5

3

3.5

4

4.5

0
1

6
3

3
2

5
4

8
8

6
5

1
8

1
3

9
7

6
1

1
3

8
1

3
0

1
1

4
6

4
1

6
2

6
1

7
8

9
1

9
5

1
2

1
1

4
2

2
7

7
2

4
3

9

Po
w

er
 (

W
)

Time (s)

Figure 7: Power consumption during route injection attack, no
HMAC enabled

V. FINDINGS

Based on our measurements and observations, the obtained
results remained consistent across all our experimental runs.
The experiments conducted focused solely on the power con-
sumption profiles of the routers working with Babel in wireless
ad-hoc mode. However, we wanted to ensure that mandatory
features of the Homenet Architecture, and the components
which implemented them were not disabled at any stage of our
experiments. One such component was mDNS, which imple-
ments service discovery. From our findings, mDNS consumed

a significant portion of energy, even when minimal services
existed in the homenet.

Additionally, because all homenet routers participate in
multicast-based packet transmission and reception, it is highly
likely that as more routers are added to a mesh-based homenet,
the increase of multicast traffic could be in the order of O(n).
Implementation optimisations, protocol improvements, tuning
of mDNS advertisements and broadcast intervals may yield
better energy efficiency. However, investigation of such aspects
are out of scope of this paper.

The approach of using power consumption as a metric for
attack detection in homenet appeared promising and feasible. It
can be seen that various kinds of attacks had a definite impact
on the energy consumed by a homenet router. With flooding
attacks, significant differences were seen, compared to the base
level measured. However, even for Wi-Fi based authentication
attacks, while the measured levels of additional power con-
sumed were relatively small, it was noticeable that because
of the nature of the mesh topology, the power consumption
pattern of more than 1 router was normally affected by attacks
targetting even a single homenet router. Consequently, it would
be possible to observe the power consumption patterns and
perform correlation across several routers to detect an attack
in progress, even if individual power consumption levels by
themselves may not give a clear indication. Particularly for
covert attacks, using power consumption anamolies can be
quite effective. On the other hand, our findings note that a
homenet cannot only rely on homenet routers enabling HMAC
authentication for Babel routing, without having a proper
wireless channel security, for example by having a WPA2-PSK
wireless network with a weak passphrase. When energy is an
asset that needs to be conserved, then such a practice would be
counter-productive and exposes an additional attack surface, as
in addition to injecting malicious Babel traffic, an adversary
can append a forged HMAC to each injected packet, forcing a
router to both process the injected message as well as perform
computations on the forged HMAC. An additional point of
input is that homenet-based configurations are also suitable for
deploying ad-hoc mesh and wireless sensor networks where
gateways are more resource constrained in terms of com-
putational ability as well as power. Using energy footprints,
power draining attacks, which force a battery-operated router
into consuming significantly more energy thereby reducing its
viable performance and lifetime, can be similarly detected.

For the EMMs, we saw several advantages in develop-
ing our own implementations based on low-cost but highly
accurate current and voltage sensors. For example, our ap-
proach allowed the ability to non-invasively monitor the power
consumption of the routers without having to install any
special hardware or software on the router itself. Additionally,
EMMs can be colocated in multiple locations without being
physically encumbered in a specific location, as each setup is
portable and can be easily powered using an external battery
supply. However, significant amount of time was necessary
for sensor calibration, and ensuring consistency by double-
checking measurements across the several homenet routers

Table III: Theoretical lifetime values for routers in operation
on batteries

Router Model
Voltage

Battery Capacity

TP-Link AC1200
12V

20000 mAh

TP-Link MR3020
5V

12000 mAh

Babel + WPA2-PSK
(No Attacks) 1389 h 1200 h

Wi-Fi De-authentication 1370 h 822 h

Packet Injection
no HMAC appended 1333 h 800 h

Packet Injection
Forged HMAC appended 1316 h 790 h

Routing Flood Attack 1087 h 652 h

equipped with EMMs in our setup. As an EMM is based on
a Hall-Effect current sensor, it was suspectible to magnetic
influence that had an effect on the output values and as such
could introduce some variation to the measurements. The other
issue effecting the measurement accuracy is the electrical
noise. The RC-filter added to the module lowered the noise
on the ACS712 output/ADC input and stabilised the readings.

Finally, even though the measured power consumption lev-
els were based on a specific hardware model, we performed
quick verifications that these results could be extrapolated and
applied in other router platforms as well. As an example, we
measured the base power consumption of a TP-Link MR-
3020 homenet router. This is based on a resource-constrained
design, having a very small form-factor, 32MB of RAM and
4 MB of flash memory, whose main purpose is to serve as a
personal temporary hotspot or a wireless repeater. The router
was then connected to an external 12000 mAh battery pack,
flashed with OpenWRT and extended for use as a battery
operated homenet router. Using the values derived from our
measurements, we were able to calculate theoretical lifetime
values for both the AC1200 router used throughout this paper,
as well as that of the MR3020, if the entire power was solely
battery-based and all the energy from the external batteries
were used in keeping a similar-sized homenet mesh network
up and connected without any clients connected. This is shown
in Table III. The expected lifetime of these routers when under
attack are also calculated, based on figures obtained from
our power measurements. Real figures however would be far
lower, owing particularly to home network traffic and Internet
usage patterns from end devices and services. Additionally,
our assumption is that commonly used home routers would
lack dedicated hardware support for cryptographic functions.

VI. CONCLUSIONS

Anomalous power consumption is an emerging research
area, aimed at highlighting unusual ongoing activity which can
escape detection from conventional methods. Our hypothesis
is that by calibrating and profiling the power consumption of a
homenet router during normal operations, a higher than likely
possibility of an intrusion in progress (such as a brute force

attack) can be detected resulting from high radio or CPU
activity, or higher-than-normal gateway activity during quiet
hours. The work done in this paper shows that using power
measurement as a metric for attack detection is feasible for
both novice and professional technical network users.

In future, we intend to continue developing our Energy
Monitoring Modules so that sensors with higher accuracy
could be incorporated and obtained measurements can be-
come more precise. At the same time, sensitivity could be
increased to detect malicious behaviour which do not consume
significant amounts of power. We intend to profile additional
attacks on the homenet infrastructure with a wider variety
of router hardware thereby corroborating theoretical lifetime
values of constrained routers. Future work would consider
other mesh topologies with regards to security in homenets.
User generated traffic in the homenet and its impact on
detecting malicious activity on the routing also remains an
area for future work.

VII. ACKNOWLEDGEMENTS

This work is funded by the EIT Digital HII Active Project.

REFERENCES

[1] G-W. Kim, D-G. Lee, J-W. Han, S-C. Kim, and S-W Kim. "Security
framework for home network: Authentication, authorization, and security
policy." In Emerging Technologies in Knowledge Discovery and Data
Mining, Springer LNCS Vol 4819, pp. 621-628, May 2007.

[2] M. Abid. “User identity based authentication mechanisms for network
security enhancement”. Ph.D. Dissertation, Institut National des Telecom-
munications, 2011.

[3] S. Qu, and H. Liu. "Security Research on the Interfaces of Information
Appliances Described by XML." In Network Computing and Information
Security, Springer Vol 345, pp. 661-668, 2012.

[4] L. DiCioccio, R. Teixeira, and C. Rosenberg. "Measuring home networks
with homenet profiler." In Passive and Active Measurement, Springer
LNCS Vol 7799, pp. 176-186, 2013.

[5] T. Martin, M. Hsiao, Dong Ha and J. Krishnaswami, "Denial-of-service
attacks on battery-powered mobile computers," Pervasive Computing and
Communications, 2004. PerCom 2004. Proceedings of the Second IEEE
Annual Conference on, 2004, pp. 309-318.

[6] H. Kim, J. Smith, and K. G. Shin. "Detecting energy-greedy anomalies
and mobile malware variants." In Proceedings of the 6th ACM inter-
national conference on Mobile systems, applications, and services, pp.
239-252. 2008.

[7] X. Ma, P. Huang, X. Jin, P. Wang, S. Park, D. Shen, Y. Zhou, L. K. Saul,
and G. M. Voelker. "eDoctor: Automatically diagnosing abnormal battery
drain issues on smartphones." In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13), pp. 57-70. 2013.

[8] T. K. Buennemeyer, M. Gora, R. C. Marchany and J. G. Tront, "Battery
Exhaustion Attack Detection with Small Handheld Mobile Computers,"
Portable Information Devices, 2007. PORTABLE07. IEEE International
Conference on, Orlando, FL, 2007, pp. 1-5.

[9] T. Chown, Ed., J. Arkko, A. Brandt, O. Troan and J. Weil, "IPv6 Home
Networking Architecture", IETF RFC 6126, Oct. 2014.

[10] J. Chroboczek, The Babel Routing Protocol, IETF RFC 6126, Apr. 2011.
[11] M. Stenberg, S. Barth, and P. Pfister. "Home Networking Control

Protocol", IETF RFC 7788, Apr 2016.
[12] D. Ovsienko.”Babel Hashed Message Authentication Code (HMAC)

Cryptographic Authentication”, IETF RFC 7298, Jul 2014.
[13] Ruge. Rugged IP load generator, Rugged Tooling.

http://www.ruggedtooling.com
[14] The Energino project. http://www.energino-project.org
[15] T. Polk, L. Chen, S.Turner, and P. Hoffman. “Security Considerations

for the SHA-0 and SHA-1 Message-Digest Algorithms”, IETF RFC 6194,
Mar. 2011.

PUBLICATION
II

Implementation Experiences and Design Challenges for Resilient

SDN Based Secure WAN Overlays

M. Vajaranta, J. Kannisto and J. Harju

11th Asia Joint Conference on Information Security, AsiaJCIS 2016, Fukuoka,

Japan, August 4-5, 2016. 2016, 17�23

doi: 10.1109/AsiaJCIS.2016.25

Publication reprinted with the permission of the copyright holders

https://doi.org/10.1109/AsiaJCIS.2016.25

Implementation Experiences and Design Challenges for Resilient SDN
Based Secure WAN Overlays

Markku Vajaranta, Joona Kannisto and Jarmo Harju
Tampere University of Technology
Email: firstname.lastname@tut.fi

Abstract— Mobile computing devices, industrial control sys-
tems, and service provider clouds often need to be connected
to each other over wide area networks. However, reliability,
quality of services and confidentiality are challenging in such
setups. Moreover, isolated appliances and physical equipment
face harsh environment conditions. In this paper we explore
designing secure layer 2 overlay networks using Software
Defined Networking (SDN), and challenges in implementing
them with open source tools.

I. INTRODUCTION

Information technology and pervasive computing brings
new waves of innovation [1]. Every object becomes pro-
grammable, data driven, and the physical realm gets weaved
with the digital world. Mobile computing and networking are
huge drivers for this progression, as systems become more
valuable the more connections they have [2].

The proliferation of network connected devices brings
along challenges with security [3]. Many Internet of Things
devices use unsecured connections, protocols and vulnerable
software [3], [4]. The risks materialize when the devices are
installed to networks that do not have strict firewalls. This
is not a threat that concerns only future. Many vulnerable
connected devices are continuously exploited today [4].

Another enabler for pervasive services is the cloud com-
puting. The definition of cloud computing calls for services
that are elastic, independent of location, controllable and
measurable by the operator, and can be accessed by het-
erogeneous devices over standard protocols [5]. The cloud
is further divided to private, community, public and hybrid
clouds, which exhibit different security properties and need
different security services [5].

Cloud paradigm requires new thinking from the network
side. For instance, tenant VM (Virtual Machine) isolation
into their own networks is a must-have requirement for all
shared cloud operators already. To allow efficient resource
distribution, the logical network topology may differ a lot
from the actual physical topology. Cloud computing relies
heavily on virtual networking, which is required as the
traditional traffic patterns no longer apply [6]. Moreover,
the requirements are ever increasing and cloud networks
and VM’s are about to be directly connected to company
networks, home networks, and even to mobile personal
clouds.

Seamless layer 2 clouds are mostly needed for legacy
applications, and such applications which expect to maintain

stable connection. For example, separate ICSs (Industrial
Control Systems) may reside in the same LAN, and it would
be very costly or even impossible to make changes to them.

Yet, connecting networks is not a simple task. Layer 2
WAN overlay network techniques exist and some of them
are secure when speaking about data privacy, e.g. VPN’s
[7]. On the other hand, resilient overlay networks are usually
operating on layer 3 and they are done with BGP (Border
Gateway Protocol) [8]. The combination of these factors
requires new aspects to resilient L2 networking.

When designing such overlay network, the characteristics
must take into account the underlaying network structure and
its properties. The quality of Internet connections is typically
best effort and Internet Service Providers (ISPs) do not wish
to guarantee any latency or maximum packet loss. This
makes Internet connections cheap (even ubiquitous). Further
the cloud providers typically run their operations in multiple
locations which needs interconnection between them. These
interconnects need to scale to many data centers since virtual
machines could even move between the locations. Thus,
redundancy has to be built on top of the upper layers.

The usage of Software Defined Networking (SDN) tech-
nology allows to organize networks freely using also other
criteria besides basic forwarding related decisions. Paths
can be influenced by the need of redundancy or by the
security services in the network [9]. For example, inter-VM
communication can go through a firewall even when the
machines reside logically in the same broadcast domain.

The paper is structured as follows. In the second section
we present use cases and requirements for a WAN SDN
solution. In the third section we review related work and
present potential technologies that could satisfy the require-
ments. In the fourth section we present a network design
inspired by the existing solutions. The fifth section discusses
the experiences and gives ideas for future work. Finally,
conclusions are drawn.

II. USE CASE AND REQUIREMENTS

The security of an overlay network should be carefully
considered. The basic security guideline for the design is
gained from the CIA triad (confidentiality, integrity, avail-
ability) [10].

The resiliency of the designed network is also important,
since the network must be able to operate in distant locations,
but as well in cloud environments. We have selected three

use cases to highlight the importance of the security and
resiliency requirements.

CLOUD

Salesman Ambulance

Water treatment
plant

Fig. 1. Use cases

Water pump Water supply station resides usually in remote
location which requires an Internet connection for con-
trolling the water pump speed. Without connectivity
the pump operates at a designated constant power.
The water network can tolerate excess or insufficient
pressure/flow, but it operates with less energy when
the pressure is optimal. The controlling system, i.e.
the optimization engine server is running in a cloud,
and thus has real-time measurements from all pumping
stations to achieve the best efficiency for supplying
water.

Traveling salesman While traveling, also globally, the net-
work connections should be terminated to the nearest
datacenter to ensure best quality of service. Security is
of topmost priority. In addition, the operating system
should not reach for local services in unknown LANs
[11].

Ambulance The personnel needs the patient records without
any delay. Hospital equipment, for instance, heart rate
analyzers, EKGs or automatic morphine pumps need to
be in connection with the hospital’s cloud. The vehicle
moves at 180km/h, so mobile connections may break
from time to time.

The L2 connections between locations are built through
untrusted networks. Common for every use case is the
usage of 4G mobile connections. The mobile network is
often implemented with carrier grade IPv4 NAT (Network
Address Translation), which causes end-to-end connectivity
problems. Direct connections can, however, be built using
IPv6 protocol if the mobile network allows it. Unfortunately
often legacy applications do not support IPv6 and thus IPv4
is needed. This leads to the requirement to use a secure IPv4
tunneling method which is immune to NAT. In addition, some
ISPs might have implemented firewalls to restricting certain
traffic. This extends the need for tunnel to be also as firewall
immune as possible.

Sometimes nodes in the public IP network can act as ex-
change points. Based on the needs of the use case, resiliency
will however suffer, if an alternative path (if it exists) would
not be available in a few seconds. This increases the need for

good packet integrity and emphasizes fast convergence time.
Such features are thus required for this implementation.

The use cases define as well the need for good cloud
integration. Provisioning new VMs to these networks should
be effortless and reliable, which is only possible if software-
based switching is available for every location the network
is extended to.

III. RELATED WORK

In order to have security in a untrusted WAN, a secure
tunneling mechanism is needed. One of the most famous
secure tunneling methods is IPsec (Internet Protocol Security
Suite). It works in both transport and tunneling modes
offering the required security features for L3 VPN. The
IPsec, however, often faces problems in NAT connections
[12]. Thus, the reliability does not meet the required level in
changing network conditions, and cheap commodity Internet
connections may not work.

With TLS based VPN (such as OpenVPN) these interop-
erability requirements can be solved. OpenVPN tunnels the
traffic inside encrypted UDP or TCP packets, and thus in
the vast number of scenarios firewalls and NAT appliances
let it through. The L2 tunnel driver for OpenVPN is called
TAP. However, the TAP uses a simple local Ethernet control
plane causing it to be intolerant for topologies with redundant
links, which create loops.

Despite being integral for the development of future ser-
vices, secure seamless cloud WAN networking is not a much
researched problem. Solutions for various sub-problems of
the issue exist, however. Some of them cover simple road
warrior cases that support only a single access concentrator
and are thus not scalable or do not integrate well with
cloud systems. Data center interconnection has gathered
attention, but most solutions are presented for networks that
are controlled fully by the data center operator. Resiliency
of these network environments may not fulfill the needs of
critical cyber physical solutions. A mesh topology is often
used to provide required resiliency but simultaneously it
brings the problem for possible loops. Since the current trend
is to have data centers geographically distributed, secure
tunneling is required between the sites. When it comes down
to ICS, requirements for network stability and reliability play
a big role.

SDN is a key feature when building complex networks.
It allows arbitrary topologies based on different criteria like
security [9], redundancy [13], [14] or efficiency [15]. SDN
is commonly used for cloud networking[15] as it makes
topology changes much faster than traditional networking
approaches. SDN uses separate control plane which offers
centralized controller to have total awareness of the network.

Different industry-driven approaches to L2 virtualization
techniques exist, but some of them are cumbersome or
missing essential features. One technique for DCI (Data Cen-
ter Interconnectivity) is overlay networking, which typically
uses an underlying IP based network, and forms its own
topology over that by using a tunneling protocol (examples
TRILL, MPLS and VXLAN) [6].

TRILL (Transparent Interconnection of Lots of Links)
[16] is a technology to create a L2 cloud which forwards
packets efficiently and can recover from link breaks. TRILL,
like many others is an overlay solution, which means that
it encapsulates the Ethernet frames. MPLS (Multiprotocol
Label Switching) was one of the first popular overlay net-
working solutions. It has labels that are used for identifying
traffic flows. The forwarding decisions are configured either
statically or dynamically [17]. The label switching nodes are
connected over IP, and thus IPsec can be used. Typically, the
technology requires time consuming provisioning from both
ISP and company requesting this feature.

VXLAN is a stand-alone overlay networking protocol
which extends the VLAN identifier space to 16 million
unique different networks. It works by encapsulating the L2
data to L4 UDP frame. VXLAN includes a multicast control
plane, which is used by the distributed switch entities to
distribute unknown unicast packets and broadcast packets
to all switches that form the virtual network. The switches
keep a table of switch identifiers and IP addresses associated
with previously seen MAC addresses, which they utilize in
unicast traffic forwarding. The protocol does not consider
security features and thus should be used only in trusted
environments. The VXLAN however is widely supported, in
physical and in virtual switches as well. VMware platforms
have native VXLAN support since it has been one of the
main developers. [18]

Geneve (Generic Network Virtualization Encapsulation) is
a similar protocol to VXLAN presented in an IETF draft
[19]. Where VXLAN offers its own multicast based control
plane, Geneve aims to be a control plane agnostic tunneling
protocol. The Geneve header includes Virtual Network ID
field to ensure corresponding data transmission through the
tunnel. Unfortunately, the support for Geneve is very poor
and the security features are similar to VXLAN.

OTV (overlay transport virtualization) [20] is a technology
to extend the L2 network directly through the IP network.
Strength of OTV is the ability to stretch the network of a
datacenter to cover several separate data centers together.
OTV by itself does not offer security features, but IPsec
can be added on the links. Neither does VPLS (Virtual
private LAN Service) [21] which uses BGP (Border Gateway
Protocol) or LDP (Label Distribution Protocol) to form full
mesh. Both of these can be operated over IP or MPLS
networks.

Microsoft has introduced the NVGRE [22] (Network Vir-
tualization using Generic Routing Encapsulation) protocol
for network virtualization. The protocol is designed to tunnel
layer 2 packets over layer 3 networks using GRE. This makes
the protocol very simple and lightweight. It does not contain
any security features and thus should not be used over the
Internet.

Traditional method to provide redundancy to Ethernet
networks have been to construct redundant topology and to
use Spanning Tree Protocol (STP). The STP prevents loops
by shutting down ports that do not belong to a tree graph
formed from a chosen root node. The default convergence

time for STP is 30-50 seconds, which is too much for
critical applications [23]. In addition, the STP makes the
network inefficient as the parallel usage of network links is
not possible. For instance, east-west links, which are needed
for inter-VM communication, are typically disabled.

PRP (Parallel Redundancy Protocol) [24] is one option
to create redundant networks with zero recovery time. This
active redundancy protocol offers parallel transmission for a
single packet from source to destination by duplicating the
packet. Delivery paths have no distinction and thus receiving
node discards the duplicates. [25] The challenge for PRP is
to build a topology that can carry the duplicated packets on
distinct paths. Common topology that is used with PRP is
the ring topology. The required topology can be achieved
using SDN [13], [26], [14].

IV. PROPOSED DESIGN TO EVALUATE SECURE WAN
SDN

In order to get implementation experience of a Secure
WAN SDN concept we built a network on virtualized in-
frastructure and OpenWRT based base stations connected
with 4G. The setup is depicted in Figure 2 where GW-1 and
GW-2 are OpenWRT routers. Hypervisor-1 and Hypervisor-
2 in Figure 2 reside in two common rack servers running
a hypervisor to host virtual machines. The used design is a
layered one, which has SDN control plane, encrypted links,
and virtual switching provided with Open vSwitch.

A. Link Layer Encryption

Link layer encryption method had several possibilities.
The method must however answer the given requirements
and consider the VXLAN usage as well. Different considered
protocol stacks are shown in the Figure 3.

VXLAN over OpenVPN was chosen because it works
through firewalls and is tolerant of NAT. OpenVPN also
supports larger MTU than its underlay network. OpenVPN
is a tunneling solution, and creates a network, which allows
bidirectional communication inside single connection.

VXLAN over DTLS (Datagram Transport Layer Security)
would be more light-weight, but as VXLAN needs two
separate connections, it cannot function with NAT that does
not allow incoming connections. Even without NAT firewall
permissions may as well restrict the traffic making the DTLS
unusable for this matter.

IPsec-VXLAN would have been another alternative. How-
ever, it suffers from the same problems with NAT as DTLS-
VXLAN. IPsec host policy is independent from routing, and
packets going to IPsec protected destinations do not travel
in clear text if they are handed to a wrong interface.

B. SDN Control Plane

Open-source module-based controller [27] written in Java
called Floodlight operates as the SDN controller. It uses
OpenFlow protocol for communication between the switches
and the controller. OpenFlow works on top of TCP and many
OpenFlow implementations also support TLS with or without
mutual authentication.

Internet

Hypervisor-1

CustBr0

vxlan0..n

eth0

tun1

VM

tun0

Hypervisor-2

CustBr0

vxlan0..n

eth0

tun0

VM

ISP1 ISP2

GW-1

br0
eth1

vxlan0 vxlan1

WWAN2WWAN1

tun1tun0 GW-2

br0
eth1

vxlan0 vxlan1

WWAN2WWAN1

tun1tun0

Lan, 192.168.xx.x/24

4G
4G

4G
4G

OpenVPN

VxLAN

Network

Fig. 2. SDN Controlled Overlay Network Over Multiple WAN Links

VXLAN over
OpenVPN

IP (original)

ICMP (ECHO)

ETH

VXLAN

UDP (vxlan)

IP (Openvpn tunnel)

UDP (openvpn)

IP (external)

ETH

OpenVPN

VXLAN over
DTLS

IP (original)

ICMP (ECHO)

ETH

VXLAN

UDP DTLS

IP (external)

ETH

VXLAN over
IPSec

IP (original)

ICMP (ECHO)

ETH

VXLAN

UDP (vxlan)

ESP

IP (external)

ETH

Fig. 3. Protocol stacks for VXLAN over OpenVPN, DTLS and IPSEC

Tunneling solutions like stunnel can be utilized to ensure
secure connectivity, when the TLS support is insufficient or
non-existing. Floodlight does not have very good documen-
tation for mutual TLS configuration in the release v1.1 or
below [28]. Therefore, the stunnel proxy server was used for
the switch connections.

All the functionality in the Floodlight is implemented as
modules over the core. Custom modules can be written, but
they are not essential for this work. A forwarding application
is in charge of installing the flows for the connections in
the network. It uses underlying topology module, which
uses SPF algorithm (Shortest Path First [29]) to build paths
between the source and the correct destination ports.

When a packet without matching flow entry enters a switch
it is forwarded to the controller through stunnel. In the

controller the forwarding application searches for the shortest
path and informs the switch plane using FlowMod messages.
New flows are created based on this information giving loop
free topology which is simultaneously cost-efficient.

C. Datapath

Open vSwitch (OVS) is probably the most popular virtual
switch in the open source world. Good integration with
Xenserver, Openstack and many other platforms have given
it almost de facto status. The OVS has support for VXLAN
tunneling and it can be controlled with an SDN controller,
and thus it is used in this work.

Datapath can be seen in the figure 2. Hypervisors 1 and
2 both contain a VM (Virtual Machine) for a tenant. Both
VMs are connected to the corresponding OVS bridges that
communicate using VXLAN inside OpenVPN. The network
is further extended behind the tenant gateways using the same
methods.

VXLAN seems problematic over a WAN, as the control
plane for VXLAN utilizes multicast, and multicast may not
be available in the WAN underlay. Yet, in practice it is not
necessary to use multicast with VXLAN. For instance, Open
vSwitch can utilize an external SDN controller for its control
plane. The SDN controller is then able to build paths for the
flows over the network using the whole physical topology.

As seen in the figure 2, every device including hypervisor
and the gateway contains at least one Open vSwitch bridge.
Hypervisors have bridge named as CustBr0 and the gateways
br0. The VXLAN tunnels are terminated to an IP address
called Virtual Tunnel End-Point (VTEP). This could be a
routed loop-back address or any other IP address on the

bridge4

PRP
eth

bridge1

vxlan0

vxlan1

Rewrite
mac

vi0

vi1

eth

vi0

vi1

bridge2

vxlan1

vxlan0

bridge3

vxlan1

vxlan0

vxlan0

vxlan1

Fig. 4. PRP Ethernet over WAN SDN

machine. The important point is that the sending VTEPs can
reach the other VTEP interface over the Layer-3 network.
VXLAN is designed so that the L3 network provides the
resiliency through routing. However, as we are unable to
influence the routing of the actual IP underlay, we can make
redundant paths using VXLAN and let the controller handle
the redundancy. This is guaranteed because the VPN tunnel
IP addresses are used as VXLAN VTEP termination points.

The figure 2 presents as well how the VXLAN tunnels
are built via OpenVPN tunnel interfaces. Tagged traffic is
forwarded to the corresponding TUN interface and pushed
to the destination where e.g. virtual machines are directly
connected to the OVS bridge. Through the Internet a single
packet is thus encapsulated inside VXLAN protocol which
is further encrypted using OpenVPN tunnel.

D. Active Redundancy

Active redundancy environment can be created using a
protocol called PRP (Parallell redundancy protocol). Prac-
tical implementation requires adding two virtual Ethernet
interfaces to Open vSwitch and connecting them to a PRP
tap which removes duplicate packets [24].

PRP operation in the implemented network is explained
in the figure 4. It works by making the Ethernet address
translation rule for the second PRP interface, so that the
network can make independent forwarding decisions for the
packets. For instance, if the paths share some links the
subsequent links can still be on different paths. Another flow
rule in the chain duplicates the packet and the vendor part
of the Ethernet MAC address is changed to a special PRP
prefix. The end destination is PRP aware, so it can rewrite
the packets coming with the special MAC address to the
correct one.

If the controller, or the script that is making the flows, is
not PRP aware, the end switch needs to also send some of
the packets with the PRP source address. Also IP addresses
may need to be rewritten if the controller does not permit that
the same address is used in multiple ports and with different
MAC addresses. Furthermore, when the active redundancy is
made using an external script to control the SDN controller
northbound interface, the configuring software needs to know
the network topology at least partially. For example, if there
are two independent links leaving from the edge node, the
packet can be copied to both of them, and the controller can
make the rest of the path for the flows. However, the paths are
not guaranteed to be different from each other. If the paths

share links, the redundancy is not increased accordingly and
some resources are wasted for carrying duplicated packets.

In contrast, PRP implementation as an SDN controller
application is much simpler. The only thing that the SDN
controller needs to be aware of is that the destination for
the packet is a PRP destination. Then, it can choose paths
optimally using either Loop Free Alternatives [30] or some
other mechanism. MAC address rewriting or adding some
other flow identifier can be used if the redundant paths need
to share links.

Cases where the secondary PRP transit MAC addresses
use a known prefix, forwarding application can find alter-
native path in stateless manner. Thus the application selects
among possible paths the one that shares the least amount of
links with the most optimal one. The same rule can further
be applied if some other flow identifier is used.

E. Control Layer Redundancy

As our topology has multiple paths between the source
and the destination, the controller can change the forwarding
rules in the case of reachability issues. However, due to
the way Open vSwitch tunnel interfaces are exposed to the
controller, it was needed to develop a custom watchdog
application [31].

Open vSwitch lacks the link status information for
VXLAN links. VXLAN is built on the assumption that the
L3 network underneath is resilient. It does not natively have
the concept of multihop forwarding either, which can fix the
L3 reachability issues. For end to end reachability detection
BFD (Bidirectional Forwarding Detection) protocol is avail-
able in OVS, but it does not generate a PORT DOWN status.
The controller should know if a VXLAN link is unable
to communicate. These communication problems cover all
tunnels and physical problems. OVS should inform the SDN
controller about broken VXLAN links, but it does not. Based
on the information, the PDR (Port Down Reconciliation)
module in Floodlight should change the path for the existing
flows based on the network changes [27]. This does not
occur, and even the new flows are built to non-working
interfaces.

To fix the issue we developed a watchdog script [31]
to notice dead links and flows. The used watchdog script
checks reachability for tunnel endpoint every two seconds
with ICMP echo (ping). Changing the current jammed flows
to backup link is done by removing the interface and clearing
the associated flows. Floodlight controller then rebuilds nec-
essary flow tables to switches using other interfaces, which
hopefully will be up. The script configures the interface
back up once the endpoint is reachable again. Using the
custom watchdog application the convergence time will be
4-6 seconds.

V. DISCUSSION

As the security of the proposed setup relies heavily on
the OpenVPN tunnel, it can be vulnerable to the tunnel
disappearing, and packets may get routed through wrong
interface in clear text. For example, if the tunnel interface

goes down, without proper firewall settings the VXLAN
packets are transmitted to the ISP’s network unencrypted
based on the default route information.

Moreover, the security is not end to end when there are
multiple links. Therefore, a secure variant of VXLAN type
of tunneling protocol would be useful. In SDN environment
the controller should take care of the security associations.

The usage of VXLAN requires the underlay technique to
accept MTU value above 1500 bytes. This was faced with
several experiments where ping and other smaller packages
go well through the network, but any larger messages did
not. VXLAN encapsulated packet consists of IPv4 and UDP
headers which make 28 bytes and in addition the VXLAN
header is 8 bytes more, total 36 bytes. The underlay net-
work’s MTU should thus be adjusted to consider this extra
overhead.

For instance, the OpenVPN tunnel MTU must be raised if
some parts of the bridged network do not support MTU less
than 1500. The tunnel interface can be set to much higher
MTU, e.g. 2000 bytes since the OpenVPN takes care of
the fragmentation. This creates an overhead, which could
be a problem for scalability. Yet, any tunneling solution will
experience MTU issues.

Practical option would be MACsec [32] under VXLAN
or any other tunnel, provisioned using an extension to
OpenFlow or with MACsec key exchange protocols. MAC-
sec is supported in some traditional switches. An SDN
controller could implement the necessary key exchanges to
be compatible with them, so the security domain could be
extended outside of SDN domain as well. Overall encryption
at the network edge would be desirable. In addition, MACsec
actually implements PRP-like duplicate packet filtering as
a side effect of avoiding replay attacks. OpenFlow key
management for MACsec would be one issue. This could
be solved by storing the public keys on the controller for all
the switches. The receiving switch gets flow rules that use
key wrapping.

Switches are unable to exchange keys between each other,
as the sending switch is unaware for the final destination
switch of the packet. This knowledge is at the controller.
Key derivation could create problems which are not as severe
with key wrapping or key distribution. For instance, when a
switch for a destination VM changes all the flow rules need
to be reinstalled.

Control layer based redundancy is combined with active
redundancy to have the best sides of each. Active redundancy
has potentially zero convergence time. Yet, active redun-
dancy loses capacity, potentially increasing latency as well
as packet loss due to congestion. Thus capacity problems
might occur if the packets would be copied to any possible
alternative path. In addition, PRP does not handle more than
two interfaces [33]. Quality of Service (QoS) is partially
improved by the PRP. At any given moment, PRP uses the
interface that can provide the packets faster.

Control layer based redundancy is too slow for some
of the applications. On the other hand, faster convergence
time could cause continuous topology changes in mobile

conditions. However, topology change is necessary eventu-
ally since the backup paths could be constructed very sub-
optimally.

The SDN controller is the centralized brain for the overlay
network. Therefore, redundant controller design is required
for increased reliability. Currently if the controller is not
reachable the old flows continue to operate, but no new
connections can be made. OVS supports using multiple
controllers, but high-availability features are missing in the
Floodlight controller v1.1 [28]. Floodlight though has plans
to support synchronization but the support is not ready fully
integrated nor tested [34], [35].

VI. CONCLUSIONS

This paper describes a method for building a secure
overlay network over WAN connections. The used protocols
and technologies offer a resilient and secure communication
method for ICS, DCI and other use cases. Presented example
system has been built using commodity hardware and best-
effort 4G mobile wireless WAN connections. The use of
these components further increase the need for reliable
communication protocol stack.

The security in this context is not pervasive security which
prevents everything and creates an isolated network. The
main aspect is to have a safe mechanism to move data
between two locations without a possibility to be seen by
a 3rd party. It answers the need for confidentiality, integrity
and availability. Still the security features in this network do
not totally prevent DDoS attacks, MitM attacks and many
others.

As presented, VXLAN and OpenVPN transporting meth-
ods combined with SDN offer a powerful tool for secure
seamless WAN. SDN is the key function that allows pre-
sented network to operate seamlessly.

The used SDN components, Open vSwitch, and the
Floodlight controller presented minor issues, and some re-
quired components were still missing. For instance, the OVS
VXLAN implementation does not inform the SDN controller
about broken links, which had to be compensated using
custom watchdog script. Also, control plane redundancy is
missing since the Floodlight does not support it yet. This
creates a single point of failure and hopefully problem
is fixed within the incoming versions of the Floodlight
controller.

Data plane redundancy is provided by PRP protocol. It
ensures the data transmission between endpoints using two
different paths through the overlay network. Yet, it cannot
function in complex networks without an SDN component
that can build logical ring topologies for it.

The built stack causes quite large overhead, which is
not ideal, although much of this is due to interoperability.
This overhead issue could be answered with e.g. VXLAN
over DTLS, but the resiliency and availability would suffer
greatly. Also, resiliency can always be improved, and even
provided as a service.

Data center and industrial control system networks will
need to consider overlay network security eventually. This

paper offers one solution to cover some use cases using
open-source tools. Set requirements were answered and the
necessary resiliency and security level was reached. SDN
technology proofed its power and elasticity in this rather
complex network setup.

ACKNOWLEDGMENT

The research was conducted in the Cyber Trust program of
DIGILE (Finnish Strategic Centre for Science, Technology
and Innovation in the field of ICT), funded by Tekes.

REFERENCES

[1] M. Satyanarayanan, “Pervasive computing: Vision and challenges,”
Personal Communications, IEEE, vol. 8, no. 4, pp. 10–17, 2001.

[2] J. Hendler and J. Golbeck, “Metcalfe’s law, web 2.0, and the semantic
web,” Web Semantics: Science, Services and Agents on the World Wide
Web, vol. 6, no. 1, pp. 14–20, 2008.

[3] Z.-K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, and
S. Shieh, “IoT security: ongoing challenges and research opportuni-
ties,” in 2014 IEEE 7th International Conference on Service-Oriented
Computing and Applications (SOCA). IEEE, 2014, pp. 230–234.

[4] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “IoTPOT: analysing the rise of IoT compromises,” in 9th
USENIX Workshop on Offensive Technologies (WOOT 15), 2015.

[5] P. Mell and T. Grance, “The NIST definition of cloud computing,”
Communications of the ACM, vol. 53, no. 6, p. 50, 2010.

[6] A. Scarfò, “The evolution of data center networking technologies,”
in Data Compression, Communications and Processing (CCP), 2011
First International Conference on. IEEE, 2011, pp. 172–176.

[7] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtual-
ization,” Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

[8] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, Resilient
overlay networks. ACM, 2001, vol. 35, no. 5.

[9] C. DeCusatis and P. Mueller, “Virtual firewall performance as a
waypoint on a software defined overlay network,” in High Performance
Computing and Communications, 2014 IEEE 6th Intl Symp on Cy-
berspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded
Software and Syst (HPCC, CSS, ICESS), 2014 IEEE Intl Conf on.
IEEE, 2014, pp. 819–822.

[10] S. S. Greene, Security policies and procedures. New Jersey: Pearson
Education, 2006.

[11] M. Wuergler. The evolution of wireless penetration testing.
[Online]. Available: http://immunityservices.blogspot.fi/2016/01/
the-evolution-of-wireless-penetration.html

[12] B. Aboba and W. Dixon, “Ipsec-network address translation (NAT)
compatibility requirements,” Internet Requests for Comments, RFC
Editor, RFC 3715, March 2004.

[13] E. Molina, E. Jacob, J. Matias, N. Moreira, and A. Astarloa, “Avail-
ability improvement of layer 2 seamless networks using OpenFlow,”
The Scientific World Journal, 2015.

[14] J. Zhang, B.-C. Seet, T.-T. Lie, and C. H. Foh, “Opportunities for
software-defined networking in smart grid,” in Information, Com-
munications and Signal Processing (ICICS) 2013 9th International
Conference on. IEEE, 2013, pp. 1–5.

[15] S. Azodolmolky, P. Wieder, and R. Yahyapour, “SDN-based cloud
computing networking,” in Transparent Optical Networks (ICTON),
2013 15th International Conference on. IEEE, 2013, pp. 1–4.

[16] D. Eastlake, A. Banerjee, D. Dutt, R. Perlman, and A. Ghanwani,
“Transparent interconnection of lots of links (TRILL) use of IS-IS,”
Internet Requests for Comments, RFC Editor, RFC 6326, July 2011.

[17] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow,
“RSVP-TE: Extensions to RSVP for LSP tunnels,” Internet Requests
for Comments, RFC Editor, RFC 3209, December 2001.

[18] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger,
T. Sridhar, M. Bursell, and C. Wright, “Virtual extensible local
area network (VXLAN): A framework for overlaying virtualized
layer 2 networks over layer 3 networks,” Internet Requests for
Comments, RFC Editor, RFC 7348, August 2014. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc7348.txt

[19] J. Gross, T. Sridhar, P. Garg, C. Wright, I. Ganga, P. Agarwal, K. Duda,
D. Dutt, and J. Hudson, “Geneve: Generic network virtualization
encapsulation,” Internet Engineering Task Force, Internet Draft, 2014.

[20] H. Grover, D. Rao, D. Farinacci, and V. Moreno, “Overlay
transport virtualization,” Working Draft, IETF Secretariat, Internet-
Draft draft-hasmit-otv-04, February 2013. [Online]. Available:
https://tools.ietf.org/html/draft-hasmit-otv-04

[21] K. Kompella and Y. Rekhter, “Virtual private lan service (VPLS)
using BGP for auto-discovery and signaling,” Internet Requests for
Comments, RFC Editor, RFC 4761, January 2007.

[22] P. Garg and Y. Wang, “NVGRE: Network virtualization using generic
routing encapsulation,” Internet Requests for Comments, RFC Editor,
RFC 7637, September 2015.

[23] A. Myers, E. Ng, and H. Zhang, “Rethinking the service model:
Scaling ethernet to a million nodes,” in Proc. HotNets. Citeseer,
2004.

[24] H. Weibel, “Tutorial on parallel redundancy protocol (PRP),” Zurich
University of Applied Sciences, 2011.

[25] H. Kirrmann, M. Hansson, and P. Müri, “IEC 62439 PRP: Bumpless
recovery for highly available, hard real-time industrial networks,” in
Emerging Technologies and Factory Automation, 2007. ETFA. IEEE
Conference on. IEEE, 2007, pp. 1396–1399.

[26] X. Dong, H. Lin, R. Tan, R. K. Iyer, and Z. Kalbarczyk,
“Software-defined networking for smart grid resilience: Opportunities
and challenges,” in Proceedings of the 1st ACM Workshop on
Cyber-Physical System Security, ser. CPSS ’15. New York,
NY, USA: ACM, 2015, pp. 61–68. [Online]. Available: http:
//doi.acm.org/10.1145/2732198.2732203

[27] R. Izard. Controller modules. [Online]. Available: https://floodlight.
atlassian.net/wiki/display/floodlightcontroller/Controller+Modules

[28] Floodlight releases and roadmap. [Online]. Avail-
able: https://floodlight.atlassian.net/wiki/display/floodlightcontroller/
Releases+and+Roadmap

[29] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[30] A. Atlas and A. Zinin, “Basic specification for IP fast reroute: Loop-
free alternates,” Internet Requests for Comments, RFC Editor, RFC
5286, September 2008.

[31] M. Vajaranta and J. Kannisto. Link watching script for open vswitch.
[Online]. Available: https://github.com/joonakannisto/himmeli

[32] A. Romanow, Media Access Control (MAC) Security IEEE 802.1 ae,
IEEE Std., 2006.

[33] Parallel redundancy protocol (PRP) software implementation.
[Online]. Available: https://github.engineering.zhaw.ch/Team1588/
sw stack prp1

[34] T. A. Ribeiro. How to add fault toler-
ance to the control plane. [Online]. Avail-
able: https://floodlight.atlassian.net/wiki/display/floodlightcontroller/
How+to+Add+Fault+Tolerance+to+the+Control+Plane

[35] R. Izard. We want you to add cool features to floodlight. [Online].
Available: https://floodlight.atlassian.net/wiki/pages/viewpage.action?
pageId=24805405

140

PUBLICATION
III

IPsec and IKE as Functions in SDN Controlled Network

M. Vajaranta, J. Kannisto and J. Harju

Network and System Security - 11th International Conference, NSS 2017, Helsinki,

Finland, August 21-23, 2017, Proceedings. Ed. by Z. Yan, R. Molva, W. Mazurczyk

and R. Kantola. 2017, 521�530

doi: 10.1007/978-3-319-64701-2_39

Publication reprinted with the permission of the copyright holders

https://doi.org/10.1007/978-3-319-64701-2_39

IPsec and IKE as Functions in SDN Controlled
Network

Markku Vajaranta, Joona Kannisto and Jarmo Harju

Tampere University of Technology,
Korkeakoulunkatu 1, 30720 Tampere, Finland

firstname.lastname@tut.fi

Abstract. Currently IPsec performance in high-speed networks is prob-
lematic. Traditionally the connections are established between some mul-
tifunction network devices which are typically inefficient already in 10
Gbps packet delivery and do not have high-availability nor scalabil-
ity features. In the Software-Defined Networking, packets only travel
through the desired dedicated networking devices. However, few high-
speed stand-alone IPsec solutions exists that can be hooked up with the
SDN. In this paper we propose a design which will utilize the IPsec in
SDN fashion by separating IKE and packet encryption. Experimental
results show that high-availability and scalability goals are reached and
per-client throughput is increased. The IPsec protocol suite can thus face
the on-going need for faster packet processing rate.

Keywords: SDN, IPsec, Network security

1 Introduction

The aim of SDN, and particularly Openflow [1], is to enable innovation in net-
working by separating the control and the data planes [2]. Even though most
commercial networking hardware had been built with the control and data plane
separation for a very long time already, the separation was not always rigorous,
and the control plane was local. This forced the traditional network appliances to
be managed as separate units and use static routing or routing protocols to man-
age the logical topology. Deploying new features would therefore require routing
changes and even some specific protocol support from the network appliances.

For SDN, the controlling software runs on a separate controller. The con-
troller instructs the SDN forwarding appliances and switches, which are respon-
sible for forwarding the traffic on the data plane. This reduces the amount of
duplicate information, and speeds up innovation by centralizing the network
logic. Only the network controller has the information about the whole network
topology, such as connected nodes and the links between them. The switches
need to know only their own forwarding rules. Also, as the topology is a virtual
one, new features can be brought in without infrastructural upgrade.

Network Function Virtualization (NFV) concept enables different network
functions, such as firewalls, intrusion detection systems (IDS), VPN devices,

just to name few, to run virtualized. This allows service aggregation to a single
server and simultaneously offers possibility to add functions as on-demand to
the network. The NFV and SDN together is a powerful combination to provide
elastic services and use them without major network reconfigurations. [3]

IPsec is an example of a protocol that has a clear signaling and forwarding
separation [4, 5]. The Internet Key Exchange (IKE) protocol [5] is used to ne-
gotiate the security associations (SAs), which are then used for the actual data
plane of the IPsec. This makes IPsec conform nicely to the SDN paradigm. IPsec
is also a service of the network layer, unlike, for example, TLS, which is more
tied to the actual application.

Some common IPsec clustering problems have been discussed in [6]. The RFC
however ignores the IPsec function distribution, which this paper describes. IPsec
can be distributed into multiple SDN enabled functions, that can be effectively
parallelized and freely organized based on the available resources. Furthermore,
we concentrate on presenting the communication between the modules, and hope
that our contribution would incite discussion on open APIs to provision security
functions to SDN networks, such as the IPsec and IKE functions presented here.

This paper is structured as follows: Section 2 contains the related work.
Section 3 describes the proposed solution of IPsec functionality distribution and
SDN paradigm. Section 4 evaluates the performance of the proposed solution
while Section 5 contains future work and discussion. Finally Section 6 draws the
conclusions.

2 Related work

Inserting security appliances into SDN networks has already been discussed in
[7–11] showing that the security needs guide the networking topology. One of
the conclusions being that SDN allows to forget the physical topology altogether
[12].

Yet, freedom from the physical constraints may require advanced flow bal-
ancing. Scott-Hayward et al. added that traffic redirection may cause link con-
gestions which results to performance problems [12].

Tafreshi et al. [13] argue that Openflow needs to support IPsec, in order to be
aware of the flows and to route the traffic more efficiently. The usage of Security
Parameter Index (SPI) parameter in flow identification would enhance network
operation in High Availability (HA) enabled IPsec setups.

Recently, Li et. al. have proposed having IPsec concentrator as an integral
part of the SDN network [14]. Their work, however, differs from ours, as they
do not implement a modular design of independent services orchestrated by the
SDN controller.

SDN network is enhanceable by NFV services. While SDN controller changes
flows to insert some middle-box functions, the NFV concept introduces services
providing these functions using virtualization. [15, 16]

The presented solution is tailored to use IPsec, but it is not limited to it.
The same methodology applies whether MACsec or OpenVPN is used in the

middlebox [17, 18]. Dedicated IPsec processing appliances are required to provide
fast IPsec functionality to the network. Solutions such as DPDK [19], PIPSEA
[20] or Cavium Octeon based devices [21] have been proposed. Meng et al. also
included measurements for the throughput on different packet size [21]. Their
solution struggled with large amount of small packets which is a commonly
known problem in VPN tunneling.

3 Scalable IPsec architecture description

From this point we use the following terminology:

IPsec appliance handles the whole IKE and IPsec functionality autonomously.
IKE function handles only the IKE negotiation.
Packet crypto function (PCF) handles only IPsec for network packets.

3.1 Traditional IPsec Appliance in an SDN Network

Figure 1 presents how a stand-alone IPsec appliance can be applied to an SDN
network. The appliance maintains the tunnel connection and performs data en-
cryption/decryption operations between the headquarter and the branch office
network. The SDN controller in the network does not have visibility to the IPsec
appliance status. The controller is only for modifying the flows and forwarding
the packets to the IPsec appliance when necessary.

The traditional design does not achieve scalability nor availability needs with-
out vendor specific redundancy protocols and ad-hoc management of resources.
More IPsec appliances can be added to the network, but they suffer from being
separate devices in that they cannot take over each other’s flows.

3.2 Distributed IPsec functionality

Network design where the IPsec functionality is distributed to an IKE function
and two PCFs is described in Figure 2. This design meets the high availability

Internet

SDN Switch
PC

IPsec
Appliance

Branch office

SDN
Controller

Firewall,
IPsec appliance

ESP Traffic

Unencrypted
traffic

IKE
negotiation

Fig. 1. Traditional placement for IPsec appliance in SDN network.

Internet

SDN Switch
PCs

Packet crypto
function

Branch office

SDN Controller

Firewall,
IPsec appliance

Packet crypto
function

IKE function and
IPsec orchestrator

ESP Traffic

Unencrypted
traffic

IKE
negotiation

Fig. 2. IPsec with distributed IKE module and two packet crypto functions in an SDN
network

and scalability needs for IPsec because every function can have several multipli-
cations. IKE function is required to negotiate SA values with the branch office
IPsec appliance. These SA values need to be transferred from IKE function to
all PCFs.

The IPsec orchestrator module acts between the PCFs and the IKE function
to store and deliver necessary information such as SPI and key values. Delivery
can occur in a separate network from the main SDN control network, if so
desired. The IPsec orchestrator also selects the PCF for one specific network
flow. The PCF operates on the data plane and is responsible for encryption and
decryption operations. The SDN network allow to use virtually any number of
these functions to reach the required IPsec packet processing rate.

3.3 Message exchange

Figure 3 describes message exchange between the different actuators in the net-
work. It reflects a situation where a PC in the local network is the first to send
a packet going to the branch office. The SDN controller checks its table for ex-
isting IPsec SAs, and consults the network policy on whether the packet should
be protected, dropped or forwarded as is. This matching is done by a controller
module responsible for security associations. If the packet needs a new SA, the
IPsec orchestrator needs to be informed and a new IKE negotiation is initiated.

The IKE negotiation requires the SDN controller to redirect all packets with
UDP port 500 to the IKE function (there can also be a static flow rule). This
allows the IKE negotiation to occur between the IKE function and the branch
office IPsec VPN appliance. The resulting SA with the traffic policies, are added
to the IPsec SA table in the IPsec orchestrator. SPI, KEY, lifetime and IP
information are distributed to the PCFs.

PC A SDN SW SDN CTRL
Packet crypto

function #1
Packet crypto
function #N

Branch
office VPN

P

P

IPsec Orch., IKE func.

P from A
to VPN

UDP:500 flow

SPI,KEY,IP,
Lifetime

SPI,KEY,IP,
Lifetime

OK

IKEv2 negotiation

FlowSetup.
(A to Encr,

 Encr to OUT,
Out to Decr,

Decr to A)

OK

Release P
to SW

Fig. 3. Signaling and message transfer between different actuators when PC A sends
a packet (P) to Branch office.

3.4 Technical details of IPsec orchestration

The IPsec orchestrator is the central information exchange point for the IKE
orchestrator and the packet crypto function orchestrator as shown in Figure 4.
The communication is done using API layers. When a packet related to new IPsec
communication is received, it is forwarded to IPsec orchestrator for verification
and decision making. If the packet is valid, second level orchestrators are called.

The IKE orchestrator is responsible for verifying incoming new IKE connec-
tions. If connection is valid, the IKE function establishes new IKE SAs. The IKE
orchestrator also orders the SDN controller to create flows for capturing the IKE
initiation traffic to the device responsible for IKE function.

The Packet crypto function orchestrator is responsible for monitoring the
load of PCFs and sharing traffic equally between them. Orchestrator makes the
decision which PCF is used for which flow in the network and thus it gives flow
instructions directly to the SDN controller.

The IPsec, IKE and packet crypto function orchestrators share a lot of sen-
sitive information. They need to know the SPI, key and the lifetime informa-
tion that the IKE function negotiates. All the communication between different
orchestrators and functions is done over a separate control network. The com-
munication can use TLS, physical separation or preferably both. None of the
IPsec orchestrators needs the keys themselves, so the keys could be transmitted
in encrypted form.

IPsec
orchestrator
 Receive

packets

IKE orchestrator

IKE function

Packet crypto
function
orchestrator

Packet crypto
function

SDN
Controller
 Manage

switches

API

API

API

API

Flows

Flows

Fig. 4. IPsec orchestrator and its sub-orchestrators: IKE and packet crypto function
orchestrator, different functions and SDN controller communication.

3.5 IPsec orchestration API

The IPsec orchestrator needs to get the keys from the IKE orchestrator to be
delivered to the PCFs. The simplest way is to use API. In our example, the IKE
orchestrator launches the IKE function which negotiates IKE parameters. The
IKE function returns the child SA keys to the IKE orchestrator which sends the
keys to IPsec orchestrator. It makes a POST request to initiate a dataplane PCF.
The function returns a resource identifier that can be later queried for statistics
and removed. The response also includes a description of the ports provisioned
for the operation. The packet crypto function’s API is a JSON REST API with
the syntax described in the following listing:

{"mode": [" tunnel","transport "],

"spi": "0 x512256",

"operation ": [" encrypt","decrypt"],

"details ": {

"enc -mode" : "aes -cbc",

"mac" : "sha -1",

"ck": "deadbeef",

"ik": "caffeebaba",

[" tunnel"," transport "]: {

"out_dst ": "10.0.0.1" ,

"out_src ": "192.168.0.1" ,

"in_block ": "10.33.7.0/24" ,

"out_block ": "192.168.13.0/24"

}}}

At minimum, the PCF device needs the integrity (ik) and cryptography (ck)
keys, and SPI (defaults to transport mode, and AES-CBC with SHA-1 HMAC).
For the tunnel mode, the outer IP addresses, as well as allowed inner addresses
are required.

4 Performance results and evaluation

Experiments were conducted to ensure proper functionality and determine packet
processing rate. The network structure matches Figure 2 where HP 5900 SDN
switch was connected to HP VAN SDN controller. The SDN network operated
internally in 1Gbps speed and had 10Gbps upstream link to the Internet.

Experiments used Intel Atom C2000 based platforms as the PCFs with IPsec-
secgw DPDK sample application. Strongswan provided the necessary IKE func-
tion on the SDN network side of the VPN tunnel. On the other end of the tunnel
another Strongswan was operating as the IPsec appliance. IPsec was configured
to use tunnel mode.

SSH connections through IPsec tunnel ensured functionality. The packet pro-
cessing rate was determined when two PCs sent traffic through the tunnel. Small
packet size is the most difficult and resource consuming one. Thus the measure-
ments included experiments with 64 and 128 byte ICMP Echo request packets.

Four different algorithm scenarios for ESP packets were tested. The Null
algorithm used no encryption at all. Both, AES-128-CBC and AES-128-GCM
were evaluated with OpenSSL based crypto library. Finally, AES-128-GCM was
re-evaluated with Intel’s IPsec crypto library.

The first experiment had one PCF in the network. Throughput results are
show in Figure 5. The TX value is the total value of traffic to be encrypted that
is sent by the PCs.

The null encryption method is the simplest mode and thus can be kept as
the baseline for throughput measurements. The GCM with Intel-IPsec provides
approximately 600-700 Mbps throughput while CBC cannot reach 200 Mbps. Re-
gardless of the selected crypto algorithm, single PCF cannot handle the amount
of traffic sent by the PCs.

The second experiment had two identical PCFs. Figure 6 shows the total
throughput. The traffic from the source PCs is shared between these functions
with SDN as equally as possible.

0

200

400

600

800

1000

1200

64 128

M
b

/s

Packet size

TX

Null

CBC

GCM, OpenSSL

GCM, Intel-IPsec

Fig. 5. Combined transmission rate of local PCs (TX) and receiving rates of remote
VPN endpoint in Megabits per second (Mbps) when different encryption algorithms
and single packet crypto function is used.

0

200

400

600

800

1000

1200

1400

1600

1800

64 128

M
b

/s

Packet size

TX

Null

CBC

GCM, OpenSSL

GCM, Intel-IPsec

Fig. 6. Combined transmission rate of local PCs (TX) and receiving rates of remote
VPN endpoint in Megabits per second (Mbps) when different encryption algorithms
and two packet crypto functions are used.

The results show that 1.5 Gbps throughput is reached in 128 byte packet size.
The TX Mbps value is smaller than the Mbps value of the received encrypted
data, since every null encrypted packet enlarges the original packet with 32 bytes
and GCM with 56 bytes. Thus the GCM line should be higher than the null line,
but with 64 byte packet size the PCFs still choked.

All the experiments used DPDK based IPsec-secgw as the PCF. Through-
put using one PCF with 64 byte packet size was best with GCM (Intel-IPsec),
approximately 600Mbps. In comparison, the authors in [20] were able to use
Intel Quick Assist Tool (QAT) with DPDK and achieved 1Gbps throughput.
Their own embedded APU environment, PIPSEA, reached 3Gbps. Even faster
packet processing rate, 4Gbps, have been achieved in [21] using Cavium Octeon
platform.

5 Future work and discussion

The described model proves that SDN and distributed IPsec operate well to-
gether. Multiple PCFs serve in the network to provide the required HA feature,
but they only guarantee partial load balancing. In this concept the load balanc-
ing is path based meaning that a client uses one PCF at a time. Simultaneous
use is doable, but would require a proper link aggregation mechanism leading to
multiple PCFs being presented to the SDN network as one. This method needs
multipath labeling to identify individual packets, which is a future research topic.

Outgoing packets are well load balanced, but incoming packets are redirected
always to a certain PCF for decryption in the tunnel mode. This is caused by
the source and destination IPs being the same for each packet in the tunnel
mode, meaning that the transport mode is unaffected. A solution for better
load balancing in the tunnel mode is to use Equal-Cost Multi-Path (ECMP) in
Openflow SDN which chooses the least congested ports if possible.

The presented design of this paper is vulnerable to replay attacks because
the sequence number verification in the tunnel mode needs to be disabled as

permitted in [4]. This is because each PCF allocates sequence numbers to their
packets independently, and in the receiving end the packets from different PCFs
(but belonging to the same SA) may appear as duplicates. The problem could be
eliminated by synchronizing the packet counters between all PCFs, which would
require shared state table between the functions. This is virtually impossible in
high speed operation.

A replay attack may occur even when the sequence number verification is
enabled. If an attacker has two packet injection points to the data plane, the
controller can construct flows through different PCFs, causing the duplicate
packet to reach the destination. An answer is to use deterministic link selection,
which in turn makes ECMP unsuitable. A platform-independent solution would
be to run multiple flows through the network and balance these flows by using
encrypted payload bits with a bitmask.

The original model can be extended to include automatic PCF launching
in NFV fashion. The used DPDK ipsec-secgw sample application relies on IP
header TX checksum offloading while the virtual interfaces do not support this
feature. For this reason experiments were not conducted in virtual environment.

An existing IKE negotiator was used for experiments. Our approach required
complicated dataplane arrangements for the IKE messages and could likely have
been avoided with a pure IKE component as an SDN application. Although
in these pilots the IPsec orchestrator has access to all the secrets, we can also
support key wrapping in the orchestrator mediated messaging to the data plane
PCFs. In most environments this would have only minor security benefit for a
lot of added complexity.

6 Conclusions

We present a modern approach utilizing SDN to enhance the IPsec availability
and performance on commodity hardware. The model distributes IPsec main
operations to individual functional modules. The IKE module provides necessary
information to the data plane devices for ESP operation.

The results of our performance tests show that IPsec throughput increases
from 750Mbps to 1.5Gbps when the number of packet crypto functions is dou-
bled. While this performance increase was to be expected, it also emphasizes the
benefit of distributed design of SDN networks.

This kind of an SDN network which includes the presented IPsec model works
for both small and enterprise networks. However, great benefit can be achieved
when a lot of clients use IPsec.The work presented in this article illustrates the
possibilities that SDN brings to the legacy techniques which have difficulties to
meet the current scalability needs.

References

1. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: Openflow: enabling innovation in campus networks.
ACM SIGCOMM Computer Communication Review 38(2) (2008) 69–74

2. Nunes, B.A.A., Mendonca, M., Nguyen, X.N., Obraczka, K., Turletti, T.: A sur-
vey of software-defined networking: Past, present, and future of programmable
networks. IEEE Communications Surveys & Tutorials 16(3) (2014) 1617–1634

3. Mijumbi, R., Serrat, J., Gorricho, J.L., Bouten, N., De Turck, F., Boutaba, R.:
Network function virtualization: State-of-the-art and research challenges. IEEE
Communications Surveys & Tutorials 18(1) (2016) 236–262

4. Kent, S., Seo, K.: Security architecture for the internet protocol. RFC 4301, RFC
Editor (December 2005) http://www.rfc-editor.org/rfc/rfc4301.txt.

5. Kaufman, C., Hoffman, P., Nir, Y., Eronen, P.: Internet key exchange protocol
version 2 (ikev2). RFC 5996, RFC Editor (September 2010)

6. Nir, Y.: Ipsec cluster problem statement. RFC 6027, RFC Editor (October 2010)
7. Fayazbakhsh, S.K., Chiang, L., Sekar, V., Yu, M., Mogul, J.C.: Enforcing network-

wide policies in the presence of dynamic middlebox actions using flowtags. In:
NSDI. Volume 14. (2014) 533–546

8. Qazi, Z.A., Tu, C.C., Chiang, L., Miao, R., Sekar, V., Yu, M.: SIMPLE-fying mid-
dlebox policy enforcement using sdn. ACM SIGCOMM computer communication
review 43(4) (2013) 27–38

9. Qazi, Z., Tu, C.C., Miao, R., Chiang, L., Sekar, V., Yu, M.: Practical and incre-
mental convergence between sdn and middleboxes. Open Network Summit, Santa
Clara, CA (2013)

10. Gember, A., Prabhu, P., Ghadiyali, Z., Akella, A.: Toward software-defined mid-
dlebox networking. In: Proceedings of the 11th ACM Workshop on Hot Topics in
Networks, ACM (2012) 7–12

11. Bremler-Barr, A., Harchol, Y., Hay, D., Koral, Y.: Deep packet inspection as a
service. In: Proceedings of the 10th ACM International on Conference on emerging
Networking Experiments and Technologies, ACM (2014) 271–282

12. Scott-Hayward, S., O’Callaghan, G., Sezer, S.: Sdn security: A survey. In: Future
Networks and Services (SDN4FNS), 2013 IEEE SDN For, IEEE (2013) 1–7

13. Tafreshi, V.H.F., Ghazisaeedi, E., Cruickshank, H., Sun, Z.: Integrating ipsec
within openflow architecture for secure group communication. ZTECOMMUNI-
CATIONS (2014) 41

14. Li, W., Lin, F., Sun, G.: Sdig: Toward software-defined ipsec gateway. In: Network
Protocols (ICNP), 2016 IEEE 24th International Conference on, IEEE (2016) 1–8

15. Wood, T., Ramakrishnan, K., Hwang, J., Liu, G., Zhang, W.: Toward a software-
based network: integrating software defined networking and network function vir-
tualization. IEEE Network 29(3) (2015) 36–41

16. Han, B., Gopalakrishnan, V., Ji, L., Lee, S.: Network function virtualization:
Challenges and opportunities for innovations. IEEE Communications Magazine
53(2) (2015) 90–97

17. Hutchison, G.T., Nemat, A.B.: Macsec implementation (October 12 2010) US
Patent 7,814,329.

18. Feilner, M.: OpenVPN: Building and integrating virtual private networks. Packt
Publishing Ltd (2006)

19. Divyesh Darde, Vidhya Sankaran, H.W.H.W.: Cs5413 project final report. analysis
of performance of intel dpdk on physical and virtual machines

20. Park, J., Jung, W., Jo, G., Lee, I., Lee, J.: Pipsea: A practical ipsec gateway
on embedded apus. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ACM (2016) 1255–1267

21. Meng, J., Chen, X., Chen, Z., Lin, C., Mu, B., Ruan, L.: Towards high-performance
ipsec on cavium octeon platform. In: International Conference on Trusted Systems,
Springer (2010) 37–46

PUBLICATION
IV

Feasibility of FPGA Accelerated IPsec on Cloud

M. Vajaranta, V. Viitamaki, A. Oinonen, T. D. Hämäläinen, A. Kulmala and

J. Markunmäki

21st Euromicro Conference on Digital System Design, DSD 2018, Prague, Czech

Republic, August 29-31, 2018. Ed. by M. Novotný, N. Konofaos and A. Skavhaug.

2018, 569�572

doi: 10.1109/DSD.2018.00099

Publication reprinted with the permission of the copyright holders

https://doi.org/10.1109/DSD.2018.00099

Feasibility of FPGA Accelerated IPsec on Cloud

Markku Vajaranta1, Vili Viitamäki1, Arto Oinonen1, Timo D. Hämäläinen1, Ari Kulmala2, and Jouni Markunmäki2

1Laboratory of Pervasive Computing, Tampere University of Technology, Tampere, Finland
2Accelerator SoC R&D, Nokia, Tampere, Finland

Abstract— Line-rate speed requirements for performance
hungry network applications like IPsec are getting problematic
due to the virtualization trend. A single virtual network appli-
cation hardly can provide 40 Gbps operation. This research
considers the IPsec packet processing without IKE to be
offloaded on an FPGA in a network. We propose an IPsec
accelerator in an FPGA and explain the details that need to
be considered for a production ready design. Based on our
evaluation, Intel Arria 10 FPGA can provide 10 Gbps line-rate
operation for the IPsec accelerator and to be responsible for
1000 IPsec tunnels. The research points out that for future data
centers it is beneficial to rely on HW acceleration in terms of
speed and energy efficiency for applications like IPsec.

I. INTRODUCTION

In this paper, we consider the feasibility of IPsec offloaded
from Software (SW) to FPGAs in a large-scale environment
such as a cloud. We elaborate which IPsec functionalities
are feasible for FPGA and what effects are there for area,
memory and processing requirements. We explain the limits
that production ready IPsec accelerator would face. With this
setup we show how packet forwarding, sensitive material
handling and security weaknesses stated in the previous
work [1] can be addressed. We also include the FPGA con-
trol/data plane separation description and possible drawbacks
in network features that no longer rule in Software-Defined
Networking (SDN) and FPGA environments.

The article is structured as follows. Section II covers
the related work regarding the IPsec on FPGA. System
model for the design is explained in III. The section IV
contains discussion and observations of the design. Section
V evaluates the the design and addresses future work. Finally
conclusions are drawn in section VI.

II. RELATED WORK

IPsec on an FPGA has been researched widely and table
I shows the summary of IPsec features in related work. To
the best of our knowledge, no FPGA implementations are
done for IPsec as an Encapsulated Security Payload (ESP)
middle-box in SDN fashion where the Internet Key Exchange
(IKE) is removed to work on a completely isolated device
in a SW solution. Further, the feasibility of an IPsec FPGA
implementation and its difficulties in implementation are not
being considered for large production environments such as
cloud usage.

The IPsec implementations in related work usually rely
on Advanced Encryption Standard Cipher Block Chaining

Research AES mode SAD ICV Replay attack IKE
[4] CBC + + - SW
[5] CBC + + + SW
[6] ECB,CBC + - - -
[7] ? + - + -
[8] CBC,CTR SPD - - *
[9] ** - + - ***

[10] ECB,CBC - - - -
This work GCM + + + SW

(-) feature not covered ; (+) is mentioned
[8] SPD, Security Policy Database
* HW and SW components used
** Examined lightweight IPsec ESP cores
*** Authors used ECC core for IKE

TABLE I
IPSEC FUNCTIONALITIES PRESENTED IN RELATED WORK.

 Internet

Network
Director
serverFPGA

Data plane

Control plane

End
devices

SDN Switch

Switch

Fig. 1. The network design for the designed FPGA middlebox system.

(AES-CBC) encryption mode. Some included Security As-
sociation Database (SAD) module or an equivalent on the
FPGA which is a necessary storage for IPsec. The Integrity
Check Value (ICV) and IKE module are mentioned in a few
articles, whereas the anti-replay is considered additionally in
documents like [2], [3].

III. ARCHITECTURE

This section explains the network and FPGA concept
architecture design.

A. Network architecture

The network architecture, depicted in Figure 1, extends our
previous work in[1]. The network consists of separated data
and control planes. The data plane contains end devices, an
SDN switch and the router/firewall which acts as a gateway
to the Internet. All communication between the network
director server, SDN switch and the FPGA occurs in the
control plane.

Network Director server

IKE
negotiator

SDN
controller

Network
Director

orchestrator

Data plane
interface

Control plane
interface

Fig. 2. The network director server modules and their corresponding
network interfaces.

IKE
negotiator

SDN
controller

Orchestrator SDN Switch FPGA

Flows: IKE forwardings

OK

OK

Establish SA

OK

SA information

Flows: Packet forwarding for
encryption/decryption

OK

Fig. 3. The initial message sequence required in startup phase.

The network director server depicted in Figure 2 imple-
ments three software modules: an IKE negotiator, a network
director orchestrator and an SDN controller. The IKE ne-
gotiator SW establishes the necessary Security Association
(SA) with the other endpoint of the IPsec tunnel through
the data plane. The SDN controller SW uses the control
plane interface for pushing flow rules to the SDN switch. The
network director orchestrator SW is the binding component
between the IKE negotiator, the SDN controller, and also the
FPGA(s). Thus the network director orchestrator controls the
whole process by giving instructions to other SW modules
and the FPGA.

The messages sent between different modules in IPsec
tunnel setup phase are shown in Figure 3. The orchestrator
instructs the SDN controller to push flows into the SDN
switch which forwards the IKE messages coming from
the Internet to the network director. When finished, the
orchestrator instructs the IKE negotiator to start establishing
the SA. Once the SA phase is done, the orchestrator pushes
IKE SA information to the FPGA using the control plane.
Finally more flows are pushed to the SDN switch that contain
information which packets need to be sent to FPGA for
encryption or decryption.

B. FPGA architecture

Figure 4 shows an example block diagram for an IPsec
accelerator in an FPGA in figure 1. The HW architecture
contains three different logical components: the IPsec ac-
celerator logic, SDN fashion data, and control planes. Even
though the data and the control planes both communicate
with the accelerator logic, any traffic entering the FPGA is
unable to jump from one plane to another.

The control plane subsystem is only for updating the SAD

Data plane

Control plane

Ethernet

40G
QSFP+

SDN / User
logic control

Ethernet
Packet client

IPsec Accelerator logic

Encrypt
#1

IPsec
Manager

AES-GCM
+ AES

IPsec
Enc &
Dec

SADs

Decrypt
#1

AES-GCM
+ AES

AES-GCM
+ AES

AES-GCM
+ AES

Encrypt
#2

Decrypt
#2

Fig. 4. Internal block diagram of an IPsec FPGA implementation where
IPsec accelerator operates as user logic with a separate data and control
plane networks.

table whereas the accelerator subsystem holds the desired
functionality for the FPGA, in this case the IPsec. The IPsec
manager receives data from the packet client and selects
between the encrypt and decrypt modules. All modules
are dependent on their corresponding SAD registries that
contain the tunnel information. Both modules are required
to do checks on the traffic to verify the integrity of data. If
everything matches, the AES-GCM + AES block is being
queried with given data.

IV. FEASIBILITY OF AN FPGA ACCELERATION

Below we consider the following issues affecting the feasi-
bility of FPGA acceleration: the network director, modifica-
tions required to the network, information in IPsec operation
and security considerations of the design.

A. Network Director orchestrator responsibilities

The orchestrator SW is responsible for setting up and
removing the IPsec tunnel operation in the network. It
initiates new connections using IKE an negotiator, pushes
flows using SDN controller and updates the SAD entries on
the FPGAs. The orchestrator needs to set up all of these
before the actual packet transmission starts. This ensures the
minimal latency in the network level.

The high-speed requirement makes it impossible for the
FPGA to request the orchestrator to do IKE negotiation when
a packet with non-existing SA information enters the FPGA.
The negotiation is virtually too late in that case. The SW
modules will not create latency if beforehand all tunnels
are negotiated, keys are stored in the FPGA SADs, and
the necessary flow rules exist in the SDN switch. Similarly,
latency can be avoided by doing the re-key and key delivery
operations prior to key timeout.

B. Network layer considerations

A standalone FPGA in a network does not require a Media
Access Control (MAC) address at all since the forwarding
decisions in the switch plane are made by the SDN. The
packets may enter and leave the FPGA with any MAC
address pair. This is adverse since the switch learns falsely
some MAC addresses to be behind the FPGAs switch port
even though they are not there. For this reason the MAC
address learning feature should be off at the switch port
where the FPGA is connected to.

Quite many different kinds of broadcast/multicast mes-
sages are seen in the network. Thus it’s a good practice to
have a white list in the Ethernet packet client module to
allow only desired traffic to bypass it and to be delivered to
the IPsec accelerator logic.

One major issue faced by the design is the incoming
packet forwarding after the packets are decrypted in the
FPGA. These decrypted packets contain wrong destination
MAC address which need to be updated to match the real
destination specified in the Internet Protocol (IP) header.
This can be easily achieved by keeping track of the seen IP
and MAC address pairs and rewriting the false destination
MAC address in the Ethernet packet client. Another approach
would be to use flow rule in the SDN switch which rewrites
the MAC addresses in the switch level. Both approaches have
their benefits and should be chosen on occasion.

C. SPI, Sequence number and IV

The Security Parameter Index (SPI) value that is negoti-
ated by IKE must be unique for the IPsec tunneling deploy-
ment. SW IKE solutions running in e.g. Linux consider this
property by default and thus the uniqueness can be trusted.

The Sequence Number (SN) identifies a single packet
and works as an anti-replay mechanism which should be
implemented as described in [11], [12]. The usage of Ex-
tended Sequence Number (ESN) is mandatory in IKEv2
making the ESN 64 bits long. When considering the 40 Gbps
link, the maximum amount of packets per second (pps) is
59,523,808. A practical viewpoint is that even though the
packets with consecutive SNs should be close to each other,
they will arrive in mixed order. For this reason, effective
sliding window mechanism is required to have a working
anti-replay mechanism. The design for such a mechanism is
however out of the scope in this paper.

The Initialization Vector (IV) for encryption is a value
that must never repeat [11]. Usually after the depletion of
IV numbers, the key is renegotiated. The value however is
64 bits long. If every single value is used, the 64-bit IV will
last for approximately 9827 years making the IV to be unique
for the key lifetime even if used carelessly. Thus the FPGA
does not need to worry about IV depletion and its signaling
to the network director.

D. IPsec SAD

The SAD contains the items described in table II. The
destination network information is not required because it is
used only for identification when choosing correct SA for
outgoing packets. Similarly not required is the IV since it is
read from the incoming packet.

This results in 552 bits of data per connection in encryp-
tion SAD. The decryption SAD is required to store double
the amount of information specified in the table to ensure
seamless operation in the re-key phase. Thus the decryption
SAD size is 1008 bits per connection.

We can approximate that in a larger environment with
1000 IPsec tunnels the amount for on-chip memory on an
FPGA is 68 kB for the encryption SAD and 124 kB for the

TABLE II
SAD REGISTRY ENTITIES ON THE FPGA

Item Size (bits) Enc. SAD Dec. SAD
Destination network 32+32 yes no

SPI 32 yes yes
key 256 yes yes

key size 8 yes yes
IV 64 yes no

SEQ # 64 yes yes
Tunnel SRC IP 32 yes yes
Tunnel DST IP 32 yes yes

decryption SAD. Thus the SADs fit to the on-chip memory
easily which speeds up operation. The advantage is that the
on-chip memory can be read every cycle compared to the
external memory which requires multiple cycles.

E. Packet processing inside an IPsec accelerator

The presented IPsec accelerator design in the Figure 4
is functional as is. The IPsec manager is responsible for
sharing incoming packets to the right function (decryp-
tion/encryption), and the desired module (encryption #1,
encryption #2...). The selection between encryption and
decryption function can be based on the Protocol field in
the IP header. All ESP packets are sent to decrypt function
and all plain text packets to the encryption.

Contrary to Figure 4, the number of function modules is
not limited to two. Having more parallel modules speeds up
the packet processing since consecutive packets belonging to
the same SA can use same module. This action saves time
since AES does not need to be reconfigured. The mechanism
is however complicated since functionality should be able
in some cases to utilize all modules for a single SA and
sometimes every module for a different SA. To guarantee
fair and correct module selection, the utilization level of a
single module is needed. This algorithm can be built using
sliding window approach, but is not covered in this article.

F. Concept security and possible attack vectors

The most vulnerable spot is the control plane where the
messages for the FPGA and the SDN switch configurations
take place. It is vital to ensure the physical security of the
control plane network in addition to securing the devices
which have access to it. As long as data goes in plain text,
they can be easily obtained from the control plane. Thus
Transport Layer Security (TLS) protocol suite should be
implemented to it for security. The Openflow protocol that
is often used for communication between switches and the
SDN controller supports TLS as well. If used, it can provide
the necessary confidentiality, integrity and authentication for
that specific traffic as well.

The on-chip memory on an FPGA for SAD ensures that
private material cannot be leaked from the external memory
of the FPGA by bus snooping. However, side-channel attack
can still be executed on the system-on-a-chip (SoC) itself
which would be successful even though the process is
complicated and time consuming one.

TABLE III
CYCLES PER TASK OF THE IPSEC ACCELERATOR LOGIC

Task Encryption Decryption
Manager 2-4 2-4

AES config 2-3 2-3
AES receive 0-14 0-14
Data to AES 8 7

TAG gen/check 2-3 2-3

When the SA is being removed, the related flows from the
network should also be removed. Without flows, all packets
that were originally getting pushed through the IPsec tunnel
are now sent to the router for getting routed even though it is
very likely not possible. Unfortunately this is very dangerous
behavior since clear text packets that might contain sensitive
user data will be pushed to the Internet. Thus the router
should include firewall to drop the packets. This operation
can be automated to the orchestrator if the firewall has some
configuration Application Programming Interface (API) or it
supports SDN.

V. CONCEPT DESIGN AND FUTURE WORK

The design including the control logic, Ethernet packet
client, and the IPsec accelerator logic is still at concept
level. We can evaluate the accelerator logic to operate on the
lowest clock rate, but at least in 175 MHz. The logic requires
approximately 300 Adaptive Logic Modules (ALMs) for the
IPsec manager, 18.5k for decrypt module with AES and 20k
for encryption with AES. Further we can evaluate the control
plane blocks to require 20k ALMs and the data plane blocks
24k ALMs. Thus we can approximate that entire IPsec FPGA
implementation with 9-10 encrypt and decrypt pairs in IPsec
accelerator can fit to e.g. Arria 10 GX1150 that has 427.2k
ALMs.

The Arria 10 has 53 Mbit of internal memory. We can
evaluate that 13 Mbit of those must be reserved for the
control logic and the SAD. Packet buffering that is between
the Ethernet packet client and the IPsec accelerator can safely
use 40 Mbit. With 64-byte packet size, we can estimate
in full speed operation (59,523,808pps) the buffers to store
maximum 81920 packets which equals 1.3 millisecond time
frame.

Table III shows cycle values for the IPsec accelerator de-
sign. It is notable that AES does not need to be reconfigured
every round with a new key which virtually removes the 14
cycle wait. After AES configurations the IPsec accelerator
can provide new data through modules every 14-15 cycles.
With 64 byte packet size the encryption and decryption
module can therefore reach 1.4 Gbps packet processing rate
in all circumstances.

A future work is to build a proof-of-concept implemen-
tation based on this concept design. The Goal is to reach
10Gbps packet transfer rate with pipelining. Further the
research targets on finding a fast SAD search method and
a reliable packet fragmentation mechanism for FPGA.

VI. CONCLUSION

This research introduced an SDN fashion IPsec accelerator
concept and what must be considered in big networks such
as a cloud. Indeed, the IPsec network packet handling can be
offloaded from a software module to an FPGA accelerator.
The presented method is feasible for cloud environments and
can provide a very cost-effective solution.

The presented concept is much simpler compared with the
related work ones because we consider only the heavy IPsec
packet processing in the FPGA and let the IKE operate from
a completely different device in the network. This saves the
valuable area on the FPGA to focus on packet encryption and
decryption functions. An individual function should easily
reach 1.4 Gbps operation speed without pipelining which
will speed up the processing up to 10Gbps.

The HW offloading functionality can be a significant
feature for the cloud operators to make savings and to speed
up their services. The IPsec is a good proof-of-concept to be
offloaded due to its modular structure and future will likely
reveal much more important functions that can be offloaded
to HW accelerator.

REFERENCES

[1] M. Vajaranta, J. Kannisto, and J. Harju, “Ipsec and ike as functions in
sdn controlled network,” in International Conference on Network and
System Security. Springer, 2017, pp. 521–530.

[2] F. Zhao and S. F. Wu, “Analysis and improvement on ipsec anti-replay
window protocol,” in Computer Communications and Networks, 2003.
ICCCN 2003. Proceedings. The 12th International Conference on.
IEEE, 2003, pp. 553–558.

[3] X. Zhang and T. Tsou, “Ipsec anti-replay algorithm without bit
shifting,” Internet Requests for Comments, RFC Editor, RFC 6479,
January 2012.

[4] M. Korona, K. Skowron, M. Trzepiński, and M. Rawski, “Fpga
implementation of ipsec protocol suite for multigigabit networks,” in
Systems, Signals and Image Processing (IWSSIP), 2017 International
Conference on. IEEE, 2017, pp. 1–5.

[5] J. Lu and J. Lockwood, “Ipsec implementation on xilinx virtex-ii
pro fpga and its application,” in Parallel and Distributed Processing
Symposium, 2005. Proceedings. 19th IEEE International. IEEE, 2005,
pp. 7–pp.

[6] Y. Niu, L. Wu, L. Wang, X. Zhang, and J. Xu, “A configurable ipsec
processor for high performance in-line security network processor,” in
Computational Intelligence and Security (CIS), 2011 Seventh Interna-
tional Conference on. IEEE, 2011, pp. 674–678.

[7] Y. Niu, L. Wu, and X. Zhang, “An ipsec accelerator design for a
10gbps in-line security network processor.” JCP, vol. 8, no. 2, pp.
319–325, 2013.

[8] A. Salman, M. Rogawski, and J.-P. Kaps, “Efficient hardware acceler-
ator for ipsec based on partial reconfiguration on xilinx fpgas,” in Re-
configurable Computing and FPGAs (ReConFig), 2011 International
Conference on. IEEE, 2011, pp. 242–248.

[9] B. Driessen, T. Güneysu, E. B. Kavun, O. Mischke, C. Paar, and
T. Pöppelmann, “Ipsecco: A lightweight and reconfigurable ipsec
core,” in Reconfigurable Computing and FPGAs (ReConFig), 2012
International Conference on. IEEE, 2012, pp. 1–7.

[10] H. Wang, G. Bai, and H. Chen, “A gbps ipsec ssl security processor
design and implementation in an fpga prototyping platform,” Journal
of Signal Processing Systems, vol. 58, no. 3, pp. 311–324, 2010.

[11] J. Viega and D. McGrew, “The use of galois/counter mode
(gcm) in ipsec encapsulating security payload (esp),” Internet
Requests for Comments, RFC Editor, RFC 4106, June 2005,
http://www.rfc-editor.org/rfc/rfc4106.txt. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc4106.txt

[12] S. Kent, “Ip encapsulating security payload (esp),” Internet
Requests for Comments, RFC Editor, RFC 4303, December
2005, http://www.rfc-editor.org/rfc/rfc4303.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc4303.txt

PUBLICATION
V

Feasibility of FPGA accelerated IPsec on cloud

M. Vajaranta, A. Oinonen, T. D. Hämäläinen, V. Viitamäki, J. Markunmäki

and A. Kulmala

Microprocessors and Microsystems - Embedded Hardware Design. Ed. by P. Kitsos.

2019, 102861

doi: 10.1016/j.micpro.2019.102861

Publication reprinted with the permission of the copyright holders

https://doi.org/10.1016/j.micpro.2019.102861

Microprocessors and Microsystems 71 (2019) 102861

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Feasibility of FPGA accelerated IPsec on cloud

Markku Vajaranta a , ∗, Arto Oinonen
a , Timo D. Hämäläinen

a , Vili Viitamäki b ,
Jouni Markunmäki b , Ari Kulmala b

a Computing Sciences, Tampere University, Tampere, Finland
b Baseband ASIC R&D, Nokia Networks, Tampere, Finland

a r t i c l e i n f o

Article history:

Received 30 November 2018

Revised 12 June 2019

Accepted 4 August 2019

Available online 5 August 2019

Keywords:

IPsec

Offloading

SDN

Accelerator

a b s t r a c t

Hardware acceleration for famous VPN solution, IPsec, has been widely researched already. Still it is not

fully covered and the increasing latency, throughput, and feature requirements need further evaluation.

We propose an IPsec accelerator architecture in an FPGA and explain the details that need to be consid-

ered for a production ready design. This research considers the IPsec packet processing without IKE to

be offloaded on an FPGA in an SDN network. Related work performance rates in 64 byte packet size for

throughput is 1–2 Gbps with 0.2 ms latency in software, and 1–4 Gbps with unknown latencies for hard-

ware solutions. Our proposed architecture is capable to host 10 0 0 concurrent tunnels and have 10 Gbps

throughput with only 10 μs latency in our test network. Therefore the proposed design is efficient even

with voice or video encryption. The architecture is especially designed for data centers and locations with

vast number of concurrent IPsec tunnels. The research confirms that FPGA based hardware acceleration

increases performance and is feasible to integrate with the other server infrastructure.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The IPsec Virtual Private Network (VPN) tunnel is a commonly

used protocol suite to build secure end to end connections through

the Internet. It provides confidentiality, integrity and authentic-

ity, but also introduces performance overhead affecting the latency

and throughput of the transmission. IPsec requires both packet

protocol processing and cryptographic computations, and a net-

work must support a massive number of IPsec tunnels simultane-

ously. At the same time, the network functions, including IPsec, are

being virtualized. Thus we need to find both high-performance and

flexible solutions.

The IPsec leans to Internet Key Exchange (IKE) to ensure se-

cure key exchange between endpoints and uses Encapsulated Se-

cure Payload (ESP) to encrypt network packets. Our previous work

in [1] presented a design where the IKE and ESP processes are dis-

tributed in a local network using Software-defined Network (SDN)

to improve performance. In this paper, we consider hardware ac-

celeration on FPGA for ESP processing and extend the context to a

very large-scale cloud environment.

∗ Corresponding author.

E-mail addresses: markku.vajaranta@tuni.fi (M. Vajaranta),

arto.oinonen@tuni.fi (A. Oinonen), timo.hamalainen@tuni.fi (T.D. Hämäläinen),

jouni.markunmaki@nokia.com (J. Markunmäki), ari.kulmala@nokia.com (A. Kul-

mala).

The work in [1] tried to speed up IPsec processing by run-

ning ESP processes parallel in multiple SW servers. This approach

was not feasible due to problems with incoming packet forward-

ing and cumbersome anti-replay protection. The research however

described SDN to precisely control the IPsec flows, and separation

of IKE and ESP execution in different devices in the network.

In [1] the IPsec packet processing throughput was 100 Mbps us-

ing AES-128-CBC cipher and 600 Mbps on AES-GCM with 64 byte

packet size. It showed the packet processing to be relatively slow

operation on SW depending on used crypto algorithm. The Li-

breswan open source IPsec project has measured with unspeci-

fied packet size 5.25 Gbps throughput on SW using AES-GCM and

1.39 Gbps using AES128-SHA1 crypto ciphers [2] . The benchmarked

system performed 9.78 Gbps link throughput without crypto. In Li-

breswans’ results it is possible that the network packet size was

set to relatively large resulting higher total throughput in every

test. Even though these aforementioned numbers were decent, our

goal is 10 Gbps throughput and 10 μs packet latency which is hard

to achieve without using HW acceleration. These numbers clearly

indicated that SW solution in long run is not performant enough.

This justifies the usage of fast IPsec middle-box in SDN fashion for

IPsec packet processing.

In [3] we shortly explained the architecture where an FPGA

would consider the ESP processing when used in such network ar-

chitecture presented in [1] . The work indicated that much larger

research is needed just for the architecture to be elaborated and

https://doi.org/10.1016/j.micpro.2019.102861

0141-9331/© 2019 Elsevier B.V. All rights reserved.

2 M. Vajaranta, A. Oinonen and T.D. Hämäläinen et al. / Microprocessors and Microsystems 71 (2019) 102861

Internet

IPsec
FPGA

End
devices

SDN Switch

Router /
FirewallIPsec

SW server

Fig. 1. Simplified system model with separate IPsec devices for ESP on FPGA and

IKE on SW server.

all the limits and constraints the FPGA will face with a production

ready solution that can host vast number of concurrent tunnels.

Some number of studies concerning FPGA IPsec solutions exist as

the related work section will reveal, but they do not consider the

production readiness and features the IPsec endpoint requires. This

was a strong motivation for our research.

When considering the IPsec FPGA accelerator architecture, the

challenge is how to partition the IPsec functions on HW, in which

we need to trade-off between memory consumption, computing

power and area. A major contribution is to draw a clear picture of

the requirements and limits for the IPsec HW accelerator besides

the proposed architecture. We elaborate the whole architecture to

find non-time-critical parts and move them to run on software to

achieve more area on an FPGA for performance hungry functions.

Our proposed system model is depicted in Fig. 1 . End devices

can be considered as user PCs connected to the Internet via a Fire-

wall. IPsec processing take place collaboratively in IPsec FPGA and

in IPsec SW server. The SDN Switch connects these different de-

vices together. The IPsec tunnel is negotiated by IKE using IPsec

SW on a server with another IPsec endpoint somewhere in the In-

ternet. These negotiated Security Association (SA) values are trans-

ferred to the IPsec FPGA which covers the ESP packet processing.

When the End devices communicate through the IPsec tunnel, the

SDN switch forwards the traffic to the IPsec FPGA for packet re-

packaging. This approach uses the FPGA to accelerate only the traf-

fic related to End devices and do not consider key negotiations at

all.

This paper is structured as follows. Section 2 presents the re-

lated work regarding the IPsec on FPGA. Our proposed system ar-

chitecture is explained in Section 3 . Section 4 points out critical

issues of IPsec functionality and their consequences to FPGA im-

plementation. Our proposal for the HW accelerator architecture is

presented in Section 5 . Section 6 evaluates the design. The conclu-

sions are given in Section 7 .

2. Related work

Several FPGA based implementations have been presented for

IPsec acceleration. For instance, Heliontech already provides a com-

mercial IPsec ESP core [4] which can reach 3.7 Gbps throughput

rate, and there are several research proposals listed in Table 1 .

Most of the works propose encryption acceleration on FPGA.

Most use Advanced Encryption Standard Cipher Block Chaining

(AES-CBC) or Electronic Code Book (ECB) instead of Galois Counter

Mode (AES-GCM), despite that AES-GCM is described in RFC4106

already in 2005 [5] . In addition, the Security Association Database

(SAD) module or an equivalent is often considered on the FPGA

which is the necessary storage for IPsec. The Integrity Check Value

(ICV) and anti-replay are mentioned in few works and the purpose

is well explained. The anti-replay feature for FPGA is a research

topic itself and considered additionally e.g. in [6,7] . Quite many

works left IKE out of scope and discussed the efficiency and cost-

effectiveness of their solution instead. Our architecture uses IKE as

described in [1] where it is working in its own SW solution.

Table 1

IPsec functionalities presented in related work. Throughput rate for 64 byte

packet length in CBC mode if not otherwise specified.

Research AES SAD ICV Replay IKE Throughput

mode attack rate

[8] CBC + + − SW 2.1 Gbps

[9] CBC + + + SW 1.2 Gbps !

[10] ECB,CBC + − − − 1.5 Gbps !

[11] ? + − + − 11.28 Gbps

with 512 B

[12] CBC,CTR SPD − − ∗ 600 Mbps !

[13] ∗∗ − + − ∗∗∗ Unknown

[14] ECB,CBC − − − − 742 Mbps

with 1500 B

[15] CBC + − − − 3.08 Gbps

[16] CBC SPD + + - − 4 Gbps

[17] only SHA − + − − −
[18] CBC − − − − 577 Mbps !

This work GCM + + + SW 2x5 Gbps

(−) feature not covered; (+) is mentioned + − Covered, but implementation

unknown SPD: Security Policy Database instead of SAD ∗ HW and SW com-

ponents used ∗∗ Examined lightweight IPsec ESP cores ∗∗∗ Authors used ECC

core for IKE ! Throughput rate not specified with network packet length This

work uses 5 parallel 2 Gbps blocks for both decryption and encryption

Korona et al. [8] proposed to use encryption modules in parallel

for a single task using round-robin style. Parallel access to SAD in

this solution was done using an arbiter system in its own clock do-

main for the best performance. They reached 2.1 Gbps throughput

for 64 B, and 5.5 Gbps for 1500 B packet length.

Lu et al. built their solution on top of Xilinx Virtex-II Pro-FPGA.

They separated the data and control paths to move the data pro-

cessing on top of HW and leave the SW to maintain only control

traffic. The work includes the SAD, ICV and anti-replay features and

the design was built using reconfigurable and extensible network

service platform with IBM PowerPC processor for SW operations.

Synthesis shows maximum of 1197 Mbps throughput rate in AES-

128 mode [9] .

Virtex 5 family device was used by Niu et al. for IPsec ac-

celerators in [10,11] . The design used key engine instead of IKE.

The research addresses that crypto processing is the most time

consuming operation and thus the design is utilizing several AES

cores simultaneously through a crossbar bus. The SAD is placed

in the SRAM and specified to hold 256 security associations. The

proposal in [10] reached 1.5 Gbps processing rate with unknown

packet length. However, they reached 11.89 Gbps throughput rate

for 512 B packets in [11] .

Partial reconfiguration is playing the key role in [12] . Their con-

tribution includes mixing HW and SW solution in FPGA to gain

flexibility in its operation. The design utilizes external memory to

load either AES, SHA256 or MODEXP to IPsec co-processor using

partial reconfiguration. The design reached slightly over 600 Mbps

throughput with undocumented network packet length.

The research in [13] focused as well on the crypto core instead

of IPsec features. Driessen et al. presented a core called IPSecco

that is designed for reconfigurable and lightweight HW. They used

PRESENT instead of AES, GROSTL and PHOTON instead of Secure

Hash Algorithm (SHA) and the ECC core instead of IKE which made

the core very energy and cost-efficient.

Wang et al. [14] used Network Security Processor system to ac-

celerate the IPsec and SSL operations on FPGA. The research fo-

cused on cryptographic processing and its optimization. The de-

sign is planned to work with a PC through PCI-X interface instead

of standalone device in a network. The implementation reached

0.742 Gbps AES-256-CBC with HMAC-SHA-1-96 when tested with

1500 B network data packet. This particular research addresses the

problem of data packets exceeding the MTU of 1500 B. Their solu-

tion uses packet size of 576 B for the network fragments generated.

M. Vajaranta, A. Oinonen and T.D. Hämäläinen et al. / Microprocessors and Microsystems 71 (2019) 102861 3

In addition to IPsec on an FPGA, Park et al. discovered in

[15] that Accelerated Processing Units (APUs) can be used for IPsec

processing. Their design, PIPSEA , was able to reach a throughput

of 3.08 Gbps for 64 byte packets and 11.09 Gbps for 1280 byte net-

work packets using AES-CBC + HMAC-SHA1. The design was utiliz-

ing three CPU cores and one GPU in the APU.

Meng et al. designed and implemented IPsec on Cavium Octeon

in [16] . The throughput rate for 64 B packet size was approxi-

mately 4 Gpbs and with 1024 B packets 20 Gbps. Work described

the need for integrity checks for ESP messages, replay attack pro-

tection mechanism, and network packet fragmentation.

An IPsec FPGA accelerator working through PCI interface was

developed in [18] . Even though the results are quite old (2001),

they achieved 577 Mbps throughput rate for AES-CBC with 128 bit

keys with unspecified network packet size.

In [17] the authors focused exclusively to SHA-1 implementa-

tion. The SHA is important for IPsec because it provides necessary

integrity protection and authentication for e.g. AES in CBC mode.

They were able to reach 2.5 Gbps throughput for SHA-1 algorithm.

Other characteristics of full IPsec implementation were not consid-

ered.

In [19] the authors proposed high speed AES implementations

for AES-ECB and Counter Mode (AES-CTR). The results shows that

still convenient CTR mode on Xilinx Virtex-6 reached 260.15 Gbps

data throughput.

Project Wireguard [20] has measured that famous IPsec soft-

ware suite, Strongswan [21] , reaches 881 Mbps transfer rate with

0.508 ms ping response time on an Intel i7 CPU on AES-GCM

mode. Other benchmarks like Tremer [22] shows Strongswan can

reach 1.3 Gbps throughput (AES-GCM) with 64 byte packet size.

These values can be considered as a reference when measuring the

hardware implementations.

Related work clearly indicates that the approach, features and

throughput varies a lot between the proposals. Our approach is to

consider a full solution to be deployed in a production cloud envi-

ronment. Therefore we also address the feasibility, difficulties, and

constraints for the IPsec FPGA implementation. Our research con-

tributions can be summarized as follows.

• Elaborate requirements and options for production ready accel-

erator design

• Explain factors affecting the total performance of the design

• Propose an IPsec HW accelerator architecture with SDN

Our current prototyping platform consists of a lab network with

servers hosting IKE services and several Intel Arria 10 FPGAs for

ESP processing with 40 Gbps fiber links to SDN switches that we

consider the upper bandwidth limit for our design constraints. Our

proposal uses IKE from Strongswan [21] IPsec suite, but is not lim-

ited to a specific IKE daemon nor FPGA device since we focus on

the feasibility of the overall architecture.

3. Architecture

The overall network architecture is depicted in Fig. 2 . It is based

on our previous work in [1] , in which the data and control planes

are separated and the main division of IKE and ESP processing was

made. In this paper we propose FPGA implementation for ESP, but

we still need to consider the whole system for the requirements

and constraints.

The physical setup consists of end devices (e.g. IoT, mobile,

computers), servers (router, director) and one or more FPGAs. An

SDN switch is used in the data plane and a normal one in the con-

trol plane. No traffic can cross the planes.

The data plane contains the end devices, the SDN switch and

the Router/firewall which acts as a gateway to the Internet. All

Internet

Network
Director
server

FPGA

Data plane

Control plane

End
devices

SDN Switch

Switch

Router /
Firewall

Fig. 2. The complete network architecture.

Network Director server

IKE
nego�ator

SDN
controller

Network
Director

orchestrator

Data plane
interface

Control plane
interface

Fig. 3. The network director server modules and their corresponding network in-

terfaces.

communication between the network director server, SDN switch

and the FPGA occurs in the separate control plane.

Communication through the IPsec tunnel is transparent to the

end devices. Packets are forwarded to the FPGA for encryption (or

decryption) whenever needed based on the SDN flow rules in the

SDN switch. These rules are created by the SDN controller which

recognizes all IPsec related packets and makes necessary modifi-

cations to the network. From the end devices viewpoint, they are

sending packets to the router as usual. Packets get forwarded based

on the destination IP address to the FPGA in the SDN switch. This

behavior can be achieved only in SDN networks.

The network director server depicted in Fig. 3 implements three

software modules: an IKE negotiator , a network director orchestra-

tor and an SDN controller . The IKE negotiator establishes the neces-

sary Security Association (SA) with the other endpoint of the IPsec

tunnel through the data plane. The SDN controller uses the control

plane interface for pushing flow rules to the SDN switch. The net-

work director orchestrator SW is the binding component between

the IKE negotiator , the SDN controller , and also the FPGA . Thus the

network director orchestrator controls the whole process by giving

instructions to other software modules and the FPGA.

The network director server is only intended to use IKE from the

IPsec suite while the FPGA takes care of the IPsec packet process-

ing. This is achieved in SDN by redirecting the IKE messages to

the network director server as described in [1] and forwarding other

IPsec related packets to the FPGA.

The messages sent between different modules in IPsec tunnel

setup phase are shown in Fig. 4 . The orchestrator instructs the SDN

controller to push flows into the SDN switch to forward the IKE

messages coming from the Internet to the network director . When

finished, the orchestrator instructs the IKE negotiator to start estab-

lishing an SA. Once the SA phase is done, the orchestrator pushes

IKE SA information to the FPGA using the control plane. Finally

more flows are pushed to the SDN switch that contain information

which packets need to be sent to FPGA for encryption or decryp-

tion.

4. Feasibility for FPGA implementations

In the following we consider issues affecting the intended FPGA

implementation: the network director role, modifications required

4 M. Vajaranta, A. Oinonen and T.D. Hämäläinen et al. / Microprocessors and Microsystems 71 (2019) 102861

IKE
nego�ator

SDN
controllerOrchestrator SDN Switch FPGA

Flows: IKE forwardings

OK

OK

Establish SA

OK

SA informa�on

Flows: Packet forwarding for
encryp�on/decryp�on

OK

Fig. 4. The initial message sequence required in startup phase.

to the network, packet fragmentation problem, IPsec related vari-

ables, anti-replay feature and security considerations. All of these

contribute to the HW/SW partitioning decisions.

4.1. Network director orchestrator responsibilities

The orchestrator is responsible for setting up and removing the

IPsec tunnels in the network. It initiates new connections using IKE

as the negotiator, pushes flows using SDN controller and updates

the SAD entries on the FPGAs.

The orchestrator needs to set all of these up before the actual

packet transmission starts. If a packet with non-existing SA infor-

mation enters the FPGA, it must pause its operation and request

the orchestrator to perform the IKE negotiation. Since the FPGA

does not have much packet buffer space, such a delay may cause

even loss of data. Thus, all IPsec tunnels should be negotiated be-

forehand, keys stored in the FPGA SADs, and the necessary flow

rules set in the SDN switch. Similarly, latency can be minimized

by doing the re-key and key delivery operations from IKE to the

FPGA prior to key timeout. This motivates our decision to run non

time-critical tasks like IKE in SW and the rest in FPGA.

4.2. Network layer memory requirements

As desired and explained in (3) , the IPsec packet processing in

FPGA is transparent to the end devices. We assume that all FPGAs

are directly connected to the SDN switch so that all data forward-

ing to the FPGA is based in IP addresses instead of typical Me-

dia Access Control (MAC) address. Thus the packets may enter and

leave the FPGA with any MAC address pair, or no MAC at all. De-

spite easy control, there are some drawbacks.

The first is that the switch learns falsely some MAC addresses

in the FPGAs’ switch port even though the FPGAs have none. For

this reason the MAC address learning feature should be off at the

switch port where the FPGA is physically connected.

The second is the incoming packet forwarding after the pack-

ets are decrypted in FPGA. These decrypted packets contain wrong

destination MAC address, which needs to be updated to match the

real destination specified in the Internet Protocol (IP) header. There

are practically four different solutions for this:

1. ARP protocol on FPGA data plane

2. Store learned IP & MAC address pairs on FPGA

3. Use router’s MAC address as destination

4. Let SDN switch to rewrite destination MAC field

The most efficient and easiest is to use a look-up-table (LUT) to

keep track of the seen IP and MAC address pairs in the FPGA and

rewrite the false destination MAC address in the FPGA. The down-

side is that unseen addresses are not yet present in the LUT and

on the other hand, the size of the LUT would exceed the FPGA ca-

pacity if all the possible IP addresses should be tracked. In simple

networks with under hundred clients the size of the LUT will not

cause problems. Still in larger networks some Address Resolution

Cache (ARP) cache mechanism like one in [23] should be consid-

ered. A sufficient method is to bind IP address to LUT addresses as

presented in the following.

1. IP address 192.168.0.24 = LUT address 0.24

2. IP address 192.168.1.24 = LUT address 1.24

3. IP address 192.168.112.87 = LUT address 112.87

The LUT memory address thus is calculated from the lowest

8 + 8 bits. Single LUT will then contain /24 network where each ad-

dress holds the a MAC address for the IP address. Addresses for /16

network in such LUT would consume 400 kB of memory, which in

turn should fit to the on-chip memory. The usage of on-chip mem-

ory is crucial since it can be read every clock cycle.

Another feasible approach would be to use flow rule in the SDN

switch to rewrite the MAC addresses in the switch level. In long

run this however causes overhead to the SDN controller since it

will receive every now and then requests to do also MAC address

rewrite. Using a combination of second and fourth solution would

be the best where the FPGA takes care of packet process in long

run and the SDN network backs up when necessary.

Another issue is that many different broadcast/multicast mes-

sages in the network might reach the FPGA. Thus it is necessary

to have white lists to allow only desired traffic to enter the FPGA.

Without such white list all e.g. ARP and Dynamic Host Configura-

tion Protocol (DHCP) packets, just to name few, will be delivered to

the IPsec encryption process and pushed through tunnel. Allowing

only IP protocol traffic that has no multicast address in the IP des-

tination field or broadcast addresses in the MAC destination field

will solve this problem. The white list can be implemented in a

register file to be configured when needed at runtime.

4.3. Network packet fragmentation

Network packets close to the Maximum Transmission Unit

(MTU) size of 1500 B cause a lot of problems in IPsec implemen-

tation. The main reason is the overhead of 54–57 B in the IPsec

AES-GCM mode. The header includes tunneling IP header (TNL IP)

(20 B), SPI (4 B), Sequence number (4 B), IV (8 B), Padding (max

3 B), pad length (1 B), Next header (1 B) and authentication tag

(max 16 B).

When a network packet with a size of 1445 B or larger gets

encrypted in IPsec, it exceeds the MTU limit and requires fragmen-

tation. The fragmentation can occur on IPsec device or on a router

[24] in which case the packets must be reassembled prior to ESP

packet processing. Thus packet fragmentation must be considered

in the FPGA as well.

To simplify the FPGA design, the fragmentation issue may be

handled by limiting the MTU on the local network to 1400 B. This

guarantees that no fragmentation is needed. However, this is not

very robust and permanent solution.

Usually the local networks have MTU of 1500 B and in these

cases the fragmentation can be done by splitting the incoming

packet in two: e.g. first 1024 bytes and the rest of the packet.

This is an efficient and lightweight method which uses always the

constant packet size. It is irrelevant in this case whether the first

packet is full but not the second, because the two fragments will

be generated in any case.

Slightly more intelligent algorithm is required since the net-

work MTU in local networks can be fixed to 90 0 0 B when the

jumbo frame support is enabled. That will create seven 1500 B

fragments because of the header overhead. The algorithm needs to

take as many 14 4 4 B data chunks as possible, resulting to packets

of n times 14 4 4 B and a packet containing the rest of the data. For

M. Vajaranta, A. Oinonen and T.D. Hämäläinen et al. / Microprocessors and Microsystems 71 (2019) 102861 5

Incoming
Packet P

Is SN(P) greater than X

No

Does SN(P) fall to the
an�-replay window ?

No

Is SN(P) seen before ?

Yes Yes

Integrity Check:
Is AES-GCM TAG Valid?

Yes

No

Yes

No

Update informa�on
regarding seen SNs

If SN(P) greater than X,
update X to SN(P)

Allow packet forward to
decryp�on

Discard (P)

Fig. 5. Block diagram for simple anti-replay mechanism. SN(P) represents the Sequence number for received packet whereas X presents the SN counter current value.

instance a packet of 2890 B will be fragmented to two where each

contains 14 4 4 B of data and a packet of 2 B of data.

Even though the splitting can be done efficiently, RFC4459

[25] addresses the next three problems:

1. Overhead of headers caused by fragmentation

2. Computation required by the fragmentation

3. Difficulties in packet reassembly in the receiving end

The first one will occur in any case, and the computation prob-

lem can be solved with FPGA. The last, however, is the most severe

for the FPGA. As we know, the network packets rarely arrive in or-

der and thus some buffering method is required.

A recommendation is to use external DDR memory as a buffer

to store all incoming network packet fragments. The FPGA needs

to wait for all pieces to arrive, reassemble the whole packet and

then push to the IPsec decryption module. Surely this is problem-

atic when some fragment is lost or long latencies faced during

the transmission. Thus the FPGA fragmentation buffer needs to be

ready to clear out the oldest fragment pieces in order to receive

new ones. The solution is a ring buffer that works well accord-

ing to our experience. The ring buffer size does not have any strict

minimum requirement. We can calculate that 500 Mb buffer will

hold slightly over 41,0 0 0 packets of 1500 B which can be consid-

ered sufficient for this application.

4.4. SPI and IV

The Security Parameter Index (SPI) value identifies the IPsec

connection and thus must be unique for the IPsec tunneling de-

ployment. The SPI negotiated by IKE protocol in a SW solution like

Strongswan should verify the SA uniqueness for the best of the au-

thors knowledge. The SPI value is 32 bits that minimizes the colli-

sion possibility.

The Initialization Vector (IV) is a random number used in cryp-

tography and an essential part of AES-GCM process. The generation

of a true random number in FPGA is complicated due to missing

entropy source, but a pseudo-random number [26] is often suf-

ficient. Our proposal is to benefit from the separate orchestrator

server and create the random numbers there with a desired crypto

library in advance and deliver the IV to the SAD for the usage.

The IV value also must never repeat as stated in [5] . If the IV

numbers deplete during the key lifetime, re-key operation should

follow. The IV value must be 64 bits long in the IPsec using AES-

GCM, that is quite a large set of unique numbers. Thus the IV can

be considered unique for the key lifetime of few hours. Our con-

clusion is that the FPGA does not need to carry out IV depletion

case and its signaling to the network director.

4.5. Anti-replay feature, integrity check value and sequence number

The Integrity Check Value (ICV) and Sequence Number (SN) are

both included in the anti-replay feature described in RFCs [5,24] .

The SN verifies that a packet has not yet been received and is

adequate new. The ICV, in our case the AES-GCM TAG, verifies

the integrity and therefore trustworthiness of packet and its SN.

Fig. 5 shows a simple anti-replay mechanism proposal for FPGA ar-

chitecture.

In optimal case, incoming packets come in order making the

verification simple: next packet SN(t + 1) would be the previous

packet SN(t) + 1. Unfortunately this is not the case since packets

will likely arrive in mixed order within certain timespan if they

ever arrive due to packet loss. Unseen packets will go through the

integrity check for verification and when passing, the process will

continue to update the necessary anti-replay information prior the

next packet handling.

The SN counter update occurs only when the received packet

SN exceeds the current SN value. When so, the counter is updated

with the SN value from the received packet. The next step is to up-

date the information regarding the seen packets. The SN is 64 bits

long due to the usage of Extended Sequence Number (ESN) manda-

tory in IKEv2. Therefore it is virtually impossible to store informa-

tion whether every single packet is already received or not. Luckily

this is not necessary and a sliding window method such as one

presented in [7] can be used. Still a register with a size of win-

dow size is required to store received packet numbers. This does

not cause any great memory requirements since e.g. register of 10

bits is needed with anti-replay window of 1024 packets.

Packets falling out of the anti-replay window can be silently

discarded. In these cases the upper level protocol probably fixes

the situation by requesting re-send from the original source when

necessary. Discarding packets also occurs when they have already

been received. Notable is that some implementations increase the

SN counter when such discard occurs [27] .

The [5] specifies anti-replay window size of 64, but for exam-

ple Cisco presents windows size of 512 in the enhancement re-

quests CSCva65805 and CSCva65836 512 [27] . When considering

a high speed link, the window size of 64 is relatively small and

some greater number in power of two like 512/1024/2048 should

be considered.

The anti-replay feature still might drift to problems when a

significant packet loss of more than 2 32 packets is encountered

[24] . The high bits of the ESN loses synchronization resulting to

state where the anti-replay will fail all the time. This requires trig-

ger and re-synchronization mechanisms as stated and described in

[24] . The probability of such packet loss increases with higher link

speeds. With 1 Gbit throughput rate we can estimate that packet

6 M. Vajaranta, A. Oinonen and T.D. Hämäläinen et al. / Microprocessors and Microsystems 71 (2019) 102861

loss needs to last approximately for 2880 s. In 10 Gbps it is only

tenth resulting 288 s. Therefore with faster links already in few

Gbps it is a necessity to have this mechanism.

A replay attack might occur when an attacker delays a network

packet or resends it to the IPsec endpoint that it has already re-

ceived. This kind of an attack is very severe because it can affect

any device communicating through a VPN tunnel. Consequences

vary from slowing down and cutting connections to having server

software to receive duplicate entries or even possible denial-of-

service (DoS) attacks. Thus the anti-replay feature is vital for an

IPsec gateway even though the RFC 4303 [24] permits disabling it.

4.6. Security association database

The SAD contains the items described in Table 2 . The destination

network information is not required in decryption SAD because it is

used only for identification when choosing correct SA for outgoing

packets. The IV on the other hand is missing since it is read from

the incoming packet. The decryption SAD instead needs space to

store sequence numbers (SNs) that have already been received.

This results in 552 bits of data per connection in encryption

SAD. The decryption SAD size is at least 868 bits per connection

because it is required to store double the amount of information

specified in the table to ensure seamless operation in the re-key

phase.

Thus we can approximate that in a larger environment with

10 0 0 IPsec tunnels the amount of memory on an FPGA is 69 kB for

the encryption SAD and 109 kB for the decryption SAD. The size of

SAD does not seem to be a problem, but the response time is. Any

external memory is slow compared to the on-chip one, which can

be read every cycle. Still in the worst case finding a correct SA in-

formation from the database takes 10 0 0 clock cycles which is way

too long. The response must come from the SAD within few clock

cycles, say 1–5, otherwise the whole accelerator speed is signifi-

cantly reduced.

There are two practical approaches: some small cache in the

on-chip memory to store few previous (e.g. less than 20) SA in-

formation, or the usage of Content Addressable Memory (CAM) or

Ternary CAM (TCAM). The cache is fast to implement and offers a

reasonably good response time. The downside is that it works well

only when the FPGA processes a lot of packets with a very minimal

set of SAs. When the number of SAs rise, the only feasible solution

is CAM/TCAM, which returns the queried information in one clock

cycle.

For example Jiang and co-workers [28,29] presents good

CAM/TCAM implementations, and a white paper from eSilicon pro-

vides a good overview and arguments for TCAMs in Cloud [30] .

In addition to CAM, we need to consider how to manage mul-

tiple encryption and decryption modules accessing the SAD (CAM

or equivalent) in parallel [8] . This occurs when workload is shared

amongst more than one encryption or decryption modules. Luckily

only the IV, SN and Seen SN values are affected. Thus a semaphore

is required to ensure that only one process handles the variable at

Table 2

SAD registry entities on the FPGA.

Item Size (bits) Enc. SAD Dec. SAD

Destination network 32 + 32 yes no

SPI 32 yes yes

key 256 yes yes

key size 8 yes yes

IV 64 yes no

SN 64 yes yes

Seen SNs x no yes

Tunnel SRC IP 32 yes yes

Tunnel DST IP 32 yes yes

a time. Extra latency of 3–5 clock cycles is expected, but can be

reduced out via proper pipelining.

As a conclusion, a memory solution that can return correct val-

ues from a large table in few clock cycles is required. We cannot

give any estimates of the required area before implementation and

thus such CAM might even slow down the overall performance

by limiting the number of maximum parallel modules. Unfortu-

nately the CAM implementations are very expensive on FGPA leav-

ing room for research on lightweight and fast memory solution.

4.7. Security and attack vectors

The most vulnerable spot is the control plane where the mes-

sages for the FPGA and the SDN switch configurations take place.

It is vital to ensure the physical security in addition to securing

the devices’ software. Thus Transport Layer Security (TLS) protocol

suite should be implemented to control plane, including the FPGA.

The most straightforward solution is to use soft core processor for

its implementation on FPGA. The Openflow [31] protocol we use

for communication between switches and the SDN controller sup-

ports TLS as well.

The on-chip memory on an FPGA for SAD ensures that private

material cannot be leaked from the external memory of the FPGA

by bus snooping. However, side-channel attack can still be exe-

cuted on the chip itself, but this is out of scope of this paper. We

require that any control traffic to FPGA is never plain text.

When an SA is being removed, the related flows from the net-

work should also be removed. Without flows, all packets that were

originally getting pushed through the IPsec tunnel are now sent to

the router for routing to the destination network even though it

is unreachable. Unfortunately this is very dangerous behavior since

clear text packets that might contain sensitive user data will be

pushed to the Internet. Thus the router or another network device

should drop these packets.

This operation can be automated from the orchestrator if Ap-

plication Programming Interface (API) or SDN is present in devices

participating the packet delivery in data plane. Our solution relies

on an SDN flows which create STOP rules for removed SAs. This

might however cause a small overhead to the SDN controller and

the orchestrator but is non-significant when everything is working

properly.

4.8. Summary of requirements

Based on above considerations we conclude the requirements

for the FPGA implementation in Table 3 . The IKE and IV genera-

tion must be done prior to operation and necessary information

delivered to the SAD in the HW. The fragmentation buffer size may

vary, our architecture uses 500 Mb to reach sufficient buffering.

Table 3

Function distribution between hardware (HW) and software (SW) and any

requirements they need regarding the architecture.

Function Run in Requirements

IKE SW Prior operation

IV generation SW Prior operation

AES HW –

Fragmentation HW Buffer size > 500 Mb

SAD HW Response time critical, memory

required 178 kB, parallel access needed

Integrity check HW –

Anti-replay HW –

Anti-replay HW –

resync

Ethernet stack HW 400 kB of fast response memory

AES control HW < 2 MB of instruction and data memory

M. Vajaranta, A. Oinonen and T.D. Hämäläinen et al. / Microprocessors and Microsystems 71 (2019) 102861 7

Data plane

Control plane

Ethernet

Fiber

SDN / User
logic control

Packet client

IPsec Accelerator logic

Encrypt
#1

IPsec
Manager

AES-GCM
+ AES

IPsec
Enc &
Dec

SADs

Decrypt
#1

AES-GCM
+ AES

AES-GCM
+ AES

AES-GCM
+ AES

Encrypt
#2

Decrypt
#2

Fig. 6. Architecture of the proposed IPsec FPGA implementation.

SAD has the strictest requirements with a response time of 1–5

clock cycles, 178 kB of memory even though it might need to be

on-chip memory, and also parallel access from the different mod-

ules. The Ethernet protocol stack requires 400 kB memory which

can return information rapidly, preferably on-chip.

In the following we present the FPGA architecture that fulfills

the above requirements.

5. Proposed FPGA architecture

Fig. 6 depicts the proposed IPsec accelerator architecture on

FPGA. The main subsystems are the IPsec accelerator logic, control

and data planes. Any traffic entering the FPGA is unable to cross

the planes.

The control subsystem contains a copper Ethernet interface and

controller logic that terminates the incoming connections from the

network director to this interface. The logic is implemented on a

soft core processor with a lightweight TCP/IP stack and TLS im-

plementation. The main task of the control plane is to update the

SAD table in the IPsec accelerator. It has also register access to the

other subsystems like packet client for configuring and monitoring

the system.

The data plane consists of Fiber optics block and a Packet client

block, shown on the left in Fig. 6 . The Fiber optics block provides

Physical Transport (PHY) and MAC functions. The packet client is

a configurable protocol parser that is configured only to process

Ethernet headers because the IP and ESP headers are processed in

the IPsec accelerator logic. The packet client also includes the ARP

cache and fragmentation handling.

When the Fiber optics module receives data from network, it

forwards Ethernet frames to the packet client which removes Eth-

ernet header information and writes the payload data to the IPsec

accelerator logic. When sending accelerator data to the network,

packet client packs the data in an Ethernet frame and writes it for-

ward to the Fiber optics module, which transmits the frame to the

network.

The IPsec accelerator logic consists of IPsec manager , a number

of modules implementing the Encrypt/Decrypt functions and AES-

GCM + AES blocks, one for each function module. The AES-GCM +

AES blocks perform the actual AES algorithm.

IPsec manager receives data from the packet client and delivers it

to the desired module (Encrypt #1, Encrypt #2, Decrypt #1...). The

IPsec manager only makes decision where a received packet will

be pushed next and thus all modules are required to inform the

IPsec manager whenever they are ready to receive new packet. This

function is only concerning forwarding decision inside the IPsec

accelerator logic and thus kept as lightweight as possible leaving

the anti-replay and integrity check verification to take place in the

modules.

The modules directly communicate with the SAD to find and

update corresponding SA entries whenever needed. They work on

their own either to encrypt or decrypt the given packet. Each of

SDN SW 1

SDN SW 2

SDN SW 3

SDN SW 4

FPGA 1 FPGA 2 FPGA 3

10 G

10 G

10 G

10 G

40 G

G 04G 04G 04

20 x PCs 2x 10G10 G10 G

Server
1

Server
2

Server
3

Server
4

1 G

1 G

1 G

1 G

SDN
SW 5

SDN
SW 6

2x 10G

SDN control
plane switch

Fig. 7. Physical network setup for the experiments. SDN control links drawn in

dashed line.

Data plane

Control plane

Ethernet

Fiber

Control

Packet client

MUX

Frame
generator

TX FIFO

RX FIFO Loop

TP 5

TP 1 TP 2

TP 4 TP 3

TX
Counter

RX
Counter

RX
Counter

TX
Counter

Fig. 8. FPGA measurement hardware. Control links are drawn in dashed line and

latency measurement locations marked as testpoints TP1-TP5.

these modules have dedicated AES-GCM + AES blocks to ensure fast

cryptographic processing.

The number of functional modules is not limited to two as in

Fig. 6 . Having more modules in parallel speeds up the packet pro-

cessing since consecutive packets belonging to the same SA can use

the same module. This action saves time since AES does not need

to be reconfigured. However, in some cases all modules should be

used for a single SA and sometimes every module for a different

SA. To guarantee fair and correct module selection, probing the

loading of a single module is needed. This algorithm can be built

using the sliding window approach, but this is out of scope of this

paper.

6. Evaluation

We will evaluate the FPGA logic area and speed as well as

bandwidth and latency of the IPsec acceleration in the following.

Our target platform is Arria 10 connected via 1 Gbps link to the

control plane and 40 Gbps fiber link to the data plane. Laboratory

setup for the evaluation is shown in Fig. 7 . It includes of six SDN

switches, separate control plane switch, three Intel Arria 10 FPGAs,

four servers and 20 PCs.

Latency of the overall lab setup and SW solution was experi-

mented. The proposed FPGA architecture was modified for mea-

surements so that the IPsec accelerator logic is replaced with mea-

surement logic shown in Fig. 8 . The measurement logic includes a

loop that connects RX input directly to TX output, and an Ethernet

frame generator that is capable of producing raw Ethernet frames of

different sizes at stable 40 G bandwidth. The Control block selects

the source of TX path between the two options and configures the

frame generator. The control block can also inject packets to the

Packet client TX output, when raw Ethernet frames are not suffi-

cient for testing. Test points TP1-TP5 are probes that are used for

latency calculations. Counters in Application logic and Fiber optics

8 M. Vajaranta, A. Oinonen and T.D. Hämäläinen et al. / Microprocessors and Microsystems 71 (2019) 102861

blocks keep track of frames and bytes sent, and the values are used

for bandwidth calculations.

6.1. Software IPsec performance

Experiments of latency and throughput on Strongswan IPsec in

tunnel mode between Server 3 and Server 4 was conducted. Both

had a virtual machine (VM) as a client for the VPN tunnel. Servers

included Intel E5-2680 v4 CPU with Centos 6.9 and Strongswan

5.7.1 in aes256gcm16 mode. In the experiment, FPGA 3 operated

as an additional client for a network behind Server 4 sending ping

packets to the VM in Server 3. To reach the VM, the packet re-

quired IPsec encryption on Server 4 and decryption on Server 3.

The packet, however, was hijacked right after encryption using an

SDN flow back to the FPGA 3. The time difference measured on

FPGA between sent and received packets in test points TP5 and TP1

was the latency of Strongswan for encryption plus latency caused

by the switch.

Strongswan packet encryption for a single IPsec tunnel was

measured to require 172 μs on average. Having 200 concurrent

IPsec tunnels up without traffic did not cause any more latency.

Increment in latency to 192 μs was noticed when 64 B ping traf-

fic of approximately 10,0 0 0 packets per second (pps) in total was

pushed through the tunnels.

The raw packet throughput was measured with sending file

with netcat directly between Server 3 and Server 4. Results showed

4.7 Gbps transfer speed without IPsec encryption and 630 Mbps

with it. Our expectation is that after offloading the IPsec process to

HW acceleration on FPGAs 2 and 3, the same 4.7 Gbps is reachable

with only 10 μs latency increment. There might be several reasons

why the test setup did not reach 10 Gbps throughput already with-

out IPsec, but this is irrelevant. Instead, significant is the decelera-

tion in transfer speed when IPsec is used.

6.2. FPGA resource and performance evaluation

We can evaluate the accelerator logic to operate on at least

175 MHz clock rate. The fiber optics module uses two separate

312,5 MHz clocks for the RX and TX data paths. To allow the ac-

celerator to run on a lower clock frequency, dual-clock FIFOS are

used for crossing the clock domains between packet client and ac-

celerator logic in each direction. The fiber optics module on FPGA

transfers data every two cycles on a 256-bit Avalon-ST bus. As the

accelerator reads from the FIFO every clock cycle, its frequency has

to be at least 156,25 MHz for 40 Gbps bandwidth.

The accelerator logic requires approximately 300 Adaptive Logic

Modules (ALMs) for the IPsec manager, 18.5k for decrypt module

with AES and 20k for encryption with AES. Further we can eval-

uate the control plane blocks to require 20k ALMs and the data

plane blocks 24k ALMs. Thus we can summarize that the entire

IPsec FPGA implementation with 9–10 encrypt and decrypt pairs

in IPsec accelerator fits to Arria 10 GX1150 that has 427.2k ALMs.

The Arria 10 has 53 Mbit of internal M20K memory. We can

evaluate that 10 Mbit of those must be reserved for the control

logic and the SAD. 3 Mbit is reserved for the ARP cache. Packet

buffering that is between the packet client and the IPsec accelera-

tor can safely use the remaining 40 Mbit. With 64 byte packets en-

tering the FPGA in 40 Gbps (59,523,808 pps), the buffers will store

the maximum of 81,920 packets, which equals 1.3 ms time frame.

Fig. 9 shows the process of encrypting one 64 B packet on

FPGA. The IPsec manager reads the incoming packet and forwards

it to Encrypt block 1. The Encrypt block configures the AES-GCM

block using the information stored in the SAD and delivers the

packet to be encrypted. After the AES-GCM encryption, the encrypt

block finishes the packet to output. During the finishing task, the

Table 4

Impact to maximum allowed process-

ing time in the implementation with

different packet sizes when theoretical

maximun packets per second rate for

40 Gbps link is reached.

Packet Packets per Maximum

size (B) second time (ns)

64 59,523,808 16.8

128 33,783,783 29.6

256 18,115,942 55.2

512 9,398,496 106.4

1024 4,789,272 208.8

1500 3,289,473 304

Table 5

FPGA packet client buffering latency with

different packet sizes.

Packet RX path TX path

size (B) latency (ns) latency (ns)

64 50 62

128 50 78

256 50 100

512 50 154

1024 50 263

1500 50 353

9000 50 1854

block generates the ESP trailer, updates the SAD and finishes the IP

header. Decryption follows a similar procedure.

In Fig. 9 , a new SA configuration is needed for the AES-GCM

block. The new configuration causes a 14 clock cycle delay, before

the AES-GCM block can start encrypting the data. When the AES-

GCM block is reused for the same SA and already configured, the

14 cycle wait is removed, because only IV and SN values have to

be updated in the AES configuration phase.

When encrypting a larger packet than 64 bytes, every 16 byte

transfer cycle in the packet increases the processing time by 1

clock cycle. Therefore, a 14 4 4 B packet can be encrypted in 131

cycles.

The processing rate of the implementation is critical in high-

speed networks, because packets have to be handled in a cer-

tain time to prevent buffer overflow. The Table 4 illustrates how

packet size affects the maximum number of packets per second

and therefore the processing rate requirement. Single decryption

or encryption process can reach 2 Gbps packet processing rate at

64 B packet size and 15.6 Gbps with MTU size. With pipelining and

parallel processes, the throughput in 64 B reaches easily 10 Gbps.

6.3. FPGA latency evaluation

The total latency of the HW acceleration consists of packet pro-

cessing and data plane latencies on the FPGA, and port latencies

produced by the network switches. The data plane latency on the

FPGA is the sum of fiber optics module, packet client and buffering

latencies. Various test setups were used for measuring the band-

width and latency in the network and inside the FPGA. FPGA data

plane latencies were measured with an SDN flow that routed all

IP traffic between Server 1 and Server 2 through FPGA 1, that was

configured as loop. When Server 1 sent ICMP packets to Server 2,

the RX path latency was measured on FPGA 1 between test points

TP1 and TP3, and TX path latency between TP3 and TP5.

Table 5 shows the combined latency of the packet client and

FIFO buffers. The latency of RX path was constant 50 nanoseconds,

but the TX path latency depended on the packet size. The reason

for the difference is, that the TX FIFO is configured in store-and-

forward manner to wait for a complete frame to be stored before

M. Vajaranta, A. Oinonen and T.D. Hämäläinen et al. / Microprocessors and Microsystems 71 (2019) 102861 9

256

Manager

Encrypt #1

AES-GCM

SAD

0 1 32 54 7 8 9 34 3635 37 38 39 40 41 42 43

Packet in

Encrypted packetOut

Finish

4410 11 12

Update

0 1 2 3

2624 27 28 29 30 31 3332

Read

Configuration

Configure AES

Encrypt

Packet to AES

Fig. 9. Cycles per task of the IPsec accelerator logic.

sending it to the network. A store-and-forward FIFO relaxes the

clock speed requirements for the application logic, as the Ethernet

standard does not allow the transaction of a started frame to be

paused if the application is not able to produce data fast enough.

For the FPGA transceiver and switch port latency measure-

ments, FPGA 3 was configured as frame generator. The roundtrip

latency of the transceivers was measured from test points TP5 to

TP1, when a loop adapter was connected to the data plane inter-

face. When FPGA 3 was connected through the switch to FPGA

2, which looped packets back to FPGA 3, the switch port latency

could be calculated by subtracting the previously measured laten-

cies from the total latency between TP5 and TP1. Frame and byte

counters in the Fiber optics block on FPGA 3 were used in the test

for bandwidth calculation.

The measured switch port and FPGA transceiver latencies were

1 μs and 250 ns per direction, respectively. Measurements also re-

vealed that the full 40 Gbps link could be utilized on all packet

sizes between 60–1500 B. Therefore, one 14 4 4 B MTU-sized packet

can be encrypted or decrypted by the FPGA with an approximated

total latency of 10 μs, including the port latency in the network

switch.

6.4. Summary of evaluation

A single FPGA can reach 10 Gbps operating speed in any packet

size. When put to Cloud Data Center (DC) context the real world

efficiency is depicted in the following. The network traffic in DC

varies a lot depending the DC purpose and traffic measuring point.

According to our experiences, common traffic in the DC back-

bone is around 100 Gbps whereas closer to edge 10 Gbps. Common

packet size according to Benson et al. [32] is between 200 Bytes

and 1400 Bytes. Supposed DC in this case with 100 Gbps traffic us-

ing e.g. 400 B IMIX [33] packets handle more than 25 Mpps. There-

fore the Cloud DC requires approximately 10 IPsec FPGA accelerator

devices that each have their own tunnels to handle.

We have listed two different open source IPsec projects that

we can easily compare to our IPsec FPGA based proposal. First

is the Libreswan with throughput of 5.25 Gbps using AES-GCM

with unspecified packet size [2] . Second SW solution is the

Strongswan measured in Section 6.1 reaching 630 Mbps throughput

even though in [22] reported to reach 1.3 Gbps packet rate with 64

B packets. Thus our proposed IPsec FPGA architecture has speed up

of 1.9 to Libreswan and 7.7–15.9 to Strongswan. The HW solutions

presented in related work are mainly slower compared to our solu-

tion. Still in [11,15,16] the throughput outperformed our presented

architecture when large network packet size was used.

Latency measurements in turn shows 172–192 μs latency for

the Strongswan. The most difficult network packet in terms of la-

tency for our architecture is 14 4 4 B since it produces MTU-sized

ESP packet. Evaluation indicates the proposed solution to han-

dle these MTU-sized packets in approximately 10 μs resulting to

speed-up of 17 in latency to SW solution.

The throughput of the presented architecture is limited by the

data processing rate in the accelerator logic. The most expensive

operations on FPGA are AES-GCM encryption/decryption and AES

configuration. Multiple AES-GCM blocks can operate in parallel for

increased throughput. If the AES-GCM block is already configured

for the correct SA, reconfiguration is not needed. Therefore, the ac-

celerator logic should prefer forwarding packets of one tunnel to

the same AES-GCM block to avoid unnecessary reconfigurations.

7. Conclusion

This research introduced an SDN fashion IPsec accelerator ar-

chitecture and what must be considered in a production ready de-

sign. The IPsec is a good proof-of-concept to be offloaded due to

its modular structure.

Presented concept considers only the heavy IPsec packet pro-

cessing in the FPGA and leaves the IKE to operate on a completely

different device in the network. This saves the valuable area on

the FPGA to focus on packet encryption and decryption functions.

An individual function reaches 2 Gbps operation speed at 64 B, and

15.6 Gbps with MTU sized network packets without pipelining. The

presented architecture meets the target and is capable of hosting

10 0 0 tunnels, and with parallel processing 10 Gbps packet through-

put is expected in all packet sizes while the latency stays below

10 μs.

The presented IPsec HW accelerator meets our goal and pro-

vides all the necessary features for production ready design. The

IPsec HW solutions are widely researched as shown in the related

work, but the overall architecture and production readiness is often

quite vague. Even though it is easy to discuss the throughput and

latency, more important is to include all necessary features and

functions since they affect the performance. Designed architecture

covers the necessary anti-replay and fragmentation features which

are mandatory. This accelerator is feasible for voice and audio ap-

plications due to its low latency, and simultaneously it also serves

the IoT world that needs vast amount of concurrent tunnels.

Declaration of Competing Interest

None.

References

[1] M. Vajaranta , J. Kannisto , J. Harju , Ipsec and ike as functions in sdn con-

trolled network, in: International Conference on Network and System Security,
Springer, 2017, pp. 521–530 .

[2] Libreswan ipsec benchmarking and performance testing. www-site: https://
libreswan.org/wiki/benchmarking _ and _ performance _ testing , 2016.

[3] M. Vajaranta , V. Viitamaki , A. Oinonen , T.D. Hamalainen , A. Kulmala , J. Markun-
maki , Feasibility of fpga accelerated ipsec on cloud, in: 2018 21st Euromicro

Conference on Digital System Design (DSD), IEEE, 2018, pp. 569–572 .
[4] Helion ipsec esp engine. helion technology limited. www-site: https://www.

heliontech.com/ipsec.htm , 2006,

[5] J. Viega , D.A. McGrew , The use of galois/counter mode (GCM) in ipsec encap-
sulating security payload (ESP), RFC 4106 (2005) 1–11 .

[6] F. Zhao , S.F. Wu , Analysis and improvement on ipsec anti-replay window pro-
tocol, in: Computer Communications and Networks, 2003. ICCCN 2003. Pro-

ceedings. The 12th International Conference on, IEEE, 2003, pp. 553–558 .

10 M. Vajaranta, A. Oinonen and T.D. Hämäläinen et al. / Microprocessors and Microsystems 71 (2019) 102861

[7] X. Zhang , T. Tsou , IPsec Anti-Replay Algorithm without Bit Shifting, RFC 6479,
RFC Editor, 2012 .

[8] M. Korona , K. Skowron , M. Trzepi ́nski , M. Rawski , Fpga implementation of
ipsec protocol suite for multigigabit networks, in: Systems, Signals and Image

Processing (IWSSIP), 2017 International Conference on, IEEE, 2017, pp. 1–5 .
[9] J. Lu , J. Lockwood , Ipsec implementation on xilinx virtex-ii pro fpga and its

application, in: Parallel and Distributed Processing Symposium, 2005. Proceed-
ings. 19th IEEE International, IEEE, 2005, pp. 7–pp .

[10] Y. Niu , L. Wu , L. Wang , X. Zhang , J. Xu , A configurable ipsec processor for

high performance in-line security network processor, in: Computational Intelli-
gence and Security (CIS), 2011 Seventh International Conference on, IEEE, 2011,

pp. 674–678 .
[11] Y. Niu , L. Wu , X. Zhang , An ipsec accelerator design for a 10gbps in-line secu-

rity network processor., JCP 8 (2) (2013) 319–325 .
[12] A. Salman , M. Rogawski , J.-P. Kaps , Efficient hardware accelerator for ipsec

based on partial reconfiguration on xilinx fpgas, in: Reconfigurable Com-

puting and FPGAs (ReConFig), 2011 International Conference on, IEEE, 2011,
pp. 242–248 .

[13] B. Driessen , T. Güneysu , E.B. Kavun , O. Mischke , C. Paar , T. Pöppelmann ,
Ipsecco: a lightweight and reconfigurable ipsec core, in: Reconfigurable Com-

puting and FPGAs (ReConFig), 2012 International Conference on, IEEE, 2012,
pp. 1–7 .

[14] H. Wang , G. Bai , H. Chen , A gbps ipsec ssl security processor design and im-

plementation in an fpga prototyping platform, J. Signal Process. Syst. 58 (3)
(2010) 311–324 .

[15] J. Park , W. Jung , G. Jo , I. Lee , J. Lee , Pipsea: a practical ipsec gateway on embed-
ded apus, in: Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, ACM, 2016, pp. 1255–1267 .
[16] J. Meng , X. Chen , Z. Chen , C. Lin , B. Mu , L. Ruan , Towards high-performance

ipsec on cavium octeon platform, in: International Conference on Trusted Sys-

tems, Springer, 2010, pp. 37–46 .
[17] A.P. Kakarountas , H. Michail , A. Milidonis , C.E. Goutis , G. Theodoridis , High-

-speed fpga implementation of secure hash algorithm for ipsec and vpn appli-
cations, J. Supercomput. 37 (2) (2006) 179–195 .

[18] P. Chodowiec , K. Gaj , P. Bellows , B. Schott , Experimental testing of the giga-
bit ipsec-compliant implementations of rijndael and triple des using slaac-1v

fpga accelerator board, in: International Conference on Information Security,

Springer, 2001, pp. 220–234 .
[19] A. Soltani , S. Sharifian , An ultra-high throughput and fully pipelined imple-

mentation of aes algorithm on fpga, Microprocess. Microsyst. 39 (7) (2015)
4 80–4 93 .

[20] Wireguard performance analysis. www-site: https://www.wireguard.com/
performance/ , 2018.

[21] Stronswan, the opensource ipsec-based vpn solution. www-site: https://www.

strongswan.org , 2018.
[22] M. Tremer, Ipfire ipsec benchmark. www-site: https://blog.ipfire.org/post/

feature- spotlight- galois- counter- mode- ipsec- with- 10g , 2018.
[23] M. Parelkar , D. Jetly , High performance udp/ip 40gb ethernet stack for fpgas,

in: Applied Reconfigurable Computing. Architectures, Tools, and Applications:
14th International Symposium, ARC 2018, Santorini, Greece, May 2–4, 2018,

Proceedings 14, Springer International Publishing, 2018, pp. 255–268 .
[24] S. Kent , IP Encapsulating Security Payload (ESP), RFC 4303, RFC Editor, 2005 .

[25] P. Savola , MTU and Fragmentation Issues with In-the-Network Tunneling, RFC

4459, RFC Editor, 2006 .
[26] M. Majzoobi , F. Koushanfar , S. Devadas , Fpga-based true random number gen-

eration using circuit metastability with adaptive feedback control, in: Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, Springer,

2011, pp. 17–32 .
[27] Cisco. ipsec anti-replay check failures. document id:116858. www-site:

https://www.cisco.com/c/en/us/support/docs/ip/internet-key-exchange-ike/

116858- problem- replay- 00.html , 2016.
[28] W. Jiang , Scalable ternary content addressable memory implementation using

fpgas, in: Proceedings of the Ninth ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, IEEE Press, 2013, pp. 71–82 .

[29] Z. Ullah , M.K. Jaiswal , Y. Chan , R.C. Cheung , Fpga implementation of
sram-based ternary content addressable memory, in: 2012 IEEE 26th Interna-

tional Parallel and Distributed Processing Symposium Workshops & Ph.D. Fo-

rum, IEEE, 2012, pp. 383–389 .
[30] D. Dudeck , L. Minwell , Why is TCAM Essential for the Cloud? Whitepaper, eS-

ilicon, 2017 .
[31] Open networking foundation, openflow. www-site: https://www.

opennetworking.org/technical-communities/areas/specification/open-
datapath/ , 2018.

[32] T. Benson , A. Akella , D.A. Maltz , Network traffic characteristics of data centers

in the wild, in: M. Allman (Ed.), Proceedings of the 10th ACM SIGCOMM In-
ternet Measurement Conference, IMC 2010, Melbourne, Australia - November

1–3, 2010, ACM, 2010, pp. 267–280 .
[33] A. Morton , IMIX Genome: specification of variable packet sizes for additional

testing, RFC 6985 (2013) 1–10 .

Markku Vajaranta received the M.S. degree in commu-

nication engineering from Tampere University of Technol-
ogy (TUT), Tampere, Finland, in 2014. From 2014 he con-

tinued as a project researcher and in 2015 started Ph.D.
studies in the Laboratory of Pervasive Computing, TUT. He

has worked in several projects including Digile IoT, Dig-

ile Cybertrust and EIT Digital ACTIVE, and also developed
TUTCyberLabs’ TIECyberLab segment. His research inter-

ests include secure tunneling, softwaredefined network-
ing (SDN) and hardware accelerator solutions.

Arto Oinonen received the M.Sc. degree in electrical en-
gineering from Tampere University of Technology (TUT),

Tampere, Finland, in 2017. He is currently pursuing the
Doctoral degree with the Computing Sciences Unit at

Tampere University. He was a Research Assistant with the

Department of Pervasive Computing, TUT, from 2015 to
2017, and briefly a Project Researcher in 2017 before start-

ing Ph.D. studies in the Laboratory of Pervasive Comput-
ing, TUT, in 2018. His current research interests include

hardware and system-on-a-chip design, cloud FPGA accel-
eration platforms and high-level synthesis.

Timo D. Hämäläinen has been full professor at Tampere

University since 2001. His research and teaching activities
include model based system design, HW/SW co-design

and System-on-Chip tools and methodologies, for exam-

ple the open source IP-XACT tool Kactus2. He is author of
over 60 journal articles, 200 conference publications, and

has 10 patents.

Vili Viitamäki received the M.S. degree in embedded sys-
tems from Tampere University of Technology (TUT), Tam-

pere, Finland, in 2018. From 2017 onwards he has worked

in the industry as a hardware engineer developing both
wired and wireless networking devices. His previous re-

search includes hardware accelerators for networking and
video applications.

Jouni Markunmäki received the M.Sc. degree in the de-

gree program of Information Technology with Software

Systems as a main subject and Telecommunications as a
subsidiary from Tampere University of Technology (TUT),

Tampere, Finland, in 1999. He has been working in the
Telecommunications industry from 1997 in various tech-

nical roles including transport area system specification
and working as a technical lead within Telco Cloud ac-

celeration area. Current position is in the Nokia Mobile

Networks SoC (System on a Chip) product management
following the categories of generic compute, Cloud accel-

eration and Machine Learning from the silicon solutions
view.

Ari Kulmala received his Ph.D. degree in 2009 from the
Tampere University of Technology (TUT). Currently he

heads Baseband ASIC unit in Nokia System on chip orga-
nization focusing on developing ASIC and FPGA soutions

for wireless infrastructure. He has experience on many
ASIC and FPGA products from requirements to implemen-

tation using various silicon technology nodes. From the

beginning of 2009, he worked in Wireless Modem unit of
Devices R & D in Nokia as technical digital ASIC project

manager. After Renesas Electronics acquired the unit he
worked in Renesas Mobile from 2010 to 2013. Dr. Kulmala

is author or co-author of around twenty international ref-
ereed publications. From 2003 to 2009 he worked as a

Researcher in the Department of the Computer Systems of TUT.

	tuni_kannet_sivuina
	TUNI_vajaranta_markku_sisus
	Title_page_Vajaranta
	Vajaranta_Dissertation
	Introduction
	The research question, the methodology and the original contribution of the thesis
	The storyline
	Scope and restrictions
	The author's contribution to the publications
	Acknowledgments

	Background
	Conventional networking
	SDN networking
	A short history of SDN
	SDN in a nutshell
	SDN: a worthy endeavor or a waste of effort?

	VPN technologies
	Encryption algorithms and modes for IPsec and OpenVPN
	IPsec
	OpenVPN
	Speed, security and high availability considerations for IPsec and OpenVPN

	Time to make tasks faster: Hardware acceleration

	Answers to questions: publications get tied up
	Resilient VPN connections with an IP zero configuration
	Tunneling enhancements for large enterprise VPNs

	Reflections and lessons learned of the conducted research
	Real world SDN stuff
	One controller to rule them all
	Future prospects for the control plane and the controllers
	The future for the data plane
	(Security) applications for the SDN
	Does the designed IPsec setup work in the real world?

	Hardware backed IaaS Cloud
	An orchestrator to glue it all together

	Conclusion
	References
	Publications
	Publication I
	Publication II
	Publication III
	Publication IV
	Publication V

	Blank Page
	Blank Page

