11,788 research outputs found

    Integrated context-aware and cloud-based adaptive home screens for android phones

    Get PDF
    This is the post-print version of this Article. The official published version can be accessed from the link below - Copyright @ 2011 Springer VerlagThe home screen in Android phones is a highly customizable user interface where the users can add and remove widgets and icons for launching applications. This customization is currently done on the mobile device itself and will only create static content. Our work takes the concept of Android home screen [3] one step further and adds flexibility to the user interface by making it context-aware and integrated with the cloud. Overall results indicated that the users have a strong positive bias towards the application and that the adaptation helped them to tailor the device to their needs by using the different context aware mechanisms

    Semantic-driven Configuration of Internet of Things Middleware

    Get PDF
    We are currently observing emerging solutions to enable the Internet of Things (IoT). Efficient and feature rich IoT middeware platforms are key enablers for IoT. However, due to complexity, most of these middleware platforms are designed to be used by IT experts. In this paper, we propose a semantics-driven model that allows non-IT experts (e.g. plant scientist, city planner) to configure IoT middleware components easier and faster. Such tools allow them to retrieve the data they want without knowing the underlying technical details of the sensors and the data processing components. We propose a Context Aware Sensor Configuration Model (CASCoM) to address the challenge of automated context-aware configuration of filtering, fusion, and reasoning mechanisms in IoT middleware according to the problems at hand. We incorporate semantic technologies in solving the above challenges. We demonstrate the feasibility and the scalability of our approach through a prototype implementation based on an IoT middleware called Global Sensor Networks (GSN), though our model can be generalized into any other middleware platform. We evaluate CASCoM in agriculture domain and measure both performance in terms of usability and computational complexity.Comment: 9th International Conference on Semantics, Knowledge & Grids (SKG), Beijing, China, October, 201

    EC-IoT : an easy configuration framework for constrained IoT devices

    Get PDF
    Connected devices offer tremendous opportunities. However, their configuration and control remains a major challenge in order to reach widespread adoption by less technically skilled people. Over the past few years, a lot of attention has been given to improve the configuration process of constrained devices with limited resources, such as available memory and absence of a user interface. Still, a major deficiency is the lack of a streamlined, standardized configuration process. In this paper we propose EC-IoT, a novel configuration framework for constrained IoT devices. The proposed framework makes use of open standards, leveraging upon the Constrained Application Protocol (CoAP), an application protocol that enables HTTP-like RESTful interactions with constrained devices. To validate the proposed approach, we present a prototype implementation of the EC-IoT framework and assess its scalability.The research from DEWI project (www.dewi-project.eu) leading to these results has received funding from the ARTEMIS Joint Undertaking under grant agreement n 621353 and from the agency for Flanders Innovation & Entrepreneurship (VLAIO). The research from the ITEA2 FUSE-IT project (13023) leading to these results has re- ceived funding from the agency for Flanders Innovation & Entrepreneurship (VLAIO)

    Active cooling control of the CLEO detector using a hydrocarbon coolant farm

    Full text link
    We describe a novel approach to particle-detector cooling in which a modular farm of active coolant-control platforms provides independent and regulated heat removal from four recently upgraded subsystems of the CLEO detector: the ring-imaging Cherenkov detector, the drift chamber, the silicon vertex detector, and the beryllium beam pipe. We report on several aspects of the system: the suitability of using the aliphatic-hydrocarbon solvent PF(TM)-200IG as a heat-transfer fluid, the sensor elements and the mechanical design of the farm platforms, a control system that is founded upon a commercial programmable logic controller employed in industrial process-control applications, and a diagnostic system based on virtual instrumentation. We summarize the system's performance and point out the potential application of the design to future high-energy physics apparatus.Comment: 21 pages, LaTeX, 5 PostScript figures; version accepted for publication in Nuclear Instruments and Methods in Physics Research

    A multi-sensor based online tool condition monitoring system for milling process

    Get PDF
    Tool condition monitoring has been considered as one of the key enabling technologies for manufacturing optimization. Due to the high cost and limited system openness, the relevant developed systems have not been widely adopted by industries, especially Small and Medium-sized Enterprises. In this research, a cost-effective, wireless communication enabled, multi-sensor based tool condition monitoring system has been developed. Various sensor data, such as vibration, cutting force and power data, as well as actual machining parameters, have been collected to support efficient tool condition monitoring and life estimation. The effectiveness of the developed system has been validated via machining cases. The system can be extended to wide manufacturing applications
    • …
    corecore