62 research outputs found

    Evolvable hardware platform for fault-tolerant reconfigurable sensor electronics

    Get PDF

    A Three – tier bio-implantable sensor monitoring and communications platform

    Get PDF
    One major hindrance to the advent of novel bio-implantable sensor technologies is the need for a reliable power source and data communications platform capable of continuously, remotely, and wirelessly monitoring deeply implantable biomedical devices. This research proposes the feasibility and potential of combining well established, ‘human-friendly' inductive and ultrasonic technologies to produce a proof-of-concept, generic, multi-tier power transfer and data communication platform suitable for low-power, periodically-activated implantable analogue bio-sensors. In the inductive sub-system presented, 5 W of power is transferred across a 10 mm gap between a single pair of 39 mm (primary) and 33 mm (secondary) circular printed spiral coils (PSCs). These are printed using an 8000 dpi resolution photoplotter and fabricated on PCB by wet-etching, to the maximum permissible density. Our ultrasonic sub-system, consisting of a single pair of Pz21 (transmitter) and Pz26 (receiver) piezoelectric PZT ceramic discs driven by low-frequency, radial/planar excitation (-31 mode), without acoustic matching layers, is also reported here for the first time. The discs are characterised by propagation tank test and directly driven by the inductively coupled power to deliver 29 μW to a receiver (implant) employing a low voltage start-up IC positioned 70 mm deep within a homogeneous liquid phantom. No batteries are used. The deep implant is thus intermittently powered every 800 ms to charge a capacitor which enables its microcontroller, operating with a 500 kHz clock, to transmit a single nibble (4 bits) of digitized sensed data over a period of ~18 ms from deep within the phantom, to the outside world. A power transfer efficiency of 83% using our prototype CMOS logic-gate IC driver is reported for the inductively coupled part of the system. Overall prototype system power consumption is 2.3 W with a total power transfer efficiency of 1% achieved across the tiers

    Smart Technologies for Precision Assembly

    Get PDF
    This open access book constitutes the refereed post-conference proceedings of the 9th IFIP WG 5.5 International Precision Assembly Seminar, IPAS 2020, held virtually in December 2020. The 16 revised full papers and 10 revised short papers presented together with 1 keynote paper were carefully reviewed and selected from numerous submissions. The papers address topics such as assembly design and planning; assembly operations; assembly cells and systems; human centred assembly; and assistance methods in assembly

    Modular, reconfigurable approach for a commercial space spacecraft programme

    Get PDF
    This thesis presents the work performed in producing a system-level design for a modular, multipurpose small satellite platform. A multipurpose platform may be applied to a wide range of missions, and, to be commercially viable, the envelope of missions for which it is suitable should be as large as possible. The research therefore addresses the particular requirements that are specific to different mission types, and produces characteristic requirement sets for each. General design requirements are also derived, such as those for enabling modularity and allowing compatibility with different launch vehicles. The commercial requirements arising from the different market and customer sectors are also examined. Industry analysis allows identification of general market trends, and predictions are made regarding the likely size and characteristics of the market in which the proposed platform would compete. It is anticipated there could be a worldwide demand for more than twenty small satellites each year, for which a flexible small spacecraft platform could potentially compete. After derivation of the necessary requirements has been performed, a system-level design of the spacecraft platform is undertaken. The resulting design is based on a multi-module, reconfigurable concept, which can be adapted to fit the different launch envelopes of Pegasus-XL, Taurus, ASAP-5 and larger launchers, and also to accommodate a wide range of payloads. The subsystems are offered in different capability variants, which may be interchanged in response to different mission requirements. The platform equipment and structure forms a 'standard parts lisf', from which the appropriate configuration can be built up. Schedule reductions are obtained due to the modular design allowing more of the integration and testing of the platform to be performed in parallel. The proposed programme for development of the platform uses up-front investment to conduct much of the detailed design of the platform in advance of any actual project. This allows the design effort to be shared across many subsequent projects, and the design phase of each new project to be minimised. The key benefits of the proposed platform and programme are adaptability, ability to rapidly reconfigure to mission requirements, suitability for future upgrading, and reduction of the project schedule.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Modular, reconfigurable approach for a commercial space spacecraft programme

    Get PDF
    This thesis presents the work performed in producing a system-level design for a modular, multipurpose small satellite platform. A multipurpose platform may be applied to a wide range of missions, and, to be commercially viable, the envelope of missions for which it is suitable should be as large as possible. The research therefore addresses the particular requirements that are specific to different mission types, and produces characteristic requirement sets for each. General design requirements are also derived, such as those for enabling modularity and allowing compatibility with different launch vehicles. The commercial requirements arising from the different market and customer sectors are also examined. Industry analysis allows identification of general market trends, and predictions are made regarding the likely size and characteristics of the market in which the proposed platform would compete. It is anticipated there could be a worldwide demand for more than twenty small satellites each year, for which a flexible small spacecraft platform could potentially compete. After derivation of the necessary requirements has been performed, a system-level design of the spacecraft platform is undertaken. The resulting design is based on a multi-module, reconfigurable concept, which can be adapted to fit the different launch envelopes of Pegasus-XL, Taurus, ASAP-5 and larger launchers, and also to accommodate a wide range of payloads. The subsystems are offered in different capability variants, which may be interchanged in response to different mission requirements. The platform equipment and structure forms a 'standard parts lisf', from which the appropriate configuration can be built up. Schedule reductions are obtained due to the modular design allowing more of the integration and testing of the platform to be performed in parallel. The proposed programme for development of the platform uses up-front investment to conduct much of the detailed design of the platform in advance of any actual project. This allows the design effort to be shared across many subsequent projects, and the design phase of each new project to be minimised. The key benefits of the proposed platform and programme are adaptability, ability to rapidly reconfigure to mission requirements, suitability for future upgrading, and reduction of the project schedule.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Advanced Energy Harvesting Technologies

    Get PDF
    Energy harvesting is the conversion of unused or wasted energy in the ambient environment into useful electrical energy. It can be used to power small electronic systems such as wireless sensors and is beginning to enable the widespread and maintenance-free deployment of Internet of Things (IoT) technology. This Special Issue is a collection of the latest developments in both fundamental research and system-level integration. This Special Issue features two review papers, covering two of the hottest research topics in the area of energy harvesting: 3D-printed energy harvesting and triboelectric nanogenerators (TENGs). These papers provide a comprehensive survey of their respective research area, highlight the advantages of the technologies and point out challenges in future development. They are must-read papers for those who are active in these areas. This Special Issue also includes ten research papers covering a wide range of energy-harvesting techniques, including electromagnetic and piezoelectric wideband vibration, wind, current-carrying conductors, thermoelectric and solar energy harvesting, etc. Not only are the foundations of these novel energy-harvesting techniques investigated, but the numerical models, power-conditioning circuitry and real-world applications of these novel energy harvesting techniques are also presented

    Vision-Based Control of Unmanned Aerial Vehicles for Automated Structural Monitoring and Geo-Structural Analysis of Civil Infrastructure Systems

    Full text link
    The emergence of wireless sensors capable of sensing, embedded computing, and wireless communication has provided an affordable means of monitoring large-scale civil infrastructure systems with ease. To date, the majority of the existing monitoring systems, including those based on wireless sensors, are stationary with measurement nodes installed without an intention for relocation later. Many monitoring applications involving structural and geotechnical systems require a high density of sensors to provide sufficient spatial resolution to their assessment of system performance. While wireless sensors have made high density monitoring systems possible, an alternative approach would be to empower the mobility of the sensors themselves to transform wireless sensor networks (WSNs) into mobile sensor networks (MSNs). In doing so, many benefits would be derived including reducing the total number of sensors needed while introducing the ability to learn from the data obtained to improve the location of sensors installed. One approach to achieving MSNs is to integrate the use of unmanned aerial vehicles (UAVs) into the monitoring application. UAV-based MSNs have the potential to transform current monitoring practices by improving the speed and quality of data collected while reducing overall system costs. The efforts of this study have been chiefly focused upon using autonomous UAVs to deploy, operate, and reconfigure MSNs in a fully autonomous manner for field monitoring of civil infrastructure systems. This study aims to overcome two main challenges pertaining to UAV-enabled wireless monitoring: the need for high-precision localization methods for outdoor UAV navigation and facilitating modes of direct interaction between UAVs and their built or natural environments. A vision-aided UAV positioning algorithm is first introduced to augment traditional inertial sensing techniques to enhance the ability of UAVs to accurately localize themselves in a civil infrastructure system for placement of wireless sensors. Multi-resolution fiducial markers indicating sensor placement locations are applied to the surface of a structure, serving as navigation guides and precision landing targets for a UAV carrying a wireless sensor. Visual-inertial fusion is implemented via a discrete-time Kalman filter to further increase the robustness of the relative position estimation algorithm resulting in localization accuracies of 10 cm or smaller. The precision landing of UAVs that allows the MSN topology change is validated on a simple beam with the UAV-based MSN collecting ambient response data for extraction of global mode shapes of the structure. The work also explores the integration of a magnetic gripper with a UAV to drop defined weights from an elevation to provide a high energy seismic source for MSNs engaged in seismic monitoring applications. Leveraging tailored visual detection and precise position control techniques for UAVs, the work illustrates the ability of UAVs to—in a repeated and autonomous fashion—deploy wireless geophones and to introduce an impulsive seismic source for in situ shear wave velocity profiling using the spectral analysis of surface waves (SASW) method. The dispersion curve of the shear wave profile of the geotechnical system is shown nearly equal between the autonomous UAV-based MSN architecture and that taken by a traditional wired and manually operated SASW data collection system. The developments and proof-of-concept systems advanced in this study will extend the body of knowledge of robot-deployed MSN with the hope of extending the capabilities of monitoring systems while eradicating the need for human interventions in their design and use.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169980/1/zhh_1.pd

    Design Development Test and Evaluation (DDT and E) Considerations for Safe and Reliable Human Rated Spacecraft Systems

    Get PDF
    A team directed by the NASA Engineering and Safety Center (NESC) collected methodologies for how best to develop safe and reliable human rated systems and how to identify the drivers that provide the basis for assessing safety and reliability. The team also identified techniques, methodologies, and best practices to assure that NASA can develop safe and reliable human rated systems. The results are drawn from a wide variety of resources, from experts involved with the space program since its inception to the best-practices espoused in contemporary engineering doctrine. This report focuses on safety and reliability considerations and does not duplicate or update any existing references. Neither does it intend to replace existing standards and policy
    • …
    corecore