399 research outputs found

    Characterization and Modeling of Silicon-on-Insulator Lateral Bipolar Junction Transistors at Liquid Helium Temperature

    Full text link
    Conventional silicon bipolars are not suitable for low-temperature operation due to the deterioration of current gain (β\beta). In this paper, we characterize lateral bipolar junction transistors (LBJTs) fabricated on silicon-on-insulator (SOI) wafers down to liquid helium temperature (4 K). The positive SOI substrate bias could greatly increase the collector current and have a negligible effect on the base current, which significantly alleviates β\beta degradation at low temperatures. We present a physical-based compact LBJT model for 4 K simulation, in which the collector current (IC\textit{I}_\textbf{C}) consists of the tunneling current and the additional current component near the buried oxide (BOX)/silicon interface caused by the substrate modulation effect. This model is able to fit the Gummel characteristics of LBJTs very well and has promising applications in amplifier circuits simulation for silicon-based qubits signals

    DTMOS-Based 0.4V Ultra Low-Voltage Low-Power VDTA Design and Its Application to EEG Data Processing

    Get PDF
    In this paper, an ultra low-voltage, ultra low-power voltage differencing transconductance amplifier (VDTA) is proposed. DTMOS (Dynamic Threshold Voltage MOS) transistors are employed in the design to effectively use the ultra low supply voltage. The proposed VDTA is composed of two operational transconductance amplifiers operating in the subthreshold region. Using TSMC 0.18µm process technology parameters with symmetric ±0.2V sup¬ply voltage, the total power consumption of the VDTA block is found as just 5.96 nW when the transconductances have 3.3 kHz, 3 dB bandwidth. The proposed VDTA circuit is then used in a fourth-order double-tuned band-pass filter for processing real EEG data measurements. The filter achieves close to 64 dB dynamic range at 2% THD with a total power consumption of 12.7 nW

    Integrated phased array systems in silicon

    Get PDF
    Silicon offers a new set of possibilities and challenges for RF, microwave, and millimeter-wave applications. While the high cutoff frequencies of the SiGe heterojunction bipolar transistors and the ever-shrinking feature sizes of MOSFETs hold a lot of promise, new design techniques need to be devised to deal with the realities of these technologies, such as low breakdown voltages, lossy substrates, low-Q passives, long interconnect parasitics, and high-frequency coupling issues. As an example of complete system integration in silicon, this paper presents the first fully integrated 24-GHz eight-element phased array receiver in 0.18-μm silicon-germanium and the first fully integrated 24-GHz four-element phased array transmitter with integrated power amplifiers in 0.18-μm CMOS. The transmitter and receiver are capable of beam forming and can be used for communication, ranging, positioning, and sensing applications

    Substrate transfer for RF technologies

    Get PDF
    The constant pressure on performance improvement in RF processes is aimed at higher frequencies, less power consumption, and a higher integration level of high quality passives with digital active devices. Although excellent for the fabrication of active devices, it is the silicon substrate as a carrier that is blocking breakthroughs. Since all devices on a silicon wafer have a capacitive coupling to the resistive substrate, this results in a dissipation of RF energy, poor quality passives, cross-talk, and injection of thermal noise. We have developed a low-cost wafer-scale post-processing technology for transferring circuits, fabricated with standard IC processing, to an alternative substrate, e.g., glass. This technique comprises the gluing of a fully processed wafer, top down, to an alternative carrier followed by either partial or complete removal of the original silicon substrate. This effectively removes the drawbacks of silicon as a circuit carrier and enables the integration of high-quality passive components and eliminates cross-talk between circuit parts. A considerable development effort has brought this technology to a production-ready level of maturity. Batch-to-batch production equipment is now available and the technology and know-how are being licensed. In this paper, we present four examples to demonstrate the versatility of substrate transfer for RF applications

    Substrate transfer for RF technologies

    Full text link

    Monte Carlo simulation of silicon-germanium transistors

    Get PDF
    Self-consistent Monte Carlo simulation studies of n-channel Si/SiGe modulation doped field effect transistors (MODFETs) and silicon-on-insulator lateral bipolar junction transistors (SOI- LBJTs) are reported in this thesis. As a preliminary to the device studies Monte Carlo simulations of electron transport in bulk Si strained as if grown on Si(_0.77)Ge(_0.23) and Si(_0.55)Ge(_0.45) substrates have been carried out at 300 K, for field strengths varied from 10(^4) to 2 x 10(^7) Vm(^-1). The calculations indicate an enhancement of the average electron drift velocity when Si is tensilely strained in the growth plane. The enhancement of electron velocity is more marked at low and intermediate electric fields, while at very high fields the velocity saturates at about the same value as unstrained Si. In addition the ensemble Monte Carlo method has been used to study the transient response to a stepped electric field of electrons in strained and unstrained Si. The calculations suggest that significant velocity overshoots occurs in strained material. Simulations of n-channel Si/Si(_1=z)Ge(_z) MODFETs with Ge fractions of 0.23, 0.25, and 0.45 have been performed. Five depletion mode devices with x = 0.23 and 0.25 were studied. The simulations provide information on the microscopic details of carrier behaviour, including carrier velocity, kinetic energy and carrier density, as a function of position in the device. Detailed time-dependent voltage signal analysis has been carried out to test device response and derive the frequency bandwidth. The simulations predict a current gain cut-off frequency of 60 ± 10 GHz for a device with a gate length of 0.07 /nm and a channel length of 0.25 um. Similar studies of depletion and enhancement mode n-channel Si/Sio.55Geo.45 MODFETs with a gate length of 0.18 /im have been carried out. Cut-off frequencies of 60 ±10 GHz and 90± 10 GHz are predicted for the depletion and enhancement mode devices respectively. A Monte Carlo model has also been devised and used to simulate steady state and transient electron and hole transport in SOI-LBJTs. Four devices have been studied and the effects of junction depth and silicon layer thickness have been investigated. The advantage of the silicon-on-insulator technology SOI device is apparent in terms of higher collector current, current gain, and cut-off frequency obtained in comparison with an all-silicon structure. The simulations suggest that the common-emitter current gain of the most promising SOI-LBJT structure considered could have a cut-off frequency approaching 35 ± 5 GHz

    Low-frequency noise in downscaled silicon transistors: Trends, theory and practice

    Get PDF
    By the continuing downscaling of sub-micron transistors in the range of few to one deca-nanometers, we focus on the increasing relative level of the low-frequency noise in these devices. Large amount of published data and models are reviewed and summarized, in order to capture the state-of-the-art, and to observe that the 1/area scaling of low-frequency noise holds even for carbon nanotube devices, but the noise becomes too large in order to have fully deterministic devices with area less than 10nm×10nm. The low-frequency noise models are discussed from the point of view that the noise can be both intrinsic and coupled to the charge transport in the devices, which provided a coherent picture, and more interestingly, showed that the models converge each to other, despite the many issues that one can find for the physical origin of each model. Several derivations are made to explain crossovers in noise spectra, variable random telegraph amplitudes, duality between energy and distance of charge traps, behaviors and trends for figures of merit by device downscaling, practical constraints for micropower amplifiers and dependence of phase noise on the harmonics in the oscillation signal, uncertainty and techniques of averaging by noise characterization. We have also shown how the unavoidable statistical variations by fabrication is embedded in the devices as a spatial “frozen noise”, which also follows 1/area scaling law and limits the production yield, from one side, and from other side, the “frozen noise” contributes generically to temporal 1/f noise by randomly probing the embedded variations during device operation, owing to the purely statistical accumulation of variance that follows from cause-consequence principle, and irrespectively of the actual physical process. The accumulation of variance is known as statistics of “innovation variance”, which explains the nearly log-normal distributions in the values for low-frequency noise parameters gathered from different devices, bias and other conditions, thus, the origin of geometric averaging in low-frequency noise characterizations. At present, the many models generally coincide each with other, and what makes the difference, are the values, which, however, scatter prominently in nanodevices. Perhaps, one should make some changes in the approach to the low-frequency noise in electronic devices, to emphasize the “statistics behind the numbers”, because the general physical assumptions in each model always fail at some point by the device downscaling, but irrespectively of that, the statistics works, since the low-frequency noise scales consistently with the 1/area law

    Compact Models for Integrated Circuit Design

    Get PDF
    This modern treatise on compact models for circuit computer-aided design (CAD) presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models. Featuring exercise problems at the end of each chapter and extensive references at the end of the book, the text supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices. It ensures even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts

    Silicon Nanowire Based Photodetectors: Modeling and Fabrication

    Get PDF
    This research is focused on investigating the role of silicon nanowires in designing high gain, high sensitivity photodetectors, and is based on both device modeling and fabrication. We demonstrate that the superior electrostatic control within the nanowires enables us to effectively engineer the energy band and design novel photodetector architectures. This is due to the high surface to volume ratio in nanowires which allows for the ability to change the electrical properties of a nanowire device in response to a voltage applied to the gate contact. In the first part of the thesis, two photodetector geometries are proposed and theoretically studied. The first geometry is a Metal Oxide Semiconductor (MOS) device with nanowires incorporated in its channel. The next geometry is a junction-less phototransistor, e.g. a photoconductor with a third terminal as the gate. Both geometries are important due to their ability to generate optical gain. For both cases, first the role of nanowire parameters and their pros and cons on the device photo-response is investigated. Afterwards, we propose modifications to the device geometry in order to improve the performance of the device in terms of optical gain and sensitivity. The first modification is allocating a wide region for light absorption in the channel, since single nanowire based photodetectors suffer from lack of efficient absorption, due to their small cross sectional area. Use of phototransistors also helps the photo-current increase, due to the device's internal gain. The second modification incorporates two nanowire/ gate geometries to improve the device photo-response, in terms of both dark- and photo-current. The charge flow in each nanowire is controlled by a gate, which changes the energy band within the nanowire. This band engineering allows for both increasing the optical gain of the phototransistor, and keeping the dark current low. We report nanowire based phototransistors that are potentially able to detect low levels of light intensity (photon rate of less than 50/s). The second part of the thesis is devoted to the fabrication of the nanowire based structures. Top-down approach is used, mainly due to the better control on the nanowire size and position, and repeatability of the processes involved. Fabrication process includes several steps of electron beam lithography, dry and wet etching, metal and dielectric deposition and annealing. Pre-developed recipes are used when available. New recipes are also developed to better suit the specific needs of the devices. The measurement results of the fabricated structures verify most of the concepts proposed in the modeling phase. In the third part of this thesis, we characterize MOS capacitors with and without illumination, based on Silicon on Insulator (SOI) structures used in the previous chapters. Here, we report the first observation of photon induced negative capacitance in a conventional Metal Oxide Semiconductor (MOS) capacitor without the use of ferroelectric materials. Design and implementation of this phenomenon is presented in a capacitor where an aluminum oxide layer serves as the gate dielectric, and the capacitor is in depletion mode. Through extensive modeling, we establish that trap states at the semiconductor-oxide interface, coupled with the injection of photo-generated electrons are responsible for the negative capacitance. We find that varying the trap density and/or light intensity can tune the value of the negative capacitance. We show that in the presence of photons, the experimentally measured quasi-static capacitance in depletion is almost twice the value without photons. Further, the measured capacitance is larger than the values in accumulation and inversion.1 yea
    corecore