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Abstract

Self-consistent Monte Carlo simulation studies of n-channel Si/SiGe modulation doped field
effect transistors (MODFETSs) and silicon-on-insulator lateral bipolar junction transistors (SOI-
LBJTs) are reported in this thesis.

As a preliminary to the device studies Monte Carlo simulations of electron transport
in bulk Si strained as if grown on Sig.77Geg .23 and Sip55Geg 45 substrates have been carried
out at 300 K, for field strengths varied from 10% to 2 x 107 Vm™!. The calculations indicate
an enhancement of the average electron drift velocity when Si is tensilely strained in the
growth plane. The enhancement of electron velocity is more marked at low and intermediate
electric fields, while at very high fields the velocity saturates at about the same value as
unstrained Si. In addition the ensemble Monte Carlo method has been used to study the
transient response to a stepped electric field of electrons in strained and unstrained Si. The
calculations suggest that significant velocity overshoots occurs in strained material.

Simulations of n-channel Si/Si;_,Ge, MODFETs with Ge fractions of 0.23, 0.25, and
0.45 have been performed. Five depletion mode devices with z = 0.23 and 0.25 were stud-
ied. The simulations provide information on the microscopic details of carrier behaviour,
including carrier velocity, kinetic energy and carrier density, as a function of position in the
device. Detailed time-dependent voltage signal analysis has been carried out to test device
response and derive the frequency bandwidth. The simulations predict a current gain cut-off
frequency of 60 + 10 GHz for a device with a gate length of 0.07 um and a channel length
of 0.25 pm. Similar studies of depletion and enhancement mode n-channel Si/Sig55Geg.45
MODFETs with a gate length of 0.18 pm have been carried out. Cut-off frequencies of
60+ 10 GHz and 90 + 10 GHz are predicted for the depletion and enhancement mode devices
respectively.

A Monte Carlo model has also been devised and used to simulate steady state and tran-
sient electron and hole transport in SOI-LBJTs. Four devices have been studied and the
effects of junction depth and silicon layer thickness have been investigated. The advantage of
the silicon-on-insulator technology SOI device is apparent in terms of higher collector current,
current gain, and cut-off frequency obtained in comparison with an all-silicon structure. The
simulations suggest that the common-emitter current gain of the most promising SOI-LBJT
structure considered could have a cut-off frequency approaching 35 + 5 GHz.
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Chapter 1

Introduction

Despite the superior high-speed performance of transistors based on III-V materials, sil-
icon is still the dominant semiconductor in modern microelectronics, with applications
that can be found in both discrete devices and monolithic integrated circuits (ICs).
A metal-oxide-semiconductor field-effect transistor (MOSFET) is a building block of
VLSI circuits in microprocessors and dynamic memories. The n-type device involves
controlling the current flow through a channel whilst a thin layer of SiO; is used to
separate the gate electrode and p-silicon. Complementary MOSFET (CMOS) technol-
ogy, which combines both n-channel and p-channel MOSFETS, provides very low power
consumption combined with high speed. The performance and packing density of VLSI
circuits is still improving as a result of the continuing miniaturisation of MOSFETs
and advances in circuit fabrication techniques. However, enhancement of submicron
device performance by reducing device size is facing more and more difficulties (1,2].
As a result, several new device concepts and new technologies have been developed
in recent years in order to overcome or circumvent the problems. Two devices are
investigated in this thesis, which might play an important role when the down-scaling
of critical device dimensions is no longer an affordable option for bulk production.
Strain has the effect of changing the band structure and other parameters of a mate-

rial so that it has different electronic properties and this provides a method of tailoring
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device performance. It is possible to fabricate an n-channel MODFET structure, in
which a thin silicon channel is under tensile strain as a result of growing it in a thin
layer on a silicon-germanium alloy. The tensile strained Si provides a confining channel
for the electrons. In addition the strain-induced splitting of the Si conduction band
valleys means that the conductivity effective mass is effectively reduced and intervalley
scattering is suppressed, resulting in an enhanced electron mobility. It is also possible
to achieve spatial separation of the electrons from the ionised donors which supply
them by only doping the structure away from the channel. This has the advantage of
reducing ionised impurity scattering of the electrons. Due to these effects, modulation
doped and strained Si/Si;_;Ge, (z < 0.5) structures have been shown to exhibit high-
electron mobility, and hence have considerable potential for the development of fast
Si-based MODFETsS.

Field-effect transistors are used in the majority of VLSI circuits, but bipolar tran-
sistors are valuable in applications requiring high speed, high current and lower inte-
gration levels than state of the art circuits. Devices that take advantage of both the
high current-drive capability of high speed bipolar transistors and the mass production
techniques of CMOS technology are particularly attractive. Bipolar junction tran-
sistors with an unconventional lateral geometry can be incorporated into integrated
circuits with only minor modifications to CMOS processing. In particular the use of
silicon-on-insulator for lateral bipolar devices permits simple circuit integration and
results in very small junction capacitances, ease of isolation, and a CMOS-like device
area. These features are particularly attractive for dense high-performance CMOS-type
applications.

Carrier transport in submicron semiconductor devices is complicated by the rapid
spatial and temporal variations in electric fields and associated carrier dynamics that
can occur. The modelling of such devices requires physics-based simulators that can

provide a realistic description of non-equilibrium carrier transport. The advantage of
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accurate device simulation based on firm physical foundations is that it can be con-
sidered as a form of experiment, which can be carried out much faster and with less
expense than real experimental investigation. Furthermore, computer simulation pro-
vides a wealth of microscopic detail and the potential for a deep physical interpretation
of the results that can point the way to enhancements in device performance.

This thesis is concerned with the modelling of electron transport in n-channel
strained Si/Si;_,Ge, MODFETs with Ge contents of 0.23, 0.25, and 0.45 and elec-
tron and hole transport in silicon-on-insulator lateral bipolar transistors (SOI-LBJTs).
For both types of device the self-consistent ensemble Monte Carlo method is used. The

thesis is organised as follows:

1.1 Structure of the thesis

Chapter 2

Chapter 2 describes the elastic and electronic properties of Si and SiGe alloys, with
particular emphasis on the effects of strain on the electronic band structure, and the
transport properties of carriers, and how the effects can be utilised in high performance
devices. The two types of transistors which are the subject of study, the modulation
doped field-effect SiGe transistor (MODFET) and the lateral bipolar junction transis-

tor (LBJT), are also introduced.

Chapter 3

In this chapter, the Boltzmann transport equation (BTE) is introduced as a semiclas-
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sical description of charge carrier transport in semiconductors. The Monte Carlo (MC)
method is also introduced as a numerical method of solving the BTE by tracking the
trajectories of particles representative of electrons and holes which move through a
device under the influence of the local electric field and the stochastic scattering by
phonons, impurities and alloy disorder. The chapter concludes with a description of
the use of the Monte Carlo model for the device simulations which produce the results

presented in Chapter 4 and 5.

Chapter 4

Chapter 4 presents the results of simulations of n-channel strained Si/Si;_,Ge; MOD-
FETs using the self-consistent ensemble Monte Carlo method. The devices studied
can be categorised as being in two groups according to their Ge content. The mod-
erately strained devices have a Ge fraction z = 0.23 or 0.25 and the highly strained
devices have z = 0.45. Macroscopic device characteristics and parameters, such as the
drain current-drain voltage curve and, the transconductance (gn,) are obtained from
the simulations. The simulations also provide information on the microscopic details of
carrier behaviour, including carrier velocity, kinetic energy and density as a function of
position in the device, facilitating a thorough analysis of the mechanisms determining
device performance. The device response to a time-dependent voltage signal has also

been simulated to derive the frequency bandwidth for various geometries.

Chapter 5

In this chapter, we report how a Monte Carlo simulation has been devised and used
to model steady state and transient electron and hole transport in SOI-LBJTs. Four

devices are studied in order to investigate the effects of junction depth and silicon layer
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thickness. Simulations have also been carried out to investigate the high frequency

performance of the devices.

Chapter 6

Conclusions drawn from this work are presented in Chapter 6 and suggestions are made

for further study.



Chapter 2

Si/Ge Materials

2.1 Introduction

To overcome the physical limits on the speed of the field effect transistor while main-
taining compatibility with conventional integrated circuit fabrication processes, several
innovations have been developed in recent years. In particular Si/SiGe heterostruc-
tures have been introduced as a promising method for improving device speed without
reduction of device size while solving a number of other problems encountered in MOS-
FETs [1,2]. Much recent research in Si/Si;_;Ge, heterostructures has had the aim of
obtaining higher hole and electron mobilities through strain-induced band splitting,
and enhanced mobilities in both n-channel and p-channel devices have been reported
in recent years [3,4]. Fabrication processes for Si/SiGe devices are quite compatible
with those routinely used in Si ICs, in contrast to the situation with III-V compound
devices [5]. Hence, mobility-enhanced field-effect transistors based on SiGe could not
only fit well into the area of mainstream microelectronics, but might also provide the
performance advantage that may ultimately be decisive when the down-scaling of crit-
ical device dimensions is no longer an affordable option for bulk IC production.

The physics of Si/SiGe materials that is relevant to the operation of the devices and

to the simulation model that we use to investigate them is presented in this chapter.

6
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In Section 2.2 the basic properties of Si, Ge and the alloy Si;_,Ge, in the bulk are
briefly introduced and then the effect of strain on the band structure, effective masses,
and mobilities of Si and Si;_,Ge, are described. A knowledge of the band alignment of
a Si/Si;_,Ge, heterojunction is also required to describe in quantitative terms the con-
trol of carrier transport in the heterostructures, and information on this is also given in
Section 2.2. The basic concept of the field-effect transistor and the technique of mod-
ulation doping are introduced in Sections 2.3 and 2.4 respectively. Also in Section 2.4,
we describe how the changes due to the strain-induced band structure can be used to
tailor device performance. Section 2.5 deals with the use of heterojunctions and strain
in specific n-Si/Si;_,Ge, MODFETs. The basic operation of the silicon-on-insulator
bipolar transistor (SOI LBJT) is described in Section 2.6.

2.2 Properties of Si/Si;_,Ge, structures

Si and Ge are indirect bandgap materials and the fundamental bandgap of Si;_,Ge,
alloys is also indirect for all compositions. The conduction band edge minima are sixfold
degenerate in Si, where they are located along the [100] directions near the X-points of
the Brillouin zone and are referred to as A-minima. In Ge, the conduction band edge
minima are located right at the Brillouin-zone edge in the [111] directions (L-minima).
In Si, the six equivalent minima of the conduction band are ellipsoids of revolution and
therefore are characterised by different effective masses in the various directions. There
is a longitudinal mass m; = 0.91mg, which describes the curvature in the major axis
direction, and a transverse mass m; = 0.19m,, which relates to the two minor axes.
For Ge, there are eight half ellipsoids equivalent to four complete ellipsoids in the
periodic zone scheme, which have a transverse mass of m; = 0.82m, and a longitudinal
mass of m; = 1.64mg. According to the work of Braunstein et al. [6], the lowest lying
conduction bands cross over in the alloy from the A Si-like states to the L Ge-like

states for a Ge content of 85 %. Consequently, the conduction band structure of bulk



2.2. Properties of Si/Si,_,Ge, structures 8

SiGe alloy is Si-like for a wide range of alloy compositions.

According to Vegard’s law, the lattice constant of unstrained Si;_,Ge, is given by
a(T)sii_.Ge. = (1 — Z)asi + Tage (2.1)

That is, the lattice constant of Si;_;Ge, can then be varied in a continuous fashion
from that of Si to Ge. Note that the lattice constant a(x) of the Si;_,Ge, alloy is

bigger than that of Si since ag; = 5.430 A and ag. = 5.650 A.

2.2.1 Pseudomorphic epitaxial layers

Consider the effect of attempting to grow an epilayer of a material with cubic crystal
structure and lattice constant a.p; on a substrate with the same type of crystal structure
but a different lattice constant a,,,. Our attention is restricted to the growth along
the (100) axis of the crystal. The lattice mismatch is described by a misfit parameter
fm as:

fm - a'epi — Qsub (22)

Asub

where a.,; is the lattice constant of the epitaxial layer (or epilayer) and agy is the
lattice constant of the substrate. A match between the two crystalline structures can
be achieved only if one or both crystals are elastically strained. In general, the substrate
is much thicker than the growing epitaxial film, and then it is the atoms of the epitaxial
layer that must be displaced. If f,, < 0 there is an in-plane (biaxial) tensile strain in
the epilayer and also the lattice constant normal to the plane is reduced. Alternatively,
if fn > 0 there is an in-plane (biaxial) compression of the epilayer and tensile strain
normal to the plane. In both cases there is a tetragonal distortion of the cubic unit
cell of the epilayer crystal structure as schematically illustrated in Figure 2.1. When
the epilayer grows with this type of simple elastic distortion of the crystal structure,

without the appearance of dislocations, the growth is said to be pseudomorphic.
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2.2.2 Critical Thickness

The basic understanding of the growth of pseudomorphic layers was first provided by
Frank and van der Merwe (7] but a more complete analysis of the growth of lattice-
mismatched layers was performed by Matthews and Blakeslee [8]. They pointed out
that the growth of a sufficiently thin epitaxial layer, whose lattice constant is close to
but not equal to the lattice constant of the substrate, may give rise to a coherently
strained layer as opposed to a polycrystalline or amorphous layer. In particular, there
exists a critical thickness (h.) of the epilayer below which the film is thermodynami-
cally stable and no misfit dislocations exist in the interface. For layers with thickness
above h., misfit dislocations become energetically favourable and provide partial strain
relaxation of the film, the degree of which increases with increasing layer thickness.
According to the theory of Matthews and Blakeslee (MB) [8], the critical thickness can

be calculated from [9]:

_ (1 —wvcos®p) | pche

h, =
81 fm(l+ )01 g

(2.3)

where b is the Burgers vector, v is Poisson’s ratio, 3 is the angle between the dislocation
line and the Burgers vector, b, = bcos 3, ¢ is the core cut-off parameter, which is taken
to be equal to by, and p. is the core energy parameter. Note that the formula does not
take account of the interactions between dislocations and a more rigorous calculation
of h. has been performed by Jain et al. [9]. Nonetheless, accurate predictions of h.
differ only slightly from the values obtained from Equation 2.3.

Thus, when a layer of Si;_,Ge, is grown on a Si substrate, it becomes compressively
strained with the lattice symmetry changing from cubic to tetragonal if the growth is
pseudomorphic. On the other hand, if the layer thickness is above the critical thickness,

there are misfit dislocations and other defects and the carrier mobility in the material
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Figure 2.1: A material with a lattice constant a.p; grown on a substrate
with a lattice constant asyp: a) a < asyp b) @ > agup
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Figure 2.2: Schematic illustration of (a) Separate layers at equilibrium.
There is a 4.2% difference in the lattice constant of Si and Ge. Thus when a
layer of Si;_;Ge; is grown on top of Si, it has a bulk relaxed lattice constant
which is larger than Si. (b) If a layer grown is below the critical thickness it
becomes strained with the lattice symmetry changing from cubic to tetrago-
nal. (¢) If the layer thickness is above the critical thickness, misfit dislocations
appear, which act to relieve the strain in the epitaxial film.
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is reduced by the high defect density, making it unsuitable for device applications.
These two cases are illustrated in Figure 2.2. Figure 2.3 illustrates the opposite to
Figure 2.2(b) in the sense that an epilayer of Si is grown on a SiGe substrate resulting

in biaxial tensile strain.

2.2.3 Effect of strain on band structure

In this section, we examine the effect that strain in an epitaxial layer has on the elec-
tronic properties of the semiconductor. To this end, it is important to know the strain
tensor for the epitaxial layer. Once the strain tensor is known, the effect of strain on
the band structure can be obtained from deformation potential theory. In the present
work, the epitaxial semiconductor layer is biaxially strained in the plane of the sub-
strate by an amount ¢, and uniaxially strained in the normal direction by an amount
€.

The definition of stress, strain and their relationship are discussed in many text-
books, e.g. Kittel [10], and only the essential points will be presented here. A strain
within the elastic limit is defined by the components of a symmetric second-rank ten-

SOr €:
2 8.’17]' 6.’17,’

€ij ), where 4,57 =1,2,3 (2.4)

Note that the diagonal part ;; is the specific increment of length in direction ¢ and the

dilation @ (the specific increment of the volume V') is simply the trace of ¢

AV
0= 7 2811+622+€33=TT‘(€) (25)

The nondiagonal elements of ¢;; (¢ # j) correspond to shearing deformations. The

stress-tensor o is defined by its components o;;, where i,j = 1,2,3. According to
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Figure 2.3: Schematic diagram of an epitaxial film of Si grown on Si;_;Ge;
under tetragonal distortion with in-plane biaxial tensile strain and out-of-
plane uniaxial compressive strain.

Hooke’s law, the stress-strain relations are
6
Eu = Z SunOn (2.6)
n=1

where in the conventional reduced notation the values of p1 and 7 have the meaning 1 =
17,2 = yy,3 = 22,4 = y2,5 = 2z,6 = zy and s, are the elastic compliance constants.

The stress components can be written as a function of the strain components:

6
Op = Z Cuntn (2.7)
n=1

where c,,, are the elastic stiffness constants. The energy is a quadratic function of the

strain, and can be written as

6 6
U= -;— D Eeses (2.8)
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where ¢,,’s are related to the ¢’s. For cubic systems, the elastic energy U simplifies to

1 1
U = Ecn(eiz + e?;y + ezz) + 5644(65‘2 + ez:c + e?vy)
+ 012(eyyezz + €526 + ezzeyy) (29)

The non-vanishing components of the stress tensor (o(ep:)) of the epitaxial layer
are oz;(epi) and oyy(epi) with o..(epi) = oyy(epi). The independent stress-strain

relations for the epitaxial layer are

ozo(epi) = cni(epi)egz(epi) + crz(epi)[eyy (epi) + €. (epi))],

o..(epi) = cii(epi)e,.(epi) + cia(epi)[ess(ept) + 4y (epi)] (2.10)

with ¢;;(epi) and cya(epi) being the elastic stiffness constants of the epitaxial layer.

The in-plane strain €| (= €55 = €4y) is defined for the epitaxial layer

QAgyub
= -1 2.11
o= (2.11)

Since there is no stress along the perpendicular direction, the perpendicular strain e (¢,,)

can be written as

= —¢€|| (2.12)

where o is Poisson’s ratio.

Once the strain tensor is known, deformation potential theory can be used to cal-
culate the effect of the strain on the electronic band structure. Deformation potential
theory describes the effect of strain in terms of deformation potentials which are ob-
tained for each band by experimental measurements of the band structure with applied
stress. The strain perturbation Hamiltonian is defined and its effects are calculated in
first order perturbation theory. Here, we will summarise the relevant results of that

formalism.
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There are three basic elements significantly affecting the band structure in strained
films [11-14];
1) changes in bandgaps due to hydrostatic strain,
2 ) removal of the degeneracy of states due to uniaxial strain,
3 ) shift in the spin orbit split off (A,,) band.

Hydrostatic strain shifts the average position of the conduction band, AFE,,,, ac-
cording to the formula

AV

AFE, 4y = Gc— 2.13
= (213)

where the net change in volume of the unit cell AV/V = Tr(€) = 2¢ + €1 and a, is
the hydrostatic deformation potential for the conduction band. Hydrostatic strain also
shifts the average position of valence band, which can be expressed in a similar form
to Equation 2.13. The general effect of hydrostatic strain is to increase the band gap
with compressive strain and to decrease the gap with tensile strain.

However, the strain in a pseudomorphic epitaxial layer has both hydrostatic and
uniaxial components. For example, if silicon is grown pseudomorphically on Si,_;Geg,
the in-plane lattice constant changes by Aa while the lattice constant in the growth
direction changes by Aa; where Aa; = —Ag /0. The deformation does not retain the
symmetry of the material as in the hydrostatic case, and the strain can be considered
to be the sum of hydrostatic and uniaxial components. The effect of uniaxial strain on
the six-fold A valleys of the degenerate conduction band of Si (and SiGe with a Si-like
lower conduction band) is that the valley degeneracy is partly removed. The valleys
split into two sets, one set being a doublet and the other a quadruplet as shown in
Figure 2.4. Denoting the four equivalent in-plane axes by A4 and the two valleys on

the axis parallel to the growth direction by A,, the energy shifts are

[1]

+228(eL —¢y) for the A, valleys

AE® = (2.14)

W= WIN

E2(ey —e1) for the Ay valleys
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Figure 2.4: (a) The constant energy surfaces of the conduction bands of
silicon. There are six equivalent conduction bands located along the [100],
[010], and [001] directions. (b) The constant energy surfaces of strained Si
grown on a [001] Si;_,Ge, virtual substrate. The [001] conduction bands have
shifted downwards in energy relative to the [010] and [100] bands. (¢) The
constant energy surfaces of strained Si;_Ge, grown on a [001] Si substrate.
The [010] and [100] bands have shifted downwards in energy relative to the
[001] bands.
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A

where =2

is the A-valley deformation potential. If Si is grown on Si;_;Ge;, the Si is
under biaxial tensile and uniaxial compressive strain and the two valleys in black in
Figure 2.4(b) have the lower energy. Note that the Ge content dependence of =2 (in

eV) for Si;_,Ge, is parameterised as [14]
Z2 =9.29 + 0.2188z + 0.6912z° (2.15)

The conduction band offset AE, is about 0.12 — 0.3 eV for a Ge fraction of 0.2 - 0.5.
Figure 2.4(c) shows the opposite case of the alloy epilayer on a Si substrate.

The effect of the strain in an epilayer on the valence band is to remove the heavy-
hole and light-hole band degeneracy as illustrated in Figure 2.5. If the strain in the
plane of the layer is compressive, the heavy-hole band is raised relative to the light-hole
band; if tensile, the reverse occurs. For the former case, the in-plane effective mass of
the heavy-hole band is relatively light {15], resulting in an improved hole mobility. In

addition the interband scattering is reduced due to the lifting of the heavy hole-light
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hole band degeneracy. On the other hand, it is expected that the tensile in-plane strain
will also increase the low-field hole mobility since most holes reside in the heavy-hole
band in the bulk and interband scattering is suppressed when the bands are split by

strain.

2.2.4 Effect of strain on effective masses

There are no experimental data available on electron masses of SiGe alloys [16]. The
theoretical investigation using non-local pseudopotential calculations performed by
Rieger et al. [14] shows that there are only small changes of the X-valley mass pa-
rameters due to strain and Ge content. Hence, the effect of strain on effective mass is

not included in our Monte Carlo transport model.

2.2.5 Effect of strain on mobilities

The carrier mobility is one of the most important parameters of a semiconductor ma-
terial since the carrier velocity is proportional to the mobility for low electric fields.
All other things being equal a transistor made from a higher mobility material will
have a higher frequency response since carriers take less time to travel through the
device. In addition, higher mobility materials imply lower resistances and lower RC
time constants, again resulting in a higher frequency response.

We have already noted that the strain in Si grown on SiGe removes some of the
degeneracy of the A valleys in unstrained Si. A typical value for the splitting is 0.18 eV
which is greater than 6kpT at room temperature. As a result, electrons preferentially
occupy the two lower valleys (shown in black in Figure 2.4(b)) which have low in-plane
masses. As the in-plane mass is much lower than the conductivity mass of bulk Si we

might expect a substantial enhancement in mobility. In addition, the lower density of
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states of the two valleys compared to the original six reduces the intervalley scattering
and also acts to increase the electron mobility.

The initial experimental attempts to realise the predicted enhancement of electron
mobility due to the effects of strain on the band structure were severely impeded by
the quality of the strain-adjusting buffer layers used in an effort to produce a SiGe
substrate by growing relaxed material on a Si substrate. The best mobilities achieved
as a result of these initial efforts reached a value close to 17 000 cm?V~!s~! [17]. With
better growth conditions and a breakthrough in reducing the defect densities of the
Si,_,Ge, buffer layer, electron mobilities now exceed 500 000 cm?V~!s~! at low tem-
perature [18]. The mobilities at room temperature have also been increased to almost
3000 cm?V~1s~! [3], which is more than a factor of 3 higher than that in conventional

Si MOSFETs [19,20], and a factor of 2 higher than the (3D) mobility of intrinsic bulk Si.

2.2.6 Band offset and band alignment

A knowledge of band alignments is essential for informed device design. As well as the
normal space charge effects that occur as a result of doping we must consider the band
offsets that result from the use of different materials. In the lattice-matched case, it is
necessary to know just the valence-band and conduction-band offsets, AE, and AE,
respectively. When there is a lattice mismatch, as for Si-Si;_;Ge, heterostructures,
we also need to know the shifts in bands that occur as a result of strain, including
the strain splitting of the valence and conduction bands. In fact this information is
often required for a range of different strain conditions, since there is generally some
flexibility in the alloy compositions used in a particular device.

To determine the band alignment for a given Si;_,Ge,-Si heterointerface it is

necessary to know the band gaps of the strained layer constituents and either AE, or
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AE, [21). The energy gap of strained Si,_,Ge, is given by [21]:

Eg (Sil—xGem ) strained — Eg (Sil—zGez)unstrained (2 16)

2 dE
—§(C11 + 2012) X (1 - (612/011))d—; X Erx (217)

where ¢;1, ¢12 are elastic constants of unstrained Si,_,Ge, and dE,;/dP is the hy-
drostatic pressure coefficient of the energy gap of unstrained Si;_;Ge,. According to
the calculation of Rieger and Vogl [14], fhe offset between the average energy of the
valence-band edge in a strained Si;_,Ge, layer and an unstrained Si;_,Ge, layer can
be expressed as:

AEy 4 = (0.47 — 0.067y)(z — y) (2.18)

The energy gap of the alloy Si;_,Ge, can be obtained by interpolating the energy gap
of Si and Ge as:

B,(Sir_yGey) = yEo(Ge) + (1 — 1) By(Si) + (1 — 1)b(SiGe)  (2.19)

where E,(Si) = 1.12 eV, E,(Ge) = 0.975 eV and b is the bowing parameter for the
ternary alloy, which is taken to have the value —0.19 €V [22]. Once we know the valence
band offset, we can use our knowledge of the bandgap in the unstrained alloy, combined

with deformation potential theory, to obtain the conduction-band offset according to
AE, = Eg(Sil—yGey) + AEU(Sll_xGem/Sl) - Eg(Sil—zGex)strained (220)

for the strained Si;_;Ge, grown on unstrained Si;_,Ge,. Figure 2.6 shows the cal-
culated band offsets for a layer of Si;_,Ge, on a Si;_,Ge, substrate. Note there are
sharp changes in the way the conduction band offset AE, varies with composition,
which are due to the changes in the nature of the lowest minima of the conduction
band in the two materials. Figure 2.7(a) relates to a strained Sip77Gego3 layer on a
silicon substrate. Note most of the offset is in the valence band. The type I band

alignment shown is favourable for hole confinement and can be exploited in several
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novel heterostructure devices. For example, pseudomorphic Si;—,Ge, grown on (001)
Si is used in the base region of n-p-n heterojunction bipolar transistors (HBTs), which
show good high-frequency performance. In fact Si/SiGe HBTs, with cut-off frequencies
and maximum oscillation frequencies well beyond 100 GHz have been reported [23].
On the other hand, Si forms the epilayer on a Sig77Geg o3 substrate in Figure 2.7(b).
The Si is now under biaxial tension, the band alignment is type II, and there is a bigger
discontinuity in the conduction band. This arrangement facilitates electron and hole
confinement in different layers. Thus, it is useful for both n- and p-type devices for
strained Si/SiGe-based CMOS technology.

Figure 2.8 shows the conduction (AE,.) and valence band (AE,) offsets for strained
Si-Sig.77Gego3 and strained Si-SigssGegqs heterojunctions. Note that a AE,; of 0.139

eV is obtained for the former and 0.285 eV for the latter.

2.3 Field Effect Transistor

The concept of a field-effect transistor (FET) was first proposed by Lilienfeld and Heil
in the 1930s [24,25], but only in the 1950s had semiconductor-material processing tech-
nology progressed enough that Dacay and Ross [26] were able to demonstrate working
devices. Currently FET technology plays the dominant role in microelectronics, and
FET devices and integrated circuits are made in a variety of designs and with many
different semiconductor materials. The tremendous versatility of the device combined
with high manufacturing yield and operational reliability have allowed it to become
the industry workhorse for a variety of applications.

The device operates as a conducting semiconductor channel between source and
drain ohmic contacts, in which the number of charge carriers is controlled by a third
contact called the gate. Carriers flow from the source to the drain while the width of

the channel is modulated by a potential applied to the gate as depicted in Figure 2.9(a).
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Figure 2.8: Band alignments between Si and Sip77Geo23 (a), Si and
Si0_55Ge0.45 (b) as grown on Si0_77Ge0,23 and Si0'55Ge0'45 virtual substrates,
respectively.

The basic principle has been implemented in a variety of different devices, such as the
Metal Oxide Semiconductor FET (MOSFET), or Metal Insulator Semiconductor FET
(MISFET), Metal Semiconductor FET (MESFET) and Heterostructure FET (HFET)

as illustrated in Figure 2.9(b).

2.4 Concept of Modulation doping

The purpose of semiconductor(s) doping is generally to change the free carrier density
in a controllable fashion. This requires that the dopant centres be ionised, leaving
positively charged donor centres in the case of n-doping. These fixed charged centres
have a screened Coulomb interaction with the free electrons and the resultant ionised
impurity scattering is usually an important scattering mechanism of low energy carri-
ers in semiconductors. In a conventional transistor, the impurities and carriers exist
in the same regions of the device and the detrimental impurity scattering cannot be

avoided. However, the quality of carrier transport in the device can be enhanced by
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Figure 2.9: (a) Schematic FET structure. Device operation involves the
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rent flow between source and drain. (b) Conventional FET structure. The
gate isolation is achieved in a variety of ways (p-n junction, Schottky gate,
heterostructure) resulting in a number of different versions of the device.



2.4. Concept of Modulation doping 26

removing the dopants from the regions where the critical carrier transport processes
occur. This is the modulation doping concept, which can be realised by the use of
spatially-dependent doping and the use of heterojunctions to control the location of
the carriers.

Stern and Howard first formulated a theory of two-dimensional electron transport
in Si inversion layers in 1967 [27]. In 1969 Esaki and Tsu [28] proposed that the high
electron concentration and the spatial separation of donors diminishes the effects of
impurity scattering in the two-dimensional electron gas, thereby enhancing the elec-
tron mobility. The effect of mobility enhancement was first experimentally observed in
an AlGaAs/GaAs heterostructure by Dingle et al. [29].

The basic idea behind modulation doping is illustrated in Figure 2.10 for a hetero-
junction between a wide bandgap material (e.g AlGaAs) and narrow bandgap mate-
rial (e.g GaAs) in a FET-type structure. Note that a layer of the wide gap material
immediately adjacent to the interface is left undoped, and is referred to as the spacer
layer. As a result of the conduction band offset there is a discontinuity in the band
profile through the device and a layer of electrons is formed at the heterointerface.
Note that the spatial separation of free carriers from their parent-dopant centres could
not be realised in bulk material since there is a large electrostatic restoring force on the
electrons after the separation. In the heterostructure the band discontinuity prevents
the electric field from returning the electrons to the vicinity of the donors. In fact the
field can only squeeze the electrons against the interface, where they are trapped in
a roughly triangular potential well. The net result of the modulation doping is that
carriers in the undoped heterointerface region are spatially separated from the doping
centres and can have a substantially enhanced mobility due to the reduced impurity
scattering. This is despite the fact that interface roughness scattering at the heteroin-
terface(s) appears as an additional scattering mechanism.

The first transistor based on the modulation doping concept was a GaAs/AlGaAs
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Figure 2.10: (a) General structure of a MODFET. The wide-bandgap ma-
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device demonstrated by Mimura et al. [30] in 1980, which showed a dramatic enhance-
ment in the drain current and transconductance. Since then attention has focused on
the use of modulation-doped heterostructures for the realisation of high speed field-
effect transistors. A field-effect transistor that takes advantage of the superior car-
rier transport properties of modulation-doped heterostructures is called a modulation-
doped field-effect transistor (MODFET). MODFETS based on the GaAlAs/GaAs het-
erostructures have very successfully driven microelectronics to higher speeds for spe-
cialist applications. However, the drawback of I1I-V compound devices is their incom-
patibility with the well established Si-based integrated circuit technology. As a result
there is interest in devices which exploit the properties of the strained SiGe/Si system,

and can be thought of as a natural extension of the Si homosystem.

2.5 n-Si/Si,_,Ge, MODFET

Figure 2.11 illustrates an n-channel Si/Si;_,Ge, MODFET, in which a channel for the
electrons is formed by the tensile strained silicon layer with a Si;_;Ge; alloy barrier.
A Si;_Ge, alloy spacer layer separates the doped region of the layer from the silicon
channel to form a modulated doped structure.

The device is based on the ability to grow a thick relaxed SiGe layer on a silicon
substrate. The upper part of the SiGe layer has the lattice constant of bulk material
and can be used as a substrate to grow a strained pseudomorphic Si layer and produce
a heterostructure with the band alignments shown in Figure 2.7(b). The most widely
used technique is the initial growth of a SiGe buffer layer on the Si substrate, with a
Ge content which is graded from zero up to the final concentration of typically 20-30
%, followed by the growth of a constant composition buffer and then the active layers
of the device [31]. This graded SiGe buffer concept provides what are called virtual

substrates with low defect densities at arbritrary Ge content [31,32].
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Figure 2.11: n-channel Si/Si,_;Ge, MODFET.

In recent years the electron mobility in the strained Si channel of n-type modulation
doped quantum well structures (MODQW) has reached a high level. For example, a

! was reported by Nelson et

room temperature mobility in excess of 2500 cm?V~!s~
al. [3], which is almost twice that of bulk Si and three times higher than in conven-
tional MOSFETSs. (Note that the peak electron mobility in intrinsic bulk Si is about
1400 cm?V~'s~! [33]). The first n-channel modulation-doped SiGe/Si heterostructure
field-effect transistors based on this type of structure were then fabricated by Daenbkes
et al. [34] by the use of molecular-beam epitaxial (MBE) growth. The first transistor
they reported exhibited an extrinsic transconductance of 40 mS mm™" for a gate length
of 1.6 um, which is higher than that of comparable conventional Si MOSFETs.
Ismail et al. [35] have grown devices in two successive UHV-CVD processes and re-
ported a carrier density of 2.5x10'? cm~2 as well as a high mobility of 1500 cm*V~'s™!
at room temperature. Also, MBE-grown n-MODFETSs, with Hall mobilities of 2200

cm2V~1s7! at room temperature, have been reported by Konig et al. [36]. A current

gain cut off frequency fr as high as 62 GHz for a n-Si/Sig.75Geg.2s MODFET has been
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recently reported by the IBM group [37]. Similar high values of fr have been achieved
in high Ge content (45 %) n-MODFETSs that have been investigated experimentally by
the Daimler-Chrysler group [36].

P-channel MODFETS can be produced by growing a pseudomorphic Si;_;Ge, layer
on Si. In this case nearly all the band offset occurs in the valence band and holes are
confined to the Si/Si; ,Ge, interface. In addition, the strain lifts the degeneracy of
the light- and heavy-hole valence band; a Si;_,Ge, layer on Si is in biaxial compres-
sion and the heavy-hole band is raised relative to the light hole band as shown in
Figure 2.5(c). Since the heavy hole band has the smaller in-plane effective mass, the
strained Si;_;Ge, film can be expected to exhibit a higher hole mobility than bulk Si.
The reduced interband scattering that results from the lifting of the heavy hole-light
hole band degeneracy also acts to increase hole mobility. A novel method for the fabri-
cation of high hole mobility structures is the growth of a Ge channel on a relaxed graded
Si;_.Ge, buffer. The Ge channel, being under an in-plane biaxial compressive strain,
provides a hole effective mass lower than 0.1mg in strained Ge. (Note that the hole
density-of-states effective mass in bulk Ge is much higher with a value of 0.29m,). As

a consequence high hole mobilities at 4.2 K of 55000 cm*V~!s™! have been observed [38].

2.6 npn-Si SOI LBJT

Devices that combine the field effect and bipolar effect are very attractive for some
applications since they can offer the advantages of high current driving capability and
high current gain together with low power consumption. By combining both technolo-
gies on the same chip, one can optimise the tradeoff between the speed and power
dissipation, and attain digital/analog systems with a performance which may exceed
that of circuits based on either technology alone.

Bipolar transistors are normally fabricated in a vertical geometry; that is with
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emitter, base and collector formed by adjacent layers of the structure as illustrated in
Figure 2.12(a). However, it is possible to produce lateral transistors where different
parts of the device are fabricated using lithographic methods. Since the vertical dimen-
sions can be made smaller than the lateral dimensions, vertical transistors are preferable
for high-speed applications. However, lateral bipolar junction transistors (LBJTs) can
be incorporated into a MOSFET-based integrated circuit with minor modifications to
processing methods. A Si lateral bipolar junction transistor can be derived from a
standard Si n-channel MOSFET by using an ohmic gate electrode to make contact
to the p-Si channel which is used to form a base. In addition the use of thin-film
silicon-on-insulator (SOI) technology for LBJTs permits simple circuit integration. An
LBJT using SOI technology is an attractive device because of its low parasitic ca-
pacitances and simple fabrication process. In principle, it provides a good alternative
to the MOSFET since, for extremely thin gate oxides, the gate leakage current of a
MOSFET become comparable to the base current of an LBJT. At the same time, the
LBJT could offer a highly scalable approach for CMOS circuits.

There are two types of bipolar devices; the n-p-n type, which has a p-type base
and n-type emitter and collector, and the p-n-p type, which has an n-type base and
p-type emitter and collector. We will concentrate on the n-p-n transistor operating in
the active mode as illustrated in Figure 2.12(b). The emitter-base junction is forward
biased, resulting in holes being injected from the base into the emitter, and electrons
being injected from the emitter into the base. However, since the emitter is more heav-
ily doped than the base, the electron current dominates and depends exponentially on
the forward bias of the junction. The base-collector is reverse biased and so in the
absence of any other effects there would be only a small leakage current flow at the
base-collector junction. However, essentially all the electrons injected from the emitter
into the base reach the collector, and give rise to a collector current, since the base

width (typically 0.1 pm or less) is much less than the electron diffusion length. The
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holes injected from the base into the emitter give rise to a base current. The current
gain of a bipolar transistor is defined as the ratio of its collector current to its base
current. Thus one basic objective in bipolar transistor design is to achieve a collector
current significantly larger than the base current and hence obtain current amplifica-
tion.

Figure 2.13(a) shows a schematic cross-section of a lateral npn transistor, available
in a typical CMOS process. Figure 2.13(b) illustrates the modelled lateral SOI bipo-
lar transistor whose simulation results are reported and analysed in Chapter 5. The
emitter, intrinsic base, and collector region are laterally formed in thin-film SOI. Note
from Figure 2.13(b) that the heavy p* doping at the top of the base pedestal provides
a low-resistance ohmic contact and a built-in electric field which repels electrons in the

base away from the metal base contact [39].

2.7 Summary

In this chapter, we have described the relevant properties of Si and SiGe alloys. The
effects of strain on the band structure and the electron transport properties have been
explained. In particular, we have pointed out that the strain present in a Si/Si;_.Ge;
heterostructure breaks the six-fold degeneracy of the Si A valleys, resulting in an im-
proved conduction band offset, a low in-plane effective mass at the conduction band
edge, and reduced intervalley scattering. Thus, the strain provides an additional vari-
able parameter, which can be used to tailor the device parameters discussed in Sec-
tion 2.4. Specifically, a combination of bandgap engineering and strain can be used to
produce an n-channel MODFET structure, in which a thin silicon channel is placed
under tensile strain as discussed in Section 2.5. In Chapter 4 we shall present sim-
ulation results of n-strained Si channel MODFETs. In addition, the npn-SOI LBJT,
which could be particularly suitable in dense high performance CMOS technology, has

been introduced and the basic operation described. Chapter 5 of this thesis is devoted
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to simulations of npn-SOI LBJTs.
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Chapter 3

Monte Carlo Simulation

3.1 Introduction

In order to describe the behaviour of carriers in a semiconductor device at a microscopic
level, we have to solve the Boltzmann transport equation (BTE) for the structure. The
BTE describes the time evolution of the carrier distribution in real and reciprocal
space through the motion of particles, the forces acting on them and their scatterings.
Since the Boltzmann equation is a nonlinear integro-differential equation, it can only
be solved analytically in certain simple cases, and practical problems require the use
of approximations or numerical methods. Monte Carlo (MC) simulation is one such
numerical method and is the approach used in the research reported in this thesis. In
Monte Carlo simulation [22,41-44], a computer is used to predict the trajectories in real
and reciprocal space of typically tens of thousands of particles which are representative
of electrons and holes in the real device. As a result, microscopic and macroscopic
quantities (such as the carrier distribution functions, carrier mean velocity, device cur-
rent, cut-off frequency, etc.) can be predicted. Monte Carlo simulation is extremely
powerful because it is possible to incorporate detailed band structure information, band
and wavevector-dependent carrier scattering events and realistic device geometries in

a device model. The method is well suited to the analysis of non-stationary carrier
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transport in submicron semiconductor devices, in which the electric field varies appre-
ciably over distances comparable with the electron mean free path or on time scales
which are comparable to mean free flight times. Hence it is possible to include many
new and interesting non-equilibrium carrier dynamics such as ballistic transport and
velocity overshoot which become important as device dimensions shrink to the deep
sub-micrometer scale. In many cases, Monte Carlo simulation is in fact the most ac-
curate technique available for analysing transport in devices [45].

This chapter is devoted to the description of the ensemble Monte Carlo method
used in the device simulations described in Chapters 4 and 5. First, the Boltzmann
transport equation is introduced and some common methods of solution are mentioned.
The general methodology of the Monte Carlo simulation of carrier transport in bulk
material is described in Section 3.3. Section 3.4 presents the band structure model
used in the simulations. The carrier scattering mechanisms relevant to Si and SiGe
alloys are described in Section 3.5. The application of the Monte Carlo method to the

analysis of semiconductor devices is discussed in Section 3.6.

3.2 The Boltzmann transport equation

The quantum mechanical state of an electron in a crystal is specified by a band index
and a wavevector k in the first Brillouin zone. For each band there is a definite
relationship between the electron energy E and the wavevector. In the semiclassical
model the electron can also be ascribed a position r in real space. (Note this is not
possible in a fully quantum mechanical theory since the specification of both r and k is
a contradiction of the Heisenberg Uncertainty Principle). Hence the dynamics of each

electron can be represented by a moving point in a six-dimensional phase space (r, k).
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The equation of motion for the particle is given by

fik = —eF (3.1)

P o= v=%V,¢E(k) (3.2)

where e is the magnitude of electronic charge, and F is the electric field. Equations 3.1
and 3.2 are the equation of motion of free electrons in a perfect crystal. In reality, this
so called ballistic motion is interrupted by collisions with impurities, phonons, defects,
etc. If a collision is instantaneous, it may be visualised as the electron disappearing
and instantaneously reappearing at a different value of k of the phase space.

We can define a distribution f(r,k,¢) that represents the probability of finding an
electron at position r, with vector k and at time ¢t. f(r,k,t) describes the distribution
of carriers in both the position and the rﬁomentum and can be used to obtain various
quantities of interest such as the mean carrier density, kinetic energy, and so forth. The

equation for the distribution function f is called the Boltzmann transport equation:

af : el
E+V-V,f+k-ka—<at)w” (3.3)

where Of /Ot. represents the change in f due to electron scattering, and can be

expressed as:

(%{)mu = / [S(K', k) fi (1 = fie) — Sk, K) fie(1 = fie)ldVie (3.4)

where the integration is over the first Brillouin zone. S(k,k')dVis is the conditional
rate of transitions from the state k to the states k' in dVj given that there is initially
an electron in state k and state k' is empty.

The Boltzmann equation is generally difficult to solve. However, some analytical
approaches to achieve approximate closed-form solutions have been developed for the
case of carrier transport in bulk material. For example, in low electric fields a solu-

tion may be based on the fact that the distribution function will not be very different
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from the equilibrium Fermi-Dirac distribution function. For elastic scattering (such as
impurity, acoustic phonon, or piezoelectric scattering) one may use a relaxation time
approximation (RTA) where 0f /8t is taken equal to —(f — fo)/7, where f; is the
equilibrium distribution function, and 7 is the relaxation time constant. However, for
most semiconductors, all the scattering processes are not elastic and the relaxation time
approximation usually fails to provide adequate accuracy for calculating the transport
properties. Rode’s iterative procedure [46] is a numerical method to calculate the
distribution function, but is straightforward to implement and is not demanding on
computer resources. However, this method is limited to cases where the carriers re-
main in one band and to low electric fields where linear response is valid.

The Monte Carlo method is a more general numerical but computationally intensive
approach which is based on the simulation of the carriers dynamics in a semiconductor.
It provides numerical solutions to the Boltzmann transport equation by stochastically
tracking the movements of a set of representative particles in phase space under the
action of the electric field and the various carrier scattering processes. When coupled
with a self-consistent numerical solver for Poisson’s equation, the Monte Carlo method
permits the exploration of the properties of realistic two- and three-dimensional models
of semiconductor devices and the investigation of the microscopic detail underlying the
device behaviour. It is Monte Carlo simulation which is used for device modelling in
the research reported here, and the rest of this chapter is devoted to an outline of the

simulation method.

3.3 Monte Carlo simulation

The Monte Carlo (MC) method solves the Boltzmann transport equation by simulating
the motion of electrons and holes in the bulk semiconductor medium or device struc-

ture. The main feature of the MC method is that a carrier is treated as a point-like
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semiclassical particle moving under the action of the local electric field and the scat-
tering processes. The individual trajectories of carriers are computed by the following

steps:

1. Each carrier is moved in real and reciprocal space in the “free flight”
between collisions under the action of the electric field. This is done by solving

Equations 3.1 and 3.2 in the crystal.

2. The carriers scatter conditionally at the end of their free flights. The duration
of a free flight and the new state after scattering are chosen stochastically in

accordance with quantum mechanical theory.

Such an approach requires a knowledge and appropriate description of the band struc-

ture of the semiconductor.

3.4 Band Structure

In the absence of applied electric field, carriers reside close to the edges of the bands
on either side of the fundamental gap. The relationship between the momentum k and
the energy F(k) of an electron close to the minimum of the conduction band can be

described by various models at different levels of complexity.

(a) Parabolic Bands

The simplest model of a valley in the conduction band is to assume a parabolic and

isotropic relation between energy and wavevector. Specifically

2|k |2
E(k) = 27|n| (3.5)
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where m? is the effective mass at the conduction band minimum. The particle velocity

is evaluated as

1 hk
= -ViE(k) = — .
v =3 VE(K) - (3.6)
and gives the simple relation for the electron momentum
p=hk=m,v (3.7)

(b) Non-parabolic Bands

In general conduction band valleys are not parabolic but for sufficiently small k

may often be described by the approximate formula

E(k)(1 + aE(K)) = L (3.8)

*
2m;,

where « is the coefficient of nonparabolicity and has the dimensions of an inverse

energy [47]. The solution of equation (3.8) for the energy in terms of wavevector is
1 4ah?|k|?
Ek)=— 14 ——— -1 3.9
wi(fEEL)

1 h R2k|2\ "2

o

The particle velocity is

e*|r

which, using (3.9), can be written as

v hik
— mz[l+ 2aE(k)]

(3.11)

So far, a spherically symmetric band (or isotropic effective mass) has been assumed.
This is normally a good approximation for the I' valley of GaAs, which is at the

centre of the Brillouin zone. In the cases of Si and Ge, a number of degenerate valleys
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away from the zone centre form the conduction band edge and the constant energy
surfaces for these valleys are ellipsoids rather than a sphere. Ge has eight valleys with
their minima at the edge of the Brillouin zone in the [111] directions, called the L-
points. Si has six valleys with minima at approximately k = (27/a)(0.85,0,0), and the
equivalent points, which are close to the X-points at the edge of the Brillouin zone.
In an ellipsoidal valley the mass is not isotropic, and is instead described by a tensor

with components

. ”2E \ '
my; =k’ <8k~6k-) (3.12)
10K

where 7, j denote the Cartesian axes. The E — k relation for an ellipsoidal constant

energy surface is

[ k2 k2 k?
E:—(—z+—y+—") (3.13)
2 \mg; my m,

where k;, k,, k, are the components of k along the principal axes of the ellipsoid mea-
sured from the position of the minimum, and m,, m,, m, are the corresponding effective
masses. For Si, the surfaces of constant energy are ellipsoids of revolution and the F—k
relation in the conduction band can be expressed as

h2k? h2 (k2 + k;)
= +
2my 2m,

E(k) (3.14)

where [ and ¢ refer to the so called longitudinal and transverse directions. For Si, the
value of m; is 0.91m, and m; is 0.19m,. By using the Herring-Vogt transformation of

k-space [48], Equation 3.13 can be written as

h2 * * *
FE = o (k22 + k3% + E3°)

th*Z
= 1
P (3.15)

where m, is the free electron mass. To obtain the above result, the transformation
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k* = ,1/ 2. k has been used, where Tﬁ/ ? is defined as
(mo/my) '/ 0 0
T, = 0 (mo/me) /2 0 (3.16)
0 0 (mo/my)'/?

With this transformation, Equation 3.8 becomes

2

*
2my,

E(1+aFE) = k*? (3.17)

where m3}, = (m}?m})!/® is the density of states effective mass. The electron velocity

as a function of k* is then given by

— h 1/2.%
v; = T 2aE)Tm k; (3.18)

Equations 3.13-3.14 describe a band with ellipsoidal constant energy surfaces whose
principal directions are along the crystallographic axes. After the Herring-Vogt trans-
formation the constant-energy surfaces are spherical in k* space, which has the advan-
tage that the integrals involved in the various scattering probabilities may be simpli-
fied. However, the équation of motions are vector equations, and the transformation in
Equation 3.16 has to be applied to other vector quantities such as the electric field and
the phonon wavevectors. For example, the equation of motion for an electron under

the influence of a field F becomes

d(hk*)
dt

= —eF” (3.19)

where F* is an electric field in the starred coordinate system. The valence bands of
a semiconductor are made up of the light and heavy hole bands and the spin split-off
band. At the top of the valence band, the light and heavy hole states are degenerate
and the constant energy surfaces are warped. In Si, the spin split-off band is only 44
meV below the degenerate bands at k = 0. The spin splitting is larger in Ge with a

value of 0.29 eV [42]. k - p theory gives, for the light and heavy hole valence bands, an
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E — k relation of the following form [45,49,50]:

h2
E, = -3 Ak? £ [B2k* + C? (k2K + k2k2 + k2k2))'/?

(4

h2
= gk E [492K* 4+ 12(+3 — 42) (K2K2 + k2K2 + K2K2)]'/2 (3.20)

where k;, ky, k, are the components of k along the crystal axes, and 71, 72, v3 are Lut-
tinger parameters. The & symbols refer to the light and heavy hole bands, respectively.
The values of 71, 2, ¥3 for Ge and Si are given in Table 3.1. The spin split-off valence

band has a simple spherical form given by [51]
E, = —-A + AK? (3.21)

where A is —4.22 for Si and —13.35 for Ge.

Material Me/M, 221 Yo v3 | A (eV) A
Ge 1.58/0.082 | 13.25 | 4.20 | 5.56 0.044 -4.22
Si 0.916/0.191 | 4.26 | 0.34 | 1.45 0.29 -13.35

Table 3.1: Band structure parameters for Ge and Si [42]

(c) Full band Structure

If we need to specify E(k) for various bands throughout the Brillouin zone, algebraic
approximations are no longer possible. Then the function E(k) must be described
numerically using the results of detailed band structure calculations, such as those

based on the pseudopotential method, or using data from experiments.
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Figure 3.1: A schematic classification of the various scattering mechanisms
in semiconductors based on their origin.
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3.5 Scattering Mechanisms

Scattering mechanisms can be classified into three main categories : lattice or phonon
scattering, carrier-carrier scattering, and defect scattering as shown in Figure 3.1.
Carrier-carrier scattering is only normally important in very heavily doped or highly
excited semiconductors and is ignored in our simulations. The scattering of electrons
and holes in bulk silicon has been treated extensively in the past (see, e.g. Jacoboni et
al. [42,43], Fischetti et al. [22], Moglestue [44]). The main scattering mechanisms to be
considered in the Si-Ge material system are lattice scattering (acoustic and nonpolar
optical), ionised impurity scattering, and alloy scattering (for Si;_;Ge,). There is also
scattering due to the roughness of the heterointerface in a Si/SiGe structure.
Normally carrier scattering is described quantum mechanically by time-dependent
perturbation theory. For example in the case of lattice scattering, it is necessary to
find the rate at which an electron is scattered out of one state k into another state k'
while either absorbing or emitting a phonon of wavevector q. This is given by Fermi’s

golden rule as
S(k,k') = 2%|Mk,,k|2G(k, K)o(k' -k Fq— G)S(E(K) — E(k) £ fuwg) (3.22)

where Fiw, is the phonon energy and G is any reciprocal lattice vector. The upper sign
corresponds to the absorption of a phonon and the lower sign to emission. G(k, k') is
the overlap factor defined as
G, k)= up (1) - ug(r)d’r|? (3.23)
cell
between the periodic parts u,(r) and uy (r) of the Bloch functions of the initial and
final states. The overlap integral is equal to unity for parabolic conduction bands (pure

s-state wave functions). More generally for a scattering between an initial state k and
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a final state k' in the same valley G(k', k) is often taken to be as [41]:

[(1 4 aE)2(1 + aE")Y/? + (a2EE")"/? cos f)?
(1+20E)(1 1 20E)

G(K' k) = (3.24)

where 3 is the angle between the state k and k’. For the hole transitions within the

heavy and light hole bands G(k’, k) can be taken as [52]
Gk, k) = %(1 + 3 cos® ) (3.25)
For transitions between the light and the heavy hole bands,
’ 3. 2 3 2
G k) = 7 5in 6= Z(l — cos* f) (3.26)

It turns out that the overlap integral is always less than one if the nonparabolicity of
the bands is taken into account. The total scattering rate for any process is obtained by
integrating Equation 3.22 over all final states. Next, we will examine carrier scattering
mechanisms and evaluate the transition rate, S(k,k’) and total scattering rate S(k)

for the various scattering processes.

3.5.1 Lattice Scattering

Carriers can interact with various types of lattice vibrations, by absorbing or emitting
a phonon in each process. There are two main types of phonon scattering in group IV

semiconductors as described below.

3.5.1.1 Acoustic Phonon Scattering

Generally acoustic phonons may cause scattering in two different and independent
ways, through deformation potential scattering and piezoelectric scattering. Piezoelec-
tric scattering occurs in semiconductors with two or more atoms per unit cell, where

there is no crystal inversion symmetry. This scattering results from the interaction of
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the electron with the induced polarisation of the lattice. Thus this type of scattering
can be important in semiconductors like GaAs, GaN, etc. However, crystals of silicon
and germanium are formed of identical atoms, and do not exhibit piezoelectric scat-
tering. Hence, only acoustic deformation scattering need be considered here.

An acoustic wave induces a change in the spacing of neighbouring atoms in a semi-
conductor which causes a variation of the local energy of the bands and hence a source
of electron scattering. The deformation potential is defined as the change of energy
of the band edge per unit strain due to acoustic phonons. This type of scattering is
usually the most important cause of scattering of electrons in undoped silicon and ger-
manium crystals at room temperatures. Energy and momentum conservation restricts
intravalley scattering by acoustic phonons to that associated with long-wavelength lat-
tice modes. For longitudinal acoustic mode scattering the emission of a phonon, the

matrix element is

h=2¢*
My | = ——+—
| Micje| 2M Nuw,

(Ng+ 1) (3.27)
where =, is the deformation potential, q is the phonon wavevector, M = pV/N, p is
the mass density, V is the volume and N, is the phonon distribution function. The
quantity (N, + 1) is replaced by N, for phonon absorption. Normally the phonon
energy will be of order of a few millivolts or less. Therefore, when considering phonon
scattering at room temperature the phonon energy is much lower than the thermal
energy and the so called equipartition approximation to the Bose-Einstein distribution
can be used for N, which takes the form:

B 1 _ kgT
= exp(fuwg/ksT) — 1~ Hw,

N, >>1 (3.28)

Since the typical electron energy is much larger than the acoustic phonon energy, the
scattering can be treated as elastic and the term fiw, ignored in the energy delta func-
tion of Equation 3.22. Now considering the scattering rate due to both phonon emission

and absorption and making use of the equipartition approximation above (which is ac-
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tually valid for temperatures above about 50 K in Si and Ge), the matrix element

relating to the combined effect of emission and absorption is

220%pT  E2kpT
MNw? — pVu?

| Myl = (3.29)

where the dispersion relation for the acoustic phonons is simply represented as w, = qu;.

With these approximations, the acoustic phonon scattering rate is

_ 2D2 kgT

S(k) = T / dk'6(k — K')§(Ey — Ey) (3.30)

Carrying out the integration over the final wavevector, the acoustic phonon scattering

rate is [49)]:
or D2 kyTN(E
S(k) = h;ﬂ (Ei) (3.31)
N(Ey) is the density of states at energy FEj, and for a parabolic band
(Qm* 3/2E‘1/2
N(Ex) = ——41%3 . (3.32)

where m* is the electron effective mass. Inspection of Equation 3.31 shows that the
acoustic phonon scattering rate is proportional to the temperature. For a non-parabolic

band, the total scattering rate is given by [53]

_ (2m*)*2kgT DS,

(1+ aE)? + i (aE)?
Slk) = 27 pv2ht ;

(B)(1+20B) x =

(3.33)

where « is the coefficient of nonparabolicity described in Section 3.4 and y(E) =

E(1+aF).

3.5.1.2 Non-polar Optical Phonon Scattering

Optical phonon scattering generally becomes the predominant electron scattering mech-
anism in semiconductors at high temperatures or at high electric fields and is an im-
portant influence on electron transport in Si and Ge above room temperature. The

scattering can originate from either polar or nonpolar effects but polar scattering does
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not occur in Si and Ge for the same reasons as piezoelectric scattering is absent as
described in Section 3.5.1.1. The scattering of electrons by nonpolar optical phonons
may be treated as a type of deformation potential scattering process. The transition

rate for optical phonon intravalley scattering is [54]

7 D? 1
] No -
puwosl (No+ 2

h2q? L h2kq cos @’
2m* m*

S(k,K) = F )4 T ) (3.34)

where D, is an optical deformation potential constant, and (2 is the cell volume. Be-
cause the optical phonon energy is nearly constant as a function of q, we can approx-
imate wq and N, by the constants w, and N,.

For scattering in an isotropic parabolic band the minimum and maximum phonon

wavevectors involved in the scattering are

Fuw
min — kll1—-(1=x —2)i/2
q 11— ( E, )4
Fuw,
Gmaz = k[1 + (1 £ =2)7 (3.35)
Eg

Integrating Equation 3.34 over q and using limits of phonon wavevectors indicated

above one can obtain [54]:

wD? 1 1
=™ v+ L Y N(E £ B, 36
T (330

S(k)

Note that the optical phonon energy fw, is comparable to the average thermal energy
of carriers at room temperature, and therefore this type of scattering must be treated
as inelastic. For non-parabolic bands, the non-polar optical phonon scattering rate

is [43]
D(m)”
V2rh3w,

where E' is the electron energy at the state k’.

S(k) = (1 + 2aE")y?[N, or N,+ 1] (3.37)
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3.5.1.3 Equivalent Intervalley Phonon Scattering

The discussion of phonon scattering so far has concentrated on intravalley scattering.
However, acoustic and optical phonons of large wavevector can cause electron tran-
sitions between different conduction band minima. Intervalley scattering is usually
accompanied by the absorption or emission of a longitudinal-mode optical phonon and
its rate defined by an appropriate deformation potential. Since the phonon energy is
comparable to the typical electron energy, intervalley scattering is generally regarded
as inelastic. In the case of multiple parabolic valleys, the conditions of conservation of

momentum and energy have the form

K=k;+k+q (3.38)
h2k'? R2k2
2m* - 2m*

+ hwg (3.39)

where k;; is the vector between the minima of two different valleys, and k and k' are
measured from the different valley minima. The matrix element for intervalley phonon
scattering is [50]

h —
| My | = (—2NMw )'/2Dy;[/Nq or 1/(Ngq+1)] (3.40)
q

where D;; is defined as the intervalley optical deformation potential constant for scatter-
ing between valleys i and j. In Si, scattering between the minima on a given axis (e.g.
< 100 > to < 100 >) is called g-type scattering and is different from the so called
f—type scattering between minima on different axes (e.g. < 100 > to < 010 >) with
regard to the magnitude of the wavevector of the phonon involved. Hence the two
processes are often considered separately and different matrix elements used for them.
Denoting the number of equivalent valleys for the final state by Z; the intervalley

scattering rate is given by [55]:

D2 1,1
Sinter (E) = 87r2p2)' Zi[No + b §]N(E + hwiy — Div) (3.41)
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where N(E) is the density of states of a single valley. D,, is the coupling constant (de-
formation potential) for the relevant type of intervalley scattering, fuv;, is the interval-
ley phonon energy for the relevant phonon branch, and A;, is the energy separation
between the initial and final valley minima (if applicable). For bulk Si there are six
degenerate A-minima, and two different types of intervalley scattering. For g-type
scattering Z; = 1, and Z; = 4 for f-type scattering. The corresponding phonon ener-
gies are 61.2 and 59 meV [43] respectively. The density of states in Equation 3.41 is

given by
(m*)3/2

N(E) = 01/2};3 72

(14 20E)[E(1+aE)]'?,E >0 (3.42)

3.5.2 Ionised impurity scattering

The substitution of some of the host atoms by dopant atoms perturbs the periodic
potential of a semiconductor crystal and causes electron scattering. lonised impurity
scattering is a significant process for low energy electrons in Si and Ge at 300 K
when doping densities exceed 102 m~3, becoming comparable to low energy phonon
scattering rates. At room temperature shallow impurities are normally assumed to be
ionised in uncompensated material. An ionised donor produces a Coulomb potential

which is screened by the free carriers

€

V;zp(r) =

— T 43
4me e ¢ (343)

where &2 = ne?/eye,.kpT, n is the density of electrons in the conduction band, and e,
is the relative dielectric constant of the material. The matrix element of the screened

impurity potential is
2

e
My x

K= (K — kP + ) (3.44)

and, if N; is the impurity concentration, the ionised scattering rate follows as

n_ 1 e!'NiO(Ek) - EK)) 5,
Sk, k) = 41r2h/ (eoe ) 2(AkZsin?(8/2) + 22" (3.45)
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Inspection of the integrand in Equation 3.45 reveals that the scattering is anisotropic
and favours forward scattering (# = 0). Note also that the argument of the delta
function indicates elastic scattering, which is a consequence of the negligible recoil of
the relatively massive impurity centre in the electron scattering process. For electrons
with energy E in a valley with nonparabolicity coefficient «, the ionised impurity
scattering rate is thus [56]:
N
8v2mrre2e2(1 + 20E)[E(1 + aE))?

o [1+aE(1+8)? n({'—1)
+ o1 + aE[l +aE(1+¢&)]1 @ (3.46)

S =

x |a?E

where £ =1 + k72/4m*E(1 + aE). The approach described here is normally referred

to as the Brooks and Herring model [57].

3.5.3 Alloy scattering

Alloy scattering arises from the random positioning of the different atomic constituents
of the material and Harrison and Hauser [58] have described the theory of this process.

The scattering is elastic and the matrix element is given by

z(l —z)

1/2
P 4
. ] kq,k (3.47)

Mk,k’ =AU [

where AU is the spherical scattering potential and N, is the number of cation sites,

defined as

AU for 7 <1y
V(r) = (3.48)

0, for r>mrg
where 7y defines the spatial extent of the scattering potential. The scattering rate for

non-parabolic bands is given by

_ 4V2rm*32rf 2(1 — z)(AU)

2
oh o YY2(E)(1 + 2aE) (3.49)

5(k)
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where €2 is the volume of the primitive cell.

A very simple model for the scattering of electrons off rough heterointerfaces has
been included in the Monte Carlo simulation. When an electron is incident on a het-
erointerface at which it would suffer a classical reflection, it is assumed to be reflected

in a random direction relative to its initial path rather than suffer a specular reflection.

3.6 Types of Monte Carlo simulation

3.6.1 One-particle simulation

In this scheme, the trajectory of a single particle in phase space (r, k) is followed in
time in order to obtain the steady state physical properties of an ensemble of simi-
lar non-interacting particles. According to the ergodic theorem, one can use the time
averaged properties of the single particle as representative of the ensemble averaged
properties at a given time for all the particles. This approach is most useful to study
steady state problems such as mean carrier drift velocity as a function of field in a bulk
semiconductor or device structure when carrier-carrier interactions or space charge ef-

fects are not significant.

3.6.2 Ensemble simulation

The algorithm is similar to that for one-particle simulation but the dynamics of a
number of particles are simulated simultaneously, as illustrated in Figure 3.2. The
advantage of this approach is that an ensemble distribution exists and its evolution with

time as a result of time-dependent external influences can be studied if appropriate.
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Figure 3.2: Illustration of distribution of scatterings (x) relative to the
timesteps in ensemble simulation of the dynamics of N particles.

3.6.3 Self-consistent simulation

This method employs the ensemble Monte Carlo procedure in combination with the
solution of Poisson’s equation to take account of carrier space charge effects, and there-

fore is suitable for full device simulation.

3.7 Device Simulation Model

A self-consistent ensemble Monte Carlo device simulator called SLURPS (Software
Library for Universal Random Particle Simulation) has been used in the research re-
ported in this thesis. SLURPS has been developed in recent years at the University
of Durham [59-61] and is composed of a library of routines, each of which is designed
to perform a specific task in the simulation, such as drifting the particles, specifying
charge distribution, solving Poisson’s equation, etc. A flow chart of the SLURPS pro-

gram is shown in Figure 3.3.
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Since the number of electrons in a real device, N, is normally extremely large, it is
impossible to simulate the motion of all of them by the Monte Carlo method. Hence,
in the course of the ensemble Monte Carlo simulation, a set of Ny, superparticles which
are representative of the electrons in the device is considered. For the superparticle
dynamics to be representative of the electrons, the response of each superparticle to the
electric field and scattering interactions must be the same as that of an electron. The
use of superparticles means that the ensemble size is smaller than the actual number
of particles in the physical system, and the mean values of physical quantities are only
estimators of those in the true system with relative error that decreases as the number

of superparticles is increased.

A) Setup geometry and discretisation scheme.

The first step in the device simulation is the definition of a simplified and tractable
model of the actual device. The model needs to contain the essential physics of the
device and its constituent materials but it must also be amenable to Monte Carlo
simulation with the computational resources available. For example three main sim-
plifications are made in modelling field effect transistors:

a ) A two-dimensional real space model of the device is used. This means that there
is no change of any physical quantity along the third (z) axis (known as the device
width). Hence motion of particles in that direction has no effect on the behaviour of
the model device. In effect, the superparticles may be considered to be charge rods
extending infinitely in the z direction. The effective charge per unit length g,, of the

charge rod is taken as

Gup = —en/NypW (3.50)

where n is the number of electrons in the real device and W is the device width. This

means that the total electronic charge within the real device is equal to the total su-
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Figure 3.3: Flowchart of a self consistent MC program for device simulation.
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perparticle charge in a range of z which is equal to the device width. This quantity
is important for the calculation of the electric field within the device and the flow of
current through the electrodes.

b ) Source and drain are treated as ideal, zero-resistance ohmic contacts, and the
gate is a Schottky barrier which is perfectly absorbing for electrons with energy in
excess of the conduction band barrier.

c ) Only a small part of the source and drain contacts is included in the model
device because of their large extent in the real device.

It is worthwhile emphasising that the MC program is inherently three dimen-
sional (3D) and the carrier dynamics in the 3D band structure is fully represented.
A 2D real space model is used mainly because of the large computational demands of
solving Poisson’s equation in 3D, and the larger number of superparticles that would
be required to describe effects in the third dimension.

The potential is represented by values on a regular array of mesh points. The
charge density is given by the sum of the mobile charge, which can be obtained from
the simulation via the particle-mesh calculation, and the fixed impurity profile which
is specified at the start of the simulation. In SLURPS, model devices are built up as
a series of joined rectangular regions with the mesh cell sizes matched along the joins
between each region. Each region can consist of multiple layers of different alloy com-
position and doping/compensation density. For example, Figure 3.4 shows the type
of finite difference grids used for a strained Si/Sip77Geg.23 n-channel MODFET whose
simulation results will be described in Chapter 4. This model MODFET is made up
of three regions that are beneath the source, drain and gate. Typically, the field cell
dimensions used for the central region and the more highly doped source and drain

implants are a few nanometres .
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Region I Region 11 Region III

Figure 3.4: Illustration of a finite difference scheme used in the simulation
of a strained Si/Sip.77Geg 23 MODFET presented in Chapter 4.

B) Potential solution and boundary conditions

The solution of Poisson’s equation requires a knowledge of the charge distribution
in the device, which is available from the Monte Carlo simulation and can be repre-
sented by the charge assigned to each grid point. A fast solution of Poisson’s equation
in each rectangular region is provided by a combined Fourier analysis-cyclic reduction
technique [61]. The use of a capacity matrix approach facilitates the solution of Pois-
son’s equation in the joined rectangular regions described in the previous section with
specified conditions at the device boundary. Ohmic contacts are modelled by specifying
the value for the electric potential. The gate contact is a Schottky barrier which is
represented by a contact with potential equal to the applied potential minus the bar-
rier height. Elsewhere on the boundary, a zero value of the electric field normal to the

boundary is prescribed. It is also necessary to specify the behaviour of particles when
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they reach the surface of the device. It is required that there is no current flowing
through the device boundary except at the electrodes, which is implemented in the
model by reflecting any particle that hits the boundary. Ohmic contacts absorb all
particles which are incident on them, as do Schottky contacts for electrons with energy
in excess of the conduction band barrier. In addition, to maintain charge neutrality in
the immediate vicinity of ohmic contacts, particles are added or removed as appropri-

ate; in effect the source and the drain act as carrier reservoirs.

C) Charge assignment

The specification of the charge density profile is based on assigning the mobile
superparticle and fixed dopant charge to the grid point by finding the total charge in
the cell surrounding each grid point, as shown in Figure 3.5. The charge density p;; at
a grid point 45 is taken to be the total charge per unit length in the cell surrounding the
grid point divided by the cell area. The electrostatic potential values are calculated
at the same grid points as indicated in Figure 3.5(b). In general the electrostatic

potential ¢ is related to the charge density p(x,y) by Poisson’s equation

p(z,y) (3.51)

Vie(z,y) = -
which can be discretised by employing the method of finite difference. Suppose that
a rectangular region of the device is split into an n, by n, array of rectangular cells
with each cell having dimensions Az by Ay as in Figure 3.5(b). The cells are labelled
with the indices ¢ = 0,...,n; — 1 and j = 0, ...,n, — 1. The electric field F' = — 7 ¢
together with the electric potential and charge density are discretised as F;j, ¢;;, and

pi; respectively. If the value of electric field F}j [F}] refers to the interface of the cells

ij and (i — 1)j [¢(j — 1)] as shown as solid line in Figure 3.5(a), integrating Poisson’s
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Figure 3.5: (a) Two-dimensional illustration of the nearest grid point
scheme. (b) A cell for use with the discretised Poisson equation showing
discretised electric field Fj;, electric potential ¢;; and charge density p;;

equation over the area of an individual cell yields

—(Fi, — Fz‘?)Ay - (Fi?j+l - E?)Aﬂf =—_—l—

€o€r

(which is actually an expression of Gauss’s law) where

Tz _ _(¢ij — ¢i—1,5)
Fy= Az
and
(¢ij — Hij-1)
y _ _\Pij J
F __—Ay

D) Carrier dynamics and scattering
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(3.52)

(3.53)

(3.54)

Each superparticle undergoes the standard Monte Carlo sequence of scatterings

and free flights in the local field previously determined from the solution of Poisson’s
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equation. The MC sequence is stopped after each time step (typically 1 femtosecond),
when the field is adjusted by following the steps described above. The time evolution

of the wavevector of a superparticle during a free flight starting at t =0 is

(3.55)

where the plus sign applies for holes, and the minus for electrons. The differential
scattering probability S(k, k') that an electron undergoes a transition from an initial
state k to a final state k' is calculated by Fermi’s Golden Rule as described for the
various scattering mechanisms in Sections 3.5.1-3.5.3. At each instant there exists
a definite total scattering rate S(k) for the superparticle, which is dependent on the
carrier state, and can be obtained by adding up the scattering rates S;(k) for all possible
scattering processes (labelled by i). The probability for a carrier to be scattered in the
small time interval [t, ¢+ dt] is S(k(t))dt. Thus the probability that the carrier will not
scatter in the same interval is (1 — S(k(t))dt). The probability for a carrier to travel
without scattering for a time ¢ becomes simply

Py(t) = [ (1 = S(k(®)st:) (3.56)

where ¢ = ), 8t;. To handle Equation 3.56, it is easier to take the logarithm of both

sides and we have

In(Py(t)) = Z In(1 — S(k(t))dts)
= S(k(t))dt; (3.57)

Q

assuming S(k(¢))dt; < 1. The summation can be replaced by an integral, and hence

P(t) = exp(— / S(k(t'))dt) (3.58)

The probability therefore that an electron will suffer its next collision during an inter-
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val dt around t is

p(tydt = Py(t)S(k(t))dt

and hence p(t) = S(k(t))e 4 SEE) (3.59)

p(t) represents a nonuniform distribution of free flight times over a semi-infinite interval.
Consider selecting a time ¢, by generating a random number r between 0 and 1 and

solving the equation
tr
/ p(t)dt = r (3.60)
0

for t,. The probability that the random number lies in the interval r,r + dr is dr.

Therefore, if we define dt, by

trtdte
/ p(t)dt =7 +dr (3.61)
0

the probability P(t,)dt, that the upper limit of the integral in Equation 3.59 lies in

the interval t,,t, + dt, is equal to dr. Now if

P(t,)dt, =dr (3.62)
it follows that
dr
P(t) = — =p(t, )
(t) = S = rlt) (3.6

where the second equality comes from Equation 3.60. That is the probability of ob-
taining a particular ¢, by solving Equation 3.60 for ¢, when r is a random number is
equivalent to the distribution of free flight times p(t,).

In practice, it is difficult to obtain the probability distribution of the scattering
events by this method since the total scattering rate S(k) is a complicated function
of k(t). In the circumstances it is convenient to introduce an additional scattering

process Sy, called self-scattering [62], which actually has no effect on the state of the
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carriers. The rate of self scattering is chosen so that
S(k(t)) + Sss =T (3.64)

where I' is the new total scattering rate and is a constant. Now free flight times can

be simply calculated from Equations 3.59 and 3.60 as

_ In(1-r1)
tr = T T (3.65)

Obviously, the self-scattering is just a mathematical trick, with no physical meaning.
It does not alter the statistical distribution of the real scattering events but does make
the selection of free flight times much easier. However, there is an added computational
burden due to the increased number of scattering events. In practice, I is fixed as the
largest scattering rate possible in the simulation, to be sure that Sy, is never negative.

At the end of the free flight, random numbers are required to select the type of
scattering mechanism and to determine the electron state after scattering. The final

state after scattering must have an energy FE(k') given by
E(X') = E(k) £ hw, (3.66)

where E(k) is the energy at the end of the free flight and, fw, is the phonon energy in
the case of lattice scattering. The particle wavevector after scattering is selected using
random numbers and the results of the quantum mechanical theory for the process. To
simplify the procedure for ellipsoidal valleys it is convenient to carry out a Herring-Vogt
transformation of k-space so that the constant energy surfaces are spherical as described
in Section 3.4. Once the final state is known, the sequence of free flight/scattering is

simply repeated with a new free flight.
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3.8 Transport Model

Having described the general methodology of self-consistent ensemble Monte Carlo
simulation, we now present the specific features of the models which are used in the

device simulations reported in Chapters 4 and 5.

3.8.1 Band structure

The model of the conduction band structure used in the Monte Carlo simulations of
bulk Si has six ellipsoidal non-parabolic A valleys located along the [100] directions
at 85% of the way to the Brillouin zone edge from the zone centre [43]. The energy-

wavevector relationship is taken to be:

K2 k? k?
E(1+aE)=?(E’l Htt

where k; and k; are the longitudinal and transverse components of the wavevector with
respect to the < 100 > crystallographic directions, 1/m; and 1/m, are the longitudinal
and transverse components of the inverse effective-mass tensor, and « is the coefficient
of nonparabolicity, as given in Table 3.2.

The effect of strain in Si layers is to split the A-valleys as described in Chapter 2.
The energy difference between the twofold degenerate valleys and the fourfold degener-
ate valleys is determined by the deformation potential and the amount of strain. The
strain induced modifications are parameterised as a function of Ge content according
to the results of Rieger et al. [14]. The effective masses of the valleys are assumed to
be unchanged. Changes of the nonparabolicity and scattering rates with strain have
also been neglected.

To model the electron transport in bulk Si;_,Ge;(for z < 0.8), we assume that the
conduction-band structure remains Si-like with six A-valleys whose effective masses

remain unchanged. The additional mechanism of alloy scattering occurs in the alloy
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parameters 7 Si Ge
Lowest minima Indirect Indirect
Degeneracy 6 4
E, (eV) 1.12 0.644
my/m 0.916 1.64
my/m 0.191 0.082
Mup/m 0.16 0.28
Ay, (eV) 0.044 0.29
a (X valley eV 0.5 0.65

Table 3.2: Energy band parameters for Si and Ge [42]

and is described by the method described in Section 3.5.3 using the potential in Table
3.3. The acoustic intravalley phonon scattering is treated as an elastic process. The
deformation potential D,. for Si;_,Ge, is calculated by linear interpolation. The in-
tervalley A — A transitions are treated by considering both f and g processes with
different deformation potentials of 9.3x10!® and 6.3x10' eV m™! respectively. In
addition to electron transport, it is necessary to consider the transport of holes in
the npn-SOI LBJT simulations. The maxima of the valence bands of Si are at I.
The heavy, light and spin-split-off bands are represented by simple spherical parabolic
approximations. Band effective masses and other material parameters are listed in
Table 3.3.

It is worthwhile discussing the expected accuracy of the bandstructure model em-
ployed in comparison to the more sophisticated full band model. Figure 3.6 shows the
first few conduction bands for Si obtained from an empirical-pseudopotential calcula-
tion [22]. In addition to the six equivalent ellipsoidal constant energy surfaces which
form the conduction band edge, there is a second conduction band which is only 0.1
eV higher. Thus electrons with kinetic energy > 0.1 eV may reside in either of the two
conduction bands.

A comparison of the density of electronic states of the silicon conduction band
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parameters Si Ge Si0,77Geo_23 Si0,55Ge0,45
density p(kgm™3) 2330 5481 3018 3676
sound velocity v,(ms™!) 9044 5369 7767 6877
nonparabolicity (X valley) (eV™!) 0.5 0.65 0.385 0.275
effective mass (m;/m,) 0.9160 0.1791 1.117 1.31
effective mass (mj/m,) 0.1906 0.2040 0.1937 0.197
c11(x101°N/m?) 16.75 1315  15.92 15.13
c12(x10"N/m?) 65  4.94 6.141 5.79
low-frequency dielectric constant (¢,) 11.7 16.2 12.73 13.73
high-frequency dielectric constant (ey) 10.82 16.2 12.06 13.24
acoustic deformation potential (Dg. (eV)) 6.0 7.996 7.190 7.4
f, g deformation potential (10° eV m~!) | 9.3, 6.3 9.2,9.2 9.2,9.2
lattice constant a (A) 5.430  5.650 5.481 5.53
alloy scattering potential AU (eV) - - 0.8 0.7
bowing parameter - - -0.19 -0.19
Energy band gap (eV) 1.12  0.975 1.053 1.008

Table 3.3: Material parameters at 300 K for Si, Ge, and

Sij—zGez used in the simulations [63,64]

L A T A

WAVE VECTOR

Band structure for Si obtained from the empirical-

Figure 3.6:
pseudopotential calculation [22].
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using the parabolic and nonparabolic valley models and the full bandstructures is re-
ported in the work of Kunikiyo et al. [65]. The study reveals that the nonparabolic
band model provides a reasonable approximation to the realistic density of states up to
about 2 eV above the band edge. Nevertheless, the full-band Monte Carlo investigation
of electron transport in unstrained Si by Bufler et al. [66] reveals that the analytical
bandstructure model results in an overestimate of the electron drift velocity at ener-
gies in a range above 130 meV. However, in the high energy region the drift velocity is
strongly underestimated by the analytical bandstructure model.

Comparisons of the results of using parabolic, nonparabolic ellipsoidal and full
bandstructure models for high energy electron transport in silicon have been reported
by Abramo et al. [67]. The study deals with calculating the steady state energy dis-
tribution of electrons in homogeneous, intrinsic silicon at room temperature. The
calculations suggest that the nonparabolic ellipsoidal bandstructure model is a good
approximation for electron energies up to about 1 eV. However, for higher energies,
detailed full-band calculations are essential for accurate results.

Obviously, self-consistent ensemble full-band Monte Carlo simulation of semicon-
ductor devices is the ideal for obtaining insight into the full details of hot electron
transport in semiconductor devices [22,65]. However, full-band Monte Carlo simulators
involve large processing time even with major computational resources, which in any
case are not generally available for device technology development. Hence simulations
based on nonparabolic elliposiodal, nonparabolic spherical or even simple parabolic
bandstructure models are still widely used and have had substantial success in device
simulations [42-44]. For example, Formicone et al. used a nonparabolic ellipsoidal en-
semble Monte Carlo simulation to model hole and electron transport in strained Si [68]
and submicron Si;_,Ge, based MOSFETs [69]. Monte Carlo simulations of Si;_;Ge,
MODFETSs by use of nonparabolic ellipsoidal bandstructure model of Si;_,Ge, MOD-
FETs were carried out by Dollfus [70,71].



Chapter 4

MODFET Simulations

4.1 Introduction

In an attempt to overcome some of the limiting physical effects due to aggressive scal-
ing of MOSFETS, while maintaining compatibility with conventional processes, several
new technologies have been developed as described in Chapter 2. In particular, dur-
ing the past few years, modulation doped Si/SiGe heterostructures grown on relaxed
SiGe virtual substrates have been shown to produce enhanced electron mobility, and
have great potential for the development of fast Si-based MODFETs [19,37,72,73]. The
improved electron transport in strained Si/Si;_;Ge, MODFETSs and the natural com-
patibility with existing Si-CMOS technology makes the devices an attractive prospect
for improving the circuit performance and packing density of ultra large scale inte-
grated circuits (ULSICs). Of interest in this chapter are the impact of strain on high
field transport and the implications for the performance of deep submicron devices.
In the deep submicron regime, non-equilibrium carrier transport is expected to have
a significant effect on the performance of field-effect transistors. Optimum transistor
design is ultimately based on a full understanding and accurate modelling of carrier
transport in the device and Monte Carlo simulation is now well established as a pow-

erful tool for studying the microscopic behaviour of carriers in semiconductor devices

69
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where semiclassical models of carrier transport are appropriate [44,45]. In this chapter,
we describe studies of electron transport in n-channel Si/Sig 77Gep.23 and Si/Sig.55Geg.as
MODFETs using 2D self-consistent ensemble Monte Carlo simulation. The details of
the transport model were described in Chapter 3. The simulation provides information
on the microscopic details of the carrier behaviour, including carrier velocity, kinetic
energy and carrier density, as a function of position in the device, and provides a phys-
ical insight into device behaviour. Analysis of the microscopic and macroscopic data
can provide valuable understanding of the device properties, and in addition, indicate
possible ways to improve device performance.

Section 4.2, describes a detailed analysis of the in-plane electron velocity-field char-
acteristics, of strained Si grown on Sig 77Geg2s and Sigs5Geg 45 virtual substrates, and
also of unstrained Si. Both steady state and transient bulk properties have been stud-
ied. For the steady state bulk simulations, the drift velocity of the electrons plotted
against the homogeneous electric field is obtained. In small devices, it is expected that
velocity overshoot will play an important role in aiding high frequency performance.
To this end, a study of the transient response of electrons to a stepped application of
electric field has been performed.

The simulations of n-channel Si/SiGe MODFETs that have been performed are
described in Section 4.3. The simulated devices can be classified into two groups;
moderate and high tensilely strained MODFETs. Four depletion mode devices are
considered in the first group; three of them make use of a 0.23 Ge fraction whilst a
0.25 fraction is used for the fourth. The simulations have been carried out in order to
investigate the high frequency performance. The effect of varying gate length Ls and
source-gate separation Lgg are studied. For the higher Ge fraction of 0.45, two devices
working in the depletion and enhancement modes are studied. The model devices are
similar to those experimentally investigated by Gliick et al. [73]. For each group of

devices the layer design and the geometries of the simulated devices are described first
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and then the simulation results are presented and discussed. The simulations provide
microscopic information on the carrier dynamics and also the output characteristics
(drain current versus drain voltage), from which the transconductance (gn,) can be
obtained. The frequency response of the MODFETsS is investigated by modelling the

response of the device when a voltage pulse is applied to the gate.

4.2 Simulation of electron transport in bulk Si and

strained Si

4.2.1 Steady state simulation results

To investigate the performance of small, high-speed Si/Si;_;Ge, MODFETs, it is in-
structive to know the behaviour of the drift velocity of electrons versus electric field for
steady state and transient conditions in bulk material. To this end we have performed
a detailed analysis of the in-plane velocity characteristics at 300 K of unstrained bulk
Si and of bulk Si strained as it would be if it were grown on Sig 77Geg 23 and Sig 55Geg a5
virtual substrates at 300 K. The present section is devoted to the steady-state case.
The calculated steady state velocity-field curves are shown in Figure 4.1. The impurity
concentration is taken to be 1x102'm=3. The electric field is varied from 10* to 2x 107
Vm~! and the orientation of the electric field is chosen to be parallel to the [100] di-
rection, which is the case in the active layer of most Si/SiGe MODFETs.

Figure 4.1 shows that the velocity increases monotonically with increasing applied
field, but eventually saturates at high field for both the unstrained Si and strained Si
cases. It is apparent that strain causes a significant enhancement of the in-plane drift
velocity-field for both z = 0.23 and 0.45 substrates, at least for electric fields up to

about 15 MVm~!. As explained in Chapter 2, the strain in Si splits the six-fold degen-
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Figure 4.1: Calculated steady state drift velocity of electrons in bulk Si
as if grown on Sig 77Geg 23, Sig.55Gep.q5 virtual substrates and bulk Si. The

impurity concentration is assumed to be 10?! m
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Figure 4.2: Fractional valley occupation in bulk Si as if grown on Sig 77Geg.23
and Sip 55Geg 45 virtual substrates and bulk Si respectively. The impurity con-
centration is 102! m~3. The dotted line represents the fractional occupation
of electrons in the A, valleys for bulk Si.
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erate A valleys into two groups. As a result the four valleys (A4) on the A axes parallel
to the plane of the heterostructure lie higher in energy than the two valleys (A3) on the
A axes normal to the plane, which have low mass parallel to the field. The velocity en-
hancement in strained Si at 300 K is partly due to the smaller in-plane effective mass
experienced by the electrons in the two lower energy valleys. There is also reduced
f-type intervalley scattering. Note that the drift velocity for moderate tensile strain
shows similar general behaviour to the high tensile strain case. Inspection of Figure 4.1
reveals that the velocity enhancement is more efficient at low and intermediate elec-
tric fields; a consequence of the fact that the higher electric field strengths increase
the population of the fourfold higher valleys with their larger mean effective mass in
the direction of transport. Under a low in-plane electric field (¥ <10®* Vm™1), and a
Ge fraction of 0.23 in the virtual substrate, the valley splitting energy AE,p;; ~ 150
meV is sufficient for most of the electrons to occupy the A, valleys as shown in Figure
4.2. Under higher electric fields the electrons tend to distribute among the A, and A4
valleys and more electrons reside in the A4 valleys at 20 MVm™!. For the higher Ge
content of 0.45, the larger valleys splitting (A E,piix ~ 300 meV) means that more than
50% of electrons still occupy the A, valleys at 20 MVm~!. However, the saturation

1. which is consis-

velocities are practically identical in both cases, at about 10° ms™~
tent with experiment and other recent calculations [66,70,74-78]. For example the
experiments of [74] show the saturation velocity of electrons in strained Si to be about
0.9x10° ms~! at 295 K. The full band Monte Carlo simulations of Fischer et al. [78]
predict that the calculated electron drift velocity saturates at about 0.95 x 10° ms™!
in strained Si at 300 K, whilst the value for unstrained Si is slightly lower. Another
full band Monte Carlo study by Bufler et al. [66] shows a similar result in which the
saturation velocity of electrons in strained Si grown on Sig;Geg s is about 1.05x10°
1

ms~! whilst that for unstrained Si is 10° ms™".

In the very high field regime, the electrons are distributed among the A valleys in
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Figure 4.3: Average kinetic energy of electrons in bulk Si as if grown on
Sig.77Gep.23 and Sig.55Geg.q5 virtual substrates and bulk Si, labelled as strained

Si and unstrained Si respectively. The impurity concentration is assumed to
be 102! m~3.

much the same way as in unstrained Si, and the drift velocity is similar. The velocity
saturation occurs in both strained and unstrained Si because the electrons lose energy
by optical phonon emission.

Figure 4.3 demonstrates the higher average kinetic energy of electrons in Si grown
on Sig77Geg.o3 and Sips5Gegqs virtual substrates compared with that of unstrained Si
for a given applied field along a [100] direction. The kinetic energy at thermal equi-
librium is 3kpT/2 = 39 meV at 300 K and increases monotonically with the field.
The average kinetic energy increases with substrate Ge content for fixed field since the
electrons in the A, valleys must achieve a higher energy before they can transfer to
the A, valleys.

As seen in Figure 4.3 the maximum average kinetic energy about 0.5 eV is ob-
tained for the applied field of 2x107 Vm~'. Referring to Figure 3.6, it is expected

that substantial number of electrons can occupy the second conduction band, affecting
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the electron transport. In fact, the highest electric fields encountered in Monte Carlo
simulation reported in this thesis is about 3 x 107 V™" as will be seen in Figure 4.32.
The corresponding maximum average kinetic energy is about 0.5 eV as illustrated in
Figure 4.33. Thus, the results such as average kinetic energy and velocity obtained by
use of an analytic bandstructure model as employed here may differ significantly from
those obtained by use of full band model. However, the overall output characteris-
tics such as drain current, transconductance and cut-off frequency may not differ from

those obtained by use of full band model.

4.2.2 Transient response simulation results

In this sectioh, we describe the use of ensemble Monte Carlo simulation to study the
transient response to a stepped electric field of electrons in strained and unstrained
Si. Particular emphasis is placed on those short-time-short-distance phenomena that
are expected to be important in small and very small devices. High electric fields are
common in short-channel devices, and thus the transient or saturation velocities rather
than the low field velocity (as determined by the low field mobility) may ultimately
limit the performance of small devices.

Transient transport of electrons in unstrained and strained Si is simulated for elec-
tric fields of 2 x 10%, 6 x 10 and 2 x 107 Vm™! applied along the [100] direction.
Before the field is switched on, the superparticle ensemble is set up with a Maxwellian
energy distribution and associated random velocity distribution occupying the states
of the degenerate A-valleys of unstrained Si and the split A-valleys in the strained
case. These are the conditions that would exist if the ensemble had been set up in
some arbitrary distribution and a simulation had been carried out at zero field until
equilibrium was achieved.

Figure 4.4 shows the transient response of the electron drift velocity at 300 K to
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Figure 4.4: From top to bottom, average drift velocity of electrons in bulk
Si as if grown on Sig55Geg .45, Sio.77Geg.23 virtual substrates are plotted as a
function of time. The relevant data for unstrained bulk Si has been plotted
as a reference. The applied electric field intensities are 2x108, 6x10°, and
2x107 Vm™! respectively. All applied electric fields are oriented along the
[100] direction.
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applied fields of 2x10°, 6x10°, and 2x10” Vm™!. Velocity overshoot is not found for
the lowest field although the results do confirm the enhanced steady state drift velocity
for strained Si. At the higher field of 6x10% Vm™!, significant velocity overshoot occurs
in strained Si reaching the peak of 2x10% ms™! for the higher tensile strain case, but
the effect in unstrained Si is almost negligible. For the highest field, the peak velocity
is about 2.5x10° ms~! for the higher tensile strain and a smaller but significant ef-
fect occurs in the unstrained material. In all cases, the velocity reaches its saturation
value in less than ~ 1 ps. Consequently, it is possible that the transient overshoot
could be used to partly overcome some limitations due to the velocity saturation for
devices in the deep submicron regime. Velocity overshoot has a significant effect when
the carrier transit time along the channel is comparable to the energy relaxation time
and the changes in the Si band structure due to strain may have a significant impact
on the effective channel velocity. As the momentum relaxation time is smaller, the
electron distribution is shifted in momentum space but it is somewhat later that en-
ergy relaxation becomes effective so that the distribution function spreads out, and the
drift velocity decreases. This is particularly the case if some scattering has an energy
threshold as results from the energy splitting of the A valleys in strained Si.

Figure 4.5, shows the A, and A4 valley occupancies as a function of time for applied
fields of 2x10%, 6x10°, and 2x107 Vm™! at 300 K. The top picture corresponds to the
moderate tensile strain case whilst the bottom is for the high tensile strain case. The
plots show that at the highest field about 60% of electrons occupy the A, valleys for

the higher tensile strain in agreement with the steady state results of Figure 4.2.

4.3 Device simulation

A substantial improvement of the in-plane electron transport properties of tensilely

strained Si layers is suggested by the results on bulk material in the previous sections.
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