27 research outputs found

    A Brief Review of Cuckoo Search Algorithm (CSA) Research Progression from 2010 to 2013

    Get PDF
    Cuckoo Search Algorithm is a new swarm intelligence algorithm which based on breeding behavior of the Cuckoo bird. This paper gives a brief insight of the advancement of the Cuckoo Search Algorithm from 2010 to 2013. The first half of this paper presents the publication trend of Cuckoo Search Algorithm. The remaining of this paper briefly explains the contribution of the individual publication related to Cuckoo Search Algorithm. It is believed that this paper will greatly benefit the reader who needs a bird-eyes view of the Cuckoo Search Algorithm’s publications trend

    Reversible Image Watermarking Using Modified Quadratic Difference Expansion and Hybrid Optimization Technique

    Get PDF
    With increasing copyright violation cases, watermarking of digital images is a very popular solution for securing online media content. Since some sensitive applications require image recovery after watermark extraction, reversible watermarking is widely preferred. This article introduces a Modified Quadratic Difference Expansion (MQDE) and fractal encryption-based reversible watermarking for securing the copyrights of images. First, fractal encryption is applied to watermarks using Tromino's L-shaped theorem to improve security. In addition, Cuckoo Search-Grey Wolf Optimization (CSGWO) is enforced on the cover image to optimize block allocation for inserting an encrypted watermark such that it greatly increases its invisibility. While the developed MQDE technique helps to improve coverage and visual quality, the novel data-driven distortion control unit ensures optimal performance. The suggested approach provides the highest level of protection when retrieving the secret image and original cover image without losing the essential information, apart from improving transparency and capacity without much tradeoff. The simulation results of this approach are superior to existing methods in terms of embedding capacity. With an average PSNR of 67 dB, the method shows good imperceptibility in comparison to other schemes

    Nature Inspired Evolutionary Swarm Optimizers for Biomedical Image and Signal Processing -- A Systematic Review

    Full text link
    The challenge of finding a global optimum in a solution search space with limited resources and higher accuracy has given rise to several optimization algorithms. Generally, the gradient-based optimizers converge to the global solution very accurately, but they often require a large number of iterations to find the solution. Researchers took inspiration from different natural phenomena and behaviours of many living organisms to develop algorithms that can solve optimization problems much quicker with high accuracy. These algorithms are called nature-inspired meta-heuristic optimization algorithms. These can be used for denoising signals, updating weights in a deep neural network, and many other cases. In the state-of-the-art, there are no systematic reviews available that have discussed the applications of nature-inspired algorithms on biomedical signal processing. The paper solves that gap by discussing the applications of such algorithms in biomedical signal processing and also provides an updated survey of the application of these algorithms in biomedical image processing. The paper reviews 28 latest peer-reviewed relevant articles and 26 nature-inspired algorithms and segregates them into thoroughly explored, lesser explored and unexplored categories intending to help readers understand the reliability and exploration stage of each of these algorithms

    An ant colony based model to optimize parameters in industrial vision

    Get PDF
    Industrial vision constitutes an efficient way to resolve quality control problems. It proposes a wide variety of relevant operators to accomplish controlling tasks in vision systems. However, the installation of these systems awaits for a precise parameter tuning, which remains a very difficult exercise. The manual parameter adjustment can take a lot of time, if precision is expected, by revising many operators. In order to save time and get more precision, a solution is to automate this task by using optimization approaches (mathematical models, population models, learning models...). This paper proposes an Ant Colony Optimization (ACO) based model. The process considers each ant as a potential solution, and then by an interacting mechanism, ants converge to the optimal solution. The proposed model is illustrated by some image processing applications giving very promising results. Compared to other approaches, the proposed one is very hopeful.Industrial vision constitutes an efficient way to resolve quality control problems. It proposes a wide variety of relevant operators to accomplish controlling tasks in vision systems. However, the installation of these systems awaits for a precise parameter tuning, which remains a very difficult exercise. The manual parameter adjustment can take a lot of time, if precision is expected, by revising many operators. In order to save time and get more precision, a solution is to automate this task by using optimization approaches (mathematical models, population models, learning models...). This paper proposes an Ant Colony Optimization (ACO) based model. The process considers each ant as a potential solution, and then by an interacting mechanism, ants converge to the optimal solution. The proposed model is illustrated by some image processing applications giving very promising results. Compared to other approaches, the proposed one is very hopeful.Industrial vision constitutes an efficient way to resolve quality control problems. It proposes a wide variety of relevant operators to accomplish controlling tasks in vision systems. However, the installation of these systems awaits for a precise parameter tuning, which remains a very difficult exercise. The manual parameter adjustment can take a lot of time, if precision is expected, by revising many operators. In order to save time and get more precision, a solution is to automate this task by using optimization approaches (mathematical models, population models, learning models...). This paper proposes an Ant Colony Optimization (ACO) based model. The process considers each ant as a potential solution, and then by an interacting mechanism, ants converge to the optimal solution. The proposed model is illustrated by some image processing applications giving very promising results. Compared to other approaches, the proposed one is very hopeful

    Fractional Calculus and the Future of Science

    Get PDF
    Newton foresaw the limitations of geometry’s description of planetary behavior and developed fluxions (differentials) as the new language for celestial mechanics and as the way to implement his laws of mechanics. Two hundred years later Mandelbrot introduced the notion of fractals into the scientific lexicon of geometry, dynamics, and statistics and in so doing suggested ways to see beyond the limitations of Newton’s laws. Mandelbrot’s mathematical essays suggest how fractals may lead to the understanding of turbulence, viscoelasticity, and ultimately to end of dominance of the Newton’s macroscopic world view.Fractional Calculus and the Future of Science examines the nexus of these two game-changing contributions to our scientific understanding of the world. It addresses how non-integer differential equations replace Newton’s laws to describe the many guises of complexity, most of which lay beyond Newton’s experience, and many had even eluded Mandelbrot’s powerful intuition. The book’s authors look behind the mathematics and examine what must be true about a phenomenon’s behavior to justify the replacement of an integer-order with a noninteger-order (fractional) derivative. This window into the future of specific science disciplines using the fractional calculus lens suggests how what is seen entails a difference in scientific thinking and understanding

    Enhancing Medical Imaging with Swarm Intelligence Algorithms

    Get PDF
    Medical imaging serves as an indispensable tool for the diagnosis and continuous monitoring of a diverse array of health conditions. A recent and exciting development in this field is the integration of Swarm Intelligence (SI) algorithms, which draw inspiration from the collective behaviors observed in social insects. This collaborative effort between nature and technology is progressively transforming medical image analysis, elevating both its quality and efficiency. In this book chapter we have presented various SI optimization algorithms like ACO, BCO, FA, FSA and WOA in detail. By exploring these algorithms, we aim to provide an in-depth understanding of their respective benefits and limitations when applied to medical image analysis. This knowledge empowers practitioners to choose the most appropriate algorithm for specific tasks, ensuring optimal outcomes. Furthermore, we shed light on SI-Based Segmentation methodologies, elucidating the advantages and constraints associated with these approaches. The ability of SI algorithms to innovate in the realms of image segmentation, feature extraction, and classification is emphasized, with a focus on their potential to enhance diagnostic accuracy and elevate the quality of patient care. One of the most exciting prospects on the horizon is the amalgamation of SI with cutting-edge technologies like deep learning and big data analytics. This union has the potential to revolutionize medical imaging by providing solutions that are not only more accurate and efficient but also highly clinically relevant. As these developments continue to unfold, the synergy between SI and emerging technologies promises to reshape the medical imaging landscape, ultimately enhancing patient care and improving healthcare outcomes in unprecedented way

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Recent Advances in Digital Image and Video Forensics, Anti-forensics and Counter Anti-forensics

    Full text link
    Image and video forensics have recently gained increasing attention due to the proliferation of manipulated images and videos, especially on social media platforms, such as Twitter and Instagram, which spread disinformation and fake news. This survey explores image and video identification and forgery detection covering both manipulated digital media and generative media. However, media forgery detection techniques are susceptible to anti-forensics; on the other hand, such anti-forensics techniques can themselves be detected. We therefore further cover both anti-forensics and counter anti-forensics techniques in image and video. Finally, we conclude this survey by highlighting some open problems in this domain

    Designing a short-term load forecasting model in the urban smart grid system

    Get PDF
    The transition of the energy system from fossil fuel towards renewable energy (RE) is rising sharply, which provides a cleaner energy source to the urban smart grid system. However, owing to the volatility and intermittency of RE, it is challenging to design an accurate and reliable short-term load forecasting model. Recently, machine learning (ML) based forecasting models have been applied for short-term load forecasting whereas most of them ignore the importance of characteristics mining, parameters fine-tuning, and forecasting stability. To dissolve the above issues, a short-term load forecasting model is proposed that incorporates thorough data mining and multi-step rolling forecasting. To alleviate the chaos of short-term load, a de-noising method based on decomposition and reconstruction is used. Then, a phase space reconstruction (PSR) method is employed to dynamically determine the train-test ratios and neurons settings of the artificial neural network (ANN). Further, a multi-objective grasshopper optimization algorithm (MOGOA) is applied to optimize the parameters of ANNs. Case studies are conducted in the urban smart grid systems of Victoria and New South Wales in Australia. Simulation results show that the proposed model can forecast short-term load well with various measurement metrics. Multiple criterion and statistical evaluation also show the good performance of the proposed forecasting model in terms of accuracy and stability. To conclude, the proposed model achieves high accuracy and robustness, which will provide references to RE transitions and smart grid optimization, and offer guidance to sustainable city development.Industrial Ecolog
    corecore