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H I G H L I G H T S

• An innovative short-term load forecasting model is developed.

• A train-test ratios determination strategy based on the phase space reconstruction is proposed.

• A multi-objective optimization algorithm is used to optimize the neural network.

• Various measurement methods are conducted to evaluate model performance.
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A B S T R A C T

The transition of the energy system from fossil fuel towards renewable energy (RE) is rising sharply, which
provides a cleaner energy source to the urban smart grid system. However, owing to the volatility and inter-
mittency of RE, it is challenging to design an accurate and reliable short-term load forecasting model. Recently,
machine learning (ML) based forecasting models have been applied for short-term load forecasting whereas most
of them ignore the importance of characteristics mining, parameters fine-tuning, and forecasting stability. To
dissolve the above issues, a short-term load forecasting model is proposed that incorporates thorough data
mining and multi-step rolling forecasting. To alleviate the chaos of short-term load, a de-noising method based
on decomposition and reconstruction is used. Then, a phase space reconstruction (PSR) method is employed to
dynamically determine the train-test ratios and neurons settings of the artificial neural network (ANN). Further,
a multi-objective grasshopper optimization algorithm (MOGOA) is applied to optimize the parameters of ANNs.
Case studies are conducted in the urban smart grid systems of Victoria and New South Wales in Australia.
Simulation results show that the proposed model can forecast short-term load well with various measurement
metrics. Multiple criterion and statistical evaluation also show the good performance of the proposed forecasting
model in terms of accuracy and stability. To conclude, the proposed model achieves high accuracy and ro-
bustness, which will provide references to RE transitions and smart grid optimization, and offer guidance to
sustainable city development.

1. Introduction

1.1. Motivation

The use of RE is rising dramatically as technologies have made
major advances and policy is pushing for a shift from fossil fuel to clean
energies. However, the scaling of RE use to urban smart grid systems
introduces big challenges as the volatility and intermittency of RE. To
satisfy the continued high urban electricity demand, accurate and
persistent short-term load forecasting plays a crucial role in power
systems operation and management, especially in power generation
expansion, dispatch scheduling of generating production, and

sustainable electricity supply [1]. The overestimated forecasting will
generate unnecessary electricity and load power storage remains a
difficult task nowadays. The continued operation of power generation
equipment leads to a large waste of resources, which is also a burden
shift to other energy and environmental concerns. Conversely, the un-
derestimated forecasting will cause inevitable damage to industrial
production and people’s life. A related study has reflected that 10
million operating costs may increase when the forecasting error in-
creases by 1% [2].

In recent years, countries around the world are promoting RE use in
the urban smart grid system while current electricity systems are mostly
based on traditional fossil energies. Owing to the intermittency of RE,
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the short-term load series will show more nonlinear characteristics than
the traditional ones. Despite the importance and urgency of making a
transition from RE to the smart grid, it is still challenging to develop an
effective and efficient short-term load forecasting due to this variability,
uncertainty, and complexity of the RE resources. Thorough data
cleaning and information mining are still insufficient for current fore-
casting models in modeling future short-term load as noise can be dif-
ficult to discard. Moreover, uncertainties still exist and cannot be well
explained in ML-based forecasting methods, especially for parameters
fine-tuning and determining. Further, besides forecasting accuracy, the
robustness of forecasting is always ignored in most current studies.
Overall, developing an effective and efficient short-term load

forecasting model with high precision and robustness becomes a top
priority for urban sustainability development.

1.2. Literature survey

In the past decade, a great number of studies have focused on short-
term load forecasting in smart grid systems, therefore, various models
have been promoted for the real application. Typically, there are four
types of short-term load forecasting models, namely, physical fore-
casting models, statistical forecasting models, machine learning fore-
casting models, and hybrid (combined) forecasting models. Physical
models, such as numerical simulation prediction (NSP) models [3], take

Nomenclature

y the original time series
L1 the initial PF of white noise
ω0 a constant
S1 the original value of the first residue
r1 the final value of the first residue
w the white noise
x a time series
N the length of the time series (sample size)
m the embedding dimension in the PSR
v the delay time
d the Euclidean distance
δ the spatial distance
C the correlation integrals
t the time
l the step length
n the number of input layer of the BPNN
n_e the number of equality constraints
n_v the number of variables
gj the jth inequality
hj the jth equality constraints
Lj the upper limit of jth variable
Uj the lower limit of jth variable
e the number of elements in a vector
Poptimal Pareto optimal set
Pfront Pareto optimal front set
Itermax the maximum number of iterations
yi the position of the ith grasshopper
o the number of objective functions
n_i the number of inequality constraints
Si the social interaction of the ith grasshopper
Niter the iteration times
Gi the gravity force for the ith grasshopper
Di the wind advection for the ith grasshopper
f the gravitational constant
u a constant drift
eg the unity vector to the center of the earth
ew the direction of the wind
Hd the higher bounds in the dth dimension
Ld the lower bounds in the dth dimension
Td the best value of dth dimension so for
λ the reducing factor
k the iteration counter
Ai the actual values
Fi the forecasting values
q the number of forecasting approaches
eit the relative error of the ith approach at time t
E the matrix of the relative error
E(·) the mathematical expectation
σ(·) the standard deviation

k the sample number
Ri the sum of the ranks
Si the ith rank of the second data sample

Abbreviations

RE renewable energy
ML machine learning
PSR phase space reconstruction
ANN artificial neural network
MOGOA multi-objective grasshopper optimization algorithm
NSP numerical simulation prediction
ES exponential smoothing
GM gray model
ARMA autoregressive moving average
MSAR Markov-switching autoregressive
FLS fuzzy logic systems
SVM support vector machine
PSO particle swarm optimization
FOA fruit-fly optimization algorithm
CABC chaotic artificial bee colony
CSA cuckoo search algorithm
BPNN Back-Propagation neural network
GPM Gaussian process mixture
DMD dynamic mode decomposition
VMD Variational mode decomposition
LSTM long short-term memory
GRNN generalized regression neural network
MLR multiple-linear regression
GPR Gaussian process regression
ILMD improved local mean decomposition
LMD local mean decomposition
AMFM amplitude-modulated-frequency-modulated
EMD empirical mode decomposition
SVD singular value decomposition
PF product function
PFO Pareto-front optimal
AEMO the Australian Energy Market Operator
FE forecasting error
TIC the Theil's inequality coefficient
FVD forecasting validity degree
AE average error
MAE mean absolute error
RMSE root mean square error
MAPE mean absolute percentage error
DA direction accuracy
FB fractional bias
DM Diebold Mariano test
K-W Kruskal-Wallis test
LCA life cycle assessment
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temperature, humidity, and other physical variables into consideration,
which are always used for long-term grid system forecasting and
management. These models cost much computing resources and per-
form poorly in short-term forecasting [4]. Statistical models, such as
linear regression [5], exponential smoothing (ES) [6], gray models
(GMs) [7], Kalman filter [8] and the autoregressive moving average
(ARMA) based models [9,10], are widely used for short-term load
forecasting in urban smart grid systems. In recent years, the transition
of electricity systems is happening as new technologies are maturing,
such as the technologies of offshore wind energy, hydrogen energy, and
electric vehicles. These large scale development of technologies relies
on statistical forecasting models. For example, Pinson et al. used a
Markov-switching autoregressive (MSAR) models to forecast wind
power at two large offshore wind farms [11]. Amini et al. presented an
ARIMA based model for electricity demand and charging demand of
electrical vehicles parking lots forecasting simultaneously [12]. Statis-
tical models are straightforward and easy to use but are considered
unsuitable to solve nonlinear problems with their statistic hypothesis.
Further, they are often limited by assumptions when dealing with dif-
ferent situations.

To overcome the limitations of physical and statistical models, nu-
merous ML-based models have been applied for establishing forecasting
models in recent years, namely ANNs [13], fuzzy logic systems (FLS)
[14], expert systems [15], feed-forward perceptron [16] and support
vector machines (SVMs) [17]. In particular, the discovery and char-
acterization of ML algorithms are making ANNs more technically fea-
sible among these approaches for short-term forecasting [18]. With
their good generalization ability, ANNs have received considerable at-
tention in urban smart grid forecasting and management. However,
there are still many disadvantages, e.g. easily falling into a local op-
timum, over-fitting, and exhibiting a relatively low convergence rate.
The train-test ratio determination and layers number settings are also
big research gaps for ANNs [19]. Fortunately, with the massive devel-
opment of big data and computational intelligence, heuristic optimi-
zation algorithms, such as particle swarm optimization (PSO) [20],
fruit-fly optimization algorithm (FOA) [21], chaotic artificial bee
colony (CABC) intelligent algorithm [22], and cuckoo search algorithm
(CSA) [23] have employed to optimize the parameters of ML models,
which too large extent enhance short-term load forecasting accuracy.
Other examples can be found in the literature: SVM optimized by GOA
is applied for load forecasting under local climatic conditions [24];
culture particle swarm optimization algorithm in combination models is
developed to electrical load forecasting [25]; a hybrid GA-PSO algo-
rithm is used in a short-term electrical load forecasting to optimize the
parameters of Back-Propagation neural network (BPNN) [26] and; a
hard-cut iterative training algorithm to improve a Gaussian process
mixture (GPM) model [27]. However, optimization on enhancing ro-
bustness of forecasting models is still lacking in the literature. Multi-
objective optimization including both forecasting accuracy and stability
is another big research gap that needs to be filled in.

There is no cure-all individual or single models that can tackle all
the short-term load forecasting problems, thus, research on combined
or hybrid models has focused on integrating ANNs with other techni-
ques, such as signal processing methods, optimization algorithms, and
statistical leaning. The main novelty was that combined or hybrid
models could forecast future values and capture the trend prevailing in
the time series with good interpretability and accuracy. In recent years,
hybrid models using data mining and data-processing techniques are
conducted to extract and detect the inner characteristics of the short-
term load series. For example, Mohan et al. employed a dynamic mode
decomposition (DMD) to capture the Spatio-temporal dynamics of
short-term electrical load [28]; and variational mode decomposition
(VMD) method is used to decompose short-term load into a discrete
number of modes [29]. Beaufond et al. proposed a combined model
based on the Tukey labeling rule and the binary segmentation algo-
rithm, which is verified as a reliable solution to detect and remove

outliers [30].
Advanced ML models combined with data cleaning are developing

massively as one of the research hotspots. For example, He et al. pro-
posed a hybrid load forecasting model, which takes advantage of VMD,
hyper-parameters optimization, and long short-term memory (LSTM)
networks [31]. Raza et al. designed a novel hybrid model based on a
feed-forward ANN, and a newly global best particle swarm optimization
(GPSO) algorithm [32]. Further, research on combination of several
ML-based models is employed for short-term forecasting. Bo et al.
proposed a combined forecasting mechanism composed of BP, SVMs,
ARIMA and generalized regression neural network, which is success-
fully established using the weight determination theory [33]. These
combined models are not only found in the short-term load forecasting
models in smart grid systems, but also have large scale use in other
related fields. For example, Ahmad et al. designed a combined data-
mining method comprising multiple-linear regression (MLR) model,
Gaussian process regression (GPR) model and Levenberg Marquardt
backpropagation neural network, which has a good performance in
cooling load demand prediction [34]. Other cases can be found in
[34,35], which indicated that hybrid or combined forecasting models
can provide significantly better forecasting persistence, accuracy, and
convergence characteristics than single forecasting models. Despite
their good forecasting performance in certain areas, improvement for
hybrid models is still can be further studied. As mentioned before, the
inner mechanism of ANNs still needs to understand since the para-
meters inside remain large uncertainty. On the other hand, thorough
data cleaning strategies and stability optimization also should be im-
proved.

From the above review, the disadvantages of current short-term
load forecasting models in smart grid systems can be summarized:

a) Physical models are always employed for long-term forecasting
while they are not suitable for short-term forecasting.

b) Statistical models are more applicable to addressing linear trends
data but encounter difficulties when dealing with nonlinear data.

c) ANNs are good solutions for nonlinear data analysis but may easily
fall into local optimums and obtain a low rate of convergence.
Additionally, over-training and poor forecasting are a pair of para-
doxes, which makes it challenging to determine the suitable train-
test ratios and neural layers.

d) Individual models can cause large forecasting bias so the hybrid
(combined) models are the tendency in forecasting areas. However,
most current hybrid models are based on single-objective optimi-
zation algorithms, which enhances the forecasting accuracy but al-
ways ignores the significance of forecasting effectiveness de-
termined by its stability. Moreover, further data mining is
insufficiently considered in current research.

1.3. Contributions and innovations

To address the limitations of the abovementioned short-term load
forecasting models in urban smart grid systems, an innovative hybrid
forecasting model is proposed in this study that is composed of four
parts: thorough data cleaning, intelligent forecasting, multi-objective
optimization, and comprehensive evaluation. The proposed model
successfully achieves desirable and convincing forecasting performance
in the urban smart grids, which can guide sustainable city decision-
makers.

In the structure, concerning the data cleaning, an improved local
mean decomposition (ILMD) method is designed to further mine the
uncertain characteristics and discard the high-frequency noise in the
original short-term load. Referring to the intelligent forecasting and
multi-objective optimization, with the goal of investigation of intrinsic
structural features and data mechanisms, the PSR based on the C-C
method is designed to determine the suitable train-test ratios and the
number of neural layers. The BPNN model optimized by the MOGOA is
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utilized for forecasting future electricity demand changes of the smart
grid to simultaneously accomplish high accuracy and stability.
Moreover, the proposed forecasting model is used to implement both
one-step and multi-step ahead rolling forecasting for the short-term
load. Finally, a variety of evaluation methods are used to comprehen-
sively measure the forecasting performance in the evaluation part. To
sum up, the main purpose of this study is to design an effective short-
term load forecasting model in the urban smart grid system that makes
up the insufficiency of existing research. The simulation results indicate
that the proposed model outperforms other comparison models and can
be implemented in the urban smart grid system.

The main innovations of this study can be concluded as follows:

a) A thorough data cleaning scheme based on the “decomposed and
reconstructed” theory, effectively eliminates the negative influence
of noise and mines the inner characteristics of the original short-
term load data.

b) An effective train-test ratio determination strategy (the PSR based
on the C-C method) is proposed to successfully find the balance of
over-fitting and insufficient training, and the settings of parameters
in ANNs.

c) A multi-objective optimization algorithm is conducted to optimize
the initial weight and threshold of the neural network to simulta-
neously enhance smart grid forecasting accuracy and stability.

d) A comprehensive experimental analysis, including evaluation of
both single and multiple points, forecasting validity degree, and
statistical tests are employed to measure the forecasting model from
different angles.

1.4. The organization of paper

The remaining part of the paper is organized as follows: the related
materials and methods are introduced in Section 2. Section 3 presents
the proposed short-term load forecasting model and Section 4 provides
the experiments and corresponding analyses. Finally, the discussion and
conclusion are respectively shown in Section 5 and Section 6.

2. Methodology

2.1. Data cleaning scheme

In this paper, the ILMD method is employed to mine the uncertain
characteristics of the short-term load. The ILMD method is improved by
the original LMD and regarded as one of the latest de-noising methods
in the LMD family [36]. LMD-based methods consider time series as a
superposition of amplitude-modulated-frequency-modulated (AMFM)
components, amongst they iterate over the low-frequency components,
and then recursively sift out the high-frequency components from the
time series. It is proven that LMD-based methods are more suitable than
empirical mode decomposition (EMD) based methods for incipient fault
detection in nonlinear and nonstationary signal processing [37]. Other
data cleaning methods, such as virtual memory device (VMD) and
singular value decomposition (SVD), have been applied for short-term
load forecasting in the related studies [1,31]. However, when the SVD
extracts the watermark in the diagonal direction, the distortion caused
by the computing error is inevitable [38]. The VMD adopts default
values for both the number of modes and filter frequency bandwidth,
but it is not adaptive to the signal being inspected [39]. On the other
hand, its reasonable mode number is difficult to pre-set and this would
make the loss of useful transient impulses [40]. Compared with these
two methods, the ILMD employs the statistical characteristics of white
noise, and effectively alleviates the mode mixing problem and the filter
bank property.

In the ILMD method, a product function (PF) of white noise with
adaptive amplitude is added to the input time series at every decom-
position stage for each trial. Then, the LMD is employed to decompose

the noise-added time series into one PF and one residue. An average of
local means is obtained by taking ensemble mean of the residues, and
the obtained ensemble local mean (i.e., the average of residues) is used
as the input signal for the next stage. Finally, the corresponding PF is
obtained by subtracting the ensemble local mean from the current time
series. The detailed mechanism of the ILMD method is described as
follows:

• Step 1: Add L w( )j
1

( ) to the original time series y to obtain a new
time series = +y y β L w( )j j( )

0 1
( ) , where =β ω std y( )0 0 and ω0 is a

constant. L w( )j
1

( ) is the initial PF of white noise w that the jth de-
composed by the LMD method.

• Step 2: Decompose the new time series into one PF and one residue,
where the original residue is specified as S y( )j

1
( ) .

• Step 3: Calculate the first residue = ∑ =r N S y1/ ( )j
N j

1 1 1
( ) and obtain

the first true PF as = −y rPF1 1, where N is the length of y.

• Step 4: Calculate the jth residue by
= ∑ += − −r N S r ω L w1/ ( ( ))j j

N
j j j

i
1 1 1

( ) and obtain the jth PF.

• Step 5: Repeat Step 3 and Step 4 until the residue has no more
oscillation.

2.2. Phase space reconstruction (PSR)

The PSR is a powerful method proposed by Takens et al. [41] to
extract valuable features embedded in chaotic time series [42]. After
the PSR, the state features of the domain can be displayed in high di-
mensional space [43]. Given a time series = = ⋯x x i N{ , 1, 2, , }i ,
where N is the length of x and x can be reconstructed by the PSR as
follows:

= = ⋯ = ⋯+ + −x x x i PX X X{ | [ , , ], 1, 2, , }i i i i υ i m υ( 1) (1)

In this formula, Xi is the ith column of the matrix X constructed by
the PSR and P = N − (m − 1) * ν. Two parameters m and ν represent
the embedding dimension and delay time respectively. In this paper, a
C-C method based on two correlation integrals is conducted to obtain
suitable input-hidden forms and train-test ratios. The correlation in-
tegrals formula can be defined as follows:

∑=
′ ′ −

− >
⩽ ⩽ ⩽ ′

C m N δ t δ d δ
P P

( , , , ) 2
( 1)

Θ( ), 0
i j P

ij
1 (2)

where d and δ represent the Euclidean distance and spatial distance,
respectively. The values of Θ can be described as follows:

− = ⎧
⎨⎩

− >
δ d

δ d
otherwise

Θ( )
1, 0
0,ij

ij

(3)

A more specific explanation of the PSR based on the C-C method can
be found in [44,45].

2.3. Back propagation neural network (BPNN)

The BPNN is regarded as one of the most widely used supervised
ANNs [28]. With the error back propagation features, it constantly
adjusts the weights and thresholds between layers to achieve the de-
sired output. The forecasting model based on the BPNN mainly com-
prises three steps: BPNN construction, training, and forecasting. Gen-
erally, the signal is delivered from the input layer to the hidden layer,
and then the hidden layer processes the information and passes them to
the output layer. Based on the simulation output, the errors between the
results of the output layer and the target output given in the sample will
be back propagated as feedback. According to the feedback, the con-
nection weights of the neutrons among different layers and the
threshold values of each neuron can be adjusted. The network will enter
the working stage once the training process reaches the stop training
requirements. The input information is forward-propagated to obtain
the output of the network (the predicted output) [46]. In this paper, the
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BPNN is selected as the main predictor for short-term load forecasting,
where each BPNN predictor has several input nodes and hidden nodes,
and one output node. In this sense, the BPNN has the capability to
forecast d-step ahead value y(t + d) using a time series of previous
values y(t), y(t − 1),…, y(t − n), where n represents the number of
input layer of the BPNN.

2.4. Multi-objective optimization algorithm

2.4.1. The basic concepts of multi-objective optimization problems
Comparing solutions of the multiple objectives cannot be employed

as the traditional relational operator and a new concept of dominates
are therefore proposed by Edgeworth and Pareto [47,48]. The in-
troduction of the optimization problem and Pareto dominance are
shown as follows:

Definition of minimization problem: A multi-objective optimi-
zation problem can be described as a minimization problem:

= ⋯

⩾ = ⋯

= = ⋯
⩽ ⩽ = ⋯

⇀ ⇀ ⇀ ⇀

⇀

⇀

Minimize F x f x f x f x

Subject to g x j n i

h x j n e
L x U j n v

: ( ) { ( ), ( ), , ( )}

: ( ) 0, 1, 2, , _

( ) 0, 1, 2, , _
, 1, 2, , _

o

j

j

j j j

1 1

(4)

where o, n_i, n_e and n_v are the number of objective functions, in-
equality constraints, equality constraints and variables, respectively. gj
and hj are the jth inequality and equality constraints. And Lj and Uj re-
present the upper and lower limit of the jth variable.

Definition of Pareto dominance: Considering two vectors
= ⋯x x x x( , , , )e1 2 and = ⋯y y y y( , , , )e1 2 with e number of elements.

Considering ≺y x , the Pareto dominance defines that the vector y is
dominated by x if and only if:

∀ ∈ ⩾ ∧ ∃ ∈t d f x f y t d f x[1, ], [ ( ) ( )] [ [1, ]: ( )]t t t (5)

Besides Pareto’s dominance, Pareto optimality, Pareto optimal set

and Pareto optimal front are three basic definitions of Pareto theory to
formulate the solutions, a set of solutions and the values of the objective
functions, respectively. Their definitions are presented as follows:

Definition of Pareto optimality: A solution → ∈x X is called the
Pareto optimality when and only when:

∄ ∈ ≻y X s t F y F x, . . ( ) ( ) (6)

Definition of Pareto optimal set: The set includes all the Pareto
optimal solutions is called the Pareto optimal set, which can be ex-
pressed as follows:

= ∈ ∃ ≻P x y X F y F x{ , | ( ) ( )}optimal (7)

Definition of Pareto optimal front: The set contains the values of
objective functions for Pareto solutions set:

= ∈P F x x P{ ( )| }front optimal (8)

2.4.2. The multi-objective grasshopper optimization algorithm (MOGOA)
Conceptualized by the behavior of grasshopper insects, the GOA was

developed by Saremi et al. in 2017 [49]. The grasshoppers always
gather together in large swarms and make larger destruction to the
agriculture property. The life cycle of grasshoppers can be generalized
by three phases: egg, nymph, and adulthood [50]. In the nymph phase,
the main characteristics of grasshopper movement can be expressed as
jumping and moving in rolling cylinders (with small steps and slow
movements), and they eat vegetation found in their paths. Nevertheless,
grasshoppers migrate a long distance in swarms with abrupt move-
ments and a large range in the adulthood phase.

The mathematical expression of the behavior of grasshoppers can be
described as follows. Considering the position of the grasshopper is yi:

= + + = ⋯y S G A i N, 1, 2, ,i i i i iter (9)

where Si represents the social interaction of ith grasshopper and Niter the
iteration times.

= −
⌢

G fei g and ̂=D uei w represent the gravity force and wind

Fig. 1. The framework of the proposed forecasting model.
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advection for the ith grasshopper, respectively, where f and u represent
the gravitational constant and a constant drift, respectively; eg and ew
represent the unity vector towards the center of the earth and the di-
rection of the wind, respectively.

It is noteworthy that the exploration and exploitation of the GOA
can be adjusted by:

̂∑=
⎧
⎨
⎩

− ⎫
⎬
⎭

+ ∀ ≠
=

⌢
y λ λ H L s d d T j i·

2
· ( )· ,j

d

j

N
d d

ji ji d
1 (10)

where Hd and Ld are the higher and lower bounds in the dth dimension,
and Td is the bast value of dth dimension found so far. The reducing
factor λ can be expressed by:

= − −λ λ k λ λ
Itermax

max min

max (11)

where k indicates the iteration counter and Itermax represents the
maximum number of iterations.

In order to address the multi-objective problem, the MOGOA is
employed in this paper. The procedures of the technique for the order of
preference by similarity to ideal solution are used to pick up the best
compromise solution among the set of Pareto-front optimal (PFO) so-
lutions [51]. The probability of selecting the best solution from the
archive and then, a roulette wheel is used to pick up the target from the
archive. The detailed Pseudocode of MOGOA is shown in Appendix A.

3. The proposed forecasting model in the urban smart grid system

The proposed forecasting model is described in detail in this section
and the corresponding flowchart is shown in Fig. 1. Most current stu-
dies pay less attention to the importance of thorough data cleaning and
multi-objective optimization, hence they cannot always satisfy the de-
mand for high accuracy and persistence. Further, most ML-based fore-
casting models often encounter difficulties in determining the input-
hidden and train-test ratio. The fine-tuning process of ratios is time-
consuming and unstable, which may also cause inevitable losses in

smart grid systems. Prior to this study, there is no uniform standard to
define the number of training and test samples in ML-based models.

With these factors considered, this paper proposed a hybrid short-
term load forecasting model in the smart grid system that comprises a
novel data cleaning scheme, an advanced input-hidden and train-test
ratio determining strategy, as well as a neural network predictor with
multi-objective optimization. In the data cleaning scheme, the ILMD de-
noising method is applied for eliminating noise in the raw short-term
load series and a “decompose and reconstruct” theory is used to discard
the negative influence of noise. A detailed description of data cleaning
is presented in Fig. 1, Part one. Owing to investigate the intrinsic
structural features and data mechanisms, the PSR based on the C-C
method is designed to determine the suitable input-hidden and train-
test ratios, shown in Fig. 1, Part two. In the third module (shown in
Part three in Fig. 1), the BPNN is selected as the main predictor and a
multi-optimization algorithm is also developed to improve the accuracy
and robustness of forecasting performance simultaneously. Further-
more, a multi-step ahead rolling forecasting framework is established
for further short-term forecasting. The schematic diagram is demon-
strated in Fig. 1, Part four. Finally, a series of evaluation indicators are
utilized to comprehensively measure the forecasting performance. To
sum up, the proposed hybrid forecasting model takes advantage of the
integrity of each approach and ultimately accomplishes applicable, ef-
fective and efficient results.

4. Experimental simulations and analysis

4.1. Data description

In this paper, the 30-min load data from urban areas of Victoria and
New South Wales in Australia were employed as study samples (de-
tailed description shown in Fig. 2). The data is provided by the Aus-
tralian Energy Market Operator (AEMO) [52]. Specifically, the data of
each city is divided into four datasets, namely spring, summer, autumn,
and winter respectively. Meanwhile, each dataset is divided into

Fig. 2. The description of the two studied cities.
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training data and testing data by PSR based on the C-C method, thus the
proportion between the training and testing sets is different. As illu-
strated in Table 2, five statistical indicators Mean, Max, Min, Median,
and Std. were used to perform the descriptive statistical analysis. The
basic information of the studied areas is introduced in Fig. 2.

4.2. Simulation environment

All experiments in this paper were carried out in MATLAB R2018a
on Windows 10 with 3.40 GHz Intel Core i7-6700, 64 bit having 16 GB
of RAM. The parameters of methods mentioned in this paper are based
on default values used in other literature [53–56]. Table 1 shows the
final parameter setting after fine-tuning.

4.3. Forecasting principle

This paper conducts a multi-step ahead rolling forecasting me-
chanism, which uses previous forecasting values instead of only his-
torical values to forecast the future values [57]. For example, the
forecasting value of n-step ahead rolling forecasting

⌢
yn is based on the

historical data ⋯+ −y y y y, , ,n n m m1 1 and the previously forecasting values
⋯ −

⌢ ⌢ ⌢
y y y, , n1 2 1, where m is the sample length of the input short-term load
series. The detailed rolling forecasting scheme is described in Table 3.

4.4. Evaluation metrics

Evaluation metrics play an important role in model measurement
while there is no uniform criterion rule for model comparison and
evaluation [58,59]. To systematically and scientifically evaluate the
forecasting performance of the proposed short-term load forecasting
model, this paper employs various assessment criteria. According to
[60], forecasting error (FE) of single points is chosen for point-by-point
comparison. Seven multiple-points evaluation metrics and the Theil's
inequality coefficient (TIC) are used based on the evaluation system
presented in [61,62]. Owing to the different dimensions of each se-
quence, it is different to measure different forecasting methods in the
same validity. In this regard, the forecasting validity degree (FVD)
method is also introduced for evaluating the forecasting performance
[63]. Further, both parametric and nonparametric tests are conducted
in this paper. The detailed introduction of these evaluation metrics are
shown below.

4.4.1. Evaluation of single points
The initial level of model evaluation is always to assess the FE of

single points. It is calculated the bias between the actual and forecasting
values as FE values.

= − = ⋯
⌢

FE x t x t
x t

t n( ) ( )
( )

, 1, 2 ,
(12)

where x represents the forecasting value and
⌢
x is the actual value of the

short-term load time series. Typically, the variation of FE values can be
used to assess the overall forecasting persistence.

4.4.2. Evaluation of multiple points
To extensively assess the model performance, seven indexes in

multiple points, including average error (AE), mean absolute error
(MAE), root mean square error (RMSE), mean absolute percentage error
(MAPE), direction accuracy (DA), fractional bias (FB), and R2 are ap-
plied to measure the difference between the forecasted and actual va-
lues in various perspective. Their equations and criteria are listed in
Table 4. Moreover, the TIC is also employed to assess the equality of
forecasted results. The formula of TIC is shown as:

∑ ∑ ∑⎜ ⎟= × − ⎛
⎝

× + × ⎞
⎠= = =N N N

TIC A F A F1 ( ) / 1 1
i

N
i i i

N
i i

N
i1

2
1

2
1

2

(13)

where Ai represents the actual values and Fi the forecasted values.

4.4.3. Forecasting validity degree
In the FVD, suppose a time series x and there are q forecasting ap-

proaches. xit represents the forecasting value of ith approach at t time,
where = …i q1, 2, , , = …t n1, 2, , .

Definition 1. eit is the relative error of the ith approach at time t and E is
the matrix of the relative error.

=

⎧
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− < −

− < <
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−

− −
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x

x x
x

x x
x

x x
x

t it
t

t it
t

t it
t

t it
t (14)

Definition 2. The forecasting accuracy of the ith approach at t time is
FAit = 1 − |eit| and the forecasting validity degree of ith forecasting
approach is = −FVD E FA σ FA( )[1 ( )]it it it , where E(·) is the
mathematical expectation and σ(·) is the standard deviation [60].

4.4.4. Diebold Mariano (DM) test
The DM test is a statistical hypothesis test to assess the difference

between two forecasting models [64]. The original hypothesis and the
alternative hypothesis are = ∀H E ϖ n: ( ) 0,h0 and ≠ ∃H E ϖ n: ( ) 0,h1

respectively. Based on the DM statistics

=
∑ −= + +DM

o o k

ι k
ι

(L( ) L( ))/

/
h
k

t h
A

t h
B

1
( ) ( )

2
2

(15)

We can make a judgment whether the proposed forecasting model is
significantly different from comparison models.

4.4.5. Nonparametric test methods
Nonparametric statistical methods do not have to make assumptions

of parameters for the objective we are studying. Due to the volatility
and complexity of short-term load series, it is difficult to generalize its
characteristics with established distribution . In order to testify whether
different data samples obey the same distribution, four nonparametric
statistical methods, including the Chi-square test, Kruskal-Wallis (K-W)
test, Friedman test, and Spearman's rank correlation coefficient, are
applied for extensively evaluation in this paper.

A Chi-square test is used to evaluate the significance of various
study data samples. In this paper, we employ the Chi-square test based
on a classical hypothesis:

Table 1
Parameter setting of the methods.

Models Experimental parameters Default values Ref.

ILMD Max iterations 50 [53]
Max number of PFs 10
sifting stopping thresholds [0.0001,0.7,0.05]
End extension length to original data 0.2

PSR Max delay time 200 [54]
BPNN Learning velocity 0.1 [55]

Maximum number of training 100
Training requirements precision 0.00001

MOGOA Max iterations 100 [56]
Max size of archive 100
The number of grasshopper 200
Range of individual size [-1, 1]
Repulsion forces 0.5
Attraction forces 0.4
Gravitational constant 9.8
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= ≠μ μ μ μH H: , :0 1 2 1 1 2 (16)

The K-W test is a goodness of fit test that especially applies for ex-
ploring the distribution of continuous random variables [65]. The null
hypothesis of the K-W test is that the samples to be verified obey the
same distribution and conversely, the alternative hypothesis is that the
two samples do not obey a distribution. The K-W statistic H is defined as
below:

∑ ∑=
+

− =
+

− +
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n
N N n

NH R R
R12

( 1)
( ¯ ¯ ) 12

( 1)
3( 1)

i
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i i
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i

i1

2

1

2

(17)

where = ∑N ni is the observation number and k signifies the sample
number. Ri and ni represents the sum of the ranks and the number of
observations in the ith sample respectively.

The Friedman rank sum test considers complete block design [66],
where the null hypothesis is defined as all the positional parameters are
consistent. The Friedman test statistic is described as follows:
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(18)

Theoretically, Q obeys the Chi-square distribution.
The Spearman's rank correlation coefficient is the most far-reaching

rank statistic [67] that measures the correlation between two data
samples. Similar to the R2, the Spearman's rank correlation coefficient
statistic is defined as follows:

∑=
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where Ri and Si are the ith rank of the first and second data samples
respectively, and = −d R S( )i i i

2 2 measures the distance between two
data samples.

4.5. Results and analysis

4.5.1. Case study of Victoria
The 30-min short-term load data from Victoria is used to verify the

performance of the proposed model in the urban smart grid system.
Multi-step ahead rolling forecasting results, including one-step, two-
step and three-step ahead rolling forecasting are shown in Table 5, and
further elaboration of the forecasting performance is shown in Table 6,
where the values in the bold present the optimal values of each criterion
among all the models.

From Table 5 we can conclude that the single BPNN model cannot
achieve desirable forecasting results, with the worst performance in
comparison with other hybrid BPNN models. For example, the MAE,
RMSE, and MAPE values of the BPNN model in one-step ahead fore-
casting in the V-spring database are 205.5355, 269.0515, and 3.9693
respectively, which are significantly higher than other comparison
models listed in the table. Owing to the contributions of the optimiza-
tion algorithms, hybrid models GOA-BPNN and MOGOA-BPNN ac-
complish comparatively good forecasting results for different multi-step
ahead forecasting. However, it is noteworthy that the forecasting per-
formance is slightly improved by optimization algorithms. Data de-
composition methods, conversely, plays a decisive role in enhancing
forecasting accuracy and persistence. For example, the ILMD de-noising
approach leads to reductions of 140.6381 in MAE, 183.9491 in RMSE,
2.7212 in MAPE for one-step ahead forecasting, 84.3244 in MAE,
112.7299 in RMSE, 1.5699 in MAPE for two-step ahead forecasting, and
27.1475 in MAE, 37.8664 in RMSE, 0.5441 in MAPE for three-step
ahead forecasting, respectively. Moreover, Fig. 3 also displays the
model comparison results in the case of Victoria. The proposed model is
combined with other three hybrid models (e.g. MOGOS-BP, RLMD-BP,
and RLMD-GOA-BP), and different models are marked in different
colors. It can be found that the proposed forecasting model fits better in
the observed values than other models in all the four seasons, with the
yellow lines highly consistent with the orange lines. To conclude, the
proposed model takes advantage of data preprocessing methods and
optimization algorithms, and contribute to forecasting performance.

Table 6 provides an extensive analysis of the proposed forecasting
model. Statistical methods (e.g. the Naïve predictor and ARIMA), and
five BP-based models are selected as benchmark models. Another five
evaluation metrics (e.g. AE, DA, FB, R2, and TIC) are employed for
measuring the forecasting performance. It can be observed from the
experimental results that the proposed forecasting model is superior to

Table 2
The descriptive statistical characteristics of the study samples (MW).

Sites Seasons Length Mean Max Min. Median Std.

V Spring 4320 5673.7898 9587.5100 3833.4800 5437.3850 1087.3570
Summer 4368 5608.6828 7813.3500 3839.8800 5645.4450 821.8795
Autumn 4416 5561.7136 7699.9300 3705.9300 5619.1550 823.2917
Winter 4416 5207.4736 9007.5200 3551.6000 5119.8350 743.3472

N Spring 4320 7873.4508 11186.0000 5449.5900 7911.0200 1134.4818
Summer 4368 8438.2571 11553.7500 5870.4800 8548.7100 1154.4959
Autumn 4416 7742.8557 11073.4900 5546.3600 7851.5750 1006.6428
Winter 4416 7874.3353 13787.8500 5113.0300 7833.7450 1323.2630

*The optimal number of training set and testing set are determined by the PSR based on the C-C.

Table 3
The mechanism of multi-step ahead rolling forecasting.

Multi-step ahead forecasting Historical variables Previously forecasting
variables

1-step ahead forecasting y1, y2,… ym-1, ym –
2-step ahead forecasting y2, y3,… ym-1, ym ⌢

y1
3-step ahead forecasting y3, y4,… ym-1, ym ⌢ ⌢

y y,1 2
… … …
n-step ahead forecasting yn, yn+1,… ym-1, ym ⋯

⌢ ⌢ ⌢
−y y y, , n1 2 1

Table 4
The evaluation metrics for multiple points.

Metric Definition Equation

AE The average error of N
forecasting results

= ∑ −=AE (F A )
N i

N
i i

1
1

MAE The mean absolute error of N
forecasting results

= ∑ −=MAE F A| |
N i

N
i i

1
1

RMSE The square root of the mean
square error

= × ∑ −=RMSE (F A )
N i

N
i i

1
1

2

MAPE The mean absolute percent
error of N forecasting results

= ∑ ×=
−MAPE 100%

N i
N i i

i
1

1
A F

A

DA The direction accuracy of
forecasting results = − − >+ +{DA if

otherwise
1,
0,

(A A )(F A ) 0i i i i1 1

FB The fractional bias of
forecasting results

= × − +FB A F A F2 ( ¯ ¯ )/( ¯ ¯ )

R2 Coefficient of determination
= −

∑ = −

∑ = −
R 1 i

N i i

i
N i F

2 1(F A )

1(F ¯)
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other benchmark models in terms of AE, DA, FB, R2, and TIC. For ex-
ample, the DA value of the developed forecasting model is 0.8238 for
one-step forecasting in database V-spring, whereas, the DA values

conducted by the Naïve Predictor, ARIMA, BP, GOA-BP, MOGOA-BP,
ILMD-BP, and ILMD-GOA-BP are 0.6897, 0.6520, 0.6461, 0.6900,
0.7270, 0.7238, and 0.6959, respectively. Regardless of one-step, two-
step or three-step ahead forecasting, the proposed model always
achieves the lowest AE, FB, and TIC values, and the highest DA, and R2

values. In other words, the proposed forecasting model can effectively
and efficiently forecast short-term load with high forecasting accuracy
(measured by the error measurement criteria AE and R2) and the pre-
cise direction and equality (measured by DA, FB, and TIC).

Remarks: Based on the above experiments, it is verified that the
proposed forecasting model outperforms other comparison models in
almost all of the cases. The combination of data-cleaning scheme, multi-
objective optimization algorithm, and neural networks capitalizes on
the advantages of each part, which results in the good performance of
the developed forecasting system in terms of accuracy and stability.

4.5.2. Case study of New South Wales
Another case study is employed to manifest the effectiveness and

efficiency of the proposed forecasting model. As mentioned before, 30-
min short-term load data in four databases (i.e. N-spring, N-summer, N-
autumn, and N-winter) are collected from New South Wales. The si-
mulation results for New South Wales are presented in Tables 7 and 8.

According to the experimental results, the proposed model achieves
better forecasting results in comparison with the Naïve Predictor,
ARIMA, BP, GOA-BP, MOGOA-BP, ILMD-BP, and ILMD-GOA-BP model.
For one-step ahead forecasting in the N-spring database, the MAE,
RMSE, and MAPE values of the proposed model are 83.7981, 54.6077,
and 0.7351, respectively. As for N-summer, N-autumn, and N-winter
databases, the MAE, RMSE, and MAPE values are 68.4001, 58.6261,
and 0.5616, 65.5574, 64.3753, and 0.6816, and 76.6759, 84.2976, and
0.6979, respectively. Similarly, the proposed model is superior to other
benchmark models in terms of MAE, RMSE, and MAPE for two-step
ahead and three-step ahead forecasting. When it comes to AE, DA, FB,
R2, and TIC, the developed model still performs the best among other
comparison models. For example, the R2 values of the proposed model
in N-winter is on 0.0823 of increase when compared with ARIMA,
0.2451 of increase with BP, and 0.2129 with MOGOA-BP. Moreover,
Fig. 4 shows more model comparison results. Some hybrid models, such

Table 5
Performance of multi-step ahead load forecasting models in Victoria (MAE, RMSE, MAPE (%)).

Sample Horizon One-step Two-step Three-step

Indices MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

V-Spring BP 205.5355 269.0515 3.9693 226.8960 304.5866 4.2770 228.1386 307.5375 4.3464
GOA-BP 190.7988 243.6851 3.6972 192.3724 244.9566 3.7685 211.6028 289.3475 3.9751
MOGOA-BP 161.7503 198.3946 3.3796 165.7086 199.1157 3.4677 211.1619 279.1419 4.0030
ILMD-BP 64.8974 85.1024 1.2481 142.5716 191.8567 2.7071 200.9911 269.6711 3.8023
ILMD-GOA-BP 63.2538 81.9432 1.2200 136.7703 177.9543 2.6131 193.7965 245.6415 3.7965
ILMD-MOGOA-BP 57.0906 73.9558 1.0936 126.8601 167.2498 2.4117 174.0703 208.9170 3.6392

V-Summer BP 282.4125 345.3183 4.9072 294.7932 356.6497 5.1854 321.5768 386.0644 5.6611
GOA-BP 280.8649 342.5530 4.9539 289.5914 354.7987 5.0284 320.1984 381.2388 5.5726
MOGOA-BP 279.6738 342.9161 4.8514 289.4781 351.3562 4.9330 313.0681 377.4471 5.4636
ILMD-BP 58.1187 77.0712 1.0201 146.4057 191.0332 2.5382 269.7049 338.7778 4.6952
ILMD-GOA-BP 42.5065 53.8342 0.7540 140.5453 178.6732 2.4558 257.4038 320.0347 4.4840
ILMD-MOGOA-BP 41.2048 52.6109 0.7222 139.2016 170.1014 2.4197 255.1285 318.0413 4.4368

V-Autumn BP 272.7112 350.5767 5.8019 285.4637 356.4023 6.0025 300.3804 367.5032 6.2375
GOA-BP 261.7305 333.9519 5.6526 261.2499 326.4393 5.6194 288.1691 348.1933 6.2076
MOGOA-BP 261.0706 322.9140 5.7019 274.8785 334.9508 5.9629 262.5115 334.8840 5.6653
ILMD-BP 53.1068 73.1069 1.1158 124.2941 158.7899 2.5660 212.6942 269.6689 4.4369
ILMD-GOA-BP 45.6097 60.9294 0.9395 123.6944 160.4249 2.5600 201.3773 259.8423 4.1897
ILMD-MOGOA-BP 45.1616 59.2764 0.9268 115.0913 149.8043 2.3828 195.0143 249.6555 4.0531

V-Winter BP 215.1376 297.6926 4.8919 220.8910 297.1208 5.0197 229.5910 301.8108 5.2143
GOA-BP 213.9300 304.7069 4.8444 208.5697 295.0989 4.7299 209.3238 290.0884 4.7450
MOGOA-BP 174.7423 230.7782 3.9470 179.2815 231.5367 4.0396 187.2065 238.3120 4.2078
ILMD-BP 58.7619 81.7712 1.2632 131.5108 175.3115 2.8426 194.6042 258.8000 4.2317
ILMD-GOA-BP 57.9586 88.1950 1.2445 129.2322 178.6998 2.7839 194.5340 254.1077 4.2467
ILMD-MOGOA-BP 56.9982 75.4477 1.2221 128.4235 174.2325 2.7736 192.8598 244.4135 4.1993

Table 6
Further analysis of one-step ahead load forecasting models in Victoria.

AE DA FB R2 TIC

V-Spring Naïve Predictor −5.0268 0.6897 0.0009 0.9764 0.0005
ARIMA 5.7581 0.6520 −0.0011 0.9676 0.0005
BP 28.8244 0.6461 −0.0054 0.8360 0.0026
GOA-BP 21.4514 0.6900 −0.0042 0.8876 0.0020
MOGOA-BP 7.3681 0.7270 −0.0014 0.8938 0.0007
ILMD-BP 7.2896 0.7238 −0.0015 0.8518 0.0007
ILMD-GOA-BP 2.2891 0.6959 −0.0004 0.9817 0.0002
ILMD-MOGOA-
BP

1.5844 0.8238 −0.0003 0.9923 0.0001

V-Summer Naïve Predictor −0.6798 0.6711 0.0001 0.8789 0.0001
ARIMA 22.6145 0.7383 −0.0040 0.9186 0.0020
BP 33.1321 0.6492 −0.0062 0.8352 0.0030
GOA-BP 22.4251 0.6731 −0.0043 0.9153 0.0021
MOGOA-BP 11.5741 0.6740 −0.0022 0.9583 0.0011
ILMD-BP 11.4120 0.6762 −0.0021 0.9683 0.0011
ILMD-GOA-BP 10.3961 0.7238 −0.0021 0.9727 0.0011
ILMD-MOGOA-
BP

5.6282 0.7730 −0.0011 0.9890 0.0005

V-Autumn Naïve Predictor 6.2209 0.7634 −0.0013 0.9648 0.0016
ARIMA 1.4884 0.6989 −0.0043 0.9534 0.0019
BP 23.0226 0.6424 −0.0045 0.8303 0.0022
GOA-BP 22.4330 0.6897 −0.0042 0.8958 0.0021
MOGOA-BP 15.5473 0.6959 −0.0029 0.9185 0.0014
ILMD-BP 11.7235 0.7082 −0.0022 0.9061 0.0011
ILMD-GOA-BP 11.4408 0.7017 −0.0024 0.9321 0.0012
ILMD-MOGOA-
BP

9.7636 0.8000 −0.0018 0.9825 0.0009

V-Winter Naïve Predictor −1.3532 0.7452 0.0003 0.9362 0.0001
ARIMA 1.8191 0.7163 0.0014 0.9151 0.0012
BP 45.9039 0.6463 −0.0081 0.7523 0.0040
GOA-BP 42.0556 0.6522 −0.0073 0.7801 0.0036
MOGOA-BP 35.1496 0.6604 −0.0061 0.7845 0.0030
ILMD-BP 5.6374 0.8571 −0.0010 0.9939 0.0005
ILMD-GOA-BP 4.2480 0.8707 −0.0007 0.9942 0.0004
ILMD-MOGOA-
BP

−2.2078 0.8959 0.0004 0.9974 0.0002
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as the RLMD-BP model and MOGOS-BP model, have been investigated
large forecasting bias in the Autumn case, while the proposed model
has stronger persistence and accuracy. Besides, the proposed model
shows the optimal trend with the observed values when combined with
other comparison models.

Remarks: The case study of New South Wales further demonstrates
that the proposed forecasting model is suitable for short-term load
forecasting. The simulation results comprehensively verify that the
forecasting model can accomplish high forecasting accuracy and

robustness, and evidently, it has significant practical application ability.

4.5.3. Forecasting stability assessment
Besides forecasting errors, forecasting stability is another indicator

that measures the performance of the proposed forecasting model. It is
generally believed that the smaller the variance, the higher the stabi-
lity. In the proposed model, the MOGOA is employed for enhancing the
forecasting accuracy and robustness simultaneously. It can be seen from
Table 9 that the proposed forecasting model has the lowest variance in

Fig. 3. The experimental results of the proposed model and four hybrid models in the case of Victoria.

Table 7
Performance of multi-step-ahead load forecasting models in New South Wales (MAE, RMSE, MAPE (%)).

Sample Horizon One-step Two-step Three-step

Indices MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

N-Spring BP 529.7089 279.2762 5.7885 502.4200 291.1534 5.0102 528.4126 277.4816 5.7716
GOA-BP 524.4263 271.6288 5.1432 501.0219 283.0730 5.3556 527.6221 276.0084 5.7649
MOGOA-BP 488.7897 234.4848 5.0445 500.5400 247.1797 5.3547 496.6040 242.1350 5.1611
ILMD-BP 110.9198 119.7667 0.9082 249.7321 135.5275 2.3571 408.1608 151.9887 3.9863
ILMD-GOA-BP 101.8664 98.1533 0.8364 229.8043 93.4284 2.1840 391.8702 139.9199 3.8296
ILMD-MOGOA-BP 83.7981 54.6077 0.7351 228.8194 87.3143 2.2108 387.8078 136.0640 3.7594

N-Summer BP 774.4688 643.4429 8.2923 756.5264 696.8721 8.0405 746.5230 837.0403 7.8427
GOA-BP 715.2809 551.5419 7.3484 720.5982 615.7048 7.3402 731.5901 682.9848 7.4164
MOGOA-BP 714.9232 424.8949 7.3432 720.5675 443.6386 7.3399 730.2887 568.0597 7.3982
ILMD-BP 83.1491 198.2655 0.7549 292.3615 381.8710 2.6446 531.4430 406.0237 4.6498
ILMD-GOA-BP 70.5269 96.8603 0.6158 269.9176 173.7217 2.4032 511.4113 224.4269 4.5332
ILMD-MOGOA-BP 68.4001 58.6261 0.5616 267.8809 72.9275 2.3195 507.9023 87.1930 4.4677

N-Autumn BP 646.1327 856.4574 7.1294 649.2271 964.3265 7.2128 686.7251 997.9809 7.3350
GOA-BP 645.7025 603.3979 6.1266 648.4980 869.2675 7.2096 677.9576 899.7732 7.0399
MOGOA-BP 652.4728 478.5862 6.0654 644.4271 530.6239 7.0338 656.1369 678.7360 7.3371
ILMD-BP 83.6346 152.2907 0.8389 200.5854 290.7369 1.9825 336.4515 383.9349 3.2524
ILMD-GOA-BP 68.9596 97.3827 0.7116 190.9284 161.0418 1.8544 333.7341 196.1679 3.2611
ILMD-MOGOA-BP 65.5574 64.3753 0.6816 194.0096 76.3231 1.8979 335.5193 111.9386 3.2765

N-Winter BP 835.5264 956.3082 9.0439 845.2462 988.3999 9.1498 864.4526 989.4014 9.3493
GOA-BP 834.0804 931.6828 9.0321 844.7169 964.8302 9.1416 864.0943 985.8843 9.3441
MOGOA-BP 772.8860 614.0613 8.3046 772.4869 653.2632 8.3153 781.5903 691.5067 8.4201
ILMD-BP 86.3086 460.1059 0.7909 238.2354 526.3725 2.3160 412.2954 650.0954 4.0455
ILMD-GOA-BP 81.5821 130.8789 0.8252 229.7783 138.1601 2.2438 404.0900 162.6317 3.9835
ILMD-MOGOA-BP 76.6759 84.2976 0.6979 215.7254 87.9627 2.1071 348.9468 117.3203 3.3601
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comparison with other benchmark models. Take Victoria as an ex-
ample, the variance of the proposed model in spring, summer, autumn,
and winter are 0.0093, 0.005, 0.0079, and 0.0117, respectively, and the
average variance is 0.0085. Referring to GOA-BP and ILMD-BP, the
average variance values are 0.0293 and 0.0106, respectively. Ad-
ditionally, it is obvious that the proposed model obtains the optimal
variance value in all the case studies.

Remarks: The multi-objective optimization algorithm successfully
accomplishes both high accuracy and stability in short-term load fore-
casting. Therefore, the proposed forecasting model in the urban smart
grid system can achieve desirable forecasting robustness when com-
pared with other benchmark models.

4.5.4. Statistical tests
In this paper, several databases in two case studies (Victoria and

New South Wales) are conducted to testify the performance of the
proposed forecasting model in the urban smart grid system. To verify
the distributions of paired samples are significantly different, two-

Table 8
Further analysis of one-step ahead load forecasting in New South Wales.

AE DA FB R2 TIC

N-Spring Naïve Predictor 2.2075 0.7665 −0.0003 0.9576 0.0001
ARIMA −11.5563 0.7305 0.0015 0.9355 0.0007
BP 134.1949 0.6647 −0.0170 0.7689 0.0085
GOA-BP 114.0209 0.7305 −0.0145 0.8099 0.0072
MOGOA-BP 109.1966 0.8024 −0.0139 0.7462 0.0069
ILMD-BP −5.6630 0.7246 0.0007 0.9888 0.0004
ILMD-GOA-BP −4.4796 0.7246 0.0006 0.9868 0.0003
ILMD-MOGOA-
BP

−2.7019 0.8545 0.0003 0.9924 0.0002

N-Summer Naïve Predictor 22.1400 0.8539 −0.0026 0.9277 0.0013
ARIMA −29.3745 0.7528 0.0034 0.9147 0.0017
BP 108.0240 0.5907 −0.0127 0.4340 0.0063
GOA-BP 89.4522 0.6292 −0.0103 0.5165 0.0051
MOGOA-BP 89.0819 0.6292 −0.0103 0.5165 0.0051
ILMD-BP −11.7519 0.8989 0.0014 0.9853 0.0007
ILMD-GOA-BP −9.2414 0.8876 0.0011 0.9855 0.0005
ILMD-MOGOA-
BP

−8.5165 0.8764 0.0010 0.9934 0.0005

N-Autumn Naïve Predictor −6.9694 0.7485 0.0009 0.9568 0.0005
ARIMA 1.3405 0.7665 −0.0028 0.9455 0.0001
BP 124.7928 0.6350 −0.0167 0.4165 0.0083
GOA-BP 86.7721 0.6826 −0.0113 0.6164 0.0056
MOGOA-BP 85.8409 0.6766 −0.0111 0.6135 0.0056
ILMD-BP 9.8916 0.7721 −0.0013 0.9935 0.0006
ILMD-GOA-BP 6.8555 0.7006 −0.0009 0.9890 0.0004
ILMD-MOGOA-
BP

3.2599 0.8442 −0.0004 0.9939 0.0002

N-Winter Naïve Predictor 9.6650 0.8333 −0.0012 0.9762 0.0006
ARIMA 1.3405 0.7665 −0.0012 0.9455 0.0001
BP 56.7159 0.7527 −0.0068 0.7181 0.0034
GOA-BP 55.5225 0.7527 −0.0067 0.7191 0.0033
MOGOA-BP 54.9644 0.7262 −0.0067 0.6917 0.0033
ILMD-BP −16.9945 0.8011 0.0021 0.9457 0.0010
ILMD-GOA-BP −6.5315 0.8280 0.0008 0.9565 0.0004
ILMD-MOGOA-
BP

2.8821 0.8989 −0.0004 0.9905 0.0002

Fig. 4. The experimental results of the proposed model and four hybrid models in the case of New South Wales.

Table 9
The variance of the forecasting errors (%).

Site Models Spring Summer Autumn Winter Average

Victoria BP 0.0377 0.0367 0.0551 0.0504 0.0450
GOA-BP 0.0311 0.0336 0.0519 0.0499 0.0416
MOGOA-BP 0.0243 0.0084 0.0464 0.0380 0.0293
ILMD-BP 0.0109 0.0060 0.0113 0.0140 0.0106
ILMD-GOABP 0.0103 0.0056 0.0081 0.0136 0.0094
ILMD-
MOGOA-BP

0.0093 0.0050 0.0079 0.0117 0.0085

New South
Wales

BP 0.0616 0.0575 0.0536 0.0551 0.0744

GOA-BP 0.0533 0.0510 0.0506 0.0497 0.0704
MOGOA-BP 0.0508 0.0510 0.0504 0.0498 0.0703
ILMD-BP 0.0097 0.0217 0.0356 0.0219 0.0073
ILMD-GOABP 0.0087 0.0199 0.0343 0.0213 0.0058
ILMD-
MOGOA-BP

0.0070 0.0199 0.0341 0.0210 0.0056
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sample statistical nonparametric tests, including the Chi-square test, the
K-W test, Friedman rank sum test, and Spearman correlation coefficient
are implemented. Table 10 shows the tests results and all the databases
are verified significantly distinct. The Chi-square test, K-W test, and
Friedman rank sum test results are statistically significant and the
Spearman correlation coefficient results are not highly relative. In other
words, all the experiments performed in this study are highly re-
presentative because they are based on varied datasets. To conclude,
the proposed forecasting model can adapt to different environments
and successfully applied in the urban power systems.

The FVD reflects the comprehensive and average accuracy of the
forecasting models, and the higher the FVD, the greater the average
forecasting accuracy. That is to say, a model achieves a high forecasting
validity when the forecasting accuracy is high in all periods. Table 11
presents the FVD values of the proposed model and the benchmark
models. In comparison, the proposed model achieves the highest FVD
values while single comparison models have comparatively low FVD
values. In summary, the proposed model has the global best precision.

Table 11 also shows the DM test results, as well as the responding p
values. From the experimental results it can be concluded that the de-
veloped forecasting model significantly outperforms other comparison
models. The DM values of the Naïve Predictor, ARIMA, BP, GOA-BP,
MOGOA-BP, ILMD-BP, and ILMD-GOA-BP model in Victoria are 8.9793,
7.0297, 6.8724, 6.2550, 4.6587, 4.0187, and 3.3389, respectively,
which are all much larger than Z0.01/2 = 2.58. Admittedly, it can be
observed that there is a 99% probability to accept the alternative hy-
pothesis. That is to say, the proposed forecasting model in the urban
smart grid system has a significant difference with the comparison
models, where the significance level is 99%. Another case also indicates
the significance of the DM test. Besides ILMD-GOA-BP (95% sig-
nificant), other benchmark models are 99% significantly different from
the proposed model.

Remarks: Four statistical nonparametric tests are used to verify the
difference of the study datasets, and the test results indicate the high
adaptability of the proposed forecasting model. Additionally, various
statistical tests manifest that the proposed model achieves the lowest
forecasting errors and exhibits a significant improvement in accuracy
and stability compared to other models.

5. Discussion

5.1. Comparison of different train-test ratios

There are no standard rules to set up the best train-test ratio, and the
PSR based on the C-C method attempts to determine the suitable train-
test ratio in this paper. Admittedly, the train-test ratio determining
approach cannot make sure the optimal forecasting performance, and
parameter fine-tuning is also needed. However, in the past decade, few
mechanisms have been studied in this field. Moreover, the fine-tuning
process is often time-consuming and based on expert decisions. In this
subsection, several different train-test ratios are implemented to verify
the good performance of the PSR based determining method. The train-
to-verify ratio, percentages and their responding forecasting perfor-
mance in dataset V-spring and N-spring are shown in Table 12. In the V-
spring database, the embedding dimension calculated by the PSR is 15,
so the input-output ratio in the different train-test ratios are all set to
14:1. Similarly, the input-output ratio of the N-spring are all set to 24:1.
It is considered from Table 12 that the PSR train-test ratio determining
method can effectively select the optimal number of training and test
set. Take New South Wales database as an example, the R2 values in 2:1,
3:1, 5:1, 10:1, and 20:1 train-test ratio are 0.7660, 0.7561, 0.8230,
0.7448, and 0.7816, respectively, which are inferior to the train-test
ratio that determined by the PSR.

5.2. Algorithm tests

This subsection is aimed at comparing three multi-objective algo-
rithms (i.e. MODA, MOPSO, and MOBA) with MOGOA to prove the
effectiveness and efficiency of the MOGOA. Four test functions (de-
scribed in Appendix B), two measurement indicators (IGD and SPC) are
employed to evaluate the fitting performance of multi-objective algo-
rithms. The formula of IGD and SPC are presented below, where di
represents the Euclidean distance between the ith true Pareto optimal
solution and the nearest ones obtained by algorithms, and N is the
number of true Pareto optimal solutions.

∑=
=N

dIGD 1
i

N
i1
2

(20)

∑= − −
=

d d nSPC ( ¯ ) / 1
i

n

i
1

2

(21)

The experimental parameters setting in the test is noted as follows:
The iteration number is 100, and the number of search agents and the
archive size are 200 and 100, respectively. The statistic values of IGD
and SPC are displayed in Table 13. It can be concluded that the MOGOA
accomplishes the better fit performance in terms of all the statistical
characteristic of IGD and SPC.

5.3. Comparison of each component of forecasting model

In this subsection, the contributions of each component of the
proposed forecasting model are compared and discussed in Table 14.
An improvement percentage analysis is used to illustrate the relative
improvement of two paired models in V-spring and N-spring databases.
It appears that the considerable improvements by each component.
From the comparison of BP and GOA-BP, it is found that the GOA op-
timization algorithm plays a significant role in enhancing the fore-
casting accuracy, with the average improvement of 8.3898 in RMSE,
5.3819 in MAPE, 10.3966 in R2, and 5.2149 in DA, respectively.
Whereas the MOGOA is superior to the GOA, with the average im-
provement of 18.1554 in RMSE, 4.9257 in MAPE, 2.8623 in R2, and
1.6716 in DA respectively, according to the comparison results of
MOGOA and GOA. When referring to the comparison of BP and ILMD-
BP, it can be clearly seen that the data cleaning method ILMD makes
larger contributions in improving forecasting performance than the
MOGOA. In conclusion, the combination of data preprocessing and
multi-objective optimization achieves a great improvement in terms of
the various measurement matrix.

5.4. Real applications of this study

The balance of power supply and demand is considered as a critical
task in power systems. Overload will cause an increase in start-up and

Table 10
Statistical tests for different study samples.

Indices Chi-sq K-W Friedman Spearman

V-Spring and V-Summer 0.0017 0.0029 0.0000 0.6138
V-Spring and V-Autumn 0.0000 0.0094 0.0000 0.5559
V-Spring and V-Winter 0.0000 0.0000 0.0000 0.7458
V-Summer and V-Autumn 0.0075 0.0234 0.0000 0.7346
V-Summer and V-Winter 0.0000 0.0000 0.0000 0.5567
V-Autumn and V-Winter 0.0000 0.0000 0.0000 0.6112
N-Spring and N-Summer 0.0000 0.0000 0.0000 0.6076
N-Spring and N-Autumn 0.0000 0.0000 0.0000 0.6540
N-Spring and N-Winter 0.0001 0.0019 0.0000 0.7030
N-Summer and N-Autumn 0.0000 0.0000 0.0000 0.6741
N-Summer and N-Winter 0.0000 0.0000 0.0000 0.6423
N-Autumn and N-Winter 0.0000 0.0060 0.0019 0.5637
V and N 0.0000 0.0000 0.0000 0.5247

C. Li Applied Energy 266 (2020) 114850

12



long-term costs due to the inherent difficulties in electricity storage.
Conversely, underload will affect the quality of power supply, rendering
it incapable of satisfying regular power demands and potentially com-
promising the safety and stability of the power system. For short-term
load forecasting models, the overestimated forecasting will generate
excessive electricity, whereas the underestimated forecasting will cause
electrical power shortage, and that means high losses in production and
people’s life. The proposed forecasting model in urban smart grid

systems can provide accurate and persistent forecasting results and
assist policymakers to conduct effective solutions in a timely manner.
Moreover, based on the forecasted short-term load values, a detailed
schedule can be made to adjust the energy structure and power dis-
patch. If the values are larger (or smaller) than the capacity of the
powerful motors, the generator sets should be adjusted to avoid da-
mage. The proposed model also can be used in other smart grid systems
in different regions around the globe since the transitions of electricity
sectors are happening in most of the urban smart grid systems. By
showing forecasting results with high accuracy and stability, the pro-
posed forecasting model in this study could provide a powerful basis for
international and national policies and have a large influence on tran-
sitions of energy and smart grid systems as well.

5.5. Limitations and future work

Driven by the emerging RE technologies development, urban power

Table 11
Summary of average DM test values and forecasting validity degrees.

Models Victoria New South Wales

DM p-value FVD DM p-value FVD

Naïve Predictor 8.9793* 0.0000 88.2645 9.0024* 0.0000 82.6458
ARIMA 7.0297* 0.0000 89.2647 8.5784* 0.0000 86.4447
BP 6.8724* 0.0000 92.0254 5.1016* 0.0000 89.5514
GOA-BP 6.2550* 0.0000 93.0369 4.6051* 0.0000 90.5254
MOGOA-BP 4.6587* 0.0000 93.9584 4.5827* 0.0000 96.6196
ILMD-BP 4.0187* 0.0000 95.3254 3.7874* 0.0000 98.7092
ILMD-GOA-BP 3.3389* 0.0008 95.9685 2.0896** 0.0366 98.1245
ILMD-MOGOA-BP – – 98.7000 – – 99.0122

Note: *represents the1% significance level; **represents the 5% significance
level.

Table 12
The forecasting performance of the proposed model in different train-test ratio.

Case study Train-test ratio Percentage of training set MAPE R2

Victoria 2:1 66.6667% 4.7155 0.8242
3:1 75.0000% 3.5675 0.9125
5:1 83.3333% 4.1795 0.8980
10:1 90.9091% 4.1158 0.9124
20:1 95.2381% 1.1371 0.9340
4123:181 95.7946% 1.0936 0.9923

New South Wales 2:1 66.6667% 5.6331 0.7660
3:1 75.0000% 4.7181 0.7561
5:1 83.3333% 5.8369 0.8230
10:1 90.9091% 2.6125 0.7448
20:1 95.2381% 1.7983 0.7816
4027:267 93.7820% 0.7351 0.9924

Table 13
Statistic values of IGD and SPC for four test functions.

Metrics Algorithm ZDT1 Algorithm ZDT2

Ave Std. Median Best Worst Ave Std. Median Best Worst

IGD MODA 0.0067 0.0022 0.0070 0.0098 0.0026 MODA 0.0250 0.0006 0.0249 0.0262 0.0243
MOPSO 0.0014 0.0025 0.0014 0.0020 0.0010 MOPSO 0.0248 0.0003 0.0248 0.0254 0.0243
MOBA 0.0021 0.0002 0.0021 0.0023 0.0021 MOBA 0.0251 0.0005 0.0250 0.0265 0.0242
MOGOA 0.0011 0.0001 0.0012 0.0014 0.0009 MOGOA 0.0172 0.0003 0.0159 0.0245 0.0141
Algorithm ZDT3 Algorithm ZDT4

Ave Std. Median Best Worst Ave Std. Median Best Worst
IGD MODA 0.0012 0.0070 0.0010 0.0020 0.0003 MODA 0.0018 0.0095 0.0021 0.0027 0.0004

MOPSO 0.0016 0.0005 0.0016 0.0025 0.0008 MOPSO 0.0015 0.0003 0.0014 0.0022 0.0010
MOBA 0.0013 0.0004 0.0012 0.0022 0.0009 MOBA 0.0013 0.0003 0.0014 0.0017 0.0009
MOGOA 0.0011 0.0002 0.0009 0.0017 0.0008 MOGOA 0.0010 0.0001 0.0010 0.0026 0.0008
Algorithm ZDT1 Algorithm ZDT2

Ave Std. Median Best Worst Ave Std. Median Best Worst
SPC MODA 0.0259 0.0100 0.0261 0.0447 0.0093 MODA 0.0336 0.0132 0.0348 0.0576 0.0126

MOPSO 0.0818 0.0114 0.0813 0.1060 0.0658 MOPSO 0.0850 0.0196 0.0832 0.1248 0.0513
MOBA 0.0117 0.0012 0.0117 0.0141 0.0100 MOBA 0.0263 0.0124 0.0238 0.0520 0.0064
MOGOA 0.0109 0.0010 0.0107 0.0138 0.0086 MOGOA 0.0135 0.0018 0.0131 0.0178 0.0105
Algorithm ZDT3 Algorithm ZDT4

Ave Std. Median Best Worst Ave Std. Median Best Worst
SPC MODA 0.0426 0.0653 0.0262 0.3109 0.0069 MODA 0.0216 0.0099 0.0212 0.0439 0.0069

MOPSO 0.0769 0.0127 0.0792 0.0931 0.0582 MOPSO 0.0806 0.0196 0.0824 0.1210 0.0324
MOBA 0.0123 0.0017 0.0120 0.0155 0.0090 MOBA 0.0128 0.0024 0.0129 0.0165 0.0091
MOGOA 0.0096 0.0013 0.0086 0.0126 0.0066 MOGOA 0.0076 0.0023 0.0079 0.0116 0.0013

Table 14
Results of the improvement percentages of each component in the proposed
model (%).

Improvement
percentages

Victoria New
South
Wales

Average Victoria New
South
Wales

Average

BP vs. GOA-BP GOA-BP vs. MOGOA-BP

RMSE 2.9892 13.7904 8.3898 10.6045 25.7065 18.1554
MAPE 2.1574 8.6064 5.3819 6.6231 3.2282 4.9257
R2 6.9150 13.8781 10.3966 2.1933 3.5313 2.8623
DA 4.6827 5.7470 5.2149 1.9335 1.4097 1.6716
Improvement

percentages
BP vs. ILMD-BP ILMD-BP vs. ILMD-GOA-BP

RMSE 74.8898 65.9867 70.4383 10.1403 54.5075 32.3239
MAPE 76.2538 89.1159 82.6849 10.5268 9.2289 9.8779
R2 14.3309 67.4139 40.8724 4.3171 0.1150 2.2161
DA 14.7562 20.9451 17.8507 0.9038 1.7487 1.3263
Improvement

percentages
BP vs. ILMD-MOGOA-BP ILMD-GOA-BP vs. ILMD-

MOGOA-BP
RMSE 79.3060 90.4256 84.8658 8.2874 38.1238 23.2056
MAPE 79.7412 91.1543 85.4478 4.6489 10.4650 7.5570
R2 20.2041 69.8481 45.0261 0.7859 1.3375 1.0617
DA 27.4265 31.4366 29.4316 10.0465 10.6088 10.3277
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grids are anticipated to be more complex in the near future. The un-
certainties of smart grid systems are increasing as a great number of
factors may affect electricity demand. This paper does not focus on the
future load demand in a long-term perspective, but the short-term load
fluctuation. The forecasting model proposed in this study does not
consider other related factors but is only based on the detailed historical
short-term load. Many key impacts may be missing and there are also a
big research gaps there. From the perspective of life cycle assessment
(LCA), research on the whole system from “cradle-to-grave” is in-
troduced, which can be employed into forecasting models. Moreover,
scientific scenarios can be established to combine long-term forecasting
with short-term forecasting, and more works also need to be done in
related fields. Follow-up studies could be performed in the future work,
including but not limited to:

• Additional factors or parameters can be considered in the fore-
casting model to enhance the short-term load forecasting effective-
ness.

• Research on energy systems, especially the use of RE, needs to be
studied so that the distribution and structures of future RE can be
well known, which is the key factor for short-term load forecasting.

• Paying close attention to the development of data cleaning tech-
nologies to deal with irregular and unstable short-term load data so
that the adverse impacts of noise can be effectively controlled.

• A dynamic model selection strategy could be considered when de-
termining the weights of hybrid or combined models.

• LCA-based modeling and scenario analysis can be introduced into
forecasting models.

• More case studies in different smart grid systems could be done to
show the scalability of the proposed forecasting model.

6. Conclusion

The transitions of RE to energy and power systems are developed to
achieve urban sustainability goals. However, given the volatility and
intermittency of RE resources, it is challenging to propose state-of-art
short-term load forecasting models. Accurate and robust short-term
load forecasting in the urban grid system can reduce risks and improve
the security of power systems, as well as bring more economic and
social benefits. In the last decade, numerous studies have focused on
improving the short-term load forecasting accuracy but few of them pay
attention to forecasting persistence. ML-based forecasting models have
been studied but their inner mechanism is not fully considered yet.
Besides, most researches ignored in-depth data cleaning and mining,
and the intrinsic characteristics of short-term load data are not further
analyzed. In this paper, a newly hybrid short-term load forecasting
model is developed, which takes advantage of an advanced data

cleaning scheme, the PSR based on the C-C data mining method, and a
neural network optimized by a multi-objective optimization algorithm.
The key findings of this paper are summarized as follows.

• An improved local mean decomposition is added to the data
cleaning scheme, which is verified effectively to eliminate the noise
and mine the inner characteristics of the short-term load series.

• A scientific parameter determination strategy (the PSR based on the
C-C method) is proposed to avoid time-consuming fine-tuning, over-
fitting and insufficient training problems.

• Multi-objective optimization is conducted to optimize the weight
and threshold of the neural network to simultaneously enhance
forecasting accuracy and stability.

In the experimental designs, both one-step and multi-step ahead
rolling forecasting are implemented, and various evaluation system is
conducted, including single and multiple measurements, and para-
metric and non-parametric statistical tests. Experimental results show
that the proposed forecasting model outperforms all the comparison
models in terms of almost all measurements and tests. For one-step
ahead forecasting, the proposed model leads 3.65%, 3.31%, 2.08%,
0.21% and 0.09% ahead to the BP, GOA-BP, MOGOA-BP, ILMD-BP,
ILMD-GOABP model, respectively, in the case of Victoria. To sum up,
the proposed model makes full use of the strengths of each component
and overcomes the limitations of current forecasting models in smart
grid systems, which can guide policymakers for smart grid management
and urban sustainability development. Its final success rendering it ef-
fective for applications not only in the power systems but also in other
fields of engineering in the future.
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Appendix A. Pseudocode of MOGOA

Algorithm: MOGOA

Fitness function:
⎧

⎨
⎪

⎩⎪

= ∑ ×

= −

−
⌢

⌢
min

fitness

fitness std y y

100%
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N
i

yi yi
yi

i i
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Output:yb—the value of y with the best fitness value
1 /*Set the parameters of MOGOA
2 /*Initialize population yi (i = 1, 2,…, NC)
3 /*Set the current iteration t = 1
4 WHILE (t < GenMax) DO
5 /*Calculate the fitness function f
6 /*Select the best solution yb
7 /*Update the value of λ by using Eq. (19)
8 FOR EACH j = 1: N DO
9 /*Normalize the distance between the solutions in y in certain interval
10 /*Update yj by using Eq. (18)
11 END FOR
12 END WHILE
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13 RETURN yb

Appendix B. Statistic values of IGD and SPC for four test functions
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