311 research outputs found

    Data Confidentiality in Mobile Ad hoc Networks

    Full text link
    Mobile ad hoc networks (MANETs) are self-configuring infrastructure-less networks comprised of mobile nodes that communicate over wireless links without any central control on a peer-to-peer basis. These individual nodes act as routers to forward both their own data and also their neighbours' data by sending and receiving packets to and from other nodes in the network. The relatively easy configuration and the quick deployment make ad hoc networks suitable the emergency situations (such as human or natural disasters) and for military units in enemy territory. Securing data dissemination between these nodes in such networks, however, is a very challenging task. Exposing such information to anyone else other than the intended nodes could cause a privacy and confidentiality breach, particularly in military scenarios. In this paper we present a novel framework to enhance the privacy and data confidentiality in mobile ad hoc networks by attaching the originator policies to the messages as they are sent between nodes. We evaluate our framework using the Network Simulator (NS-2) to check whether the privacy and confidentiality of the originator are met. For this we implemented the Policy Enforcement Points (PEPs), as NS-2 agents that manage and enforce the policies attached to packets at every node in the MANET.Comment: 12 page

    Security Verification of Secure MANET Routing Protocols

    Get PDF
    Secure mobile ad hoc network (MANET) routing protocols are not tested thoroughly against their security properties. Previous research focuses on verifying secure, reactive, accumulation-based routing protocols. An improved methodology and framework for secure MANET routing protocol verification is proposed which includes table-based and proactive protocols. The model checker, SPIN, is selected as the core of the secure MANET verification framework. Security is defined by both accuracy and availability: a protocol forms accurate routes and these routes are always accurate. The framework enables exhaustive verification of protocols and results in a counter-example if the protocol is deemed insecure. The framework is applied to models of the Optimized Link-State Routing (OLSR) and Secure OLSR protocol against five attack vectors. These vectors are based on known attacks against each protocol. Vulnerabilities consistent with published findings are automatically revealed. No unknown attacks were found; however, future attack vectors may lead to new attacks. The new framework for verifying secure MANET protocols extends verification capabilities to table-based and proactive protocols

    Secure Routing Protocol To Mitigate Attacks By Using Blockchain Technology In Manet

    Full text link
    MANET is a collection of mobile nodes that communicate through wireless networks as they move from one point to another. MANET is an infrastructure-less network with a changeable topology; as a result, it is very susceptible to attacks. MANET attack prevention represents a serious difficulty. Malicious network nodes are the source of network-based attacks. In a MANET, attacks can take various forms, and each one alters the network's operation in its unique way. In general, attacks can be separated into two categories: those that target the data traffic on a network and those that target the control traffic. This article explains the many sorts of assaults, their impact on MANET, and the MANET-based defence measures that are currently in place. The suggested SRA that employs blockchain technology (SRABC) protects MANET from attacks and authenticates nodes. The secure routing algorithm (SRA) proposed by blockchain technology safeguards control and data flow against threats. This is achieved by generating a Hash Function for every transaction. We will begin by discussing the security of the MANET. This article's second section explores the role of blockchain in MANET security. In the third section, the SRA is described in connection with blockchain. In the fourth phase, PDR and Throughput are utilised to conduct an SRA review using Blockchain employing PDR and Throughput. The results suggest that the proposed technique enhances MANET security while concurrently decreasing delay. The performance of the proposed technique is analysed and compared to the routing protocols Q-AODV and DSR.Comment: https://aircconline.com/ijcnc/V15N2/15223cnc07.pd

    A Novel Method of Enhancing Security Solutions and Energy Efficiency of IoT Protocols

    Get PDF
    Mobile Ad-hoc Networks (MANET’s) are wireless networks that are capable of operating without any fixed infrastructure. MANET routing protocols must adhere to strict secrecy, integrity, availability and non-repudiation criteria. In MANETs, attacks are roughly categorised into two types: active and passive. An active attack attempts to modify or remove data being transferred across a network. On the other hand, passive attack does not modify or erase the data being sent over the network. The majority of routing protocols for MANETs were built with little regard for security and are therefore susceptible to a variety of assaults. Routing technologies such as AODV and dynamic source routing are quite common. Both however are susceptible to a variety of network layer attacks, including black holes, wormholes, rushing, byzantine, information disclosure. The mobility of the nodes and the open architecture in which the nodes are free to join or leave the network keep changing the topology of the network. The routing in such scenarios becomes a challenging task since it has to take into account the constraints of resources of mobile devices. In this an analysis of these protocols indicates that, though proactive routing protocols maintain a route to every destination and have low latency, they suffer from high routing overheads and inability to keep up with the dynamic topology in a large sized network. The reactive routing protocols in contrast have low routing overheads, better throughput and higher packet delivery ratio. AODVACO-PSO-DHKE Methodology boosts throughput by 10% while reducing routing overhead by 7%, latency by 8% and energy consumption by 5%. To avoid nodes always being on, a duty cycle procedure that's also paired with the hybrid method is used ACO-FDR PSO is applied to a 100-node network and NS-3 is used to measure various metrics such as throughput, latency, overhead, energy consumption and packet delivery ratio

    Improved QoS and avoidance of black hole attacks in MANET using trust detection framework

    Get PDF
    In recent times, secured routing is a major research in MANETs. The behaviour of malicious nodes in this network increases the risk of threats and induces abnormal operations in MANETs. This affects the security of data transmitted between the nodes in the network. Hence, an effective technique is needed to prevent the abnormal nodes after the process of detection. In this paper, we propose an improved Trust Detection Algorithm to increase the probability of detection and prevention of Black Hole nodes in MANETs. The proposed framework observes the behaviour of each node using various trust metrics that includes the relationship between the sensor nodes, social and service attribute trust and QoS metric trusts. The behaviour of sensor nodes is found through the communication and mobility behaviour of each node. This method avoids the black hole nodes in MANETs, when the routing is carried out with Zone Routing Protocol (ZRP). Hence, the privacy of data is retained using the proposed method. The proposed method is tested in terms of different combinations of with and without trusts. The result shows that the proposed method is effective through various QoS metrics like overall throughput, packet loss, energy consumption, trust level, false acceptance rate and missed detection rate

    A Novel Method of Enhancing Security Solutions and Energy Efficiency of IoT Protocols

    Get PDF
    Mobile Ad-hoc Networks (MANET’s) are wireless networks that are capable of operating without any fixed infrastructure. MANET routing protocols must adhere to strict secrecy, integrity, availability and non-repudiation criteria. In MANETs, attacks are roughly categorised into two types: active and passive. An active attack attempts to modify or remove data being transferred across a network. On the other hand, passive attack does not modify or erase the data being sent over the network. The majority of routing protocols for MANETs were built with little regard for security and are therefore susceptible to a variety of assaults. Routing technologies such as AODV and dynamic source routing are quite common. Both however are susceptible to a variety of network layer attacks, including black holes, wormholes, rushing, byzantine, information disclosure. The mobility of the nodes and the open architecture in which the nodes are free to join or leave the network keep changing the topology of the network. The routing in such scenarios becomes a challenging task since it has to take into account the constraints of resources of mobile devices. In this  an analysis of these protocols indicates that, though proactive routing protocols maintain a route to every destination and have low latency, they suffer from high routing overheads and inability to keep up with the dynamic topology in a large sized network. The reactive routing protocols in contrast have low routing overheads, better throughput and higher packet delivery ratio. AODVACO-PSO-DHKE Methodology boosts throughput by 10% while reducing routing overhead by 7%, latency by 8% and energy consumption by 5%. To avoid nodes always being on, a duty cycle procedure that's also paired with the hybrid method is used ACO-FDR PSO is applied to a 100-node network and NS-3 is used to measure various metrics such as throughput, latency, overhead, energy consumption and packet delivery ratio

    Secure Routing Environment with Enhancing QoS in Mobile Ad-Hoc Networks

    Get PDF
    A mobile adhoc network is infrastructure-free and self configured network connected without wire. As it is infrastructure-free and no centralized control, such type of network are suitable only for conditional inter communication link. So initially maintaining Quality of Service and security aware routing is a difficult task. The main purpose of QoS aware routing is to find an optimal secure route from source to destination which will satisfy two or more QoS constrain. In this paper, we propose a net based multicasting routing scheme to discovery all possible secure path using Secure closest spot trust certification protocol (SCSTC) and the optimal link path is derived from Dolphin Echolocation algorithm (DEA). The numerical result and performance analysis clearly describe that our provided proposal routing protocol generates better packet delivery ratio, decreases packet delay reduces overhead in secured environment

    Countering Node Misbehavior Attacks using Trust Based Secure Routing Protocol

    Get PDF
    Wireless sensor networks have gained remarkable appreciation over the last few years. Despite significant advantages and tremendous applications, WSN is vulnerable to variety of attacks. Due to resource constraint nature of WSN, applicability of traditional security solutions is debatable. Although cryptography, authentication and confidentiality measures help in preventing specific types of attacks but they cannot safeguard against node misbehavior attacks and come at significant cost. To address this problem, we propose a Trust Based Secure Routing Protocol (TBSRP) which adopts on-demand routing principle and relies on distributed trust model for the detection and isolation of misbehaving nodes. The TBSRP aims to establish shortest path that contain all trusted nodes, identify packet forwarding misbehavior caused by malicious and faulty nodes and reroute the traffic to other reliable paths. The performance of TBSRP is evaluated in terms of packet delivery ratio, average end-to-end delay, normalized routing load and average throughput. Simulations results show that TBSRP can achieve both high delivery ratio and throughput in presence of various numbers of misbehaving and faulty nodes

    Reputation-Based Internet Protocol Security: A Multilayer Security Framework for Mobil Ad Hoc Networks

    Get PDF
    This research effort examines the theory, application, and results for a Reputation-based Internet Protocol Security (RIPSec) framework that provides security for an ad-hoc network operating in a hostile environment. In RIPSec, protection from external threats is provided in the form of encrypted communication links and encryption-wrapped nodes while internal threats are mitigated by behavior grading that assigns reputations to nodes based on their demonstrated participation in the routing process. Network availability is provided by behavior grading and round-robin multipath routing. If a node behaves faithfully, it earns a positive reputation over time. If a node misbehaves (for any number of reasons, not necessarily intentional), it earns a negative reputation. Each member of the MANET has its own unique and subjective set of Reputation Indexes (RI) that enumerates the perceived reputation of the other MANET nodes. Nodes that desire to send data will eliminate relay nodes they perceive to have a negative reputation during the formulation of a route. A 50-node MANET is simulated with streaming multimedia and varying levels of misbehavior to determine the impact of the framework on network performance. Results of this research were very favorable. Analysis of the simulation data shows the number of routing errors sent in a MANET is reduced by an average of 52% when using RIPSec. The network load is also reduced, decreasing the overall traffic introduced into the MANET and permitting individual nodes to perform more work without overtaxing their limited resources. Finally, throughput is decreased due to larger packet sizes and longer round trips for packets to traverse the MANET, but is still sufficient to pass traffic with high bandwidth requirements (i.e., video and imagery) that is of interest in military networks
    • …
    corecore