50 research outputs found

    An improved random bit-stuffing technique with a modified RSA algorithm for resisting attacks in information security (RBMRSA)

    Get PDF
    The recent innovations in network application and the internet have made data and network security the major role in data communication system development. Cryptography is one of the outstanding and powerful tools for ensuring data and network security. In cryptography, randomization of encrypted data increases the security level as well as the Computational Complexity of cryptographic algorithms involved. This research study provides encryption algorithms that bring confidentiality and integrity based on two algorithms. The encryption algorithms include a well-known RSA algorithm (1024 key length) with an enhanced bit insertion algorithm to enhance the security of RSA against different attacks. The security classical RSA has depreciated irrespective of the size of the key length due to the development in computing technology and hacking system. Due to these lapses, we have tried to improve on the contribution of the paper by enhancing the security of RSA against different attacks and also increasing diffusion degree without increasing the key length. The security analysis of the study was compared with classical RSA of 1024 key length using mathematical evaluation proofs, the experimental results generated were compared with classical RSA of 1024 key length using avalanche effect in (%) and computational complexity as performance evaluation metrics. The results show that RBMRSA is better than classical RSA in terms of security but at the cost of execution time.publishedVersio

    Recovering cryptographic keys from partial information, by example

    Get PDF
    Side-channel attacks targeting cryptography may leak only partial or indirect information about the secret keys. There are a variety of techniques in the literature for recovering secret keys from partial information. In this tutorial, we survey several of the main families of partial key recovery algorithms for RSA, (EC)DSA, and (elliptic curve) Diffie-Hellman, the public-key cryptosystems in common use today. We categorize the known techniques by the structure of the information that is learned by the attacker, and give simplified examples for each technique to illustrate the underlying ideas

    Solving Linear Equations Modulo Unknown Divisors: Revisited

    Get PDF
    We revisit the problem of finding small solutions to a collection of linear equations modulo an unknown divisor pp for a known composite integer NN. In CaLC 2001, Howgrave-Graham introduced an efficient algorithm for solving univariate linear equations; since then, two forms of multivariate generalizations have been considered in the context of cryptanalysis: modular multivariate linear equations by Herrmann and May (Asiacrypt\u2708) and simultaneous modular univariate linear equations by Cohn and Heninger (ANTS\u2712). Their algorithms have many important applications in cryptanalysis, such as factoring with known bits problem, fault attacks on RSA signatures, analysis of approximate GCD problem, etc. In this paper, by introducing multiple parameters, we propose several generalizations of the above equations. The motivation behind these extensions is that some attacks on RSA variants can be reduced to solving these generalized equations, and previous algorithms do not apply. We present new approaches to solve them, and compared with previous methods, our new algorithms are more flexible and especially suitable for some cases. Applying our algorithms, we obtain the best analytical/experimental results for some attacks on RSA and its variants, specifically, \begin{itemize} \item We improve May\u27s results (PKC\u2704) on small secret exponent attack on RSA variant with moduli N=prqN = p^rq (r2r\geq 2). \item We experimentally improve Boneh et al.\u27s algorithm (Crypto\u2798) on factoring N=prqN=p^rq (r2r\geq 2) with known bits problem. \item We significantly improve Jochemsz-May\u27 attack (Asiacrypt\u2706) on Common Prime RSA. \item We extend Nitaj\u27s result (Africacrypt\u2712) on weak encryption exponents of RSA and CRT-RSA. \end{itemize

    Cache Attacks Enable Bulk Key Recovery on the Cloud

    Get PDF
    Cloud services keep gaining popularity despite the security concerns. While non-sensitive data is easily trusted to cloud, security critical data and applications are not. The main concern with the cloud is the shared resources like the CPU, memory and even the network adapter that provide subtle side-channels to malicious parties. We argue that these side-channels indeed leak fine grained, sensitive information and enable key recovery attacks on the cloud. Even further, as a quick scan in one of the Amazon EC2 regions shows, high percentage -55\%- of users run outdated, leakage prone libraries leaving them vulnerable to mass surveillance. The most commonly exploited leakage in the shared resource systems stem from the cache and the memory. High resolution and the stability of these channels allow the attacker to extract fine grained information. In this work, we employ the \PnP\ attack to retrieve an RSA secret key from a co-located instance. To speed up the attack, we reverse engineer the cache slice selection algorithm for the Intel Xeon E5-2670 v2 that is used in our cloud instances. Finally we employ noise reduction to deduce the RSA private key from the monitored traces. By processing the noisy data we obtain the complete 2048-bit RSA key used during the decryption

    Recent Advancements on Symmetric Cryptography Techniques -A Comprehensive Case Study

    Get PDF
    Now a day2019;s Cryptography is one of the broad areas for researchers; because of the conventional block cipher has lost its potency due to the sophistication of modern systems that can break it by brute force. Due to its importance, several cryptography techniques and algorithms are adopted by many authors to secure the data, but still there is a scope to improve the previous approaches. For this necessity, we provide the comprehensive survey which will help the researchers to provide better techniques

    Exploitation of Unintentional Information Leakage from Integrated Circuits

    Get PDF
    Unintentional electromagnetic emissions are used to recognize or verify the identity of a unique integrated circuit (IC) based on fabrication process-induced variations in a manner analogous to biometric human identification. The effectiveness of the technique is demonstrated through an extensive empirical study, with results presented indicating correct device identification success rates of greater than 99:5%, and average verification equal error rates (EERs) of less than 0:05% for 40 near-identical devices. The proposed approach is suitable for security applications involving commodity commercial ICs, with substantial cost and scalability advantages over existing approaches. A systematic leakage mapping methodology is also proposed to comprehensively assess the information leakage of arbitrary block cipher implementations, and to quantitatively bound an arbitrary implementation\u27s resistance to the general class of differential side channel analysis techniques. The framework is demonstrated using the well-known Hamming Weight and Hamming Distance leakage models, and approach\u27s effectiveness is demonstrated through the empirical assessment of two typical unprotected implementations of the Advanced Encryption Standard. The assessment results are empirically validated against correlation-based differential power and electromagnetic analysis attacks

    Some Notes on Code-Based Cryptography

    Get PDF
    This thesis presents new cryptanalytic results in several areas of coding-based cryptography. In addition, we also investigate the possibility of using convolutional codes in code-based public-key cryptography. The first algorithm that we present is an information-set decoding algorithm, aiming towards the problem of decoding random linear codes. We apply the generalized birthday technique to information-set decoding, improving the computational complexity over previous approaches. Next, we present a new version of the McEliece public-key cryptosystem based on convolutional codes. The original construction uses Goppa codes, which is an algebraic code family admitting a well-defined code structure. In the two constructions proposed, large parts of randomly generated parity checks are used. By increasing the entropy of the generator matrix, this presumably makes structured attacks more difficult. Following this, we analyze a McEliece variant based on quasi-cylic MDPC codes. We show that when the underlying code construction has an even dimension, the system is susceptible to, what we call, a squaring attack. Our results show that the new squaring attack allows for great complexity improvements over previous attacks on this particular McEliece construction. Then, we introduce two new techniques for finding low-weight polynomial multiples. Firstly, we propose a general technique based on a reduction to the minimum-distance problem in coding, which increases the multiplicity of the low-weight codeword by extending the code. We use this algorithm to break some of the instances used by the TCHo cryptosystem. Secondly, we propose an algorithm for finding weight-4 polynomials. By using the generalized birthday technique in conjunction with increasing the multiplicity of the low-weight polynomial multiple, we obtain a much better complexity than previously known algorithms. Lastly, two new algorithms for the learning parities with noise (LPN) problem are proposed. The first one is a general algorithm, applicable to any instance of LPN. The algorithm performs favorably compared to previously known algorithms, breaking the 80-bit security of the widely used (512,1/8) instance. The second one focuses on LPN instances over a polynomial ring, when the generator polynomial is reducible. Using the algorithm, we break an 80-bit security instance of the Lapin cryptosystem

    VLSI architectures for public key cryptology

    Get PDF

    A Practical Second-Order Fault Attack against a Real-World Pairing Implementation

    Get PDF
    Several fault attacks against pairing-based cryptography have been described theoretically in recent years. Interestingly, none of these have been practically evaluated. We accomplished this task and prove that fault attacks against pairing-based cryptography are indeed possible and are even practical — thus posing a serious threat. Moreover, we successfully conducted a second-order fault attack against an open source implementation of the eta pairing on an AVR XMEGA A1. We injected the first fault into the computation of the Miller Algorithm and applied the second fault to skip the final exponentiation completely. We introduce a low-cost setup that allowed us to generate multiple independent faults in one computation. The setup implements these faults by clock glitches which induce instruction skips. With this setup we conducted the first practical fault attack against a complete pairing computation
    corecore