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Abstract 

This thesis addresses the issue of the efficient implementation of public key cryptosystems. 

Unlike conventional systems, public key cryptosystems allow secure exchange of information 

between two parties without prior exchange of secret keys. In addition, many public key 

cryptosystems may be used to provide digital signatures for authentication of documents. The 

underlying mathematics of most of these systems however, is more complex than that found 

in conventional systems, resulting in relatively poor performance of public key cryptosystems 

in terms of encryption rates. 

To improve the bandwidth of the encryption algorithms, processors specifically designed to 

implement public key cryptosystems are needed. The research presented in this thesis has 

identified modular multiplication of large integers to be a bottleneck in virtually all public key 

algorithms and proposes a novel approach to this operation suitable for hardware 

implementation. 

A modular multiplier architecture based on this technique has been proposed and forms the 

basis of a cascadable modular arithmetic processor capable of dealing with user defined word 

lengths. The device has been fabricated and results of tests on the finished chip suggest that 

the RSA encryption algorithm with a 512 bit modulus will achieve a throughput of 30 Kbits/s. 
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Chapter 1 Introduction 

"Gentlemen do not read each other's mail." 

-- USA. Secretary of State H. L. Stimson 
on closing the Black Chamber 1929 

1.1 The Need for Data Security 

It is an unfortunate fact that people will read each other's mail, especially if they stand to profit 

by doing so. Indeed Stimson himself, as Secretary of War in 1940, came to realize this, actively 

encouraging such activities through the United States war department's Military Intelligence 

Division. This is where cryptology is traditionally thought to belong and that, broadly speaking, 

was the case until the last decade when the falling price of powerful personal computers made 

them more accessible to the general public. Now, as we enter the era of Information 

Technology, Wide Area Networks are a reality and vast amounts of sensitive information 

stored on computer databases are routinely exchanged via public communication links. These 

networks and the falling cost and increasing performance of personal computers make it 

possible gain access to information stored on computers anywhere in the world. The ease with 

which this can be accomplished is demonstrated in a recent book by Clifford Stoll [145], where 

it is reported how, for more than a year, an intruder rifled through some three dozen computer 

systems in the USA from his home in West Germany. 

,.Such 'hackers' regularly make the headlines and have been doing so for a number of years. 

Initially computer crime was regarded by the public as something that could not affect them 

and was generally dismissed, but with the growing awareness of Information Technology, 

especially in the financial sector, data security and authenticity is now a real concern. An 

indication of the extent of the problem can be found in the May 1988 proceedings of the IEEE 

where G.Simmons lists sixteen reasons [138] for cheating in information based systems.With 

security conscious business managers increasingly looking to cryptology to protect their 

interests, data security is set to become one of the growth areas of the 90's. 
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1.2 The Impact of Public Key Cryptography 

Data encryption, the process of scrambling a message under the control of a secret key, has 

historically been used to protect sensitive information in military and diplomatic situations, and 

more recently for secure financial transactions. Since the security of such systems depends on 

the secrecy of the key, the growth of communications networks has led to problems of secure 

key distribution. How do two users agree in advance on a key that will be known only to 

themselves?. This was one of the driving forces that led to the discovery of public key 

cryptography by Diffie & Hellman in 1975 [45]. This technique, discussed in detail in chapter 2, 

uses separate keys for encryption and decryption and, with no distribution of secret keys, 

allows many people to encrypt messages in such a way that only one person can read them: 

the key distribution problem is solved by the user making his encryption key known to the 

public. Another benefit of the public key cryptosystem is that the encryption and decryption 

processes may be mutual inverses. In this case, an encryption followed by a decryption will 

have the same effect as a decryption followed by an encryption. This means that a user can 

'encrypt' a message with his private decryption key so that many users may 'decrypt' it with his 

public encryption key. In effect, the user has signed his message with a signature that cannot 

be forged, thus providing a means of guaranteeing the authenticity of a message. 

This radical twist to an old idea prompted David Kahn to describe public key cryptography as 

being "the most revolutionary new concept in the field since polyalphabetic substitution 

emerged in the Renaissance." [14] [p440] 

1.3 The Case for Cryptography ASICs 

It would appear then that the solution to society's data security and secure communications 

problems lies with public key cryptography. If this is the case then it is appropriate to question 

why public key cryptosystems are not in widespread use. Firstly, despite increasing 

awareness, adoption of computer security practices is still slow due to the cost involved in 

installing a security system that has previously not been needed. Secondly, secret-key 

encryption has been endorsed as a Data Encryption Standard [5] by the U.S. government. 

Finally and perhaps most importantly, the underlying mathematics behind most public key 
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cryptosystems tends to be more computationally complex than their secret key counterparts 

resulting in slower encryption rates. Figure 3.2 in Chapter 3 summarises the performance of 

the most popular public key algorithm published by Rivest Shamir and Adleman, RSA [120], 

and demonstrates that in software, encryption rates of only around 500 bits/s can be achieved 

with this algorithm. The Data Encryption Standard on the other hand has recently been 

reported [143] as achieving encryption rates ranging from 20 Kbits/s on a PC to 100 Kbits/s on 

a VAX 780. 

So. before public key cryptography can compete with secret key cryptography, either faster 

algorithms will have to be found, or novel hardware architectures will have to be designed to 

implement existing algorithms. This thesis proposes to take the latter course and to use ASIC 

technology to investigate new hardware architectures specifically designed for cryptographic 

applications. 

1.4 Aims of This Research 

Most of the important public key cryptosystems proposed to date rely on modular arithmetic for 

their operation. This type of arithmetic is complex, and inevitably involves division by the 

modulus which, for the 512 bit integers often required for security, leads to poor performance 

when compared to conventional cryptosystems. 

The research presented in this thesis addresses the design of special architectures capable of 

dealing efficiently with large integer modular arithmetic for public key cryptography. It is hoped 

that the resulting architectures will improve on the 12 Kbits/s of the fastest RSA processors 

commercially available [68], and be able to compete favourably with the 20 Kbits/s to 100 

Kbits/s of software implementations of the Data Encryption Standard. 

By proposing new architectures to improve the performance of public key cryptosystems it is 

hoped that the benefits offered by public key cryptography will become a more attractive option 

to the increasing number of security-conscious computer users. 
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Chapter 2 Introduction to Cryptology 

The aim of this chapter is to provide some of the fundamental ideas and theory of cryptology. 

Further, general, information may be found in [18], [41], [71], [83], [89], or the more 

mathematical text from van Tilborg [148]. This chapter also serves to define how the work 

presented in chapters four and five relates to the whole of cryptologic research. 

2.1 Cryptology Basics 

2.1.1 Terminology 

Cryptology is the general term used to describe the study of both cryptography and 

cryptanalysis. In the former, the aim is to design codes or ciphers to protect the secrecy and 

authenticity of information, whereas the latter discipline concerns itself with the breaking of 

codes to gain access to private information, or to forge coded signals so that they are accepted 

as genuine. The original message is often referred to as the plaintext or cleartext and the 

process of transforming this plaintext into ciphertext is known as encryption. The reverse 

process is known as decryption. In classical cryptography both the encryption and the 

decryption transformations depend on the same secret key so that knowledge of the key 

makes the transformations easy. Without the key the transformations should be virtually 

impossible. For example, one of the earliest known ciphers, attributed to the Roman emperor 

Julius Caesar, cyclically shifts each letter in the plaintext by three so that 'caesar' becomes 

'fdhvdu'. The key here is the number of places by which the alphabet is shifted. The basic 

model of a classical cryptosystem, Figure 2.1 shows the distinguishing feature of the secure 

channel by which the secret key is communicated. This has given rise to the term secret key 

cryptosystems, used to refer to classical systems, as opposed to the more recent public key 

systems. 
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secure area 
	 secure area 

key 
secure channel 

, Encryption 	ciphertext 	Decryption 
plaintext 	 i 	

insecure channel 	 plaintext 

Figure 2.1 Classical Cryptosystem 

2.1.2 Methods of Attack 

• Auguste Kerckchoff (1835 - 1903 ) suggested that in designing a cryptosystem it should be 

assumed that the enemy cryptanalyst knows all the details of the encryption and decryption 

transformations except for the value of the secret key. In other words, the security of the 

system lies entirely with the secrecy of the key, as is indeed the case for all public domain 

ciphers such as DES [5], FEAL [133], and RSA [120]. This leaves the classical cryptosystem 

open to three broad areas of attack. 

Ciphertext-Only attack 	The cryptanalyst only has access to the ciphertext. 

Known-Plaintext attack 

	

	The cryptanalyst knows some plaintext/ciphertext pairs for 

the current secret key. 

Chosen-Plaintext attack 

	

	The cryptanalyst can obtain the plaintexticiphertext pairs for 

his choice of plaintext 

Another successful method of attack not suitable for the following analysis but nevertheless 

one that should not be ignored in practical situations is theft of the secret key. 

From the above, and from Kerckchoff's assumption, it is clear that knowledge of some 

plaintext/ciphertext pairs alone is not enough to break a cipher. Only when the secret key has 

been deduced is the cipher said to be completely broken. A cipher is partially broken if the 

plaintext can be deduced sufficiently often without knowledge of the secret key. 
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2.2 Information Theory 

2.2.1 Practical Security 

With so many methods of attack, it is appropriate to question whether a cipher can ever be 

totally secure. To answer this question some means of quantifying and measuring the security 

of a cryptosystem is first required. These are some of the issues addressed by C. E. Shannon 

in his 1949 paper "Communication Theory of Secrecy Systems" [132]. 

Shannon examined the classical system of Figure 2.1 subject to ciphertext only attack. Under 

these conditions, he defined perfect secrecy to be the intuitive situation whereby intercepting 

the ciphertext gives the cryptanalyst no information. Casting the problem in terms of 

information theory [131], led Shannon to the theorem that a necessary and sufficient condition 

for perfect secrecy is that all messages and cryptograms are statistically independent. This 

means that the probability of receiving a particular cryptogram V given that the message X was 

sent encrypted by key Z, is the same as the probability of receiving the same V from any other 

message X' encrypted under a different key Z'. 

Figure 2.2 adapted from Shannon [132] illustrates a perfect system with three equally likely 

messages, and three equally likely keys. The cryptanalyst, on intercepting V has no way of 

guessing which key was used and therefore, which message was sent. 

key 

X2 W2  2 

Figure 2.2 Perfect Secrecy System 

Perfect secrecy is possible then, if statistical independence is achieved through use of 

completely random keys which are at least as long as the message they encipher. The only 

cipher to satisfy these conditions is the Vernam Cipher [150] with the key length greater than 
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or equal to the message length. This is better known as the one time pad from its use during 

World War II by spies who were issued with a pad of paper containing the randomly chosen 

secret key and told it could be used for only one encryption. 

The key length required for the one time pad makes it impractical for the majority of 

cryptosystems. That is not to say that all other systems are insecure. Among these 

theoretically soluble systems there exist wide variations in the amount of effort needed to effect 

a solution, and in the amount of ciphertext that must be acquired to make this solution unique. 

Shannon proposed the idea of two types of security theoretical security and practical security. 

The one time pad is a perfect system which is theoretically or unconditionally secure. This 

means that it is impossible to break under a ciphertext only attack even if the cryptanalyst has 

unlimited computational resources. Practical, or computational security implies that a system 

is secure against an attack from a cryptanalyst who has access to finite computational 

resources. 

To quantify the secrecy of a system, Shannon used the key and message equivocation 

functions. These functions measure the conditional entropy of the key, or message, given the 

received ciphertext, and are applied to the system of Figure 2.1 where 

The plaintext 
	

X = { X 1 , X2 , . . . XM } 	is M symbols chosen from Lx  possibilities 

The ciphertext 
	

is N symbols chosen from L possibilities 

The key 
	

Z={Zl,Z2,...ZK } 
	

is K symbols chosen from L possibilities 
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The key equivocation function H(Z) is the conditional entropy of the key and measures the 

uncertainty about the key given that Y 1 , Y2, . YN  has been received. 

H(Z) =H(ZIY1,Y2 ... YN) 

fI (Z) 
= L 

 (y, z) log (P(Z)
Y 

	 (EQ 2.1) 
1

)  

Where p, (z) is the conditional probability p (z) given y. 

and p (y, z) is the joint probability p (y) and p (z) 

Shannon showed this quantity to be related to the entropy of the key, message, and 

cryptogram, as follows 

H(z) H(x) +H(z) —H(Y) 	 (EQ2.2) 

In particular, if H(X) = H(Y) then the equivocation of the key is equal to the a priori uncertainty 

of the key H(Z). This is the case in the perfect system previously described. 

For most ciphers the probabilities are too complex to work out to determine the equivocation 

function exactly. However, Shannon has shown that the function H(Z) will have the form 

described by Figure 2.3. 

page 8 



Figure 2.3 Unicity Distance 

The function starts off at H(Z) = H(Z) when N = 0, decreases linearly with a slope of - D and 

then follows a decaying exponential with half life lID. The linear region may be extrapolated to 

H(Z) 
the intersection of the N-axis where N = 

	D 	
. At this point H(Z) = 0, which means only 

one key can have produced the ciphertext Y and the system can, in theory, be broken under a 

ciphertext only attack given enough computational resources. Exhaustive cryptanalysis, or 

trying every possible key, at this point will yield a unique solution. Shannon referred to this point 

as the unicity distance ,.t1 . 

From Figure 2.3 it can be seen that 

H (Z) 

	

= D 	
(EQ 2.3) 

Where D is the redundancy per letter of the ciphertext 

If, as is often the case, there is no expansion of the plaintext, then N = M , and L X  = L, then 

provided the key is chosen completely at random, the redundancy of the ciphertext will be 

equal to the redundancy of the plaintext itself and D can be approximated by 
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D=R — r 	 (EQ2.4) 

Where 	 R = absolute rate of the plaintext = 1092(L) 

and 	 r = actual rate of the plaintext 

The actual rate of a language for messages of length M characters long is 

H (x) 
r 

= M 	 (EQ2.5) 

For English, with 	M = 1 (1-grams) 	r 4.15 bits per letter 

M = 2 (2-grams) 	rw 3.62 bits per letter 

M = 3 ( 3-grams) 	rw 3.22 bits per letter 

For large M estimates of r for English range from 1.5 to 1.0 bits per letter. 

For English then, 

D = R - r z 1og26 - 1.0 = 3.7 	bits per letter 

Using D in (EQ 2.3) gives the unicity distance in bits per letter. It is often more instructive to 

use the percentage redundancy per letter of the plaintext as Massey does in [83]. This gives 

the unicity distance in bits which is more appropriate to modern ciphers that operate on a 

binary language, and allows comparisons to be made between ciphers whose symbols come 

from differing alphabets. 

The percentage redundancy is: 

D 
p = W 	 (EQ2.6) 

Which is approximately 0.8 for English. 

For example, the Caesar cipher on page 4 has 26 possible keys, since 

H(z) = p(z)1og_
1  

(EQ 2.7) p(z)) 

and all keys are equally likely so that p(z) = 1/K then 
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H(z) = K1ogK") = logK 

so for the Caesar cipher, 

- H (Z) - log 26 	 (EQ 2.8) 
p 	- 0.8 

Which is approximately 6 bits, or just over one character. 

For a random substitution there are 26! possible keys, and equation (EQ 2.8) shows the unicity 

distance is increased to approximately 110 bits, or 22 characters. 

The DES cipher discussed later, has a 56 bit key, and unicity distance of 70 bits or, if 5 binary 

digits are used to code the 26 letters of the alphabet's 14 characters. If 7 bits are used to code 

each character, allowing one parity bit, then DES will have a unicity distance of 10 characters. 

An RSA cipher with 512 bit key will have unicity distance of 640 bits. 

Although, strictly speaking this analysis applies only to Shannon's "random ciphers", 

experienced cryptographers believe the formulae to be valid in virtually all secrecy systems, 

with the exception of those probabilistic systems described in section 2.2.3. Shannon's model 

is routinely used to measure the unicity distance of many ordinary ciphers. 

2.2.2 Work Characteristic 

The unicity distance measures the secrecy of a system in that it determines how much 

ciphertext has to be intercepted before a unique key has to have been used. It also gives the 

cryptographer an indication of how often the key should be changed. Having intercepted 

enough ciphertext however, does not mean that the cipher is broken, there still remains some 

work to be done, and this can vary widely from one cipher to another and from day to day. 

Shannon defined the concept of the work characteristic of a system W(N), an indication of the 

average amount of work measured say in computing time on a CRAY, to determine the key for 

a cryptogram of N letters. The function W(N) is a measure of the amount of "practical secrecy" 

afforded by the system and Shannon postulated the behaviour of this function to be essentially 
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as shown in Figure 2.4 for any type of system where the equivocation function approaches 

zero. 

Figure 2.4 Work Characteristic 

In the dotted region there are numerous possible solutions and all must be determined. At the 

unicity distance only one solution exists but a great deal of work is needed to isolate it 

thereafter, as more material is acquired, the work reduces to some asymptotic value where 

additional data does not help 

The difficulty in solving a particular cipher may change gradually as faster processors become 

available, or overnight if a new algorithm is discovered. Thus, in practice, there are two work 

functions. The historical work function, Wh based on known cryptanalytic techniques, and the 

intrinsic work function W 1  which will form a lower bound on Wh. It is generally the former that is 

referred to when people talk of a cipher taking millions of years to break. There are no practical 

ciphers today whose intrinsic work function is known. 

However, there are many ways of maximising W(N). It is the aim of good cipher design to 

maximize W(N) so that the time needed to break the cipher makes it impractical, or at least so 

long that the information obtained no longer has any value. This emphasizes the point that in 
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cryptology it is more often the value of the information we are concerned with than the 

information itself. 

2.2.3 Improving Secrecy 

The obvious way to improve secrecy is to increase the unicity distance j.i. 

gn 
- H(Z) 

p 
(EQ 2.9) 

To do this we can increase H(Z) by using more keys and/or making sure all keys are equally 

likely (this is the mathematics behind choosing a non-obvious password!). Alternatively we can 

look at ways of decreasing p. Two well known techniques for doing this are data compression, 

and non-deterministic, or probabilistic encipherment. 

In the system of Figure 2.1 with no plaintext expansion, p is equal to the redundancy of the 

message. If X is ideally compressed so there is no redundancy, then all possible messages 

are equally likely. Thus deciphering Y with any key yields a possible solution. In other words, 

as X approaches an ideally compressed source g, —+ °°. For example, if a message is 

someone's telephone number composed of a group of 5 decimal digits, then deciphering to 

93864 is just as valid as 84028. In this case even the Caesar cipher will provide perfect secrecy 

under a ciphertext only attack. 

Data compression is in general a useful cryptographic tool and should be applied if at all 

possible. This was well known to cryptographers in the pre-computer age when, according to 

Massey [83], many letters and blanks were deleted from messages before encrypting. 

THSISAFRMOFDTACMPRESON. 

Another approach used by old-time cryptographers was to insert extra symbols in the message 

to hide the statistics of the message. THXI SAXN EXAM PXLE. This second trick is an example 

of probabilistic cryptography usually referred to plaintext padding. The distinguishing feature 

of probabilistic ciphers is that the key and the plaintext do not uniquely determine the 

ciphertext. Some randomising function, known only at the encryption site, is applied to the 

message before encryption as illustrated in Figure 2.5. 
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plai ntext 
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plaintext 
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Eandomiser 

Figure 2.5 Probabilistic Secret Key System 

At first sight plaintext padding would appear to be adding to the redundancy, but the extra 

symbols can be selected from a large set in a very random fashion so that the redundancy of 

the ciphertext is in fact reduced. Figure 2.6 shows J random symbols R = { R 1 , R2, .. . R 

added to the M message symbols X. 

>1< 	J 	 >1 
Plaintext Message 	 Random Sequence 

Quasi - Plaintext 	 >1 
x= (X, R) 

Figure 2.6 Plaintext Padding 

If these random characters are taken from the same language as X so that LR = Lx, then 

H(x) = H(x) +H(R) 	 (EQ2.1O) 

but since R is J symbols taken from Lx  then there can be Lx possible R's, thus 
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H(X) = H(x) +J1ogL 

So, using (EQ 2.4) the redundancy of the message is 

H(X) +H(R) 
D=1ogL— M+J (EQ 2.11) 

H(X) +J1ogL 
D = 1ogL,— 	

M+J 

M1ogL—H(X) 

M+J 

- 	M 	H(X) 
D = 	JloLX M I 

MD 
M+J 

-. 	M+J 
1_1fl = M 	

(EQ 2.12) 

So if for example the DES cipher is used in single bit cipher feedback mode, as described in 

the Guidelines For Implementing and Using the NBS Data Encryption Standard[6], where one 

bit of plaintext is enciphered with 63 random bits, then the unicity distance will be increased by 

a factor of 64. From the calculation on page 11 this means we have an improvement from 70 

to 4480 bits. 

A second non-deterministic technique that can be used to reduce the redundancy of the 

ciphertext is that of homophonic substitution. 

The cryptography systems mentioned so far all have a one to one correspondence between 

plaintext letters and ciphertext letters. Homophonic ciphers do not have such a one to one 

mapping. Each plaintext symbol maps on to a ciphertext symbol chosen at random from a set 
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of homophones. The implication is that the size of the ciphertext alphabet Ly is greater than 

that of the plaintext alphabet Lx.  The situation is illustrated in the following, where the plaintext 

comes from the English alphabet, and the ciphertext from the set of ASCII symbols. 

plaintext ciphertext 

A F$% 
B 6+ 
C X&0 
0 ?PR 
E @!KTI#- ,,, 

Figure 2.7 Homophonic Substitution 

From this short example the ciphertext "F&@"  and "$&#" both decipher to the word "ACE" 

Homophonic substitution can be extremely effective if the statistics of the message are known 

beforehand. The homophones can then be chosen so that the more commonly occurring 

symbols, such as the letter E in English, map on to a larger set of homophones than the less 

frequent ones, thus producing ciphertext that approaches statistical independence from the 

plain,text. 

For example, if a binary message source produces '0' with a probability of 0.25 and '1' with a 

probability of 0.75, then the following transformation will provide a perfect homophonic 

substitution. 

00  
1x 	0 	1/3 	01 

1 	
I Y 

Encryption 

1/3 

Selector 

Figure 2.8 Homophonic Encryption System 
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In the above the selector randomly chooses the mapping for '1', thus the output sequence X 

will be a sequence of random bits. The redundancy of the ciphertext will be zero and the unicity 

distance 	—3 00 

These probabilistic techniques help to ensure the same ciphertext is never produced twice 

from the same message, thus improving security against a chosen plaintext attack. The price 

paid is, of course, the expansion of the plaintext although this is likely to be acceptable where 

security is important. The benefits afforded by probabilistic encryption have prompted Massey 

to suggest in [821 that research in this area offers the best chance of leading to practical 

provable computationally-secure ciphers with small keys. 

The importance of all three of the above is that they can be applied to any encryption system 

and will greatly enhance the secrecy. 

To conclude this section on improving security, Shannon's two principles of diffusion and 

confusion are be discussed. Unlike the previous methods, these techniques apply to cipher 

design and cannot be used to "pre-process" the message. 

In many non-ideal ciphers the statistics of the plaintext are reflected in the ciphertext. By 

analysing the frequency distributions of letters in the cryptogram, the cryptanalyst can often 

break these ciphers. Shannon suggested two methods to frustrate such statistical analysis. 

In the method of diffusion the aim is to dissipate the statistical structure of the message into 

the long range statistics of the ciphertext, the effect of this is to break up the digrams and 

trigrams of the plaintext. To achieve this in practice means aiming to ensure that each symbol 

in the message and the key affects as much of the ciphertext as possible. The "chaining" 

modes of DES described in [6] are a good example of this technique. 
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The method of confusion recognises that some statistics "leak" through the encrypting 

transformation, but aims to make the relationship too complicated to be of any use to the 

cryptanalyst. 

One of the strongest theoretical arguments against the use of additive stream ciphers, 

described in section 2.4.1, is that they can never achieve good diffusion of the key. Each key 

symbol can only influence one ciphertext symbol. 

Product ciphers provide a way to design good confusion and diffusion into a cipher without 

making the algorithms themselves too complex. These ciphers are composed of many 

component ciphers, each one contributing a small amount to either the diffusion or confusion 

of the complete cipher. As explained in section 2.3.2, DES is a classic example of how strong 

ciphers may be built up by this method. 

2.2.4 Authenticity 

The discussion so far has concerned itself mainly with cryptography as a means of providing 

secrecy. Another increasingly important use of cryptography is to provide authenticity. When 

the recipient of a cryptogram deciphers the text to form a message that makes sense, he may 

still be uncertain that the message was sent by a valid party. For example, unless precautions 

are taken, anyone could interrupt messages between the two users and replay them, or even 

replace them with new ciphertext. 

It is only a recent realization that although a system may be highly secure, that does not have 

any bearing on its authenticity. In other words, secrecy and authenticity are independent 

attributes of a security system. The theory of authenticity owes much to the work of Gus 

Simmons of the Sandia National Laboratories in the U.S.A. Simmons was interested in 

authenticity with respect to nuclear test-ban monitoring by remote seismic observatories [136]. 

The idea was that the U.S.A. and the Soviet Union put seismometers on each other's territory 

to ensure the limits imposed on nuclear testing were observed. The difficulty lay in convincing 

the monitoring nation that the host nation was not tampering with the data transmitted from the 

observatory. Conventional cryptography was not applicable because the host nation had to 
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know what information the monitoring nation was transmitting back home. What was needed 

was authenticity without secrecy. 

In addressing this problem Simmons suggested that Shannon's model of a cryptosystem, 

Figure 2.1, be modified to allow the cryptanalyst more freedom. In Simmons' model, Figure 2.9 

the cryptanalyst is not only eavesdropping, he is now actively tampering with the transmitted 

messages. 

secure area 	 secure area 

e--------------------->[ 
	secure channel  

X 
 j Encryption 	>fCrtanalyst 	> Decryption 

- 

plaintext  

Authenticity 
Checker 

Figure 2.9 Simmons' Cryptosystem 

Simmons defined two kinds of authenticity attack. An impersonation attack where the 

cryptanalyst sends a fraudulent cryptogram without waiting to see the genuine cryptogram; 

and a substitution attack where the cryptanalyst waits for a genuine cryptogram to be sent, 

examines it, and then forwards a fraudulent cryptogram. Success under an impersonation 

attack means that the fraudulent cryptogram is accepted as valid under key Z. Success under 

a substitution attack has the additional constraint that the message decrypted be different from 

the message sent. 
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Let P 1  be the probability of success under an impersonation attack, and Ps  the probability of 

success under a substitution attack. If 

the total number of possible cryptograms is N, 

the total number of possible messages is Nx, 

and the total number of possible keys is NZ, 

then for each key there must be at least Nx  possible cryptograms. 

So, if the cryptanalyst selects one cryptogram at random from N y ,  then the probability of 

success under an impersonation attack will be 

Nx 	
(EQ 2.13) 

Y 

The implications of this are: 

Complete protection, P 1  = 0, is impossible. 

For good security Ny should be much greater than Nx. 

Equality exists only when there are exactly Nx  valid cryptograms for each key. 

Thus probabilistic encryption adversely affects security against impersonation 

attacks. 

In the example on page 13, Nx = Ny  and P 1  = 1, demonstrating how perfect secrecy may be 

achieved with no authenticity. 

In [137], Simmons shows how 

	

logP1  ~t —I (Y;Z) 
	

(EQ 2.14) 

Where I(Y;Z) is the information Z gives about Y 

I(Y;Z) = H(Y) - H(Y1 Z) 	 (EQ 2.15) 

It can be shown that this information is always mutual information, 

	

I(Y;Z) = I(Z;Y) 	 (EQ2.16) 

Simmons defined the probability of deception as 
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Pd  = max (P 19 	 (EQ 2.17) 

and showed this too, to be bounded by 

logP ~t —I (Y;Z) 	 (EQ 2.18) 

Simmons then defined perfect authenticity to be equality in (EQ 2.18). 

The conclusion from the above is that if the probability of deception is to be minimised, then 

the cryptogram has to provide a lot of information about the key. In other words part of the 

secret key has to be dedicated to providing authenticity, rather than secrecy. The following 

example serves to illustrate the point. 

The key is defined to be an even number of symbols 

Z={Zl,Z2, --- ZK} 

and the message X, is one bit, either a '1' or a'0'. The key is used only once for each message. 

To transmit another message (another bit in this example) a new key is used. 

If the following encryption transformation is used: 

Ifx=O then y={0,Z 1 ,Z2, ...Z1 2 } 

lfx=1 then y={1,Z 21 , ... Z} 

then perfect authenticity is achieved with no secrecy. This is what Simmons required to solve 

the problem mentioned in the introduction. 

The preceding examples have illustrated that secrecy and authenticity are separate attributes 

of a cryptographic system and that it should never be assumed that possession of one 

automatically provides the other. That is not to say a system can not have both. If the above 

example were modified slightly so that instead of transmitting X, X + ZK +., was sent, where 

ZK+ 1 is an additional key symbol, then perfect secrecy and perfect authenticity is achieved. 

Transmitting X + ZK+1 is equivalent to the one time pad. 
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2.3 Block Ciphers and the Data Encryption Standard 

This section uses the Data Encryption Standard to illustrate the design principles behind block 

cipher construction. These principles have their roots in Shannon's work [132], and formed the 

basis of IBM's research into nonlinear block ciphers [53] which produced the LUCIFER cipher 

[52], and ultimately resulted in the Data Encryption Standard or DES [5]. 

Although DES has several different modes of operation, when used in "Electronic Code Book" 

mode, or ECB, it is an excellent example of a block cipher. The advanced modes of DES 

operation such as Cipher Block Feedback illustrate how block ciphers may be adapted to take 

on certain desirable properties of stream ciphers. These modifications to the basic cipher are 

discussed in more detail in the section on stream ciphers, section 2.4. 

The distinction between block and stream ciphers lies in the transformation that is applied to 

successive plaintext blocks, and to a lesser extent the length of the plaintext blocks. With a 

block cipher successive blocks always encounter the same transforming function, and the 

transformation is usually over a large blocklength. Stream ciphers on the other hand have 

some internal memory and, in general, transform successive blocks with a different function, 

the transformation being governed by the internal state of the system. Thus, if the same 

message is encrypted twice, a block cipher would produce two identical blocks of ciphertext 

whereas the stream cipher would produce two different cryptograms. 

2.3.1 The DES Controversy 

The Data Encryption Standard is the most widely used cipher. It is also the most controversial. 

Before the introduction of DES, cryptography algorithms could be classed as belonging to one 

of the following three categories: 

Outdated ciphers, up to about Word War II 

Commercial ciphers with proprietary algorithms known only to the vendors 

Classified government ciphers. 

This meant that apart from the government and commercial organisations who designed the 

ciphers, users could not have any confidence that the algorithms available offered enough 

security. The United States National Bureau of Standards (NBS) therefore undertook to 
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develop a high quality cipher for public use. They invited the public to submit algorithms for 

consideration as the new cipher and asked the National Security Agency (NSA) to evaluate the 

responses or provide an algorithm if none were received. The algorithm chosen was a 

modification of a cipher that used a 128 bit key, IBM's LUCIFER [52]. The company's original 

submission used a 768 bit key, but this was to be reduced to the 56 bits used at present. It is 

reported in [83] that the NSA were "instrumental in reducing the DES secret key to 56 bits". 

The reduction of the key was immediately met with scepticism and prompted Diffie and 

Hellman [46] to publish the conceptual design of a machine capable of trying every possible 

key which they estimated would break DES in about 12 hours. Hellman later proposed a 

modification [66] to this design which he estimated could break 100 cryptograms in parallel 

each day. These estimates were regarded by many to extremely optimistic, but the controversy 

did raise questions about how secure the cipher should be to be considered practically secure, 

or as Smid and Branstad [143] put it "how good is good enough". In their discussion of the DES 

key length Smid and Branstad make the point that the key had to be small enough to keep 

costs down and to maintain user friendliness. 

The second criticism of the cipher lay with the design of the S-boxes described in section 2.3.3. 

The S-boxes were designed by the NSA who refused to publish the principles on which they 

based their decisions. It was argued that this was because the S-boxes concealed a 

"trap-door" which would make it easy for the NSA to break them. 

To answer their critics, the NBS held two workshops, one to discuss the mathematics of the 

algorithm [7], the other to discuss the key length [8]. No "trap doors" were identified and the 

key was considered to be adequate for the users needs for the next 10 to 15 years. The 

standard was therefore accepted and published in January 1977 with the recommendation that 

it be reviewed every five years. The last review was in 1988. 

The latest development in the analysis of the DES cipher was presented at the CRYPTO '90 

conference by Eli Biham and Adi Shamir [23] who described a chosen plaintext attack on DES. 

The cryptanalysis algorithm described by Biham and Shamir is capable of breaking the DES 

cipher in less time than an exhaustive search of the key space provided the number of 

iterations of the encryption algorithm is 15 or less. The DES cipher uses 16 iterations. Attempts 
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by the authors to strengthen the cipher by changing the key schedule or the S-box design did 

not work. These results highlight the importance of good S-box design and suggest that the 

NSA were probably well ahead of the rest of the cryptographic community when DES was 

designed. 

2.3.2 Cipher Elements 

The DES cipher is a product cipher consisting of sixteen "rounds", or iterations, of successive 

transformations. The transformation carried out at each round is constructed from a 

substitution and a transposition cipher. In a substitution cipher, each symbol in the plaintext 

alphabet is mapped on to a fixed substitute in the ciphertext alphabet. Homophonic substitution 

is an exception. A weakness of substitution ciphers, such as the Caesar cipher, is that the 

relative frequencies of letters and groups of letters leak through the transformation and unless 

precautions are taken these ciphers may be broken by frequency analysis of the ciphertext. If 

the methods of section 2.2.3 are not appropriate, then the key should be changed often enough 

to ensure no plaintext symbol occurs more than once in the key's lifetime. Another approach 

would be to use a large alphabet. 

Substitutions were the earliest ciphers to be used. Next were transposition ciphers. The key in 

a transposition cipher is a fixed permutation of the plaintext block. Although the frequency of 

single symbols still leak through, digrams, trigrams, etc. are broken up thus altering the 

statistics of the ciphertext. 

Although substitution and transposition are weak ciphers when used alone, combining them, 

and repeatedly applying the transformations as aproductcipher, as is done in the DES cipher, 

can result in extremely strong algorithms. The distinguishing feature of product ciphers is that 

a single key, or some part or permutation of it, is used to control each individual transformation 

as illustrated in Figure 2.10. 
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x --- 	 ...... ~"Y 

Figure 2.10 Product Cipher 

This is the difference between a product cipher and a cascade cipher where each 

transformation is controlled by a separate key as in Figure 2.11. 

Figure 2.11 Cascade Cipher 

The functions used in each round of DES are involutions. An involution is a function that is its 

own inverse such as f(x) = -x, or a transposition that swaps two halves of a block. If an 

involution is used to encrypt plaintext then the same function can be used for decryption. So in 

DES, if the algorithm is run backwards then each transform undoes the previous one as shown 

in Figure 2.12, thus both encryption and decryption use the same algorithm and key. The only 

difference is that the sub keys used in each round are applied in the reverse order. 

z 

X-4x.4 I thJ........ 4~ x 

4' 	'1' 
The second f(x) undoes the first 

Figure 2.12 Effect of Involutions 
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2.3.3 DES Structure 

The DES algorithm operates on 64 bit blocks of plaintext and produces 64 bit blocks of 

ciphertext using a 56 bit key. The complete definition may be found in [5] where the following 

figures have been adapted from, and a software version of the cipher written in C may be found 

in [125]. 

Each iteration of the DES algorithm depends on one of 16 intermediate keys derived from the 

input key using the key scheduling algorithm of Figure 2.13. The Permuted Choice 1 in the key 

scheduling algorithm performs a permutation on the 64 bits of the input key and discards bits 

8, 16, 24, etc. to create a 56 bit active key. The active key is divided into two halves C i  and D, 

and each half is then cyclically shifted left either once or twice each iteration. After shifting, the 

two halves are re-combined and undergo another permutation where eight more bits are 

discarded resulting in the 48 bit intermediate key Z 1  

The encryption algorithm shown in Figure 2.14 transposes the 64 input bits under the Initial 

Permutation, then splits the data into two 32 bit words which are transformed each round under 

the control of key Z. 
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Permuted Choice 1 
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(

PermuteI\______ 
Choice 2) 

Figure 2.13 Des Key Scheduling Algorithm 
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Figure 2.14 DES Encryption Algorithm 
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Examination of Figure 2.14 reveals that each round is composed of two ciphers as illustrated 

in Figure 2.15. A substitution applied to the left half of the word followed by a transposition of 

the left and right halves. The transposition does not depend on the key, but is included to 

provide Shannon's diffusion. The substitution provides the confusion. 

Figure 2.15 Composition of DES Round 

It is clear from Figure 2.15 that since the transposition swaps left and right halves, it is an 

involution. The substitution is the exclusive-or of the left half of the word with some function of 

the right half of the word and the key. If this substitution is applied twice in succession to a block 

of data, using the same key, the nature of the exclusive-or function ensures that this too is an 

involution. Thus in the DES cipher the decryption algorithm is identical to the encryption 

algorithm except that the intermediate keys have to be applied in the reverse order. The "Initial 

Permutation" has no cryptographic significance - it "undoes" itself at the end of the algorithm. 

The reason for the Initial Permutation is not published in the standard but it may be that its 

eight-bit orientation eases hardware implementations as illustrated by Verbauwhede et al. in 

[149] who use an array of eight-bit shift registers to perform the permutation. 

Figure 2.16 shows the DES Cipher Function represented by '( )" in the previous diagrams. In 

this function the right half of the data word is expanded from 32 to 48 bits by duplicating some 
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of the bits during the permutation process. The intermediate key on the other hand is reduced 

in the key scheduling algorithm, from 56 to 48 bits. In IBM's original submission the user could 

choose these 48 bits in all 16 rounds giving the 768 bit key noted on page 23. The results of 

these expansions and contractions are exor'd before entering the eight S-boxes which reduce 

the data back down from 48 to 32 bits. 

R11  (32 bits) 	 Z1 '( 56 bits) 

'Jr 

( 	Expansion 	 Permuted Choice 2 

R 1 ' ( 48 bits) 	 Z1  (48 bits) 

S2 
HU 	WH 	HILU)  HH 	HUH 	T[EIflTil]flhIfll' 
S1 C S4 ) 	_ _ 

(_Permutation 

Output (32 bits) 

Figure 2.16 The DES Cipher Function 

The S-boxes perform a four bit substitution on the inner four input bits controlled by the outer 

two input bits. They have been designed so that changing one input bit changes at least two 

output bits which provides an avalanche effect as the cipher proceeds. 

2.3.4 Weak Keys 

The nature of the key scheduling algorithm gives rise to some obviously bad choices of keys 

that cause the decryption process to be exactly the same as the encryption process. For 

example, any key resulting in C o  and D0  both equal to zero will produce identical Zs. There are 
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four such weak keys. Semi-weak keys are similar but occur in pairs, encryption by one of these 

keys is equivalent to decryption by its dual. A full list of weak keys is given in the NBS 

Guidelines document [6]. 

The only danger is that weak keys might be used during multiple encryption, using DES to form 

a cascade cipher. The existence of these keys however, has fuelled speculation that DES 

might be a group. This would be catastrophic for multiple encryption since the closure property 

of groups means that successive encryptions would be equivalent to a single DES encryption. 

Fortunately there is strong evidence that DES is not a group [73]. 

2.3.5 The Future of DES 

DES is probably the most closely analysed cryptography algorithm, yet despite intensive 

scrutiny no one has identified a weakness that could be exploited better than exhaustive 

cryptanalysis. The general consensus is that DES appears to be an excellent cipher given its 

small key length, and should find wide use for many years yet. 

However, as mentioned on page 23 the standard was recommended for 10 to 15 years use 

with reviews every five years and is due its third review before January 1992. The NBS will 

then have to decide whether to reaffirm, revise, or withdraw the standard. The NSA meanwhile 

have been working on a program (CCEP) intended to design cryptography algorithms to 

replace DES [15]. According to Smid and Branstadt [143], the NSA have stated in a letter that 

the CCEP intends to provide Government endorsed cryptographic equipment. The algorithms 

will be designed by the NSA and not published, but made available through tamper-proof 

chips. Whether the CCEP program succeeds in finding a suitable replacement for DES 

remains to be seen. 

2.4 Stream Ciphers 

The difference between block and stream ciphers was explained on page 22. This section 

discusses stream ciphers in more detail and distinguishes between synchronous and self-

synchronous stream ciphers, concluding with several examples of how block ciphers may be 

modified to take on certain desirable characteristics of stream ciphers. 
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The theory of stream ciphers is the subject of much research and may be pursued in more 

detail in [18] and [122] 

2.4.1 Synchronous Stream Ciphers 

It was stated in section 2.3 that stream ciphers transform input symbols in a manner that 

depends on the internal state of the system. In a synchronous stream cipher, the next state 

depends only on the present state, and is unaffected by the input symbols. When comparing 

block and stream ciphers, the absence of inter-symbol dependence may be advantageous in 

a noisy channel since one corrupted symbol will have no effect on any others. On the other 

hand, having no diffusion of the plaintext allows a cryptanalyst to alter one symbol in a 

message without having to worry about how this will affect the remaining symbols. Diffie and 

Hellman [47] discuss how error detecting codes may be applied to cryptosystems, and 

observed that a keyed or non-linear error detecting code may be applied to a synchronous 

stream cipher to provide automatic authentication. 

The basic model of a synchronous stream cipher system is shown in Figure 2.17 where the 

exclusive-or function is used to combine the message stream with the running key. With the 

proliferation of digital information, it is easy to see why such binary additive stream ciphers are 

the most popular stream ciphers in use today. The exclusive-or function allows the encryption 

and decryption to be performed by identical devices since addition and subtraction are 

equivalent operations modulo two. 

Figure 2.17 Synchronous Stream Cipher 

The running key generator (RKG) in the above uses the key Z as a seed to generate the 

running key Z'. If this running key is truly random then the ciphertext will be statistically 

independent from the plaintext and the system will have perfect secrecy as described in 
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section 2.2.1. Chaitin [33], however, has shown in that no truly random sequences can be 

generated using a finite algorithm. Any finite state machine not subject to external influences 

will always cycle repeatedly through a fixed number of states producing a periodic output. 

Since a known-plaintext attack exposes the running key, the best a stream cipher designer can 

do, is to build the RKG in such a way that it is difficult for a resource limited cryptanalyst, upon 

observation of Z' 1 , Z' 2 . . . Z',, to reliably predict Z',,., 1  without knowledge of the secret key Z. 

To achieve this, the running key Z' should have the following properties. 

A long period 

Good short term randomness 

Large linear complexity. 

The linear complexity of a sequence is defined as the length L, of the shortest linear-feedback 

shift-register (LFSR) that could have produced the sequence. 

The reason for insisting on a large linear complexity L, is that the Berl ekamp-Massey algorithm 

[19] [81] describes an efficient method of finding the shortest LFSR that could have generated 

the sequence after examining only 2L bits of the running key. This effectively precludes the use 

of LFSRs alone as running key generators. The poor security of such a system under a known 

plaintext attack is demonstrated in [47] [41] and [18]. Good RKGs can, however, be designed 

using LFSRs as building blocks of a larger system as shown in Figure 2.18. 

LFSR 1 LIIIIIIJ- 	_ 
Memoryless 
Combining 	 IIz, 

Function 

Figure 2.18 Running Key Generator 
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For example, Geffe [59] suggested the arrangement of Figure 2.19 as the memoryless 

combining function, where LFSR 2 selects the output from either LFSR 1 or LFSR 3. 

Figure 2.19 Geffe's Combiner 

Siegenthaler [135] has shown that stream ciphers constructed from this, and several other 

combining functions, can be broken when subject to a ciphertext-only correlation attack.This 

is possible because leakage of the LFSR statistics through the combining function makes the 

cipher subject to a "divide and conquer" attack. In [134] Siegenthaler defined correlation-

immunity for nonlinear combining functions and showed how to design combining functions 

that avoid leakage. He also proved that high correlation-immunity required the combining 

function to have a low nonlinear order. Rueppel and Staffelbach's work on linear complexity 

[123], however, showed that a high nonlinear order was needed if large linear complexity is 

desired. Thus in the design of memoryless combining functions, there is a trade-off between 

correlation-immunity and linear complexity. 

To overcome this trade-off, combining functions with memory can be used although these 

functions are in general much more difficult to analyse. The memory can be provided by the 

LFSRs themselves as is done in [84]. Figure 2.20, adapted from [84], illustrates Massey and 

Rueppel's running key generator where two LFSRs are clocked at different rates to construct 

a combining function with memory that has a high linear complexity. In this example, the longer 

LFSR is clocked at dtimes the rate of the shorter one. 
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Figure 2.20 Massey - Rueppel Generator 

The addition of memory to the combining function introduces diffusion, and so goes some way 

towards answering the criticisms of additive stream ciphers made on page 18. 

Shift register sequences are not the only way to generate running keys. Figure 2.21 illustrates 

how a block cipher, such as DES, may be used in output feedback 
( OFB) mode to produce a 

synchronous key stream. The first encryption uses an initialization vector (IV) as input to the 

exclusive-or function. 

IV 

: 

	 Block Cipher 	 delay 

Figure 2.21 Output Feedback 
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Diffie and Hellman [47] demonstrate how the OFB cipher may be modified by using a counter 

as shown in Figure 2.22. This scheme eases random access to files since individual symbols 

can be deciphered by setting the counter to the appropriate value; with OFB the preceding 

ciphertext block must be known beforehand. 

Counter 

z 	 Block Cipher 

Figure 2.22 The Counter System 

Becker and Piper [18] describe a similar system, replacing the counter with an LFSR. 

2.4.2 Self Synchronous Stream Ciphers 

The RKGs at the transmitter and receiver in the additive stream ciphers discussed above must 

always run in perfect synchronism. This may not always be possible in a practical situation. 

Self synchronous stream ciphers, on the other hand, derive each key symbol from a fixed 

number of the preceding input symbols and so, by definition, must have a limited amount of 

memory. Since these systems have limited memory, any errors in the input stream will produce 

a fixed number of errors in the output, after which correct operation is resumed. 

The idea of self synchronous stream ciphers can be traced back to the autokey ciphers 

invented by Vigenere in the 16th Century. Vigenere's autokey ciphers were based on a 

substitution as used in the Ceaser cipher, but instead of a fixed amount, each letter was shifted 

by an amount determined by either the message or the ciphertext. Figure 2.23 illustrates the 

scheme. In (a) the message symbols form the key whereas in (b) it is the ciphertext symbols 

that are used. In both schemes the letter 'A' has been used as a seed. 
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CUCKOO 	 CUCKOO 

ACUCKO 
	 ACWYIW 

CWWMYC 	 CWYIWK 

A 	 A 

	

(a) 	 (b) 

Figure 2.23 Vigenère's Autokey Ciphers 

The feedback loop of Figure 2.23 (b) makes each output symbol dependent on the entire 

preceding message. Diffusing the message statistics over all the ciphertext makes 

cryptanalysis of this scheme much harder than that of Figure 2.23 (a) where the diffusion is 

only over message symbol pairs. Although the above procedure for generating the key stream 

exposes the key in the ciphertext, this is easily overcome by using a non-linear function, such 

as a block cipher, for this purpose. This is precisely what is done when DES is used in cipher 

block chain ( CBC) mode [6]. 

vi  

L 	
Block Cipher 	 Block Cipher 	+ 

	

z 	 z 

Figure 2.24 Cipher Block Chaining 

Again, as with the OFB mode, CBC requires an initialization vector. 

The cipher feedback ( CFB ) system shown in Figure 2.25 is similar to CBC in that it too 

diffuses the message throughout the ciphertext and, as all stream ciphers do, makes data 

tampering difficult for the cryptanalyst. Where the two approaches differ is in the data format: 

CFB may be adapted to the user's data format, and is not restricted to the size of the block 

cipher. The cost of this is the inefficiency in producing ciphertext that is not used. 
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Figure 2.25 Cipher Feedback 

2.5 Public Key Systems 

A major problem with conventional cryptosystems described previously is the difficulty in 

distributing secret keys. In the classical system the encryption function and the decryption 

function are inseparable, both the sender and receiver must have the same key. How then can 

two users, who have never met before, agree in advance on a key that will be known to 

themselves and to no one else? This problem, and several secret key solutions are discussed 

by Diffie and Hellman in [47] section V-A, and by Ralph Merkle in [87]. 

Another limitation of conventional systems is the problem of digital signatures. Written 

signatures are used to verify that documents came from, or were witnessed by, a particular 

person. To be effective the signature has to be difficult to copy, so how can digital messages 

which can be copied perfectly, bear a signature? The authenticity systems of section 2.2.4 can 

prevent third party forgery but cannot settle disputes between sender and receiver. 

These were the problems being addressed by Diffie and Hellman in 1976 [45] when they 

revealed that practically-secure systems can be built that require no secure transfer of any 

secret key whatsoever. Furthermore, by separating the encryption and decryption functions, 

public key cryptography provides an elegant solution to the authenticity problem. 
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2.5.1 Elements of Modern Cryptography 

The important contribution that Diffie and Hellman made was the proposal of the "trap door one 

way function". One way functions were known at that time for their use in computer login 

protocols and access control [151], and may be defined as a class of functions that are easy 

to compute but difficult to invert. In a login protocol, the user's password is transformed by a 

one way function and stored, together with his name, in a read only password file. Each time 

the user logs in the password is transformed and checked against the contents of the file. Since 

a one way transform has been used, knowledge of this file is of no help in retrieving original 

passwords, and even a legitimate user will find it practically impossible to decipher his own 

password. 

Trap door one way functions were defined by Diffie and Hellman to be one way functions for 

which a simply computed inverse does exist if certain "trap door information" is known. To be 

more specific, a trap door function is defined as a family of invertible functions f(x)  which may 

be used to define algorithms E1(x) and D2(x) that allow easy computation of y = f(x) and 

x = J'(,y). However, for virtually all zand all yin the range of f2(x), it is practically impossible, 

without knowledge of z (the trap door information ), to compute x = f,- '(Y), even if E(x)  Is 

known. 

It is this ability to make E(x)  known to the public that gave rise to the term public key 

cryptography. With such a cryptosystem the encryption function and decryption function are 

separated and key distribution problem may be solved by simply having a publicly available 

directory of subscribers and their public keys. The digital signature problem is solved by a 

subscriber encrypting his message with his private key, the message being verified by 

decrypting it with the his public key. Figure 2.26 illustrates the public key cryptosystem and 

may be compared to the classical system on page 5. 
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EAI 	 )J Public Directory 1 < 	 11  EB  

Key Generator 	 Key Generator 

DA 	 DB 

X 	
EB(x) 	 DB(y) 	

X 

insecure channel 

secure area 	 secure area 

Figure 2.26 Public Key Cryptosystem 

In Figure 2.26 authenticity is assumed to be guaranteed in all communications with the public 

directory. Diffie and Hellman [45] defined five properties such a public key cryptosystem should 

have: 

The ciphertext space must be the same as the plaintext space 

For all z E  has an inverse D 

For all z E  and D  are easy to compute for all messages and ciphertext 

Without knowledge of z, it is infeasible to derive D  from E 

For all z it is feasible to compute inverse pairs E2  and D 

2.5.2 Discrete Exponentials 

In their 1976 paper, Diffie and Hellman conjectured the discrete exponential to be a good 

candidate for a one way function and suggested how this might be used as the basis of public 

key exchange protocol. This conjecture is based on the fact that if cx is a primitive element in 

the Galois Field GF(q), and q is a large prime number, then the function 

f(x) = aX modulo q 	 (EQ 2.19) 

is easy to compute, taking at most 21092(q) multiplications using Knuth's square and multiply 

procedure [75]. Calculating discrete logarithms on the other hand is not so straightforward 

Pohlig and Hellman [107] have shown that when q is chosen so that q - 1 has a large prime 
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factor, then calculation of the discrete logarithm will take the order of ,.Jj multiplications 

modulo q. Ideally q - 1 should be twice a prime number. 

The operation of the Diffie - Hellman public key distribution scheme is illustrated here by the 

introduction of Rivest Shamir and Adleman's hypothetical users Alice and Bob [120]. 

Alice and Bob choose random messages XA  and XB respectively, and transform them using 

(EQ 2.19) to obtain YA  and a and q are assumed to be public knowledge. Alice and Bob 

may now exchange YA  and  YB  and calculate the common key KAB = aB modulo q as shown 

below. 

Alice calculates KAB = XA 

Y B modulo q (EQ 2.20) 

Bob calculates KAB = y modulo q (EQ 2.21) 

Unless an intruder can calculate KAB  from YA  and  YB  without first obtaining either xA  or XB, then 

log J he has to compute KAB = YB 	modulo q. This technique forms the basis of CYLINK'S 

Secure Electronic Exchange of Keys, or SEEK system [981. 

In 1985 Taher El Gamal [48] showed how this scheme could be developed into a public key 

cryptosystem for key distribution and digital signatures. El Gamal however, produced twice as 

much ciphertext as the original message. More recently, Kevin McCurley [85] demonstrated 

how, by using carefully chosen composite numbers for the key, security could be proved 

mathematically. McCurley then showed how El Gamal's scheme could be modified so that a 

cryptanalyst had to first factor the modulus before breaking the original cipher. 

2.5.3 Knapsack Cryptosystems 

Another noteworthy one way function is the knapsack function. This function is derived from 

the notion of packing items into a knapsack with the intention of filling it completely with no 

space left over, hence the name. Mathematically the problem may be stated as: 

Given a set of n positive integers a 1 , a2, -'a,  ,a,, and a positive integer s, 

does there exist x1 , x2 , 	with x, € {O, 11 for i = 1, 2..... 

such that s-x 1 a 1 +x2 a2 + ... +xa 
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This problem is well known in the field of complexity theory and belongs to a class of problems 

known as NP - complete which, in the general case, are considered to be computationally 

complex. 

An n-bit message vector x = (x 1 , x2, . ,x,,) is encrypted by forming the dot product with the 

cargo vector a = (a1 , a2 , . ,a). Although the general case of the knapsack problem is difficult 

to solve there are particular cases, superincreasing knapsacks, that are easy to solve. A 

superincreasing knapsack is one in which each integer in the series, is greater than the sum 

of all those preceding it. In other words if in the above set of integers: 

i-i 
a> 	aj  

j-1 

then s<ax = 0. Indeed, if a = ( 1,2,4, ...,2' 1
) then the solution is trivial. Shortly after 

Diffie and Hellman's 1976 publication Ralph Merkie began working with Hellman to use this fact 

to build a trap door into the knapsack cipher. 

The Merkle-Hellman knapsack cipher [88] begins with a superincreasing knapsack, then 

multiplies each element in the cargo vector a' by a scalar constant w modulo m. The modulus 

is chosen to be greater than the sum of all elements in the original cargo vector, and the scalar 

w is chosen so that it has an inverse W 1  modulo m. The resulting vector, a = wa' mod mis then 

transposed, the idea being that without knowledge of w, m and the transposition, the simple 

knapsack problem has become a difficult knapsack. 

Now if Alice and Bob wish to communicate, Alice can make a public, allowing Bob to encipher 

his message x by calculating s = a x. Alice recovers the message by calculating: 

S. = ws mod m 

= w1 (Lajx1) mod m 

= w1 (Lwa1'xj) mod m 

= (a'x) mod m 

And since m> Y. a'1 =* s'= Laj' x, in integer arithmetic as well as mod m. So, by using her secret 

key information ( W 1 , m, and the permutation), Alice can transform the difficult knapsack s to 

a simple knapsack s' and then extract the message x. 
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Merkle and Hellman proposed improving security further by repeating the procedure to obtain 

a from a' several of times, forming a more obscure public key with each iteration. 

The trap door in the Merkie - Hellman knapsack cipher is the use of modulo multiplication to 

disguise an easy problem, the superincreasing knapsack, as something difficult. In 1984 Adi 

Shamir [129] broke this cipher, not by solving the problem, but by stripping off this disguise. 

The following year Brickell [29] demonstrated how the iterated knapsack could be broken. The 

events that led to the breaking of the knapsack cipher are described in the 1988 paper by 

Brickell and Odlyzko [31]. 

2.5.4 The McEliece System 

McEliece [86] based his encryption system on the error correcting codes known as Goppa 

codes which belong to the same class of error correcting codes as the Reed - Solomon codes 

and can be decoded by the same well known and efficient methods. McEliece applied a similar 

technique to these codes as Merkle and Hellman applied to the superincreasing knapsack, that 

is, he disguised the Goppa code as a more general linear code for which decoding without the 

key, like the general knapsack problem, is considered to be NP complete [44]. 

The error correcting scheme multiplies the message vector x by a matrix G to produce a code-

word vector y for transmission. The received vector y' may contain errors that are removed 

with knowledge of G to recover the original message x. McEliece modified this scheme by 

disguising the matrix G by pre and post multiplying it by two other matrices to form the public 

key G' where 

G'=SGP 
	

(EQ 2.22) 

Using G' instead of C generates a linear code with the same rate and minimum distance as 

the original Goppa code. To encrypt the message vector x, it is multiplied on to the public matrix 

G' and the result added to a locally generated error vector e 

y = xG' + e 	 (EQ 2.23) 

To decode the ciphertext, it is first multiplied by P to obtain a Goppa code word that can be 

decoded with knowledge of G. The result is multiplied by S 1  to recover x. 
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The McEliece system has never achieved wide acceptance. Several reasons have been 

suggested for this: the data expansion may be undesirable, or the need for large public keys 

(of the order of 106  bits). The similarity to knapsack ciphers may also be a reason, although 

Adams and Meijer [10] have recently demonstrated that a knapsack like attack is extremely 

unlikely to succeed. Adams and Meijer also show that with well chosen parameters 

cryptanalysis of the McEliece system is significantly more difficult than cryptanalysis of DES 

and compares favourably with RSA. 

Perhaps the biggest weakness of McEliece's system, as far as public key encryption is 

concerned is its unsuitability for authentication. The nature of the error correcting code 

precludes a one to one mapping between ciphertext and plaintext. For authenticity, the 

plaintext message must be signed with a private key in such a way that application of the 

encryption transformation using the public key will only produce a meaningful message if the 

correct key is used. For the McEliece system this is impossible. 

2.5.5 Other Public Key Schemes 

In addition to the three methods discussed in this section and the RSA cryptosystem described 

in section 2.6, a number of other public key cryptosystems have been proposed. 

In 1978 Rabin [112] produced a variant of RSA for which he could prove that cryptanalysis was 

equivalent to factoring the modulus. This scheme was slightly more complicated than RSA but 

was simplified in 1979 by Williams [152]. However, as pointed out by Rivest and cited in 

Williams' paper, both these schemes are vulnerable to a chosen plaintext attack which in a 

public key environment is a distinct possibility. 

A fast signature scheme based on polynomial congruential equations was proposed by Ong, 

Schnorr and Shamir [102] in 1984, the ass scheme, but was broken in 1987 by Pollard and 

Schnorr [108]. Goldwasser Micali and Rivest [61] proposed a method which they proved to be 

secure against a chosen plaintext attack and which was subsequently modified by Goldreich 

[60] in 1986. 

Another signature scheme has been suggested by Fiat and Shamir [54] and subsequently 

modified [51] [90] to be provably secure against chosen plaintext attacks. However this 
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scheme results in data expansion which although improvements have been made [100] 

remains slower than the original scheme. More recently, in 1990, a signature scheme has been 

proposed by Okamoto [101] which although not provably secure, claims to be up to twenty 

times faster than RSA. 
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2.6 RSA 

By far the best known public key encryption scheme is due to Rivest Shamir and Adleman, 

RSA [120]. This scheme, like the Diffie Pohlig Hellman scheme of section 2.5.2, employs 

discrete exponentiation, however, the security of the RSA scheme lies in the fact that finding 

large prime numbers is computationally easy whereas factoring a product of two primes 

appears to be computationally infeasible. 

2.6.1 The RSA Cryptosystem 

In the RSA cryptosystem both the plaintext space and the ciphertext space are the ring of 

integers Zm,  where m is a modulus formed by the product of two large random prime numbers 

p and q. 

The encrypting transformation is controlled by a public key comprising a pair of numbers e and 

m, where m is the modulus and e is an element of Zm  The transformation is defined as 

y = E(x) = e modulo m 	 (EQ 2.24) 

The decrypting transformation is similarly defined by the same modulus, and a private key d. 

x = D(y) = d modulo m 	 (EQ 2.25) 

The private key d is chosen to be the multiplicative inverse of e in the ring of integers Zc( m) 

where c(m) is Euler's totient function, explained in section A.4. The extended Euclidean 

algorithm described in section A.1 may be used to calculate dgiven e and D(m). Examination 

of this algorithm will show that inverses may be computed in polynomial time. 

Both these transformations are easily computed provided the keys are known. To recover the 

plaintext from the ciphertext without knowledge of the private key requires either calculating 

discrete logarithms or alternatively, obtaining d from knowledge of e and m, this however is 

known to be at least as difficult as factoring the modulus. 
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2.6.2 The Underlying Mathematics 

To demonstrate that the RSA cryptosystem decrypts correctly it is necessary to show that 

X = D(E(x)) 	 (EQ 2.26) 

= 

= (Xe) d modulo m 

= (Xe)d modulom 

=el modulom 

So to prove correct decryption it is necessary to prove that: 

	

e. d = X modulo m 	 (EQ 2.27) 

Case 1: x and m relatively prime: 

Since e and dare chosen such that 

e d = 1 modulo 4(m), 	 (EQ 2.28) 

e d = Q(m) + 1 

= Qqm)+l 

(EQ 2.29) 
Now, Euler's theorem (see appendix A.4) states that if x and m are relatively prime then 

	

Xm) = 1 modulo m, 	 (EQ 2.30) 
thus 

= 1Q i 

and (EQ 2.29) simplifies to 

= x modulo m 	 (EQ 2.31) 

Thus for xand m relatively prime the RSA cryptosystem decrypts correctly, and since there are 

only p + q - 1 integers in Zm  divisible by p or q this covers virtually all cases when p and q are 

large. 

then 

so 
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Case 2: x and m not relatively prime: 

If x = 0 then the claim that Xe,d = x modulo m is trivial, so assuming x*O and that p 

divides x ( either p or q can divide x but not both ) then we have: 

• d = x 	 modulo p 	(EQ 2.32) 

and 

= 	 modulo q 

= 	 moduloq 

= .Q(P-l)(-l) 	 moduloq 

	

• d = x (x'1 
-1  modulo q) 

Q(p-1) modulo q 	(EQ 2.33) 

but Fermat's theorem (section A.5 on page 129 ) states that if q is prime then 

= 1 modulo q, 	 (EQ 2.34) 

so (EQ 2.33) simplifies to 

• d = x modulo q 	 (EQ 2.35) 

Now, since m = pq, x € Zm  and e d € Zm  it is straightforward to deduce from (EQ 2.32) and 

(EQ 2.35) that: 

= modulom 	 (EQ 2.36) 

Equations (EQ 2.31) and (EQ 2.36) show that RSA decrypts correctly in all cases. 

Furthermore, because 

D(E(x)) = E(D(x)) = e d 	 (EQ 2.37) 

the encryption and decryption functions are mutual inverses, and a decryption followed by an 

encryption has the same effect as an encryption followed by a decryption. Thus RSA may be 

used for authenticity as well as secrecy. 
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2.6.3 Operation of RSA Cryptosystem 

The operation of the RSA public key cryptosystem is illustrated here referring again to Rivest 

Shamir and Adleman's hypothetical users Alice and Bob [120]. 

Alice chooses two large random primes p and q, and from them calculates m and 
CJ?(m). These primes may be chosen by probabilistic methods which are faster 
than searching for true primes. 

To ensure her private key has an inverse, Alice selects d such that 
gcd (d, (b(m)) = 1, and then computes e, the inverse of din Z(m). 

Alice publishes e and m, but keeps d, p, and q secret. 

Bob may now send messages to Alice using Alice's public key, which only Alice 

can decipher with her private key. 

This provides secrecy but offers no authenticity whatsoever. Anyone with access to Alice's 

public key can send messages to her claiming to be Bob and Alice has no means of verifying 

the authenticity of the message. To provide authenticity, 

Bob transforms the message he wishes to send using his own private key and 
sends this result to Alice. 

Since D(x) and E(x) are mutual inverses (EQ 2.37), Alice is able to recover the 

message using Bob's public key. 

This time we have authenticity without secrecy, anyone with access to Bob's public key may 

decipher his message. One use of authenticity without secrecy is suggested in section 2.2.4 

on page 18. 

These two examples have shown how secrecy and authenticity are completely independent 

attributes of the RSA cryptosystem. To combine both attributes, the message must be 

transformed twice: 

Bob first transforms his message using his private key D8(x) and then transforms 

the result using Alice's public key and sends EA(DB(x)). 

Now secrecy is ensured, since only Alice is able to invert the second transform. 

Having done this, Alice can now use Bob's public key to recover the message and 
verify its authenticity. 

If, in the latter example, Bob's key used a modulus that was smaller than the modulus used by 

Alice, the message would have to be re-blocked between transformations. Rivest Shamir and 

Adleman recognised this and suggested a threshold scheme to avoid re-blocking. The idea is 
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to choose a threshold value, h, for the cryptosystem. Each user then maintains two sets of 

keys, one set with modulus less than h, for authenticity, and a second set, with modulus greater 

than h, for secrecy. Alternative solutions have been suggested by Konf elder [78], and Davies 

and Price [38] [39]. 

2.6.4 Security of RSA 

The security of the RSA cryptosystem relies on the difficulty of factoring the modulus m to 

obtain 4(m) and thus the private key d. In order to defeat known factoring alorithms, the 

primes p and q that form the modulus must be chosen very carefully. Rivest Shamir and 

Adleman suggest the following restrictions on the choice of primes: 

The primes p and q should differ in length by only a few digits. 

Both p - 1 and q - 1 should have large prime factors. 

The greatest common divisor of p - 1 and q - 1 should be small. 

Rivest Shamir and Adleman also suggested restricting the private key d to the range 

max(p, q) < d < m and restricting e such that e> 1092  (m). 

Simmons and Norris [1411 showed how the RSA cipher could be broken when subject to an 

iteration attack. They demonstrated that for certain keys, repeated application of the 

enciphering transformation would eventually yield the original message. In response to this, 

Rivest [115] showed that if p and q were chosen such that p - 1 and q - 1 both had a large prime 

factors r and s, and that r - 1 and s - 1 also had large prime factors, then the probability of 

success in an iteration attack was so small as to be inconsequential. 

In another attack on RSA, Blakley and Borosh [25] demonstrated that for certain keys, there 

are at least nine messages not concealed by RSA. That is to say, for certain keys Xe = x 

modulo m. Blakley and Borosh suggest that to avoid this feature, p and q should be safe 

primes, where p = 2r + 1, and q = 2s + 1 and rand s are odd primes. Pohlig and Hellman [107] 

also suggest the use of safe primes in their scheme. 

Although care has to be taken in the selection of primes for RSA, both Williams and Schmid 

[153], and Gordon [62] [63] have shown that finding appropriate values for p and q is not 

difficult. 
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So, assuming the primes have been chosen correctly, the cryptanalyst is faced with the 

problem of either factoring the modulus, or calculating discrete logarithms. Algorithms for both 

these problems are described by Lenstra and Lenstra [80], and Pomerance [109]. 

More recently, attention has been focused on the announcements in the press in June, 1990 

by Lenstra and Manasse, that they had succeeded in factoring the ninth Fermat number, F9, 

and the implications this has for the security of RSA. In an article posted on the Internet bulletin 

board, Ronald L. Rivest presented an analysis of this, pointing out that the number field sieve 

or NFS algorithm used by Lenstra and Manasse is specifically designed to factor numbers that, 

like F9, have a very simple structure of the form a" + c where c is a relatively small, F9 = 2512  

+ 1. Numbers with such a special structure are extremely rare and unlikely to arise in practical 

cryptography. Rivest, however, identified three important points raised by this achievement: 

The status of factoring is still subject to further developments, and conservative 
choice of key length should be made. 

The NFS algorithm may yet be developed to cope with more general numbers, 

and the potential impact of this should be considered. 

Despite best efforts, factoring remains a very hard problem, the best algorithm 

[80] taking Q(J(1osn)1010n) time. 

If the NFS algorithm were extended to cope with more general numbers, Rivest estimated that 

the time required to factor a 512 bit number would be of the order of 2 x 107  MIP-year, (where 

one MIP-year is the work done by a one MIP computer running for one year), which is clearly 

a substantial degree of security. 
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Chapter 3 Implementing Public Key Cryptosystems 

Chapter 2 presented a broad view of contemporary cryptographic techniques. This chapter 

concentrates on public key cryptography and looks at the work that has been done to 

implement these systems both in hardware and in software. Since public key techniques tend 

to involve more computationally intensive algorithms than their secret key counterparts, they 

present a technical challenge to achieve comparable data throughput. As will be evident in 

conclusion to the following section, it is the poor performance of public key systems in this area 

that has impeded their use in practical applications and motivated research to design more 

efficient software or hardware solutions. As the results of such research have been emerging, 

confidence in public key systems has been growing to the extent where they are now being 

considered by such bodies as the ISO [110] and CCITT [9] 

The public key algorithm most frequently referred to in the literature is RSA. The popularity of 

this algorithm is probably due to its versatility, and in particular its suitability for digital 

signatures. Other well known algorithms such as exponential key exchange, discussed in 

section 2.5.2, and zero knowledge proofs [54], like RSA, rely on modular exponentiation and 

it is this problem that the majority of research publications have addressed. 

3.1 Software 

The' prevalent opinion at the time the RSA cipher was published was that it could not be 

implemented effectively in software, in 1980 Ronald Rivest even suggested that "a typical 

microprocessor based implementation might achieve an encryption rate of ten bits per second" 

[117]. This attitude did not, however, discourage the development of RSA software. Many 

situations exist, such as key management, where high encryption rates are not crucial to 

overall system performance. 

3.1.1 Initial Work 

Within a year of Rivest Shamir and Adleman's publication Michelman [91] announced a 

general purpose computer based implementation of the algorithm, and in 1985 the National 

Physical Laboratory published a PASCAL version [12] that would run on a BBC 
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microcomputer. Performance figures for RSA encryption, in software, with a 512 bit modulus 

were presented at the 1986 cryptology conference, CRYPTO '86, by Gordon Rankine [113]. 

He suggested typical encryption times of 4 minutes using a Motorola 6809, 70 seconds on an 

Intel 8086, and 30 seconds on a Motorola 68000. At the same conference Paul Barrett [16] 

presented the work he had done to execute the RSA algorithm on the new digital signal 

processing chip from Texas Instruments, the TMS3201 0. Making use of the special hardware 

on this chip and a long multiplication algorithm that reduced propagation of carries, Barrett 

achieved typical encryption times of 2.5 seconds for 512 bit RSA. 

The following year Jung [70] described techniques to minimize both the space and time 

requirements for the RSA algorithm when implemented on a general purpose computer. Jung 

proposed a common encryption exponent to be shared by every user, thus defining the 

modulus as the public key. The common encryption exponent suggested by Jung was the fifth 

Fermat prime 216  +1 = 65537. In doing this, the storage requirement for public keys is 

immediately halved and, by choosing a relatively short exponent, the encryption time is 

drastically reduced. The decryption time however, will depend on the size of the decryption 

exponent and hence the value of the modulus chosen by the user. Storage requirements are 

reduced further by restricting moduli to be "close" to a power of two as is the case with the OSS 

scheme [102]. To speed up decryption Jung performed the decryption calculations using the 

shorter moduli p and q and used the Chinese Remainder Theorem, as suggested by 

Quisquater and Couvreur [111], to obtain the result modulo m = pq. 

Applying these techniques Jung implemented the RSA cryptosystem on three general purpose 

computers. On a 0.8 MIPS Siemens mainframe Jung could generate a 512 bit signature in 1.5 

seconds, and check the authenticity of a signature in 0.3 seconds. On a z80 based hand-held 

computer, the same tasks took 45 seconds and 3 seconds respectively for a 256 bit modulus. 

An 80186 based PC, programmed in 'C' and assembler could sign a 256 bit message in 1.5 

seconds, and verify it in 0.2 seconds. 

In 1989 Beth and Gollmann [22] reviewed several algorithms for public key cryptography. 

Although these algorithms were originally intended for dedicated hardware, many of the ideas 

can be directly applied to software solutions. In their paper, Beth and Gollmann suggest that 
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computers based on the 68000 family of processors should be capable of encrypting a 512 bit 

modulus block in less than one second. 

3.1.2 Bong and Ruland 

Dieter Bong and Christoph Ruland [26] published their work on optimized software techniques 

for modular exponentiation in 1989. Like Jung, they too advocate the use of a small fixed 

modulus for encryption and the Chinese Remainder Theorem for decryption. Bong and Ruland 

present several algorithms for modular arithmetic and show that a careful choice of algorithm 

has to be made to suit both the key length and the characteristics of the processor to be used. 

They tested their algorithms on two general purpose microprocessors, and a dedicated 

encryption chip, the latter is discussed in section 3.2.4. For the 68000 microprocessor running 

at eight MHz, encryption times of 110 ms. were achieved for 512 bit modular exponentiation, 

with decryption times of 6.2 seconds. The second processor, an eight MHz 80286, achieved 

encryption times of 63 ms. and decryption times of 3.7 seconds under the same conditions. 

3.1.3 Laurichesse 

in 1990 Denis Laurichesse [79] modified the standard "square and multiply" routine [75] for 

exponentiation to a more general "raise to the power and multiply" algorithm not restricted to 

arithmetic in base 2. Laurichesse found the optimal base for this algorithm to be 16, for which 

a 14% reduction was achieved in the number of operations involved in 256 bit exponentiation. 

Using this algorithm together with the Chinese Remainder Theorem and Montgomery's 

"N residue" arithmetic [94], which eliminates division in modular calculations, Laurichesse 

developed a multiple precision arithmetic algorithm for RSA encryption suitable for software 

implementation. 

The algorithm was coded in 'C' and assembler for several general purpose microprocessors 

and for the 1800 transputer. The decryption rates for 512 bit RSA are shown in Figure 3.1, 

where the performance benefits of 32 bit processors can be clearly seen. 

Laurichesse proposed a hardware design making use of an AMD 29C323 for multiplication 

which is claimed to achieve decryption rates of 50 Kbits/s. The author also suggests that rates 

of 300 Kbits/s could be achieved using techniques developed by Shand et al. [130]. 
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Host Processor Freq.(MHz) word length (bits) rate( bits/s) time(s) 

PC AT 80286 8 16 205 2.50 

PC AT 80386 16 32 900 0.57 

PCAT 80386 20 32 1100 0.47 

SUN 3/60 68020 20 32 1150 0.45 

BULL DPX 2000 68030 25 32 1500 0.34 

PC AT T800 20 32 1670 0.31 

Figure 3.1 Decryption Rates Achieved by Laurichesse 

3.1.4 Shand 

Also in 1990, Mark Shand at DEC's Paris Research Laboratory completed his work on 

hardware/software trade-off involved in long integer arithmetic [130]. This work was based on 

the DEC BigNum [128] software package for high performance long integer arithmetic, which 

Shand and his colleagues modified to optimise the inner loops of the algorithms. Again the 

Chinese Remainder Theorem was used to speed up decryption, and Montgomery's technique 

was applied to eliminate division from the modular arithmetic calculations. Shand et al. report 

decryption times for 512 bit RSA of 3.53 seconds using the standard BigNum package on a 

68020 based machine, without using the Chinese Remainder Theorem. Applying the Chinese 

Remainder Theorem under the same circumstances resulted in a decryption time of 0.51 

seconds which clearly illustrates the advantage of this technique. Running this modified 

software on a MIPS R2000 machine resulted in decryption times of 49.7 ms. for 512 bit RSA, 

or a decryption rate of 10300 bits per second. 

Further increases in throughput were achieved by using hardware accelerators, as discussed 

in section 3.2. 
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3.1.5 Summary 

Figure 3.2 summarizes the software performance in implementing the RSA cryptosystem. The 

times given in the Encrypt and Decrypt columns are for encryption and decryption with a 512 

bit modulus unless otherwise stated, and the times for decryption, unless otherwise stated, are 

all achieved by taking advantage of the Chinese Remainder Theorem. 

Year Processor Encrypt Decrypt Comments 

Rankine 1986 6809 4mm. 

8086 70 sec. 

68000 30 sec. 

Barrett 1986 TMS32010 2.5 sec. 

Jung 1987 z80 45 sec. 256 bits, short 'e' key 

80186 1.5 sec. 256 bits, short 'e' key 

mainframe 1.5 sec.  512 bits. short 'e' key 

Bong & 1989 68000 110 ms. 6.2 sec. short 'e' key 

Ruland  80286 63ms. 3.7 sec.  

Laurichesse 1990 80286 2.50 sec. 

80383 0.47 sec. 

68020 0.45 sec. 

68030 0.34 sec. 

1800  0.31 sec. 

Shand 1990 68020 3.53 sec. without CRT 

68020 0.51 sec. with CRT 

R2000 50 ms. with CRT 

Figure 3.2 Summary of RSA Software Performance 

To use the Chinese Remainder Theorem, the factors pand qof the modulus m must be known, 

thus this technique can only be applied with knowledge of the private key. Transformations 

involving public keys can not use this short-cut. 
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So given this restriction,. public key transformations in software will take the order of seconds 

for a 512 bit block, giving encryption rates of around 500 bits/s at best. This does not compare 

favourably with secret key cryptosystems, the DES cipher has recently been reported [143] as 

achieving encryption rates ranging from 20 Kbits/s on a PC to 100 Kbits/s on a VAX 780. 

To compete, in terms of data throughput, with conventional cryptosystems either new 

algorithms for computing the modular exponential will have to be developed, or the RSA 

system will have to implemented efficiently in hardware. From a security point of view the 

hardware solution is obviously most attractive, ideally implementing the whole encryption unit 

in VLSI inside a tamper proof package. 

3.2 Hardware 

With such comparatively low encryption rates, it is hardly surprising that much research over 

the past decade has concentrated on improving the performance of public key algorithms by 

designing dedicated hardware systems. 

3.2.1 Initial Work 

Rivest Shamir and Adleman's paper was published in 1978. The following year the U.S. Sandia 

National Laboratories announced a board level implementation of the RSA system [44] 

capable of between 100 and 400 bits/s, followed by chip designs by Reiden et al. [114] and by 

Brickell [28]. Reiden used two identical chips to execute the square and multiply exponentiation 

algorithm [75], one chip for squaring, the other for multiplying. Each chip was a dedicated 336 

bit modular multiplier designed in 3p. CMOS technology that adopted Blakley's [24] approach 

of reducing the partial products as they were formed to restrict word growth. Reiden et al. 

expected 20 MHz. operation, and encryption times of 0.78 seconds for 336 bit blocks, or 420 

bits/s. In the second Sandia design, Norris and Simmons [99] examined the modular 

multiplication algorithm and realised that eliminating carry propagation during the formation of 

partial products could reduce the time required to form a product from 0(n) to 0(n) for n-bit 

data. They modified the well known carry save adder, used to eliminate carry propagation in 

ordinary multiplication, to deal with what they called "delayed carry" integers. Brickell adopted 
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this technique and in 1982, proposed a design that used four delayed carry multiplier chips 

running at 20MHz. This design was expected to achieve encryption rates of up to 20 Kbits/s 

for 512 bit modular exponentiation. 

According to Diffie [44], Ronald Rivest also produced a board at approximately the same time 

as the Sandia designers, capable of encryption with a 100 bit modulus in one twentieth of a 

second. This was intended as proof of concept. Rivest Shamir, and Adleman then proceeded 

to design an NMOS chip [117] with a 512 bit ALU intended to be used as a general purpose 

big number processor. Running at 4 MHz. this chip was expected to achieve a throughput in 

excess of 1.2 Kbits/s. The chip was fabricated but due to a design error was too unreliable to 

complete a full encryption [118]. 

The Japanese company NIT had also been working on the design of an RSA chip, and in 1982 

Miyaguchi [92] published the design of cascadable chip for calculating the modular 

exponential. The algorithm Miyaguchi used performed multiplication and division by the 

modulus in one operation and, as Brickell had done, used an approximation method to 

compute the residues. This design was claimed to be capable of 50 Kbits/s for 512 bit 

encryption. 

In the following year, Simmons and Tavares [142] from Queen's University in Canada 

announced the design of modular multiplication chip designed in 6p. NMOS technology. Their 

chip computed the product first, and then performed modular reduction by subtracting the 

modulus from the result until the sign bit changed. Three intermediate designs had been 

completed by the time their paper was published, one of which had returned from fabrication. 

Although no performance figures were available, Simmons and Tavares hoped to obtain 

encryption times of 200j.is. for 128 bit data. In subsequent work [103] [104] published in 1986, 

this group adopted Blakley's method [24] of reducing the partial products as they are formed. 

Reduction was again performed by monitoring the sign and magnitude of intermediate results 

and subtracting the modulus accordingly. By performing several additions in parallel, and using 

an asynchronous clocking scheme with self-timed adders to detect carry propagation, the 

group hoped to achieve encryption rates of up to 40 Kbits/s. for 512 bit encryption. At the 

CRYPTO '86 conference Orton et al. [105] reported the design of a 32 bit synchronous chip 
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fabricated in 3p. CMOS technology that ran at 200 KHz. with a throughput of 4 Kbitsls. A 22 bit 

version of the asynchronous chip was also reported to have been fabricated in 34 CMOS, and 

test results from this design were extrapolated to estimate performance of 40 Kbits/s for 512 

bit encryption for a 2p. CMOS chip running at 30 MHz. 

In 1985 Martin Kochanski of Business Simulations Ltd., in England, announced the availability 

of a chip set based on a 32 bit bit-sliced processor, capable of performing 512 bit RSA at typical 

rates of around 5 Kbits/s at 5 MHz. [76] [77]. The chip was essentially a modular multiplier 

implemented on a 2.3 p. CMOS gate array and was cascadable, without additional circuity to 

1023 bits. Although the design details were not published, it was a bit serial design similar to 

Brickell's performing n bit modular multiplication in n cycles plus some overhead. Kochanski 

claimed his design was less complex than Brickell's, requiring less circuitry to implement, and 

being less sensitive to details of implementation. 

Another RSA system announced in 1985 was the security processor C.R.l.P.T. [106], 

designed by Jean Claude Pailles and Marc Girault from the French PIT research centre. The 

system was designed as a removable unit for use on more than one host and was implemented 

on two separate chips, a microcontroller, and an RSA chip that performed the basic modular 

multiplication. The RSA chip design is reported in more detail by Gallay and Depret [58]. This 

was 2p. CMOS design resulting in a 10.5mm x 8.4mm chip capable of performing 512 bit 

modular exponentiation in 320ms which corresponds to 1.6 Kbits/s. The architecture was 

based on a 256 bit machine coping with 512 and 1024 bit data in two and four clock cycles 

respectively. Modular multiplication was carried out MSB first according to Blakley's algorithm 

and reduction of the partial products done by examining the overflow resulting from the addition 

of the multiplicand to the running total. If overflow was detected, the modulus was subtracted 

from the running total. To reduce carry propagation times, the 256 bit adders were constructed 

from 16 x 16-bit adders that saved the carries allowing them to be dealt with on the next clock 

cycle. 

In 1986 British Telecom and RAANND Systems announced the design of a single chip RSA 

processor capable of 512 bit exponentiation in 750 ms., or 680 bits/s. [113]. As was the case 

with Kochanski's design, the details were not published, although a general description was 
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given. The chip was a standard cell design measuring 16 mm per side, based on a 64 bit ALU 

architecture running at 20MHz. According to Rankine [113], there was a cubic relation for 

encryption times, which would suggest that carries were being allowed to propagate through 

the adders. 

Another chip announced in 1986 was the CY1 024 from CYLINK [1]. This was a 28 pin CMOS 

device that performed modular arithmetic on data up to 1028 bits, cascadable to 16384 bits, or 

16 chips. The chip ran at clock rates up to 20MHz. and could perform 512 bit modular 

exponentiation in 80 ms. giving a throughput of 6.4 Kbits/s. Again, no details of this design 

were published. 

3.2.2 Sedlak 

A novel approach to modular multiplication was proposed by Holgar Sedlak in 1987 [126]. 

Sedlak suggested partitioning the multiplicand into runs of l's and 0's and using look ahead 

algorithms to decrease the number of operations involved in the multiplication and the 

reduction of the partial products. A look ahead technique is also applied to the two addition 

operations required in Sedlak's design. By using 20 bit carry look ahead adders, Sedlak 

expects to be able to achieve 30 MHz. operation and a throughput of 200 Kbits/s for 

exponentiation with a 780 bit modulus. With the fourth Fermat number as the encryption key, 

rates of up to 3 Mbits/s are theoretically possible. These figures however, assume two 440 bit 

processors operating in parallel making use of the Chinese Remainder Theorem. From 

Sedlak's data, the encryption rate for a single 440 bit machine would be around 100 Kbits/s, 

extrapolating this to a 512 bit machine would imply an encryption rate of 94 Kbits/s. 

3.2.3 Kawamura and Hirano 

The popularity of digital signal processing (DSP) applications which employ residue arithmetic 

has motivated the development of table look up implementations of these algorithms [144] 

[146]. Cryptology algorithms however, tend to use much larger moduli than their DSP 

counterparts, and regularly require the modulus to be changed, thus making look up tables 

unattractive. 
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Realising that complete look up tables for modular arithmetic are not practical when applied to 

cryptology systems, Kawamura and Hirano [74] from Toshiba Corporation, suggested a 

method for the construction of a reduced look up table for modular reduction. In the modular 

multiplication scheme suggested in 1988 by Kawamura and Hirano, the full product is formed 

first. The result is then split into blocks b bits long, and the residues corresponding to the most 

significant block stored in a look up table. Reduction is performed by an iterative process where 

the most significant block is replaced by its residue until the result is less than the modulus. 

Kawamura and Hirano conclude by discussing the trade off then between block size and the 

number of iterations needed to complete reduction. 

3.2.4 Ciyptech 

At the 1988 conference Eurocrypt '88, Frank Hoornaert et. al. from Cryptech and the University 

of Leuven presented the design of an RSA chip capable of 512 bit encryption at an impressive 

17 Kbits/s. [68]. Modular multiplication is carried out by the usual method of reducing the partial 

products as they are formed. The reduction procedure is based on the idea of calculating the 

quotient by division, multiplying this by the modulus, and subtracting the result from the original 

number to obtain the modulus. Thus if R is the number to be reduced, then q 4- LR/nJ, and 

R4—R—qn. However, instead of performing a division, a sub-estimation of the quotient is 

carried out based on only a few bits of the number and the residue. Furthermore, by restricting 

the number of possible quotients, the multiplication qn may be implemented by a look up 

table. The estimate of q has to be accurate enough to avoid divergence. 

This algorithm, illustrated in Figure 3.3, requires two additions per iteration, one for the multiply 

and one for the reduction. These are implemented Out using carry save adders to prevent the 

addition being delayed by the length of the numbers. 

Hoornaert et. al. reported on an ASIC design of a 120 bit datapath chip in 1.5g CMOS. The 

chip could run at 14 MHz. and was cascadable to cope with larger moduli. A board designed 

with six of these chips and capable of handling moduli up to 712 bits was reported to have 

achieved a throughput of 17 Kbits/s. for 512 bit RSA. Rates of 512 Kbits/s. were achieved by 

using short exponents such as F4. 
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Cryptech subsequently announced several commercially available boards for personal 

computers capable of encryption rates of at least 12.6 Kbits/s. for 512 bit RSA [3]. Bong and 

Ruland [26] used one of these boards to achieve encryption times of 49 ms. or 10.5 Kbits/s. 

product 
table 

Adder 	 Shift(x2) 

AL 

multiplicand A 	eliminate 
overflow 

Adder 	 register R 

Figure 3.3 Cryptech's Multiplication Algorithm 

3.2.5 Lu 

Also in 1988, Lu Erl-Huei et al. [49] published the design of VLSI modular multiplier in 1988 

that performed n-bit multiplication in n steps. This design reduced intermediate products by 

subtracting both the modulus, N, and 2N, from the intermediate result and using the overflow 

bits from these operations to determine which result should be selected. By performing these 

operations concurrently the algorithm could execute in n steps. The design of a four bit 

cascadable multiplier was presented that used carry look-ahead to speed up the additions. 

This design was estimated to run at 6 MHz. and consume a chip area of approximately 6mm 

x 6mm if implemented in 2.5.t CMOS. 

3.2.6 British Telecom 

The following year, Peter Ivey et. al. [69] from British Telecom published the design of a single 

chip RSA device implemented in 2g CMOS which used a self timed methodology to speed up 

multiplication. The standard square and multiply algorithm was used for exponentiation and 
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modular reduction during multiplication was performed by comparing the intermediate result 

with the modulus and subtracting the modulus accordingly. The 256 bit data path used carry 

propagate adders with carry completion circuits placed at every fourth bit slice. The method of 

addition used allowed addition times of the order nlogn for n bits, resulting in a performance of 

5 Kbits/s for 256 bit RSA encryption. Later versions of the chip are expected to achieve 15 to 

20 Kbits/s performance. 

3.2.7 Hatfield 

A novel approach to modular reduction was presented at the Crypto '89 conference by Paul 

Findlay and Brian Johnson [55] from Hatfield Polytechnic. Multiplication and modular reduction 

were treated as two separate tasks in this design with the output of the multiplier feeding the 

input of the reduction unit. Findlay and Johnson realized that the double precision multiplier 

output can be represented by the sum of residues of powers of 2 which can be easily stored in 

a look up table. For n-bit multiplication, a table of 2n residues, each n-bits wide would be 

required. Since such a table would not be practical for implementation in silicon Findlay and 

Johnson suggested a simple algorithm that can be used to calculate the residues. A bit-serial 

unit to carry out the reduction calculation was described which when used with a bit-serial 

multiplier combined to form a modular multiplication unit requiring 2n cycles to perform an n-bit 

modular multiplication.The advantage of this approach is that no bit testing or conditional 

branching is required and the hardware may be designed to have no broadcast bits, thus 

allowing faster clock rates. 

3.2.8 Morita 

Also at the Crypto '89 conference, Hikaru Morita from NTT presented the design of a higher 

radix modular multiplication algorithm [96]. Morita's algorithm is capable of performing n bit 

modular multiplication in n/109 2(,) clock cycles when the radix r is greater than or equal to four. 

The basic multiplication operation in this algorithm reduces partial products as they are formed 

by an estimation technique. Using the latest CMOS technology Morita expects to be able to 

design a 512 bit modular multiplier chip capable of performing RSA encryption at 80 Kbits/s 

with a 30 MHz. clock. 
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3.2.9 Shand 

Mark Shand's work in 1990 [130] at DEC PRL on software implementations of RSA was 

discussed in section 3.1.4. To achieve higher rates Shand investigated the use of hardware 

accelerator boards, DEC's Programmable Active Memory or PAM arrays [20]. These 

accelerator boards are based on a 5 x 5 array of Xilinx 3020 programmable gate array chips 

with 512 K of RAM and a VME interface and allowed several different multiplier architectures 

to be tested. 

With a single hardware accelerator unit rates of 1.8 Kbits/s were reported for 512 bit RSA 

encryption. Employing the Chinese Remainder Theorem and fine tuning the assembly code 

.gave rates of 3.9 Kbits/s for a single unit. By adopting a modular multiplication technique that 

avoided comparisons with the modulus and using three hardware multiplier units encryption 

rates were increased further. Two of the multiplier units used Montgomery's recoding 

technique and worked modulo p and q, the factors of the RSA modulus. The third multiplier 

employed Booth recoding to combine the results from the first two to retrieve the desired 

product. With this arrangement the team at DEC PRL achieved the outstanding encryption rate 

of 200 Kbits/s for 512 bit RSA. 

3.2.10 Recent Developments 

cetin K. Koç and Ching Yu Hung [32] have recently completed work on the design of systolic 

arrays for modular multiplication. This design performs modular multiplication by using Carry 

Save Adders and estimating the sign of the partial products to flag subtraction of the modulus. 

The proposed design takes 3n clock cycles to perform n bit modular multiplication but the 

systolic nature allows multiplications to pipelined thus producing a new result every clock cycle. 

3.2.11 Summary 

Figure 3.4 summarizes the hardware performance of RSA cryptosystems and may be 

compared with Figure 3.2 on page 56. The omissions from this table are due to encryption 

rates not being published in the original material. 
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Year Technology Rate (bitsis) Comments 

Sandia 1979 Discrete 100 - 400 
1982 NMOS 420 336 bit modulus 
1982 20 K Estimated performance 

Rivest 1979 Discrete 2K 100 bit modulus, 
"proof of concept" 

1980 NMOS 1.2 K Failed to Function 

NTT 1982 50K Estimated performance 

Queens 1983 6 p. NMOS 640 K Estimated performance for 
University 128 bit modulus 

1986 2 p. CMOS 40 K Estimated performance 
1986 3 p. CMOS 4 K Actual performance for 

32 bit modulus 

Kochanski 1985 2.3 p. CMOS 5 K Gate array design 
Commercially available 

C.R.I.P.T 1985 2p.CMOS 1.6K 

RAANND 1986 680 Standard Cell ASIC 

Cylink 1986 1.5 p. CMOS 6.4 K Commercially available 

Sedlak 1987 94 K Estimated performance 

Cryptech 1988 1.5p.CMOS 12K- 17K ASIC design, 
Commercially available 

British 1989 2 p. CMOS 5 K 256 bit modulus 
Telecom design for key management 

Morita 1989 80 K Radix 4 multiplier 

DEC PRL 1990 PAM 1.8 K One accelerator board 
200 K Three accelerator boards and CRT 

Figure 3.4 Summary of RSA Hardware Performance 

Brief reviews of RSA hardware have been presented at the cryptology conferences 

EUROCRYPT '84 and CRYPTO '89 by Ronald Rivest [119] and Ernest BrickeD [30]. 
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3.3 	Discussion 

Since the conception of public key cryptography, the implementation of practical systems with 

data throughput comparable with secret key systems has proved both a technological and 

commercial challenge. Much research has been carried out into the design of algorithms and 

hardware accelerators to speed up modular exponentiation, and in particular, the core 

operation of this process, modular multiplication. While much has been accomplished in 

software, data throughput still remains at least an order of magnitude slower than for secret 

key systems. The need for a hardware solution to the problem of fast public key systems is 

reflected in the number of publications suggesting this approach. 

With the exception of Laurichesse [79], little work has been done to investigate the 

exponentiation algorithm, the consensus of opinion being that the core operation of modular 

multiplication is where optimization will yield best results. In addressing this problem two 

different approaches have been taken. The earliest designs [28] [114] adopted the approach 

of reducing partial products as they were formed during multiplication as described by Blakley 

[24] in a later publication. The alternative is to allow the data to grow and reduce the double 

precision product on completion of the multiplication [55], [74], [142]. This allows standard 

hardware multipliers to be used and if a pipelined reduction unit can be designed such as was 

done at Hatfield [55], may produce acceptable results. 

The most popular method of modular multiplication however, is to reduce the partial products 

as they are formed. This has the obvious advantage of restricting word growth and reducing 

hardware requirements. 

Multiplication is generally carried out by examining the multiplier one bit at a time and 

conditionally adding the multiplicand to the partial product. Some [130] have used recoding 

techniques to examine more than one bit of the multiplier at a time but this has yet to be 

implemented in hardware for a large integer modular multiplier. If, as is the case in the majority 

of publications, reduction of the partial products is desired then the multiplier must be 

examined most significant bit (MSB) first as explained by Blakley [24]. Addition of the 

multiplicand to the partial product is often carried out using parallel adders that allow carries to 

propagate along the word length [49], [69], [113], [114], [117], [126]. Since the carry 

page 66 



propagation time is proportional to the number of bits in the modulus, this approach results in 

a quadratic relation for multiplication times, and a cubic relation for encryption times as 

reported by Rankine [113]. This relation may be improved upon by adopting the look-ahead 

techniques proposed by Sedlak [126] and Erl-Huei [49] although the area requirements of 

these techniques may inhibit extension to arbitrary length. The self timed adders used by Orton 

[105] and Ivey [69] also offer some improvement at the expense of increased complexity. 

The use of carry save adders [28], [32], [55], [68], [76] and [106] on the other hand eliminates 

carry propagation completely and, provided care is taken in the reduction process, can 

produce quadratic relations for encryption times. The hardware overhead in this type of design 

is more than compensated for as security demands the use of encryption moduli up to 1024 

bits and beyond. 

Where most researchers differ is in the means of modular reduction. Many ([49], [69], [105], 

[106], [126] ) use some form of magnitude comparison with the modulus followed by a 

subtraction. Although improvements may be made by performing concurrent subtractions of 

multiples of the modulus for post selection [49], [105], any magnitude comparisons inevitably 

involve carry propagation which when carried out at each step of the multiplication algorithm 

result in the undesirable cubic relationship between encryption times and modulus size. To 

avoid magnitude comparisons, estimation techniques may be applied [28], [92] which when 

coupled with a short look up table [68] give excellent performance. 

If progress is to made in practical public key cryptography, then the way forward lies in 

designing efficient hardware to speed up the modular multiplication operation so crucial to 

many public key algorithms. As pointed out by Hoornaert et. al. [68], "hardware knowledge has 

to be integrated into the algorithmic study to obtain the optimal calculation scheme". One 

specific area where this integration has to occur is in the modular reduction operation, where 

algorithms and hardware are required to perform modular reduction without incurring any carry 

propagation. The means by which this is accomplished is the subject of the following chapter. 
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Chapter 4 Algorithm Design 

Chapter 3 identified modular multiplication as a key area for optimization to enhance the 

performance of public key cryptosystems. This chapter describes a novel modular 

multiplication algorithm suitable for a hardware design which avoids any carry propagation, 

thus allowing n bit modular exponentiation to be performed in 0(n 2) time. 

As discussed in the previous chapter, although algorithms may be designed to perform 

modular exponentiation in 0(n2 ) clock cycles, if hardware limitations are ignored, these same 

algorithms will require 0(n3 ) time for execution. This distinction is crucial for the large moduli 

needed in public key cryptosystems 

To achieve performance in 0(n2) time, carry propagation along the word length must be 

avoided completely. This effectively precludes apy magnitude comparisons, so the problem is 

then, how to perform modular reduction without involving magnitude comparisons. One 

solution is to estimate the residues as was successfully demonstrated in the Cryptech chip 

[68]. The alternative proposed in this thesis is to perform modular multiplication without any 

modulo reduction steps. 

4.1 Modular Multiplication with Partial Reduction 

Multiplication is carried out MSB first according to the add - shift - reduce procedure described 

by Blakley [24], but with the following modifications. 

The partial product is allowed to grow by two bits each iteration. 

At the end of each iteration, these upper bits are reset to zero. 

The residue corresponding to the two reset bits is added to the 

partial product on the next iteration. 

That the reduction of the partial products may be incomplete, in that after resetting the upper 

bits the remaining number may be greater than the modulus, is of little practical consequence. 

What is important is that the result is constrained to the length of the multiplier array. 

On completion of this procedure reduction may be carried Out, if desired, by subtracting the 

modulus, but since the word length has been constrained to two bits of growth only a few 

subtractions of the modulus will be needed to accomplish this. Furthermore, as the result of 
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the multiplication is only one step in the much longer procedure of exponentiation, this 

reduction step need typically only be performed once in every 512 multiplications. 

Figure 4.1 illustrates the algorithm in the style of Hoornaert et. al. [68], and may be compared 

with Figure 3.3 on page 62. Figure 4.2 illustrates the algorithm using pseudo code. 

Figure 4.1 Illustration of Multiplication Algorithm 

Although the size of the product table in [68] is not stated, it is unlikely to require less storage 

than the three residues the overflow table in the above needs to represent the two upper bits 

that have been reset. 

Figure 4.3 demonstrates the operation of the algorithm by showing how 14 * 15 mod 17 (= 6) 

is calculated. First of all the residues have to be calculated for the modulus 10001, since the 

word is allowed to grow by two bits the residues of 01 00000, 10 00000, and 11 00000 are 

required. However, as the residues are added on the following cycle, they are effectively left-

shifted in significance thus it is the residues of 010 00000, 100 00000, 110 00000 that are 

needed. These are 01101, 01001, and 00101 respectively. 
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program modxnult; 

const wordlength = 5, 	(k number of bits in the machine *) 

modulus = 17, resi = 13, resi = 9, resi = 5; 

type vector = array[0. .wordlength-i], 

long = array[0. .wordlength+2], 

bit = (0,1); 

var a, b: integer, 	(* input multiplier & multiplicand *) 
res : integer, 	(* residue corresponding to overflow bits *) 

acc : integer, 	(* accumulator  *) 

i : integer, 	(* counter  *) 

vO, vi: bit, 	(* overflow bits *) 

bvec: vector, 	(* binary equivalent of input b *) 
accvec: long; 	(* binary equivalent of accumulator *) 

BEGIN (* modmult *) 
i := wordlength; 

res := 0; 

read( a, b ); 

bvec := Convert—to—Vector( b ); 

REPEAT 

IF bvec[i-1] = 1 THEN acc := acc + a; 

acc := acc + res; 
IF i < 1 THEN acc := acc * 2; 

accvec := Convert _to_Long( acc ); 
vO, vi ) := Most _Significant_Two_Bits_of( accvec ); (*vO=MSB*) 

res := CASE ( vO, vl ) OF 

0, 0 ) : 0; 

0, i ) : resi; 

1, 0 ) : res2; 

i, i ) : res3; 
END; (* Case ( vO, vi ) 

*) 

Reset_Most_Significant_Two_Bits_of ( accvec ); 
acc := Convert to Int( accvec ); 
I := i - 1; 

UNTIL i = 0; 

WHILE acc < modulus DO acc := acc - modulus; 

writeln( a, ' * ', b, ' mod ', c, ' = ', acc 

END. (* modmult *) 

Figure 4.2 Pseudo Code for Multiplication Algorithm 
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Example: 14 * 15 mod 17= 6 

Residues are: 	01 = 13 

10=9 

11 =5 

Figure 4.3 Example of Algorithm 

In the above, b[i] is the ith  bit of the multiplier (15, 01111) and determines whether the 

, no shift is 

carried out on the last step of the multiplication procedure. 

Figure 4.4 shows how this algorithm may be implemented in hardware with "A" representing 

the multiplicand, and "R" representing the residue to be added. Both these numbers are input 

Iteration (I) b[i] Residue PP2  PP10 Comment 

5 0 0 00 	00000 00 

4 1 0 00 	01110 14 add 14 

000 	1110 28 shift 

0 	1110 28 reset 

3 1 0 01 	01010 42 add 14 

010 	1010 84 shift 

0 	1010 20 reset 

2 1 13 01 	00010 34 add 14 
01 	01111 47 add residue 

010 	1111 94 shift 

0 	1111 30 reset 

1 1 13 01 	01100 44 add 14 

01 	11001 57 add residue 

no shift 

40 -17 

23 -17 

06 

multiplicand (1 4) is added or not. PP is the partial product. As explained in [24] 
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in parallel, A4 and R 4  being the MSBs. "A" will of course be masked with each bit b[i] of the 

multiplier, and "R" selected by the two overflow bits. 

Figure 4.4 Hardware Implementation of Algorithm 

Having demonstrated that complete modular reduction is not necessary to restrict word 

growth, the partial reduction technique may now be applied to bit serial designs to eliminate 

carry propagation in the above. 

4.2 	Bit Serial Design 

Figure 4.5 shows how the basic cell of Figure 4.4 is modified for bit serial implementation. In 

Figure 4.6 each bit serial cell is represented by a block to illustrate how the five bit multiplier 

array is constructed. 
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Figure 4.5 Bit Serial Modular Multiplier Cell 

Figure 4.6 Five Bit Multiplier Array 

The four inputs on the right of the array are all logical zeroes, the four outputs at the left extend 

the array to larger bit lengths. The result of the multiplication is held in sum and carry form in 

the two registers formed by the SR and CR latches. 

To complete the circuit, the overflow bits representing the data lost oft the left hand side of the 

array must be resolved by adding all bits with the same significance, as shown in Figure 4.7. 
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Figure 4.7 Resolution of Overflow Bits 

In Figure 4.7 the maximum possible overflow appears to be '100', not 11' as suggested by the 

carry propagate hardware. However, for n bit unsigned operands, the largest possible number 

resulting from the addition of the four n bit numbers A, R, SR, and CR, is 

4(21t 1) 	 (EQ4.1) 

But since the accumulator is only n bits long, it can only hold 

4(2"-1) mod 2" 	 (EQ4.2) 
But 

4(2 n  - 1) mod 2 = (3-2 n 
+ 2  n  —4) mod 2" 	 (EQ 4.3) 

And since (2" —4) mod 2" can be held in the n bit accumulator, the worst case overflow is: 

(3-2 n)  mod 2 n = 011... 	 (EQ 4.4) 

Thus the carry output from the last adder is never set. 
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The worked example of Figure 4.3 is repeated in Figure 4.8 to demonstrate the operation of 

the bit serial algorithm.The data shows the inputs and outputs for each adder in the array and 

the result of the overflow calculation. This is done for five cycles, then the sums and carries are 

added to produce the result. 

Example: 14 * 15 mod 17 = 6 

Residues are: 	001 = 13 	011 = 5 
010=9 	100=1 

CR+SR=56+1 =57=6 

iteration (j)  b[i] First Adder Second Adder Overflow 

5 0 A 00000 R 00000 
SR j- 1  00000 SA 1  00000 
CR 12  00000 CA .. 1  00000 

CA 00000 CR 00000 
SA 00000 SR 00000 000 

4 1 A 01110 R 00000 
SR j- 1  00000 SA 01110 
CR 12  00000 CA j- 1  00000 
CA 00000 CR 00000 
SA 01110 SR 01110 000 

3 1 A 01110 R 00000 
SR j- 1  11100 SA 10010 
CR 2  00000 CA j- 1  11000 

CA 01100 CR 10000 
SA 10010 SR 01 01 0 010 

2 1 A 01110 R 01101 
SR j- 1  10100 SA 11010 
CR 2  00000 CA j- 1  01000 
CA 00100 CR 01000 
SA 11010 SR 11111 010 

A 01110 R 01101 
SR j- 1  11110 SA 1  10000 
CR 1..2  00000 CA j- 1  11100 
CA 01110 CR 11100 
SA 10000 SR 00001 

Figure 4.8 Example of Bit Serial Algorithm 
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4.3 Testing the Algorithm 

A program was written in PASCAL to test the algorithm by comparing its results with those 

obtained by standard computer arithmetic and exiting if there was a difference. This program 

exhaustively tested all combinations from 0 * 0 mod 1, to 277 * 277 mod 278, a total of over 

seven million multiplications, without error. 

The test program itself was verified by introducing a deliberate bug into the algorithm which led 

to an erroneous result, halting the program execution. 

4.4 Performance Estimates 

The throughput for RSA encryption using this multiplication algorithm may now be estimated. 

It is assumed that the square and multiply algorithm for exponentiation is to be used without 

modification, and that two hardware multipliers are used, one for squaring the other for 

multiplying. An n bit exponentiation will then take n multiplications. The effect of using only one 

hardware multiplier is data dependent, exponentiation taking between n and 2n multiplications. 

It is further assumed that the results of each multiplication remain in sum and carry form until 

the exponentiation has ended, thus the reduction step need only be carried out once in every 

n multiplies and may effectively be ignored. Each multiplication may then be carried out in n 

clock cycles, and exponentiation in n2  cycles. In hardware, the final reduction step may be 

carried out on a separate carry propagate adder allowing the subsequent exponentiations to 

proceed immediately. 

Examination of Figure 4.7 shows the longest path that signals have to propagate through to be 

via six adders. If 5a  is the maximum delay through a one bit adder, then maximum frequency 

the array can operate at is 

f= 	 (EQ4.5) 
a 

And since an n bit exponentiation takes n2  cycles the throughput is 

1 
(EQ 4.6) 

n 66a  
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Figure 4.9 tabulates the data throughput in Kbits/s based on (EQ 4.6) and may be compared 

with Figure 3.4 on page 65. Even assuming the worst case operating frequency, these figures 

compare favourably with the best designs summarised in Figure 3.4. 

6a 	ns. 
3 5 .10 15 

256 217 130 65 43 

512 109 65 33 22 

1024 54 32 16 11 

Clock! MHz. 55.6 33.3 16.7 11.1 

Figure 4.9 Performance Estimates 
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Chapter 5 Chip Design 

This chapter describes the design of a chip capable of performing most of the modular 

arithmetic operations commonly used in public key cryptography. The core element of the 

design is the modular multiplier described in Chapter 4. 

5.1 	Design Criteria 

The intention of this research, as stated in section 1 .4, is to design fast hardware for public key 

cryptography. To achieve this goal it was decided at the outset of the project to aim for a design 

that did not propagate any carries when performing modular multiplication. This decision 

precluded the use of any magnitude comparisons during modular reduction and led to the 

partial reduction technique described in Chapter 4. 

A second constraint on the hardware design is that it should not be restricted to a specific key 

length. One advantage that the RSA scheme has over block ciphers, like DES or FEAL, is that 

the security of the system may be increased at any time, simply by using longer keys. If the 

hardware is restricted to a fixed key length, then this advantage is lost and the chip will soon 

become obsolete. To provide a facility for variable key length the processor must either 

multiplex in time, or be cascadable. As the first option detracts from the prime aim of the 

research, a cascadable design was chosen, thus providing the option to increase security with 

no loss of performance. 

A third design consideration was testability. Here the basic requirements of good VLSI design 

and good cryptosystem design diverge. In the former it is desirable to have easy read and write 

access to as many internal nodes in the circuit as possible, whereas in the latter such an 

attribute would seriously compromise security. Since this was envisaged as a prototype design 

only, the former approach was taken. All registers on the chip being accessible either directly 

from the data ports or via scan paths. The problem of ensuring testability in commercial 

designs without compromising security is not addressed in this thesis. One possible solution 

may be to use fusable links, as is done in PROM design, to disable memory read functions 

after final production tests. 

Another practical consideration was to keep the pin count low to avoid packaging the finished 

device in a pin grid array which would complicate any future board design. 
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5.2 Chip Architecture 

Having established a rough specification for the chip and a basic multiplier design, the support 

circuitry for the multiplier, and the interface circuits were defined. 

Output from the multiplier array is a number in sum and carry form that may be used in 

subsequent operations on chip with complete reduction being carried out externally if required. 

However, this may not always be convenient and so a means of completely reducing the 

number internally is desirable. This is accomplished by including a ripple adder, an 

accumulator, and a register for the modulus on the chip as indicated in Figure 5.1. Inclusion of 

these elements allows reduction to be completed while the next product is being formed in the 

array, and provides facilities for simple modular addition and subtraction. The clock for this part 

of the circuit obviously has to run at a slower rate than the clock for the array. 

	

ft 	B register 	pio 

I/O buffer E 	piso 

	

A register 	

I

Residue Ri 

Select A or Zero 	
Residue R2 	

N register 

Residue R3 

overflow 	
Multiplier Array 

	

mux 	 mux 

L17 J 
Ripple Adder 

Accumulator I 
I I 

Figure 5.1 Modular Arithmetic Chip Architecture 
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The Input/Output (I/O) buffer may be loaded and read either in parallel or serially, permitting 

simultaneous reading and writing of data while multiplication is being carried out on the array 

and reduction on the adder and accumulator. Eight-bit parallel to serial (PISO) and serial to 

parallel (SIPO) converters at either end of this buffer permit byte oriented input and output with 

slower strobes than those required for the serial links. Two data input ports allow the 

multiplicand "A", and the multiplier "B", to be loaded simultaneously. The modulus and residues 

will not change as frequently as "A" and "B" and therefore share the "A" input port. 

Figure 5.2 indicates how this architecture allows modular multiplication to be pipelined for 

maximum throughput. 

Operation Data Block 

Load Data i 	k-i 	i+2 	i+3 
Multiply i-i 	i 	i+i 	1+2 
Reduce i-2 	i-i 	i 	k-i 
Read Data i-3 	i-2 	i-i 

Figure 5.2 Pipelined Modular Multiplication. 

5.3 Logic Design 

At this stage in the design the behaviour of the chip was modelled using the hardware 

description language ELLA to facilitate testing and debugging of the proposed architecture 

without describing the low level details of the hardware. 

5.3.1 Description of Single Chip 

After defining basic data types and cells such as single bit adders and latches, the multiplier 

cell of Figure 4.5 was described as shown in Figure 5.3 
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FN MULTCELL = (bool: aini caimi crim2 sriml clock rbar enable 
-> [3]bool: 

BEGIN 
MAKE BITADD addi add2, 

FULATCH { 1 } : latchl latch2. 

JOIN 	( ai, sniml, crim2 ) -> addl, 

ri, addl[l],  caimi ) -> add2, 

REF1( add2[1] ), rbar, enable, clock ) -> latchi, 

REF1( add2[2] ), rbar, enable, clock ) -> latch2. 

OUTPUT REF3( REF1( addl[2] ), latch2, latchl 

# CA(i), CR(i), SR(i) # 

END. 

Figure 5.3 ELLA Description of Multiplier Cell 

This cell was then replicated to define the parameterisable multiplier array of Figure 5.4. 

MAC ARRAY { INT n } = ( [n]bool: ain nfl, [4]bool: sigin, bool: clock 

rbar enable ) -> ( [4]bool, [3]bool, [n+3]bool, [n]bool) 

BEGIN 

MAKE [n-2]MULTCELL : mcell, 

NMI10ELL : ncell, 

ENDCELL : ecell. 

LET 

ca = sigin[1] CONC  ( [INT k=1. .n-2] mcell[k]  [1] 
CONC ( REF2A  ( ncell[1] [1], ecell[1] [1]  

cr = sigin[4] CONC  ( sigin[2] CONC  ( [INT k=1. .n-2] mcell[k]  [2] 
CONC ( REF2A ( ncell[l] [2], ecell[1] [2]  ) ) ) ), 

sr = sigin[3] CONC ( [INT k=1. .n-2] mcell[k] [3] 

CONC ( REF2A  ( ncell[1] [3], ecell[1] [3] ) ) ), 

sigout = ecell[1] CONC ncell[1] [2], 

addout = ecell[2] [2.  .4], 
sums = ( sr[2. .n] CONC ecell[2] ), 

cars =  ( cr[2. .n] CONC f 

FOR INT k=1. .n-2 

JOIN ( ain[k], rin[k],  ca[k], cr[k], sr[k],clock, rbar, 
enable)-> mcell[k]. 

JOIN ( ain[n- 1], nin[n-1], ca[n-1], cr[n- 1], sr[n- 1], clock, 

rbar, enable ) -> ncell, 

ain[ n ], rin[ n ], ca[ n ], cr[ n ], sr[ n ], ncell[2], 
clock, rbar, enable ) -> ecell. 

OUTPUT ( sigout, addout, sums, cars 

Figure 5.4 ELLA Description of n-bit Multiplier Array 
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Once the multiplier array and modular reduction circuits had been defined, an interface was 

added which included serial links not shown on Figure 5.1, to allow cascading of several chips. 

Finally, a mnemonic instruction decoder was described and the design tested and debugged. 

5.3.2 Description of Cascaded Chips 

This single chip model was then used to describe and simulate a complete cascaded system 
of three eight bit chips. 

FN SYST = ( instruc: mem mul, [2]hex: data, [4]bool: ext_addr, 

bool: s_buff s_b ldbb 1db_ps 1db ci lcLb C 1db cm 

seladdr acik rclk ) -> ( [2]hex, bool 

BEGIN 

MAKE CHIP 	{ 8 } 	: lschip midchip mschip, 

MUX2 { [4]bool 	} 	: 	addr. 
LET intaddr = ( BITREV { 3 } mschip[2] 	) 	CONC f, 

b_ctl = mschip[4], 

sigl = 1schip[1], 	sig2 = midchip[11, 

s_bfl = 1schip[3], 	s_bf2 = midchip[3], 
sbl = 1schip[4], 	s_b2 = midchip[4]. 

JOIN ( int_addr, ext_addr, seladdr ) 	-> addr, 

mem, mul, 	data, 	addr, s_buff, s_b, 

bcti, 1db_ps, 	1db_b, ldbcl, aclk, 	rclk ) 	-> lschip, 

mem, mul, 	sigi, 	addr, sbfl, 	sbl, 
bctl, t , 	t , 	1db_c , aclk, 	rclk ) 	-> midchip, 
mem, mul, 	sig2, 	addr, s_bf2, 	s_b2, 

bctl, 1db_ps, t , ldbcm, aclk, 	rclk ) 	 -> mschip. 

OUTPUT ( mschip  [1], 	mschip[5] 
END. 

Figure 5.5 ELLA Description of Cascaded System 

In Figure 5.5 three chips are instanced, each one having an eight bit wide modular multiplier, 

and are combined to form a 24 bit multiplier. Each chip has a 'mem' and 'mul' input, these are 

mnemonic instruction inputs to control memory and multiplier operations. The least significant 

chip has a hexadecimal 'data' input port that connects to both the B register port and the I/O 

Buffer of Figure 5.1. The 'addr' input accepts the address of the residue and may come from 

either the overflow bits of the most significant chip during normal operation, or from an external 

source to allow residues to be accessed directly. The remaining inputs control the loading and 

reading of the PISOs and SIPO, selection of serial/parallel input and output, and masking of 
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the 'A' register during multiplication. A second external clock provides a means of running the 

ripple adder at a slower rate than the multiplier array. As this was a prototype design, this was 

thought to be safer than generating the slow clock internally. 

This cascaded system was tested and debugged until the multiplication results agreed with 

those calculated by the PASCAL program of section 4.3, and all other features of the chip 

behaved as required. Once satisfied with the logical design, the physical design could proceed 

with the knowledge that functionality is correct. This allowed attention to be concentrated on 

implementation issues such as timing, buffering and clock distribution. 

5.4 Physical Design 

It was known in advance that the chip was to be fabricated using ES2's ASIC design tools, 

SOLO 1200, so the final ELLA description was constructed in a manner that would easily map 

on to the basic gates available in the SOLO library. A rough draft of the design was produced 

using the SOLO schematic capture tools to describe a parameterisable design that could 

generate a multiplier chip of user defined word length. From this schematic description, circuit 

layout is synthesised very quickly and it was soon clear from the resulting silicon area, that the 

target design should be a 32-bit processor. A full custom approach may have produced more 

efficient layout resulting in a 64 or 128 bit processor but the time and effort required to do so 

was considered too much for a prototype design. In adopting this semi-custom approach, 

control over floorplanning and routing is forfeited and so the most efficient layout is not 

realised, consequently each component has to be heavily buffered leading to even greater chip 

area. Furthermore, dynamic logic was unavailable and all storage had to be constructed from 

fully static d-type latches. 

Since routing is done automatically, following the design hierarchy, it was decided to adopt a 

bit slice approach to this design in an attempt to minimise the wire lengths needed for local 

routing and avoid the difficulties involved in routing 32 bit busses. 

5.4.1 Basic Cell Designs 

The basic latch used throughout this design was the edge triggered d-type flip flop arranged to 

form the enable type latch of Figure 5.6. Here, the enable input 'en' determines whether to gate 
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new data d' into the latch or to hold previous data. This type of latch was chosen to avoid 

having to gate the clock, thus reducing the possibility of race conditions that may arise due to 

the lack of control over floorplanning and circuit delays resulting from the automatic design 

layout. A synchronous reset 'r' is also included in this design. 

Output from the latch is via a parameterisable buffer to simplify the matching of drive capability 

to circuit loads in the complete design. 

The latch in Figure 5.6 is a scan path latch used in preference to ordinary d-types to improve 

testability of the design in areas where register access was not straightforward. 

Figure 5.6 Enable-type Latch 

The circuit diagrams shown in this chapter are screen dumps taken from the SOLO schematic 

capture tool DRAFT, used to create the design. 
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Figure 5.7 Adder for Multiplier Array: 'madd' 

The badd' cells in Figure 5.7 are based on the standard single bit binary add cell available in 

the SOLO library, to which parameterisable buffers have been added at the output. These two 

adders form the multiplier add cell 'madd' used to build the multiplier cell 'mcell' Figure 5.8. 

Figure 5.8 Multiplier Array Cell: 'mcell' 

Figure 5.8 is the final version of the cell originally proposed on page 73. 
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Memory for the residues was constructed from enable type latches, a decoder with write 

enable, and a multiplexer as shown in Figure 5.9. No user defined RAM was available. 

Figure 5.9 Storage for Residues: 'cram' 

The residue, or congruence RAM, 'cram', is combined with the multiplier cell in Figure 5.10 

together with storage for the modulus 'nreg' and the multiplicand 'areg'. The output from 'areg' 

is masked with each bit of the multiplier 'bb' before being input to the multiplier cell. Separate 

reset lines allow either the memory, or the array to be reset at the user's discretion. 

This combined cell 'ccell' is connected to the ripple adder and accumulator 'addr' in Figure 5.11 

to form the basic bit slice cell. Like 'mcell' and 'cram' in 'ccell' (Figure 5.10) 'addr' also has 

separate reset and enable lines, but a separate external clock is required for this part of the 

chip as explained in section 5.2. Figure 5.11 is a bit slice of the chip architecture shown in 

Figure 5.1 with the slight modification of the multiplexer used to route either the residues or the 

modulus (n) to the ripple adder. This allows the partial reduction technique to be applied to the 

final reduction operation as well as multiplication, and reduces the number of times the 

modulus has to be subtracted to achieve complete reduction. The other multiplexer controlled 

by 'ser' in Figure 5.11 is constructed from the two multiplexers of Figure 5.1 determining 

whether the ripple adder adds sums and carries from the array, or is used for reduction. 
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Figure 5.10 Combining Storage and Multiplier Cells: 'ccell' 

Figure 5.11 Complete Bit Slice Cell: 'cell' 

The multiplicand register 'breg' is serially linked to higher and lower order bits and reset by the 

same signal as 'ccell'. The I/O buffer is constructed from scan path type latches to allow both 

serial and parallel data input and output. 
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Figure 5.12 shows how two single cells are combined, and Figure 5.13 shows how two 'cell2s' 

are combined to form a ceIl4'. The complete chip is built up in this hierarchical manner to ease 

buffering and clock distribution. 
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For flexibility, it was decided to allow separate commands for memory and multiplier operations 

and, from the ELLA simulations, it was known that a minimum of nine commands were needed 

for both operations. The command decoder therefore required two four bit inputs, and a 

thirteen bit output as shown in Figure 5.13. Decoding was carried out at this level to minimise 

the routing of the thirteen control signals without allocating too much silicon to the decoders. 

5.4.2 End Cell Designs 

The cells at the most significant end of the array differ slightly from the rest of the array as 

described in the following. 

In Figure 4.7 on page 74, both carry outputs and the sum output from the cell at the end of the 

array are connected to the input of the two bit ripple adder used to calculate the overflow. To 

allow this, the multiplier cell of Figure 5.8 is modified by adding the unlatched carry output 

signal 'ccd' and the unlatched sum output signal 'scd'. The ca' output from this cell is 

connected directly to an output pin, hence the heavy buffering. 

Figure 5.14 End Celifor Multiplier Array: 'mcelle' 

The (n - 1) cell is similarly modified to provide access to the unlatched carry from the residue 

addition. 
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Figure 5.15 and Figure 5.16 highlight these additional signals to show how they propagate up 

through the design hierarchy, and may be compared to the basic bit slice cell of Figure 5.11 

Figure 5.15 Bit Slice Cell (n - 1): 'celln' 
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Figure 5.16 End Celifor Bit Slice: 'celle' 
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When adding the sums and carries from the array to form the normal binary representation of 

the data, the carry from the end cell has already been dealt with in the calculation of the 

overflow bits, thus the 'addr' cell is missing from Figure 5.16. 

6 2  - [ 	L 
— , 

6 

 1 ... 	 en ..................... 

Figure 5.17 Decoder for Overflow Bits: 'mydecode' 

Figure 5.17 shows where the sum and carry from the end cell are combined. The result is the 

signal bO above. The four outputs from this circuit are connected to both the address output 

port for selecting residues, and the upper bits of the ripple add reduction circuit, Figure 5.18. 

Although bO and b3 in the above are not needed externally, they are routed out to improve 

testability of the circuit. 

The basic bit slice cell includes one bit of a ripple adder and a latch to facilitate reduction by 

subtraction of the modulus. The contents of the array however, once sums and carries have 

been resolved, may form an (n + 3) bit number. Thus the ripple adder formed by combining the 

bit slices has to be extended by three bits which is the purpose of the circuit of Figure 5.18. 
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Figure 5.18 Upper Bits of Ripple Adder: 'rip4' 

In Figure 5.18, the s(O3) inputs are the overflow bits already calculated by the decoder of 

Figure 5.17. There is no need to combine sums and carries as the 'addr' cell does for lower 

order bits, and so the carry input 'c' to the multiplexer is connected to logical zero. The 

synthesis software optimises the layout of cells with inputs connected to VDD or VSS so no 

area is wasted in the above by connecting the inputs to VSS. 

The other inputs to the adder, selected by control signal 'Se', are from the accumulator register 

'r' and modulus or residue W. As discussed on page 86, the adder may perform partial 

reduction by adding residues, followed by complete reduction by subtracting the modulus. The 

'n' input to the ripple adder must therefore be set to logical zero when adding the positive 

residues, and logical one when adding the two's compliment of the modulus. This sign is 

controlled by the input signal 'si'. 

The 'ci' input is the carry from lower order bits. 'ss', and 'Sd' are scan path select and scan path 

data. 'rr', 'en', and 'ck' are reset, enable, and clock signals for the latches. 

The 'r2' input is a reset signal used to clear the two most significant bits during partial reduction. 
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The output signal 'co' is the ripple carry output that connects to the next device when chips are 

cascaded. The register output 'ro' transfers data to the I/O buffer in 'celle' Figure 5.16. 

The output 'f' is a 'finish' signal that indicates reduction has been completed by outputting a 

logical one as soon as subtraction of the modulus yields a negative result. At this point the 

contents of the accumulator have been completely reduced and may be transferred to the I/O 

buffer. 

The remaining output signals in Figure 5.18, bl and b2, form the address of the residue to be 

added during partial reduction when they will be reset by 'r2'. 

ctl(O:12) 

- e2 ..... 	 (1.2) 
	

(12) .ab(O:2) 

	

hO1 ........ 'no- . 	S 

J,(3> o,(2) 0(liJLO) ........ I 

'2 	9 '9 1 	11 	I 	1 	11 

Figure 5.19 Combination of Two Most Significant Cells: 'cell2e' 

Figure 5.19 shows the combination of the two most significant cells and connection to the 

overflow decoder to calculate the address of the next residue. 

When the sums and carries from the multiplier array are resolved in 'rip4' the carry from bit bO 

in Figure 5.17 has already propagated and does not appear anywhere in Figure 5.18. The 

carry out signal from 'rip4' will therefore be incorrect during this particular operation. To correct 

this, the adder in 'celI2e' computes the carry out directly from the last cell. All other arithmetic 

operations carried out on the ripple adder and accumulator will produce the correct value on 
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0) 

.bb(3) 

ii 

signal co' of Figure 5.18. The correct carry signal is selected by the multiplexer in the lower 

right hand side of Figure 5.20 before leaving the chip. The other multiplexer in this circuit 

determines whether the residue address is taken from the overflow decoder or the upper bits 

of the ripple adder. 
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Figure 5.20 Selection of Outputs From End Cells: 'c2end' 

5.4.3 Peripheral Cell Designs 

The two most significant cells in the array, 'c2end' above, are combined with two standard 

cells, 'ce112' of Figure 5.12, to form a 'cell4e' and the hierarchy is built up until ce1132' is created. 

This 'ce1132' is connected to the peripheral circuits to form the core design of Figure 5.21. 

In Figure 5.21 either the serial output from the PISOs or an external serial input may be 

selected as input to the B register or I/O buffer. The serial input to the SIPO is also available 

at an output pin. The enable input to these registers allows data to shifted in/out serially, and 

the load signal latches parallel data. 

Finally, multiplexers are added to the core design that select internal or external addresses and 

multiplier inputs b 1 . The unconnected signals on Figure 5.22 are all routed to the external pins 

of the chip. 
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Figure 5.21 Core Design: 'core32' 
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Figure 5.22 Top Level of Hierarchy 
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5.4.4 Buffering Strategy 

ES2 measure drive capability by comparison with standard inverters, thus two inverters 

connected in parallel have a drive capability of two and so on. A similar scheme applies to input 

loads, and the two measures are combined to give an indication of relative fanout. 

The standard ES2 latches used throughout this design have a drive capability of 0.3 units. 

Used as it stands, this latch would not have sufficient capability to drive the circuit of Figure 5.6 

without unacceptably high relative fanout. Two inverters were therefore added to the outputs 

of the basic latch to form the 'sff' latch which is capable of driving the output buffer of the enable 

type latch. The output buffer has a drive capability of four units which is the default value for 

these parts. Most of the basic cells described in the preceding were buffered in this manner 

with a default drive of four units on their outputs. In most cases this was sufficient to cope with 

the local routing and loads encountered by these cells, however, once circuit loads were 

extracted from the layout, a more detailed estimate of fanout could be made and the drive 

capability of the buffers adjusted accordingly. 

Global signals on the other hand were buffered in a tree like structure that was an automatic 

consequence of the hierarchical construction. The tree structure attempted to balance the 

delay of all global signals to each cell thereby reducing the possibility of skewing. 

5.4.5 Bus Strategy 

It is well known that automatic routing is a non trivial problem and that as much silicon area in 

a design may be allocated to routing as to active devices. One benefit of the bit slice approach 

and hierarchical description taken with this design is that routing is kept local, eliminating the 

need to route 32 bit wide busses throughout the chip. 

As mentioned in section 5.4.1, the limited influence the designer has on floorplanning makes 

circuit delays difficult to control. As a consequence exact control over the timing of tristate 

buffers is difficult to achieve, which may lead to tristate driven busses being left in a high 

impedence state for an unacceptable amount of time. Since this could result in busses drifting 

to the inverter threshold voltage and drawing current, it was decided to use multiplexed busses 

throughout the design to avoid this possibility. 
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5.4.6 Control 

It was originally intended to include some form of programmable logic array control circuit on 

the chip. Such a circuit would however, have to be constructed from separate logic gates 

resulting in the consumption of a large amount of silicon, reducing the data path from thirty two 

to sixteen bits. Opting for external control not only allows a wider data path but, together with 

separate memory and arithmetic control ports, gives more flexibility to the device operation. 

The ELLA simulations defined a minimum set of instructions needed to perform modular 

arithmetic, to which several more diagnostic type commands were added. The instruction set 

is tabulated in Figure 5.23 where the hexadecimal value of the control inputs to the chip is 

given. 

Arithmetic Instructions Memory Instructions 

Mnemonic 	Description 	Hex Value Mnemonic Description 	Hex Value 

FIST Reset All 0 RST Reset All 0 

RBA Reset Array 8 TBA Xfer I/O Buffer -> A A 

RBR Reset Register 4 TBN Xfer I/O Buffer -> N 6 

SPC Add Sums + Carries 9 TBM Xfer I/O Buff -> Mem 2 

PLR Add Residue 5 TRB Xfer Register -> Buff E 

HAA Halt Array A HAB Halt B register 9 

HAR Halt Register 6 HAF Halt I/O Buffer 5 

HA2 Halt Both 3 HA2 Halt Both 8 

RUN Run F RUN Run F 

Figure 5.23 Instruction Set 

Arithmetic Instructions: 

RBA: Resets the multiplier array and overflow decoder. Activates control bit ctl(2) which is 

connected to the 'ra' signal in the bit slice cells Figure 5.11, Figure 5.15, and 

Figure 5.16. 
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RBR: Resets the ripple adder register (accumulator). Activates control bit ctl(2) which is 

connected to the 'rr' signal in Figure 5.11, Figure 5.15, and Figure 5.16. The 'rr' signal 

also resets the latches in 'rip4'. 

RST: Resets both the array and the accumulator. 

SPC: Activates control signal ctl(0) which is connected to 'ser' in the bit slice cells and 'Se' in 

'rip4'. This signal normally selects the modulus and accumulator inputs to the adder but, 

when activated, ctl(0) connects the sum and carry outputs from the multiplier array to 

the adder. Control signal ctl(4), is also activated during this operation to disable the 

latches in the multiplier array. 

PLR: Activates control signal ctl(1) which is connected to 'sen' in the bit slice cells. This signal 

is used in the bit slice cell to select between output from the modulus register 'n', and 

the residue memory, to be routed to the ripple adder. During normal operation data from 

the modulus register (-N) is added to (subtracted from) the number in the accumulator. 

Control signal ctl(1), when active, selects data from the residue memory according to 

the address inputs and allows partial reduction to be carried out in the ripple adder. 

This command also activates the 'r2' input to 'rip4', resetting the two upper bits before 

the residue is added on the next cycle. 

HAA: This disables signal ctl(4), disabling the latches in 'mcell', and halting the multiplier 

array. 

HAR: Disables signal ctl(5) which is connected to the 'er' signal in the bit slice cells, and the 

'en' signal in 'rip4'. This effectively halts the accumulator register in the reduction circuit. 

HA2: Halts both the multiplier array, and the ripple adder accumulator. 

RUN: This command will enable both the multiplier array and the ripple adder. The ripple 

adder will be configured to add the contents of 'nreg', the two's compliment of the 

modulus, to the accumulator. Since a two's compliment number is being added, this 

command also sets the 'si' input in 'rip4' to a logical one. 
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Memory Instructions: 

RST: Activates ctl(6), connected to 'rm' in the bit slice cells, and resets the I/O register, A, B, 

and N registers, and the residue memory. Also resets the three interface registers in 

Figure 5.21. 

TBM: Activates ctl(12), connected to 'wb' in the bit slice cells, enabling the latches in the 

residue memory to accept data from the bus connected to the I/O buffer. 

TBN: Activates ctl(1 1), connected to 'wn' in the bit slice cells, enabling the N register to accept 

data from the bus connected to the I/O buffer. 

TBA: Activates ctl(1 0), connected to 'Wa' in the bit slice cells, enabling A register to accept 

data from the bus connected to the I/O buffer. 

HAF: In response to this command, ctl(7), 'eb' in the bit slice cells, remains active while ctl(8) 

'ef' and ctl(9) 'If' are disabled. This effectively halts the I/O buffer. The 'eb' and 'ef' 

signals in the core circuit Figure 5.21 are affected in the same manner. 

HAB: This command disables the B register by deactivating ctl(7). Control signals 8 and 9 

however remain active. CtI(8) is connected to the scan select input of the I/O buffer and 

configures this register for serial I/O. Ctl(9) is the enable signal for the I/O buffer. 

HA2: Both the I/O buffer and the B register are halted 

TRB: This sets control signal ctl(8) to allow parallel input to the I/O buffer, and ctl(9) to load 

data from the accumulator. 

RUN: Control signal ctl(8) is set to configure the I/O buffer for serial I/O and ctl(9) enables this 

register. Ctl(7) enables the B register which allows the multiplicand to be shifted out 

most significant bit first. Control signals 10, 11, and 12, the memory write signals are all 

disabled. 

Figure 5.24 shows how the commands are decoded and which signals in the basic bit slice 

cells are affected. 
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Arithmetic Instructions Memory Instructions 

Ctl signal 0 1 2 3 4 5 CtI signal 6 7 8 91011 12  

cell' W. sr sn ra rr ea er cell' W. rm eb ef If wa wn wm 

RST 001100 RST 1101110 

RBA 001000 TBA 0101010 

RBR 000100 TBN 0101100 

SPC 100010 TBM 0101111 

PLR 010000 TRB 0100110 

HAA 000010 HAB 0110110 

HAR 000001 HAF 0001110 

HA2 000011 HA2 0101110 

RUN 000000 RUN 0010110 

Figure 5.24 Control Signals 

5.4.7 Verification 

The schematic descriptions in the preceding sections are automatically translated into ES2's 

hardware description language, MODEL. The same model description is subsequently used 

for both simulation and synthesis. 

Two levels of simulation are available: a switch level simulator capable of modelling circuit 

loads extracted from layout, and a logic level simulator that is less accurate but runs faster. 

The logic simulator was used at this stage in the design to verify correct logical operation. 

Simulations are driven by setting up signals then specifying a time in nanoseconds for the 

simulation to run before changing the inputs again. Output signals and internal nodes may be 

marked for tracing and displayed either as a timing diagram, or as a truth table. 

Low level drive files were defined first, to execute the basic commands of the previous section. 

Giving these files the same names as the mnemonics allowed higher level drive files to be 

described in a pseudo assembly language by calling the lower level files. 
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Before testing the full thirty two bit chip a smaller, eight bit design was used to debug the basic 

cells. By monitoring internal signals, the correct loading of data was established, and the 

multiplier array operation could be compared with both the PASCAL and ELLA simulations. 

Once the eight bit device had been debugged three of these chips were cascaded, modelling 

the ELLA of Figure 5.5. This cascaded system was thoroughly tested to verify correct operation 

of all serial links between chips before the thirty two bit chip was simulated. 

The thirty two bit chip was tested to make sure all registers could be loaded and read back 

through external ports. As stated in the introduction to this chapter, this feature is not good 

cryptographic practice and would have to be disabled if the chip were to be used in a practical 

system. Full pipelined operation of the chip was then tested by running several multiplications 

according to the procedure described by Figure 5.2 on page 80. 

Each time a modification to the design or test vectors was required both the thirty two bit device 

and the three chip system were re-simulated to make ensure the change had no undesirable 

side affects. 

5.5 	Silicon Production 

To complete the physical design, the silicon layout of the device must be generated, circuit 

loads extracted, and simulations repeated before sending the design for fabrication. Once 

circuit loads are known, buffers can be adjusted to minimise relative fanouts. Placement may 

also be controlled to some extent, allowing wire lengths to be optimised. 

5.5.1 Optimization of MODEL Code 

During synthesis, the basic ES2 gates are placed in an array of rows and columns in an attempt 

to produce a die with a 1:1 aspect ratio. As a result, some cells may be split over two rows or 

columns introducing unpredictable variations in the performance of identical cells. Gaps may 

also be left within cells to assist routing between rows. 

Fortunately the MODEL language has some features that allow limited control over cell 

placement. 
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The "uninterrupted" qualifier below forces the components that form the 'sff' latch of Figure 5.6 

to be placed on the same row without leavingr gaps for routing. 

Part sff [ck, d, Sc, Sd] -> q, i4b 

Signal slb2xl, slc2xl 

Uninterrupted 

bsdffn [Vdd, d, sd, c, ck] -> slc2x]., slb2xl 

not [slc2xl] -> qb 

not [slb2xl] -> q 

End 

Figure 5.25 Uiiinterrupted Qualifier 

The "serial" qualifier in the definition of the enable type latch instructs the software to maintain 

the textual order of calls within 'sffn' and any parts called from this part. Use of this qualifier 

and careful arrangement of the code can help local routing. 

Part sffn [ck, d, en, r, sd, Sc] -> q 

Signal qb, qq, slclx3, db, sicixi 

Serial 

not [en] -> sicixi 

not [Sd] -> slclx3 

andnor(3,3) [qq,slclxl,r,r,en,d] -> db 

sff [ck,db,sc,slclx3] -> qb,qq 

buffer(4,4) [qb] -> q 

End 

Figure 5.26 Serial Qualifier 

The penalty incurred by these qualifiers is that more silicon area may be required for the 

design, particularly where the "uninterrupted" qualifier is concerned. Only the circuit of 

Figure 5.6, and its non scan path equivalent, made use of these features to provide latches 

with consistent timing parameters. 
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5.5.2 Fanout Checks 

The silicon layout was synthesised from the MODEL code and circuit loads extracted by the 

design software to produce a list of absolute and relative fanout for every node in the circuit. 

The initial layout had seven nodes with relative fanout of around 40, and two at 20. Buffers 

driving these nodes were adjusted to reduce these figures to below 14 as shown below. The 

maximum relative fanout suggested by ES2 is 16, although for some nodes even this is not 

acceptable. Clock signals throughout this design were buffered to keep relative fanouts below 

eight. 

Rel. Fanout Number of Nodes 

10-11 25 

11-12 4 

12-13 4 

13-14 3 

>14 0 

Figure 5.27 Relative Fanouts 

Several nodes with large absolute fanouts were also modified, either by adding intermediate 

stages or by forming tree buffers, to produce more acceptable values. The suggested limits for 

absolute fanout were 35 for fast nodes and 60 for all others. Figure 5.28 shows the final 

distribution of absolute fanouts. 

(Abs. Fanout 	Number of 	Nodes 

	

30-40 	 114 

	

40-50 	 16 

	

50-60 	 2 

	

60-70 	 2 

	

>70 	 0 

Figure 5.28 Absolute Fanouts 
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Adjusting fanouts by modifying buffers is obviously an iterative process: each time a buffer is 

modified the placement is changed, altering circuit loads. The data presented in Figure 5.27 

and Figure 5.28 are the final values obtained before the design was fabricated. 

5.5.3 Wire Length Checks 

In addition to providing fanout information, the design software produced a record of the wire 

lengths for each node in the circuit and issued a warning for each wire over 10,000 p.m long. 

The route of these long wires could be identified by instructing the synthesis software to plot 

the layout of single nets only. Several wires were routing signals from one side of the chip to 

the other, a distance of approximately 8mm. The source and destination of these wires could 

be traced back to the placement data file, which could be modified to physically move parts 

and reduce wire lengths. As with the fanout adjustments, this too was an iterative process: 

shortening one wire inevitably lengthened another. For some exceptionally long tracks, extra 

buffers had to be inserted to split the wire at a convenient point. 

Many of the longer wires were routing signals from the core design to external pads so, where 

possible, the offending pads were moved closer to the signals source or destination. 

Unfortunately this was not always possible since some degree of order was required of the 

external pins. Most of the longer wires in Figure 5.29 are connections between the core design 

and the bonding pads. Clock signals were all well below the 10,000 p.m warning limit. 
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Figure 5.29 Wire Lengths Over 10 mm. 

5.5.4 Layout 

The final physical design task undertaken was the manipulation of the array parameters to 

minimise unused silicon area, and produce a die that would fit into one of ES2's standard 

packages. The array parameters that could be adjusted were the number of columns; the 

number of rows per column; and the number of cells per row. The situation is illustrated below. 

Figure 5.30 Arrangement of Cells 

From initial attempts at generating artwork it was known that the device would be too big to fit 

any of the Dual In Line packages supplied by ES2. The most suitable package available from 

ES2 was the ceramic 68 pin Leadless Chip Carrier, the next largest size was an 84 pin 
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package. Sixty eight pins are more than enough for this device so the extra pins were used to 

improve testability by bringing out difficult to observe signals and allowing direct control over 

several registers and multiplexers. 

Once the rows and columns had been adjusted to minimise area, the width of the power and 

ground rails were increased as far as possible within the constraints of the package. 

The effects of altering the array parameters, moving cells to shorten wires, and buffering to 

improve fanouts are all inter-related, so each time a modification was made all three had to be 

checked again to make sure there were no adverse side affects. The final layout is the result 

of many iterations of the previous three processes and is presented in Figure 5.31. 
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PIN NAME PIN No. DESCRIPTION 

mu3 - mu0 68 - 3 Multiply control inputs 
me3 - me0 4 - 7 Memory control inputs 

fs 8 I/O buffer serial input 

bs 9 B register serial input 
If 10 Load I/O buffer PISO 

Read I/O butter SIPO - active low 
lb 11 Load B register SIPO - active low 
sf 12 I/O buffer input select serial/parallel 
Sb 13 B register input select serial/parallel 

fp7 - fpo 14 - 21 I/O buffer parallel data input 
bp7 - bpo 22 - 29 B register parallel data input 

VSS 30 
obO - ob3 31 - 34 Overflow bits 

fin 35 Finish flag - active high 
c2 36 CC(n - 2) output 
cc 37 CC( n) output 
ca 38 CA( n ) output 
sc 39 SC( n ) output 
bo 40 B register serial output 
co 41 Ripple carry output 

sbo 42 I/O butter serial output 
VDD 43 

VSSR 44 
p0 - p7 45 - 52 I/O buffer parallel output 
VDD 53 

aO-a2 54-56 Address input 
ack 57 Array clock input 
rck 58 Ripple adder clock input 
ss 59 Scan path control 
sd 60 Scan path data input 
b 61 B(i)input 

se 62 Select mt / ext address & b inputs 
cc2 63 CC(n - 2) input 
cc 64 CC( n) input 
ca 65 CA( n) input 
scl 66 SC( n) input 
ci 67 Ripple carry input 

Figure 5.32 Pin Description 
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if 

se lb 

mel meO 
00 
me3 me2 

mul muO 

mu3 mu2 

ccl cc2 

scl cal 

ci 	bs 

b 	fs 

sd 

sf f7 fp5 f3 fl b7 b5
0  

sb f6 fp4 f2 f 	b6 b4 

Bottom View 

ss ack al Vdd p6 p4 p2 

rck a2 aO p7 p5  p3 p1 

ROM 
bpl b2 

Gnd b 0 

obi obO 
©© 
ob3 ob2 

c2 fin 

ca cc 

bo Sc 

sbo Co 

PO Vdd 
©© 
Gnd 

Figure 5.34 Pin Locations: Carrier 

5.6 Test Vectors 

The tests described in section 5.4.7 to establish functionality used logic models of the circuits 

and took no account of circuit loads. When the silicon layout was finalised, this data could be 

taken into consideration in the simulations and more detailed switch level circuit models could 

be used. 

In addition to verification of device operation, the test vectors described in this section are 

submitted to the silicon foundry with the design files and used by the manufacturer to test 

device operation after fabrication. The test vectors therefore, must do more than checking that 

the chip functions as intended, but must also identify any fabrication defects likely to affect 

device operation. Two sets of test vectors are described here. The first tests the chip as it is 

intended to be used when configured as a thirty two bit multiplier. The second set tests all 
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registers and latches in the device to ensure both a logical one and zero can be loaded and 

read back. The ripple adder is then tested, and finally a series of random test vectors are 

applied to the inputs in an attempt to toggle as many nodes as possible in the remaining 

circuits. 

5.6.1 Functional Test 

This test resets the device then loads the modulus and corresponding residues. A series of five 

multiplications are then carried out fully pipelined. Once the fifth result is read back, a new 

modulus and set of residues are loaded and one more multiplication is done. Results are 

compared with those obtained from software models of the chip. 

Several more examples were simulated to check functionality before submitting the design, but 

the above was thought adequate for post fabrication test. Figure 5.35 is a timing diagram 

showing the multiplication of the hexadecimal data: 

(50 96 81 C2) X (AE DA 8F 6C) modulo (C3 71 F9 D9) = (24 ED 57 7C) 

Figure 5.35 Timing Diagram of Simulation Results 
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The RUN command is issued just after 487000 ns. in Figure 5.35 at which point the address 

bits begin to appear on the overflow output pins OB1 and 0B2, OBO and OB1 are not 

displayed. The multiplier data, shifted out from the B register is displayed as signal BO. ACK 

and RCK are the clocks applied to the Array and the Ripple adder, FIN is the finish signal. 

Since the finish signal is the overflow from the ripple add, some glitches are inevitable, a 

suitable delay will be required before sampling this signal. When this flag is eventually set, the 

result is transferred to the I/O buffer and read out either from the parallel port using the LF 

strobes, or from the serial port SBO. The simulation results shown in Figure 5.35 were for both 

clocks running at 5 MHz. as is indicated by the 200 ns. figure in the lower right hand corner that 

measures the interval between the start of the display and the dotted bar. The data for this 

example was used to test the chip after fabrication, and a similar timing diagram is presented 

in Chapter 6. 

5.6.2 Fault Coverage 

The chip is reset and the hexadecimal value AA AA AA AA is loaded into the I/O buffer and 

55 55 55 55 loaded into the B register via the parallel ports. These data are then read back 

from the I/O buffer's parallel port, and the B register's serial port. This sequence is then 

repeated with inverted data, thus ensuring none of the latches or nodes in the in the I/O circuits 

have 'stuck-at' faults. 

The test continues by switching the chip into scan path mode and serially loading a pattern of 

alternating ones and zeroes through the scan path in the multiplier array, the decoder circuit, 

Figure 5.17, and the upper bits of the ripple adder Figure 5.18, to emerge at the overflow 

output pins. 

The multiplier sum and carry latches are then loaded with data that results in the hexadecimal 

FF FF FE FE in the accumulator after addition. The result is read back and the test repeated 

with data that yields a result of zero, with a carry propagating all the way through the adder. 

A pattern of alternating ones and zeroes is then loaded alternately into the A register, the N 

register, and the three residue registers via the parallel input port. After reading this data back, 
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via the multiplier array and accumulator, the test is repeated with opposite patterns of ones and 

zeroes. At this point any faults in the internal registers will be identified 

The chip is then configured for serial input to the I/O buffer and B register and a pattern of 

alternating ones and zeroes shifted through both registers. The data is observed at the serial 

outputs of both these registers. 

The carry inputs are then set to one, and a final multiplication carried out. Finally, all 

combinations of control vectors are applied to the inputs including those that do not relate to 

the specific commands described in section 5.4.6. 

5.6.3 Random Vectors 

Although the previous tests toggle all latches, some nodes still exist that remain untested. In 

an attempt to cover the remaining nodes, a short program was written in C' to generate a drive 

file for simulation that applied a random sequence of test vectors to the device. Applying 3,000 

random test vectors to the device at this stage achieved a toggle rate of 87.6%. Extending this 

to 10,000 random vectors increased this figure to 88.0%. Many of the untoggled nodes were 

traced back to the 'setbar' and 'clearbar' inputs of the basic latches which in this design were 

tied to VDD. Taking this into consideration, the toggle rate for 3,000 random vectors was 

estimated to be at least 95%. The improvement gained in running more random vectors was 

too small to justify the extra simulation and test time required. 

5.6.4 Performance Simulations 

Further simulations were run to provide an indication of device performance in terms of 

encryption throughput. These tests were carried out using the following delay models for the 

transistors and circuit loads extracted from the layout. 

Temperature I °C 	VSS / volts 

	

Maximum delays: 	70 	 4.5 

	

1Minimum delays: 	0 	 5.5 

Figure 5.36 Conditions for Performance Simulations 
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Array Speed 

The multiplier array was tested by running repeated simulations at increasing clock speeds and 

observing the data as it left the most significant bits of the array. That is, the four carry out 

signals and the overflow bits calculated by the decoder of Figure 5.17 were monitored. 

With minimum delay models the simulations produced the expected results until the clock rate 

reached 25 MHz. Maximum delay simulations ran correctly up to 15 MHz. 

These data imply a throughput for 512 bit RSA encryption of between 30 and 50 kbits/s. 

This estimate however takes no account of delays incurred by signal propagation between 

chips, and makes no allowance for global clock distribution between chips. 

Adder Speed 

The speed of the ripple adder was estimated by timing the carry propagation delay from the 

carry input pin 'cm' to the finish flag output pin 'fin' connected to the end of the ripple adder in 

Figure 5.18. With minimum delay models the carry propagation time was 88.8 ns. giving a 

clock rate of 11.3 MHz. Maximum delay models resulted in a carry propagation time of 153.5 

ns. which is equivalent to 6.5 MHz. 

5.7 Design Release Procedures 

Before the silicon foundry would accept the design for fabrication, a series of checks were 

carried out by the design software. 

First of all the design was simulated twice with the test vectors of section 5.6, once with 

maximum estimates of circuit delays, and once with the minimum estimates. The results of 

both simulations were compared by the software, and any discrepancies flagged as errors. The 

number of nodes toggled, the fanouts, and wire lengths were all checked to ensure they were 

above acceptable limits. Finally, the design rules for packaging and bonding were checked. 
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Once the software had successfully completed its checks, the design files were loaded on to 

tape and sent to the foundry for fabrication. 
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Chapter 6 Post Fabrication Tests 

6.1 	Static Tests 

The test vectors described in section 5.6 were used by the silicon foundry to test the chips after 

fabrication. These signals were applied to the device at 1000 ns. intervals and 990 ns. allowed 

for the outputs to settle before being compared with the results predicted by simulation. Forty 

chips were fabricated and successfully tested before being delivered. 

6.2 Dynamic Tests 

6.2.1 Test Equipment 

Before the dynamic tests could proceed a small board was built to supply power to the device 

and to connect the pins of the Leadless Chip Carrier (LCC) to vero pins where signals could 

be applied and observed. 

A Textronix DAS 9100 logic analyser was used to apply the input vectors and monitor the 

response of the Device Under Test (DUT). The DAS could supply up to thirty-two input signals 

and monitor sixteen outputs from the device. Clock signals of up to 5 MHz. were also available 

and were used to drive the both array clock input 'ack' and the ripple adder clock 'rck'. 

DAS9100 

 

printer 

32 	16 

FUT 

1! 
'scope 

Figure 6.1 Test Equipment 
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The synchronisation of the two external clocks proved crucial to the device operation at high 

speeds and was optimised empirically by trying several of the clock waveform settings 

available from the DAS. Figure 6.2 illustrates the timing of the two clocks and the data input 

signals used during the 5 MHz. tests. The phasing of the two external clocks may prove to be 

a limitation on device operation at higher frequencies. Any projections therefore assume that 

the clock phasing is due to the test equipment, and can only be based on simulation results. 

data 
7 

ack <— 110 4 80_H________ 

rck 
 

-, 
100 	 200 	 300 	400 

time/ns 

Figure 6.2 Timing for Input Signals 

6.2.2 Test Procedure 

As with the simulations and static tests, the operation of the two input buffers were verified to 

ensure data could be loaded and read back correctly first at 1 MHz., then at 5 MHz. Secondly, 

the scan path was used to verify the operation of the latches in the multiplier array by clocking 

a pattern of logical ones and zeroes through the device at 5 MHz. and observing the output at 

the 'fin' pin. The scan path was then used to load data to test the adder by observing carry 

outputs and reading results back from the accumulator. 

Once these circuits were confirmed to be operating correctly the remaining registers were 

tested at 5 MHz. by loading them with alternating ones and zeroes and reading back the 

contents, where necessary through the multiplier array and ripple adder. Having established 

confidence in the memory transfer operations, the modular multiplication operation was tested. 
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6.2.3 Results 

Figure 6.3 is the timing diagram acquired by the logic analyser during the modular 

multiplication operation for the example described in section 5.6.1 on page 111. The overflow 

bits that provide the address of the residue to be added may be compared to the results 

predicted by simulation, Figure 5.35, to verify correct operation. 

TIMING DIAGRAM 	hAG: CuRSOR SEQ 	316. 
C 	M 	+1Ø..Øi9 DELTA TIME: 
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I I 
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_____________ 
I 	1 
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5B3FIN 
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L___rL.J1i 

582LFB ____________________ 1 
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________ 
11111111 	I 	1 
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5A 5 MEl 
5A4 MED 

5A 3 NO 
5A2J2 
5AlJ1 
5A 8 MIJO 

iLi 	 UI 	1 
i - I .0_ I 

Lj 

	

ul 	1 

I LrinI 
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I 	1 
I 	
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Figure 6.3 Overflow Bits From Logic Analyser 

Figure 6.4 is the continuation of this example and shows the correct result being read out from 

the serial output port, SBO. 
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TIMING DIAGRAM MAC: CURSOR SEQ: 	488 
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Figure 6.4 Multiplication Results From Logic Analyser 

The oscilloscope photographs of Figure 6.5 show characteristic pulses from the '0B2' output 

pin and were taken during the execution of this example at 5MHz. 

The simulation data allowed the signals appearing on all other pins to be verified, including the 

serial links, thus predicting correct operation of a cascaded system. Several more examples 

were tested in this manner, all of which were successful at 5 MHZ. 
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Figure 6.5 Characteristic Pulses From Overflow Bits 
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6.2.4 Power Consumption 

The current drawn by the device was measured with VDD at 5.0 volts. When idle, the device 

drew 1 mA., when running at 5 MHz., a current of 7mA. was measured, giving a power 

consumption of 35 mW. 

Device operation was also verified with the positive supply voltage reduced to 4.0 volts, and 

again at 6.0 volts. In both cases the chip performed as expected. 

6.3 	Discussion 

The tests described in this chapter have demonstrated correct device operation up to the 

5 MHz. limit of the test equipment used. According to the analysis of section 4.4, this clock rate 

will result in a throughput for 512 bit RSA of 10 Kbits/s. 

However, since the 32 bit ripple adder functioned correctly at this speed too, the delay through 

a single add stage may be calculated by dividing the clock period of 200 ns. by 32 to give 

6.25 ns. The maximum clock rate for this device may then be calculated using equation 

(EQ 4.5) to be at least 27 MHz., which would imply a projected throughput for 512 bit RSA of 

52 Kbits/s. 

In practice, communication delays between chips and synchronisation of global signals across 

several chips may restrict the maximum operating frequency before the above limit is reached. 

Allowing a 50% derating factor for board level considerations gives an upper bound on the 

maximum operating frequency of around 15 MHz. At this frequency an encryption rate of 30 

Kbits/s. can be expected for 512 bit RSA. 

These figures are in good agreement with the results predicted by the simulations in section 

5.6.4 which suggest worst and best case operating frequencies of 7 MHz. and 11 MHz. for the 

ripple adder, and 15 MHz. and 25 MHz. for the multiplier array. 
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Chapter 7 Concluding Remarks 

A survey of modern cryptography has identified public key cryptography as an area where 

revolutionary theoretical developments are experiencing difficulty achieving commercial 

acceptance due to the poor performance of practical systems. Both hardware and software 

implementations of public key systems were reviewed and it emerged that the complexity of 

modular multiplication was by far the biggest restriction to high performance public key 

cryptosystems. 

The modular multiplication operation was examined in detail from both theoretical and practical 

viewpoints and a novel algorithm presented to perform this operation. This algorithm uses 

modular arithmetic to restrict word growth as opposed to completely reducing data during 

intermediate calculations. Comparisons with the modulus are thereby eliminated, thus 

completely eliminating carry propagation from the multiplication procedure. This technique of 

partial reduction is proposed as practical means of improving the throughput of public key 

cryptosystems, allowing a fast clock rate which is independent of the long word lengths 

required to provide adequate security. In theory, the architecture proposed in this thesis could 

run up to 50 MHz. resulting in encryption rates for 512 bit RSA of 100 Kbits/s. 

To demonstrate the proposed architecture and explore the practical aspects of implementing 

cryptology algorithms in VLSI, a modular arithmetic ASIC has been designed and fabricated. 

The device is a 32 bit wide data path cascadable to user defined word length which, when 

tested, functioned correctly up to the 5 MHz. limit of the test system. These tests allowed a 

figure of 27 MHz. to be estimated as a lower bound on the maximum clock rate for the device. 

Allowing a 50% reduction of this estimate for board level design considerations, it is feasible 

to expect an array of 16 of these chips to perform 512 bit RSA encryption at a rate of at least 

30 Kbits/s. 

7.1 Comparison with Similar Work 

To allow comparison of this architecture with other published work, a figure of merit has been 

estimated for each design. The first stage in calculating this figure is to estimate cost, in terms 

of production yield. by estimating the hardware requirements of each architecture. This has 

been accomplished by referring to circuit diagrams and descriptions presented in the published 
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material to estimate the number of logic gates, adders, and latches needed for each bit of the 

modulus. The area consumed by each component is then allocated a number proportional to 

the silicon area it is expected to consume. To ensure these numbers are process independent, 

all data are based on figures given by ES2 for their logic cell library and are presented in 

Figure 7.1 

Device Units of area 

Inverter 1 

n Input And /Or n+2 

Xor/Xnor 9 

Adder 19 

Latch 24 

Figure 7.1 Silicon Area Occupied by Logic Gates 

The encryption rate for each device is divided by the area per bit to yield the final figure of merit 

(FOM) in Figure 7.2. The column headed ND indicates whether the published rate is for a 

proposed architecture (A) or for a physical device (D). 

Design Latches Adders Xors 4 l/P 2 I/P Inv. Area / bit Rate ND FOM 

Tomlinson 6 2 1 186 100 A 537 

Sedlak 6 2 59 418 94 A 224 

Morita 9 6 15 	15 450 80 A 177 

Tomlinson 6 2 1 186 30 D 161 

Q.U.CMOS 8 3 1 	8 2 291 40 A 137 

Q.U.NMOS 11 1 1 	4 2 309 40 A 129 

Brickell 6 5 13 241 20 A 82 

Cryptech 10 2 1 282 17 D 60 

B.T. 5 1 0.25 0.5 1.25 144 5 D 34 

Kochanski 75 300 5 D 16 

C.R.I.P.T 5 2 2 166 . 	1.6 D 9 

Rivest 11 2 302 1.2 A 3 

Figure 7.2 Comparison of Published Architectures 
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The principal advantage of the approach proposed in this thesis is the benefit achieved by 

applying systolic techniques to large integer arithmetic. That is, the maximum clock rate and 

hence device performance is independent of word length.Also of importance is the fact that the 

method of partial reduction does not result in over complicated algorithms or circuit designs, 

and greatly reduces the storage requirements when compared with other table lookup 

approaches to modular arithmetic. 

Although the storage requirements are low when compared with architectures based on lookup 

tables, the overall hardware requirements of the proposed architecture are necessarily greater 

than for the slower architectures based on carry propagate adders, some of which have no 

need to store any residues at all. Nor is the architecture completely systolic. The global clock 

and 'b[i]' signals will ultimately prove to limit device performance as word length increases. 

Synchronising the global clock will always be critical in any implementation of this architecture. 

As mentioned above, one reason for designs in Figure 7.2 having a low figure of merit is their 

high hardware requirements. The Area/bit column in Figure 7.2 shows that only two designs 

require less hardware than the architecture presented in this thesis. This is a direct 

consequenáe of the partial reduction technique proposed in chapter four. It should be pointed 

out, however, that some of the architectures with low figures of merit, such as CRIPT or the 

British Telecom design are commercial designs with specific applications in mind which may 

not require high encryption rates. Other designs, such as Rivest's and Kochanski's use a 

technology that is now out of date and would probably achieve higher encryption rates if 

modern fabrication processes were used. Another point about Rivest's design is that it was one 

of the first RSA chips to be built. It was an early attempt at designing a general purpose 512 

bit ALU to demonstrate that the RSA cipher could achieve reasonable encryption rates and not, 

therefore, finely tuned for large integer modular arithmetic. 

Of the architectures that have higher figures of merit, both Sedlak and Morita have proposed 

modifications to the multiplication or exponentiation algorithms that imply some degree of 

parallelism. These two designs have by far the highest figures for Area/bit but make up for the 

excess hardware by increased encryption rates. The best figure of merit for a device that has 

been fabricated and is commercially available is due to the design by Cryptech. It is interesting 
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to note that the Cryptech design is similar to the architecture presented in this thesis as is 

illustrated by Figure 3.3 and Figure 4.1. The main difference being in the way that the partial 

products are reduced. 

7.2 Future Directions 

7.2.1 The Device 

Work is under way to design a 512 bit modular arithmetic accelerator based on an array of 16 

of the chips that were fabricated. As far as the device itself is concerned, the obvious 

improvement is to design some look ahead logic to reduce the critical delay in calculating the 

overflow bits. For a small hardware overhead the 66a  delay of section 4.4 could be reduced to 

26, the delay through a single stage of the multiplier array. This would effectively treble the 

frequencies and encryption rates of Figure 4.9, which for a 5a  of 5 ns. would imply an 

throughput of 200 Kbits/s for 512 bit RSA, and an upper limit on the operating frequency of 100 

MHz. 

The pin count could be reduced by using a common B-register and I/O buffer port, using an 

internal configuration register instead of external pins, and perhaps removing some of the test 

pins. These measures could allow the device to be mounted in a DIL package. Further 

improvements may be achieved by taking advantage of fabrication geometry reductions which 

may allow a 64 bit wide ASIC to be designed in a short time scale. Alternatively, a custom 

design may even allow a 128 or 256 bit device to be fabricated. 

7.2.2 The Architecture 

One of the major criticisms of the type of architecture presented in this thesis is the need to 

maintain a synchronous global clock. In response to this, it will be worth investigating the 

possible use of self timed circuits, or the systolic arrays for modular multiplication proposed by 

çetin and Ching [32]. The method of partial reduction may also be adapted to take advantage 

of the fast multiplication algorithms proposed by Sedlak[1 26] and Morita [96]. 
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7.3 Conclusion 

The aim of the research presented in this thesis has been to improve the performance of public 

key cryptosystems. In pursuit of this goal the interdependence of algorithm and hardware 

design has become increasingly apparent. Investigating the requirements of both these areas 

has resulted in the proposal of a novel algorithm and demonstration of a device architecture 

that can be used to improve the throughput of modular arithmetic processors. 

The techniques of proposed in this thesis could, in theory, be applied to design an RSA 

processor capable of 512 bit encryption at a rate of 200 Kbits/s with a 100 MHz. clock. In 

practice however, other design constraints such as delays through pad drivers will restrict the 

maximum operating frequency to around the 50 MHz. achievable with today's MOS 

technology. 

This demonstrates that the methods proposed in this thesis have moved the throughput 

bottleneck from the basic multiplier architecture, to the limits imposed by the choice of 

implementation technology. Although this suggests an upper bound of 100 Kbits/s. for 512 bit 

RSA encryption, higher rates may be achieved with parallel processing architectures which is 

essentially what Sedlak[126], Morita [96], and cetin and Ching [32] have suggested. 

In conclusion, it may be stated that modular arithmetic is by far the most important algebraic 

system for cryptology, and is virtually the exclusive means by which public key cryptosystems 

are designed. Although conventional systems will always have an important role to play, the 

potential market for key management and authentication schemes will provide increasing 

motivation to research efficient public key cryptosystems. While key management schemes, 

by their nature, do not require high speed ciphering rates, digital signatures and identification 

schemes do. It is these applications that stand to benefit most from high performance modular 

arithmetic chips, and it is hoped that the work presented in this thesis may be developed further 

by researchers wishing to bring the benefits of public key cryptology to public use. 
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Appendix A. Background Maths for RSA 

A.1 Greatest Common Divisor Theorem for the Integers 

Given n 1  and n2  not both zero in the ring of integers Zm  then there exists a and bin Zm  such 

that: 

gcd(n 1 ,n2) = an 1 +bn2 	 (EQA.1) 

Expressing the gcd in this way allows inverses to be computed by the extended Euclidean gcd 

algorithm below. 

program extended Euclidean gcd; 

(* calculates g = gcd( nl, n2 ) = a*nl + b*n2 *) 

var g, nl, n2, a, b, 	 (* variables identified above, * ) 

q, r, 	 (* quotient, remainder, and 	*) 

al, bl, a2, b2, t: integer; (* temporary storage. 	 *) 

BEGIN 

al := 1; bi := 0; a2 := 0; bl := 1; (* initialisation  *) 

writeln('Enter ni and n2 

readln( ni, n2 ); 

REPEAT 	 - 

q := ni div n2; r := ni mod n2; 
IF r= 0 

THEN BEGIN g := n2; a := a2; b := b2; END 
ELSE BEGIN 

nl := n2; n2 	r; 

t := a2; a2 := al - q*a2; al := t; 

t := b2; b2 := bl - q*b2; bl := t; 

END; 

UNTIL r = 0; 

writeln('gcd(', nl, ', 'n2,') = ',g, ' = (' ,a '*' ,nl,' + ',b,1*,n2,1)) 

END. 
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A.2 Inverses in the Ring of Integers Z m  

In the ring of integers Zm,  if gcd (u, m) = i then u is relatively prime and said to be a unit in Zm . 

If u is a unit in Zm  then u will have a unique multiplicative inverse since from (EQ A.1) 

gcd (u, m) = am + bu = 1 	 (EQ A.2) 

and since a m = o modulo m, bu = i thus: 

b = 	 (EQA.3) 

A.3 Closure of the Set of Units Zm  

Let the set of units in Zm  be denoted Zm*.  If a and b are members of the set Zm*  then there 

exist unique multiplicative inverses a 1  and b 1 . So 

(axb)x(a 1 Xb 1 ) =ax(bxlf t )Xa 1  =axa 1  = 1 modulom 	(EQA.4) 

Thus the product, modulo m, of two members of the set Zm*  also has a unique inverse. 

So if every element in Zm*  is multiplied by the same unit, modulo m, then the same set of units 

Zm* is generated only in a different order. 
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A.4 Euler's Theorem 

The number of integers in Zm  which are relatively prime to m is measured by Euler's Totient 

Function and usually given the symbol ct(m). Thus for the set of units Zm*,  cJ?(m) is simply the 

total number of elements in the set. 

From section A.3 it can be seen that multiplying all is in Zm*  together will give the same result 

as multiplying all ar/s together. More formally, 

cI(m) 	cI(m) 

H ar 
= fl r 	modulo m 	(EQ A.5) 

i=1 	i=1 

So, taking a out of the product in (EQ A.5) 

'(m) 	cP(m) 

a 
	

r1 
= fl r 	modulo m 	(EQ A.6) 

thus: 

a 
(m) = 1 	 modulo m 	(EQ A.?) 

Euler's Theorem may be stated as follows: 

If a is a unit in Zm,  then am) = 1 modulo m 

A.5 Fermat's Theorem 

Fermat's theorem is a special case of Euler's theorem for prime modulii. If m is a prime 

modulus then every nonzero element in Zm  will be relatively prime to m, and the set of units 

Zm* \ {O} will be equal to Z m . Thus t(m) = m - 1 and 

am -1 = 1 	 modulo m 	(EQ A.8) 
Fermat's Theorem may be stated as follows: 

If a is an element in Z m , and mis prime then d's' = 1 modulo m 
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A.6 Totient Function for Composite Numbers 

Finding the totient function for prime numbers is trivial, composite numbers however, are more 

difficult to deal with directly. Let m be a composite number that can be factored into two primes 

p and q. 

To find '(m), all the elements of Zm  that are relatively prime to m must be found. To do this, it 

is easier to find the elements of Z m  that are not relatively prime, these will be all multiples of p, 

and all multiples of q, less than m = pq. 

That is: {p,2p,3p ..... (q-1)p}, (q-1) elements 

and: {q, 2q, 3q ..... (p - 1) q}, (p - 1) elements 

So 	1(m) = Total no. of elements in Zm - no. of elements that are not relatively prime 

c1(m) = m - 1 -   (p - 1) - (q - 1) 	 (EQ A.9) 

'1(m) =pq— 1— (p—i) - (q-1) 

4)(m)=pq—p—q+1 

'T'(m)= (p-1)(q-1) 

4(m) = cI(p)(q) 	 (EQ A.10) 

So if m can be factored into p and q then: 

4(m) = p)'l(q) = (p — i) (q-1) 
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BIT-SERIAL MODULAR MULTIPLIER 

Indexing terms: Information theory. Signal processing. Mathe-
matical techniques. Modular arithmetic, Data encryption 

A bit-serial modular multiplier is presented which uses a 
table look-up method to perform modular reduction. Since 
the clock Frequency is independent of word length, this design 
is most useful when dealing with large integers, and is 
required by many modern cryptographic systems. 

Introduction: One of the most interesting developments in the 

field of cryptology is that of public-key encryption.' In this 
scheme the cipher has two separate keys, one for encryption 
and a second for decryption. The encryption key can be stored 

in a public directory, allowing anyone to encrypt messages, 
which can then only be deciphered by the intended recipient 

who holds the decryption key. Although several public-key 
algorithms have been proposed, the predominant encryption 
technique in this area is the RSA' system. This algorithm is 
based on the modular exponentiation of very large integers, 

typically 512 bits long or more. 
When this system is implemented on general-purpose 

machines, the resulting data rates are disappointing in com-

parison with those obtained by conventional secret-key tech-
niques. For example, a 512-bit modular exponentiation may 
take up to 30s to complete on a 68000, or 25s on a 

TMS32010.4  To overcome this problem dedicated hardware is 

needed to carry out modular arithmetic on large integers. 

Reviews of existing h ardware b reveal that many designs 

perform modulator multiplication using ripple adders for 

multiplication and reduction. The carry propagation time in 
such designs becomes a limiting factor as the word length 
increases. One notable exception is the bit-serial design pro-

posed by Brickell 7  in 1982, which has been reported as per-

forming 512-bit modular exponentiation at a rate of 25kbit/s. 

The design proposed here is also bit-serial, but differs from 

Brickell's in the way modulo reduction is performed. 

Multiplication procedure: Modulator multiplication is per-

formed most significant bit first according to the add-shift-

reduce procedure described by Blakley 8  in 1983, but with the 

following modifications: 

(I) The intermediate product is allowed to grow by to its 

each cycle. 

At the end of the cycle, these upper bits are reset to zero. 

The residue corresponding to the two reset bits is added to 

the intermediate product on the next cycle. 

The benefit of this approach is that it eliminates the need to 
compare the intermediate product with the modulus to 

perform modulo reduction. The operation simply involves the 

decoding of two bits to select the appropriate residue from a 
look-up table. That the intermediate reduction may be incom-

plete. in that after resetting the upper bits the remaining 
number may be greater than the modulus, is of little practical 

consequence. Once the multiplication has ended, reduction is 
completed by subtracting the modulus, but because the word 

length has been constrained to two bits of growth, no more 
than seven subtractions of the modulus will be needed to do 

this. 

C, 

SC-1 

.__,co .ct 
Cc I__ 	

1_1 Cc 	Ci[ 2 

' JSSII 
CA  

9:';0 1 '.4,Ir,nlipr roll 

Hardware design: The basic multiplier cell to compute A • B 

modulo N can be seen in Fig. 1. The multiplier B is examined 

most significant bit first and the first adder adds the multi-

plicand A to the array if the bit is set. If the bit is not set then 

zero is added. The second adder then adds the residue C, 
selected from the look-up table, and outputs the sum and 
carry to two latches. Fig. 2 shows how five basic cells are 

cascaded to form a 5-bit modular multiplier. Three registers 

are needed to store the residues, and an adder and accumula-
tor to add the sums and carries at the end of the multiplica-

tion and subtract the modulus N to complete the reduction. 

Once the sums and carries stored in the array have been 
added, the next multiplication can proceed in parallel with the 

subtractions. 

C4  A 4  

Cc Cc Cc 	Cc Cc Cc Cc Cc Cc 	Cc 

Cc Cc Cc Cc co Cc co Cc Cc co 

C SC SC SC SC Sc Sc SC Sc Sc 

Fig. 2 Five-bit multiplier array 

Performance estimation: Since the final subtractions can be 

carried out in parallel with the next multiplication, the time 
taken to complete an N-bit modulator multiply is simply N 

clock cycles. The bit-serial nature of this design means that 
the clock frequency will be independent of the word length 
and limited only by the delay through a single cell. Thus the 

time for an N-bit exponentiation using the square and multi-
ply algorithm," with concurrent squaring and multiplying, will 

be N 2  & where ô is the delay through one cell. Assuming a 

delay of roughly 40 n through each cell, the time for a 512-bit 

exponentiation will be 10 ms and the data rate SOkbit,s. 
A modular arithmetic ASIC is currently being designed 

using this technique, and prototypes are expected to be tested 

within the next few months. 

Summary: An architecture for bit-serial modulator multiplica-
tion has been presented which uses a look-up table to perform 
modulo reduction. It is estimated that this structure can 
achieve data rates of up to 50kbit.'s for 512-hit modular expo-
nentiation. and a semicustom IC is currently being fabricated 

to test the design. 

A. TOMLINSON 	
9th Octoher I9'9 

Department of Electrical Enj.iineering 
University of Edinburgh 
Kings Buildings, Edinburgh E119 3JZ. United Kingdom 
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Modulo multiplier to enhance encryption rates 
he use of public key encryp-
n to encode digital communi-
tionS has advantages in 
rrns of providing data secu-
ty. The RSA technique [1) is 
equently used but has the 
sadvantage that it relies on 
,odular exponentiation, and 
ence multiplication, of large 
tegers of the order of 512 bits. 
Although dedicated RSA 

ardware is available, the en-
ryption rates from these imple-
tientationS are of the order of 
5-2Okbits/S. Alan Tomlinson at 
e University of Edinburgh has 

jeveloped an improved algo-
ithm for bit-serial modulo multi-
alication, using a look-up table 
o perform partial modulo 
'eduction, which it is claimed 
ias the potential to improve on 
nese rates. 
Blakley [2] has explained 

hat for modulo multiplication it 
s possible to reduce the partial 
Droducls as they are formed. 
fhrs has the advantage of 
avoiding word growth and the 
tnal time-consuming division 
process to find the residue. It 
does however require large 
kook-up tables or. the use of 
division to determine the resi-
dues at the partial product 
stage 

Tomlinsons refinement is to 
- 3in word growth at the 
;.ai product stage to two bits 

at most. Instead of completely 
reducing the partial product. 

Used in -; - 
• next cycle•4 Latch;; 

-.--.--- rn- .. 
Carry CC  
to 1+2 --:: 

Latch 	,. 

y. 

Carry -&'1 

i+1 

Figure 1: Single bit multiplier cell 

the residues implied by the 
upper two overflow bits are 
added at the next cycle of bit-
serial multiplication. 

Only three possible residues 
are implied by the upper bits 
and this allows them to be 
loaded into a small look-up 
table at the time of modulo 
selection. - 

The fact that the partial pro-
ducts are not completely re-
duced is not of practical signi-
ficance What is of significance 
is that the result is limited to the 
length of the multiply array and 
an n-bit modulo multiply will 
return an n-bit result in n-cycles. 

The basic cell to compute the 
i-lh bit of AB modulo N is 
shown in figure 1. The first 
adder conditionally adds its 
position bit of the multiplicand 
A. The second adder then adds 
the position bit of the residue C 

- 1 

-. 

- -: 	CA.Carry 

Carry 

: 

-:jsum 	ned in- 
previous cycle 

selected by the overflow bits 
from the previous cycle. The 
outputs are sent to sum and 
carry latches. 

These results are used at the 
+1 and i+2 bit multiplier cells 
respectively in the next cycle 
(the next MSB of the multiplier). 

Such cells can be cascaded 
to form an n-bit multiplier array 
where all cells operate in paral-
lel, left shifting partial results at 
each cycle. 

Figure 2 shows an IC archi-
tecture which has the multiplier 
array at its core. 

The hardware description 
language ELLA was used to 
model both a single system and 
a cascade of four ICs with this 
architecture. Subsequently a 
size was selected for the regis-
ter and multiplier array length 
(32bit) and a semi-custom de-
vice designed and fabricated  

using SOLO 1200, the ASIC 
design toot from ES2. The result 
was a 64,000 transistor IC rn 
plemented in 2tim  CMOS tech-
nology and measuring 8.77mm 
x 8.38mm. 

To date the IC has been 
tested at up to 5MHz which 
should, where devices are cas-
caded, yield 5Mbit/s through-
put for multiplication or 5/n 
Mbit/s for n-bit exponentiation. 
This translates to 10kbits/s for 
512bit exponentiation. If the 
frequency of operation can be 
increased to 25MHz then 
50kbits/s transmission rates 
could be obtained. Also a full 
custom approach to IC design 
is expected to produce a more 
efficient layout making 64-or 
128bit register and array 
lengths viable. 

For further information contact Mr A 
Tomlinson. Department of Elec-
trical Engineering. University of 
Edinburgh. The Kings Buildings. 
Mayfield Road. Edinburgh. EH9 3JL 
Tel 031 668 1550 ext. 219 
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