
VLSI Architectures for Public Key Cryptology

by

Allan Tomlinson

A thesis submitted to the Faculty of Science,

University of Edinburgh, for the degree of

Doctor of Philosophy

Department of Electrical Engineering

1991

Abstract

This thesis addresses the issue of the efficient implementation of public key cryptosystems.

Unlike conventional systems, public key cryptosystems allow secure exchange of information

between two parties without prior exchange of secret keys. In addition, many public key

cryptosystems may be used to provide digital signatures for authentication of documents. The

underlying mathematics of most of these systems however, is more complex than that found

in conventional systems, resulting in relatively poor performance of public key cryptosystems

in terms of encryption rates.

To improve the bandwidth of the encryption algorithms, processors specifically designed to

implement public key cryptosystems are needed. The research presented in this thesis has

identified modular multiplication of large integers to be a bottleneck in virtually all public key

algorithms and proposes a novel approach to this operation suitable for hardware

implementation.

A modular multiplier architecture based on this technique has been proposed and forms the

basis of a cascadable modular arithmetic processor capable of dealing with user defined word

lengths. The device has been fabricated and results of tests on the finished chip suggest that

the RSA encryption algorithm with a 512 bit modulus will achieve a throughput of 30 Kbits/s.

Declaration of Originality

The material presented in this thesis has been researched and composed entirely by myself

at the Department of Electrical Engineering at the University of Edinburgh between October

1987 and May 1991 except where indicated in the text.

Acknowledgements

Firstly I would like to thank Prof. Peter Denyer for his support and guidance as my supervisor.

I would also like to thank my second supervisor, Dr. David Renshaw for his encouragement,

and Dr. Stewart Smith for the proof on page 74. Thanks also to Kevin McDermott, Alan

Beverage, and Paul Bates from E52 who helped get the chip through ES2's design release

procedures, and to the computing support staff and library staff at the University of Edinburgh.

I am also grateful to my colleagues, who have provided a friendly and intellectually stimulating

atmosphere within the department. These include - David Mallon, Gerrard Allan, Subindrao

Johal, Cohn Carruthers, Martin Ryder, Paul Neil, lain Findlay, Douglas Grant, Jonathon

Puddicome, Hamish Fahiside, Douglas Chisholm, Ross Kennedy, Stewart Anderson and Henry

Bruce.

Finally I would like to thank my wife Angela for her support and patience throughout this work.

U

Table of Contents

Abstract 	 .

Declaration of Originality ...ii

Acknowledgements ...ii

Table of Contents ..iii

List of Figures ...vi

Chapter 1 Introduction1

1 .1 The Need for Data Security1

1 .2 The Impact of Public Key Cryptography............................2

1.3 The Case for Cryptography ASICs................................2

1.4 Aims of This Research ...3

Chapter 2 Introduction to Cryptology4

2.1 	Cryptology Basics...4

2.1.1 	Terminology .. 4
2.1 .2 Methods of Attack 5

2.2 Information Theory .. 6

2.2.1 	Practical Security 6
2.2.2 Work Characteristic 11

2.2.3 Improving Secrecy 13

2.2.4 Authenticity: 18

2.3 Block Ciphers and the Data Encryption Standard 22

2.3.1 The DES Controversy 22
2.3.2 Cipher Elements.................................... 24
2.3.3 	DES Structure 26

2.3.4 Weak Keys .. 30

2.3.5 The Future of DES 31

2.4 Stream Ciphers..31

2.4.1 Synchronous Stream Ciphers32

2.4.2 Self Synchronous Stream Ciphers......................36

2.5 Public Key Systems ...38

2.5.1 Elements of Modern Cryptography39

2.5.2 Discrete Exponentials40

2.5.3 Knapsack Cryptosystems.............................41

2.5.4 The McEliece System43

2.5.5 Other Public Key Schemes44

2.6 RSA ..46

2.6.1 The RSA Cryptosystem46

m

2.6.2 The Underlying Mathematics 	 . 47
2.6.3 Operation of RSA Cryptosystem49

2.6.4 Security of RSA50

Chapter 3 Implementing Public Key Cryptosystems52

3.1 Software ...52

3.1.1 Initial Work ..52

3.1.2 Bong and Ruland54

3.1 .3 Laurichesse54

3.1.4 Shand .. 55
3.1.5 Summary ...56

3.2 Hardware ..57

3.2.1 Initial Work ..57

3.2.2 Sedlak ...60

3.2.3 Kawamura and Hirano60

3.2.4Cryptech .. 61
3.2.5 Lu ...62

3.2.6 British Telecom62

3.2.7 Hatfield... Im
3.2.8 Morita.. 63

3.2.9 Shand .. 64
3.2.10 Recent Developments64

3.2.11 Summary ..64

3.3 Discussion ...66

Chapter 4 Algorithm Design...................................68

4.1 Modular Multiplication with Partial Reduction.......................68

4.2 Bit Serial Design...72

4.3 Testing the Algorithm ...76

4.4 Performance Estimates76

Chapter 5 Chip Design78

5.1 Design Criteria ..78

5.2 Chip Architecture ..79

5.3 Logic Design ... 80

5.3.1 Description of Single Chip80

5.3.2 Description of Cascaded Chips82

5.4 Physical Design ... 83

5.4.1 Basic Cell Designs83

5.4.2 End Cell Designs89

iv

5.4.3 Peripheral Cell Designs94

5.4.4 Buffering Strategy96

5.4.5 Bus Strategy.......................................96

5.4.6 Control ..97

5.4.7 Verification100

5.5 Silicon Production...101

5.5.1 Optimization of MODEL Code101

5.5.2 Fanout Checks....................................103

5.5.3 Wire Length Checks................................104

5.5.4 Layout ..105

5.6 Test Vectors ...110

5.6.1 Functional Test ill

5.6.2 Fault Coverage 112

5.6.3 Random Vectors113

5.6.4 Performance Simulations113

5.7 Design Release Procedures...................................114

Chapter 6 Post Fabrication Tests116

6.1 Static Tests..116

6.2 Dynamic Tests ...116

6.2.1 Test Equipment116

6.2.2 Test Procedure....................................117

6.2.3 Results ..118

6.2.4 Power Consumption................................121

6.3 Discussion ..121

Chapter 7 Concluding Remarks 1 22

7.1 Comparison with Similar Work122

7.2 Future Directions ...125

7.2.1 The Device..125

7.2.2 The Architecture...................................125

7.3 Conclusion ..126

Appendix A. Background Maths for RSA 127

Appendix B. Bibliography131

Appendix C. Author's Publications 144

Appendix D. Index .. 147

V

List of Figures

Figure 2.1 Classical Cryptosystem 	 . 5

Figure 2.2 Perfect Secrecy System 	..6

Figure 2.3 Unicity Distance 	.. 9

Figure 2.4 Work Characteristic 	.. 12

Figure 2.5 Probabilistic Secret Key System 14

Figure 2.6 Plaintext Padding 	.. 14

Figure 2.7 Homophonic Substitution 16

Figure 2.8 Homophonic Encryption System 16

Figure 2.9 Simmons' Cryptosystem 19

Figure 2.10 Product Cipher 	... 25

Figure 2.11 Cascade Cipher 	.. 25

Figure 2.12 Effect of Involutions 	... 25

Figure 2.13 Des Key Scheduling Algorithm 27

Figure 2.14 DES Encryption Algorithm 28

Figure 2.15 Composition of DES Round 29

Figure 2.16 The DES Cipher Function 30

Figure 2.17 Synchronous Stream Cipher 32

Figure 2.18 Running Key Generator 33

Figure 2.19 Geffe's Combiner 	... 34

Figure 2.20 Massey - Rueppel Generator 35

Figure 2.21 Output Feedback 	... 35

Figure 2.22 The Counter System ...36

Figure 2.23 Vigenere's Autokey Ciphers37

Figure 2.24 Cipher Block Chaining37

Figure 2.25 Cipher Feedback ...38

Figure 2.26 Public Key Cryptosystem40

Figure 3.1 Decryption Rates Achieved by Laurichesse55

Figure 3.2 Summary of RSA Software Performance56

Figure 3.3 Cryptech's Multiplication Algorithm62

Figure 3.4 Summary of RSA Hardware Performance65

V1

Figure 4.1 Illustration of Multiplication Algorithm 69

Figure 4.2 Pseudo Code for Multiplication Algorithm 70

Figure 4.3 Example of Algorithm 	... 71

Figure 4.4 Hardware Implementation of Algorithm 72

Figure 4.5 Bit Serial Modular Multiplier Cell 73

Figure 4.6 Five Bit Multiplier Array .. 73

Figure 4.7 Resolution of Overflow Bits 74

Figure 4.8 Example of Bit Serial Algorithm 75

Figure 4.9 Performance Estimates 77

Figure 5.1 Modular Arithmetic Chip Architecture 79

Figure 5.2 Pipelined Modular Multiplication 80

Figure 5.3 ELLA Description of Multiplier Cell 81

Figure 5.4 ELLA Description of n-bit Multiplier Array 81

Figure 5.5 ELLA Description of Cascaded System 82

Figure 5.6 Enable-type Latch 	.. 84

Figure 5.7 Adder for Multiplier Array: 'madd 85

Figure 5.8 Multiplier Array Cell: 'mcell' 85

Figure 5.9 Storage for Residues: 'cram' 86

Figure 5.10 Combining Storage and Multiplier Cells: 'ccell 87

Figure 5.11 Complete Bit Slice Cell: 'cell' 87

Figure 5.12 Combination of Two Single Cells: 'cell2' 88

Figure 5.13 Combination of Two ce112's: 'ce114' 88

Figure 5.14 End Cell for Multiplier Array: 'mcelle' 89

Figure 5.15 Bit Slice Cell (n -1): 	'celln' 90

Figure 5.16 End Cell for Bit Slice: 'celle' 90

Figure 5.17 Decoder for Overflow Bits: 'mydecode' 91

Figure 5.18 Upper Bits of Ripple Adder: 'rip4 92

Figure 5.19 Combination of Two Most Significant Cells: 'cell2e' 93

Figure 5.20 Selection of Outputs From End Cells: 'c2end' 94

Figure 5.21 Core Design: 'core32 ... 95

Figure 5.22 Top Level of Hierarchy 95

Figure 5.23 Instruction Set ..97

Figure 5.24 Control Signals ..100

vii

Figure 5.25 Uninterrupted Qualifier 102

Figure 5.26 Serial Qualifier 	... 102

Figure 5.27 Relative Fanouts ... 103

Figure 5.28 Absolute Fanouts 	.. 103

Figure 5.29 Wire Lengths Over 10mm 105

Figure 5.30 Arrangement of Cells 105

Figure 5.31 Silicon 	Layout 	... 107

Figure 5.32 Pin Description 	.. 108

Figure 5.33 Pin Locations: Chip ... 109

Figure 5.34 Pin Locations: Carrier 110

Figure 5.35 Timing Diagram of Simulation Results 111

Figure 5.36 Conditions for Performance Simulations 113

Figure 6.1 	Test Equipment ..116

Figure 6.2 Timing for Input Signals117

Figure 6.3 Overflow Bits From Logic Analyser118

Figure 6.4 Multiplication Results From Logic Analyser119

Figure 6.5 Characteristic Pulses From Overflow Bits120

Figure 7.1 Silicon Area Occupied by Logic Gates123

Figure 7.2 Comparison of Published Architectures123

viii

Chapter 1 Introduction

"Gentlemen do not read each other's mail."

-- USA. Secretary of State H. L. Stimson
on closing the Black Chamber 1929

1.1 The Need for Data Security

It is an unfortunate fact that people will read each other's mail, especially if they stand to profit

by doing so. Indeed Stimson himself, as Secretary of War in 1940, came to realize this, actively

encouraging such activities through the United States war department's Military Intelligence

Division. This is where cryptology is traditionally thought to belong and that, broadly speaking,

was the case until the last decade when the falling price of powerful personal computers made

them more accessible to the general public. Now, as we enter the era of Information

Technology, Wide Area Networks are a reality and vast amounts of sensitive information

stored on computer databases are routinely exchanged via public communication links. These

networks and the falling cost and increasing performance of personal computers make it

possible gain access to information stored on computers anywhere in the world. The ease with

which this can be accomplished is demonstrated in a recent book by Clifford Stoll [145], where

it is reported how, for more than a year, an intruder rifled through some three dozen computer

systems in the USA from his home in West Germany.

,.Such 'hackers' regularly make the headlines and have been doing so for a number of years.

Initially computer crime was regarded by the public as something that could not affect them

and was generally dismissed, but with the growing awareness of Information Technology,

especially in the financial sector, data security and authenticity is now a real concern. An

indication of the extent of the problem can be found in the May 1988 proceedings of the IEEE

where G.Simmons lists sixteen reasons [138] for cheating in information based systems.With

security conscious business managers increasingly looking to cryptology to protect their

interests, data security is set to become one of the growth areas of the 90's.

page 1

1.2 The Impact of Public Key Cryptography

Data encryption, the process of scrambling a message under the control of a secret key, has

historically been used to protect sensitive information in military and diplomatic situations, and

more recently for secure financial transactions. Since the security of such systems depends on

the secrecy of the key, the growth of communications networks has led to problems of secure

key distribution. How do two users agree in advance on a key that will be known only to

themselves?. This was one of the driving forces that led to the discovery of public key

cryptography by Diffie & Hellman in 1975 [45]. This technique, discussed in detail in chapter 2,

uses separate keys for encryption and decryption and, with no distribution of secret keys,

allows many people to encrypt messages in such a way that only one person can read them:

the key distribution problem is solved by the user making his encryption key known to the

public. Another benefit of the public key cryptosystem is that the encryption and decryption

processes may be mutual inverses. In this case, an encryption followed by a decryption will

have the same effect as a decryption followed by an encryption. This means that a user can

'encrypt' a message with his private decryption key so that many users may 'decrypt' it with his

public encryption key. In effect, the user has signed his message with a signature that cannot

be forged, thus providing a means of guaranteeing the authenticity of a message.

This radical twist to an old idea prompted David Kahn to describe public key cryptography as

being "the most revolutionary new concept in the field since polyalphabetic substitution

emerged in the Renaissance." [14] [p440]

1.3 The Case for Cryptography ASICs

It would appear then that the solution to society's data security and secure communications

problems lies with public key cryptography. If this is the case then it is appropriate to question

why public key cryptosystems are not in widespread use. Firstly, despite increasing

awareness, adoption of computer security practices is still slow due to the cost involved in

installing a security system that has previously not been needed. Secondly, secret-key

encryption has been endorsed as a Data Encryption Standard [5] by the U.S. government.

Finally and perhaps most importantly, the underlying mathematics behind most public key

page 	-

cryptosystems tends to be more computationally complex than their secret key counterparts

resulting in slower encryption rates. Figure 3.2 in Chapter 3 summarises the performance of

the most popular public key algorithm published by Rivest Shamir and Adleman, RSA [120],

and demonstrates that in software, encryption rates of only around 500 bits/s can be achieved

with this algorithm. The Data Encryption Standard on the other hand has recently been

reported [143] as achieving encryption rates ranging from 20 Kbits/s on a PC to 100 Kbits/s on

a VAX 780.

So. before public key cryptography can compete with secret key cryptography, either faster

algorithms will have to be found, or novel hardware architectures will have to be designed to

implement existing algorithms. This thesis proposes to take the latter course and to use ASIC

technology to investigate new hardware architectures specifically designed for cryptographic

applications.

1.4 Aims of This Research

Most of the important public key cryptosystems proposed to date rely on modular arithmetic for

their operation. This type of arithmetic is complex, and inevitably involves division by the

modulus which, for the 512 bit integers often required for security, leads to poor performance

when compared to conventional cryptosystems.

The research presented in this thesis addresses the design of special architectures capable of

dealing efficiently with large integer modular arithmetic for public key cryptography. It is hoped

that the resulting architectures will improve on the 12 Kbits/s of the fastest RSA processors

commercially available [68], and be able to compete favourably with the 20 Kbits/s to 100

Kbits/s of software implementations of the Data Encryption Standard.

By proposing new architectures to improve the performance of public key cryptosystems it is

hoped that the benefits offered by public key cryptography will become a more attractive option

to the increasing number of security-conscious computer users.

page 3

Chapter 2 Introduction to Cryptology

The aim of this chapter is to provide some of the fundamental ideas and theory of cryptology.

Further, general, information may be found in [18], [41], [71], [83], [89], or the more

mathematical text from van Tilborg [148]. This chapter also serves to define how the work

presented in chapters four and five relates to the whole of cryptologic research.

2.1 Cryptology Basics

2.1.1 Terminology

Cryptology is the general term used to describe the study of both cryptography and

cryptanalysis. In the former, the aim is to design codes or ciphers to protect the secrecy and

authenticity of information, whereas the latter discipline concerns itself with the breaking of

codes to gain access to private information, or to forge coded signals so that they are accepted

as genuine. The original message is often referred to as the plaintext or cleartext and the

process of transforming this plaintext into ciphertext is known as encryption. The reverse

process is known as decryption. In classical cryptography both the encryption and the

decryption transformations depend on the same secret key so that knowledge of the key

makes the transformations easy. Without the key the transformations should be virtually

impossible. For example, one of the earliest known ciphers, attributed to the Roman emperor

Julius Caesar, cyclically shifts each letter in the plaintext by three so that 'caesar' becomes

'fdhvdu'. The key here is the number of places by which the alphabet is shifted. The basic

model of a classical cryptosystem, Figure 2.1 shows the distinguishing feature of the secure

channel by which the secret key is communicated. This has given rise to the term secret key

cryptosystems, used to refer to classical systems, as opposed to the more recent public key

systems.

page 4

secure area
	 secure area

key
secure channel

, Encryption 	ciphertext 	Decryption
plaintext 	 i 	

insecure channel 	 plaintext

Figure 2.1 Classical Cryptosystem

2.1.2 Methods of Attack

• Auguste Kerckchoff (1835 - 1903) suggested that in designing a cryptosystem it should be

assumed that the enemy cryptanalyst knows all the details of the encryption and decryption

transformations except for the value of the secret key. In other words, the security of the

system lies entirely with the secrecy of the key, as is indeed the case for all public domain

ciphers such as DES [5], FEAL [133], and RSA [120]. This leaves the classical cryptosystem

open to three broad areas of attack.

Ciphertext-Only attack 	The cryptanalyst only has access to the ciphertext.

Known-Plaintext attack

	

	The cryptanalyst knows some plaintext/ciphertext pairs for

the current secret key.

Chosen-Plaintext attack

	

	The cryptanalyst can obtain the plaintexticiphertext pairs for

his choice of plaintext

Another successful method of attack not suitable for the following analysis but nevertheless

one that should not be ignored in practical situations is theft of the secret key.

From the above, and from Kerckchoff's assumption, it is clear that knowledge of some

plaintext/ciphertext pairs alone is not enough to break a cipher. Only when the secret key has

been deduced is the cipher said to be completely broken. A cipher is partially broken if the

plaintext can be deduced sufficiently often without knowledge of the secret key.

page 5

2.2 Information Theory

2.2.1 Practical Security

With so many methods of attack, it is appropriate to question whether a cipher can ever be

totally secure. To answer this question some means of quantifying and measuring the security

of a cryptosystem is first required. These are some of the issues addressed by C. E. Shannon

in his 1949 paper "Communication Theory of Secrecy Systems" [132].

Shannon examined the classical system of Figure 2.1 subject to ciphertext only attack. Under

these conditions, he defined perfect secrecy to be the intuitive situation whereby intercepting

the ciphertext gives the cryptanalyst no information. Casting the problem in terms of

information theory [131], led Shannon to the theorem that a necessary and sufficient condition

for perfect secrecy is that all messages and cryptograms are statistically independent. This

means that the probability of receiving a particular cryptogram V given that the message X was

sent encrypted by key Z, is the same as the probability of receiving the same V from any other

message X' encrypted under a different key Z'.

Figure 2.2 adapted from Shannon [132] illustrates a perfect system with three equally likely

messages, and three equally likely keys. The cryptanalyst, on intercepting V has no way of

guessing which key was used and therefore, which message was sent.

key

X2 W2 2

Figure 2.2 Perfect Secrecy System

Perfect secrecy is possible then, if statistical independence is achieved through use of

completely random keys which are at least as long as the message they encipher. The only

cipher to satisfy these conditions is the Vernam Cipher [150] with the key length greater than

page 6

or equal to the message length. This is better known as the one time pad from its use during

World War II by spies who were issued with a pad of paper containing the randomly chosen

secret key and told it could be used for only one encryption.

The key length required for the one time pad makes it impractical for the majority of

cryptosystems. That is not to say that all other systems are insecure. Among these

theoretically soluble systems there exist wide variations in the amount of effort needed to effect

a solution, and in the amount of ciphertext that must be acquired to make this solution unique.

Shannon proposed the idea of two types of security theoretical security and practical security.

The one time pad is a perfect system which is theoretically or unconditionally secure. This

means that it is impossible to break under a ciphertext only attack even if the cryptanalyst has

unlimited computational resources. Practical, or computational security implies that a system

is secure against an attack from a cryptanalyst who has access to finite computational

resources.

To quantify the secrecy of a system, Shannon used the key and message equivocation

functions. These functions measure the conditional entropy of the key, or message, given the

received ciphertext, and are applied to the system of Figure 2.1 where

The plaintext
	

X = { X 1 , X2 , . . . XM } 	is M symbols chosen from Lx possibilities

The ciphertext
	

is N symbols chosen from L possibilities

The key
	

Z={Zl,Z2,...ZK }
	

is K symbols chosen from L possibilities

page 7

The key equivocation function H(Z) is the conditional entropy of the key and measures the

uncertainty about the key given that Y 1 , Y2, . YN has been received.

H(Z) =H(ZIY1,Y2 ... YN)

fI (Z)
= L

 (y, z) log (P(Z)
Y

	 (EQ 2.1)
1

)

Where p, (z) is the conditional probability p (z) given y.

and p (y, z) is the joint probability p (y) and p (z)

Shannon showed this quantity to be related to the entropy of the key, message, and

cryptogram, as follows

H(z) H(x) +H(z) —H(Y) 	 (EQ2.2)

In particular, if H(X) = H(Y) then the equivocation of the key is equal to the a priori uncertainty

of the key H(Z). This is the case in the perfect system previously described.

For most ciphers the probabilities are too complex to work out to determine the equivocation

function exactly. However, Shannon has shown that the function H(Z) will have the form

described by Figure 2.3.

page 8

Figure 2.3 Unicity Distance

The function starts off at H(Z) = H(Z) when N = 0, decreases linearly with a slope of - D and

then follows a decaying exponential with half life lID. The linear region may be extrapolated to

H(Z)
the intersection of the N-axis where N =

	D 	
. At this point H(Z) = 0, which means only

one key can have produced the ciphertext Y and the system can, in theory, be broken under a

ciphertext only attack given enough computational resources. Exhaustive cryptanalysis, or

trying every possible key, at this point will yield a unique solution. Shannon referred to this point

as the unicity distance ,.t1 .

From Figure 2.3 it can be seen that

H (Z)

	

= D 	
(EQ 2.3)

Where D is the redundancy per letter of the ciphertext

If, as is often the case, there is no expansion of the plaintext, then N = M , and L X = L, then

provided the key is chosen completely at random, the redundancy of the ciphertext will be

equal to the redundancy of the plaintext itself and D can be approximated by

page 9

D=R — r 	 (EQ2.4)

Where 	 R = absolute rate of the plaintext = 1092(L)

and 	 r = actual rate of the plaintext

The actual rate of a language for messages of length M characters long is

H (x)
r

= M 	 (EQ2.5)

For English, with 	M = 1 (1-grams) 	r 4.15 bits per letter

M = 2 (2-grams) 	rw 3.62 bits per letter

M = 3 (3-grams) 	rw 3.22 bits per letter

For large M estimates of r for English range from 1.5 to 1.0 bits per letter.

For English then,

D = R - r z 1og26 - 1.0 = 3.7 	bits per letter

Using D in (EQ 2.3) gives the unicity distance in bits per letter. It is often more instructive to

use the percentage redundancy per letter of the plaintext as Massey does in [83]. This gives

the unicity distance in bits which is more appropriate to modern ciphers that operate on a

binary language, and allows comparisons to be made between ciphers whose symbols come

from differing alphabets.

The percentage redundancy is:

D
p = W 	 (EQ2.6)

Which is approximately 0.8 for English.

For example, the Caesar cipher on page 4 has 26 possible keys, since

H(z) = p(z)1og_
1

(EQ 2.7) p(z))

and all keys are equally likely so that p(z) = 1/K then

page 10

H(z) = K1ogK") = logK

so for the Caesar cipher,

- H (Z) - log 26 	 (EQ 2.8)
p 	- 0.8

Which is approximately 6 bits, or just over one character.

For a random substitution there are 26! possible keys, and equation (EQ 2.8) shows the unicity

distance is increased to approximately 110 bits, or 22 characters.

The DES cipher discussed later, has a 56 bit key, and unicity distance of 70 bits or, if 5 binary

digits are used to code the 26 letters of the alphabet's 14 characters. If 7 bits are used to code

each character, allowing one parity bit, then DES will have a unicity distance of 10 characters.

An RSA cipher with 512 bit key will have unicity distance of 640 bits.

Although, strictly speaking this analysis applies only to Shannon's "random ciphers",

experienced cryptographers believe the formulae to be valid in virtually all secrecy systems,

with the exception of those probabilistic systems described in section 2.2.3. Shannon's model

is routinely used to measure the unicity distance of many ordinary ciphers.

2.2.2 Work Characteristic

The unicity distance measures the secrecy of a system in that it determines how much

ciphertext has to be intercepted before a unique key has to have been used. It also gives the

cryptographer an indication of how often the key should be changed. Having intercepted

enough ciphertext however, does not mean that the cipher is broken, there still remains some

work to be done, and this can vary widely from one cipher to another and from day to day.

Shannon defined the concept of the work characteristic of a system W(N), an indication of the

average amount of work measured say in computing time on a CRAY, to determine the key for

a cryptogram of N letters. The function W(N) is a measure of the amount of "practical secrecy"

afforded by the system and Shannon postulated the behaviour of this function to be essentially

page 11

as shown in Figure 2.4 for any type of system where the equivocation function approaches

zero.

Figure 2.4 Work Characteristic

In the dotted region there are numerous possible solutions and all must be determined. At the

unicity distance only one solution exists but a great deal of work is needed to isolate it

thereafter, as more material is acquired, the work reduces to some asymptotic value where

additional data does not help

The difficulty in solving a particular cipher may change gradually as faster processors become

available, or overnight if a new algorithm is discovered. Thus, in practice, there are two work

functions. The historical work function, Wh based on known cryptanalytic techniques, and the

intrinsic work function W 1 which will form a lower bound on Wh. It is generally the former that is

referred to when people talk of a cipher taking millions of years to break. There are no practical

ciphers today whose intrinsic work function is known.

However, there are many ways of maximising W(N). It is the aim of good cipher design to

maximize W(N) so that the time needed to break the cipher makes it impractical, or at least so

long that the information obtained no longer has any value. This emphasizes the point that in

page 12

cryptology it is more often the value of the information we are concerned with than the

information itself.

2.2.3 Improving Secrecy

The obvious way to improve secrecy is to increase the unicity distance j.i.

gn
- H(Z)

p
(EQ 2.9)

To do this we can increase H(Z) by using more keys and/or making sure all keys are equally

likely (this is the mathematics behind choosing a non-obvious password!). Alternatively we can

look at ways of decreasing p. Two well known techniques for doing this are data compression,

and non-deterministic, or probabilistic encipherment.

In the system of Figure 2.1 with no plaintext expansion, p is equal to the redundancy of the

message. If X is ideally compressed so there is no redundancy, then all possible messages

are equally likely. Thus deciphering Y with any key yields a possible solution. In other words,

as X approaches an ideally compressed source g, —+ °°. For example, if a message is

someone's telephone number composed of a group of 5 decimal digits, then deciphering to

93864 is just as valid as 84028. In this case even the Caesar cipher will provide perfect secrecy

under a ciphertext only attack.

Data compression is in general a useful cryptographic tool and should be applied if at all

possible. This was well known to cryptographers in the pre-computer age when, according to

Massey [83], many letters and blanks were deleted from messages before encrypting.

THSISAFRMOFDTACMPRESON.

Another approach used by old-time cryptographers was to insert extra symbols in the message

to hide the statistics of the message. THXI SAXN EXAM PXLE. This second trick is an example

of probabilistic cryptography usually referred to plaintext padding. The distinguishing feature

of probabilistic ciphers is that the key and the plaintext do not uniquely determine the

ciphertext. Some randomising function, known only at the encryption site, is applied to the

message before encryption as illustrated in Figure 2.5.

page 13

secure area

key

X

> Encryption

plai ntext

secure area

secure channel

insecure channel 	Decryption 	
plaintext

RI

Eandomiser

Figure 2.5 Probabilistic Secret Key System

At first sight plaintext padding would appear to be adding to the redundancy, but the extra

symbols can be selected from a large set in a very random fashion so that the redundancy of

the ciphertext is in fact reduced. Figure 2.6 shows J random symbols R = { R 1 , R2, .. . R

added to the M message symbols X.

>1< 	J 	 >1
Plaintext Message 	 Random Sequence

Quasi - Plaintext 	 >1
x= (X, R)

Figure 2.6 Plaintext Padding

If these random characters are taken from the same language as X so that LR = Lx, then

H(x) = H(x) +H(R) 	 (EQ2.1O)

but since R is J symbols taken from Lx then there can be Lx possible R's, thus

page 14

H(X) = H(x) +J1ogL

So, using (EQ 2.4) the redundancy of the message is

H(X) +H(R)
D=1ogL— M+J (EQ 2.11)

H(X) +J1ogL
D = 1ogL,— 	

M+J

M1ogL—H(X)

M+J

- 	M 	H(X)
D = 	JloLX M I

MD
M+J

-. 	M+J
1_1fl = M 	

(EQ 2.12)

So if for example the DES cipher is used in single bit cipher feedback mode, as described in

the Guidelines For Implementing and Using the NBS Data Encryption Standard[6], where one

bit of plaintext is enciphered with 63 random bits, then the unicity distance will be increased by

a factor of 64. From the calculation on page 11 this means we have an improvement from 70

to 4480 bits.

A second non-deterministic technique that can be used to reduce the redundancy of the

ciphertext is that of homophonic substitution.

The cryptography systems mentioned so far all have a one to one correspondence between

plaintext letters and ciphertext letters. Homophonic ciphers do not have such a one to one

mapping. Each plaintext symbol maps on to a ciphertext symbol chosen at random from a set

page 15

of homophones. The implication is that the size of the ciphertext alphabet Ly is greater than

that of the plaintext alphabet Lx. The situation is illustrated in the following, where the plaintext

comes from the English alphabet, and the ciphertext from the set of ASCII symbols.

plaintext ciphertext

A F$%
B 6+
C X&0
0 ?PR
E @!KTI#- ,,,

Figure 2.7 Homophonic Substitution

From this short example the ciphertext "F&@" and "$&#" both decipher to the word "ACE"

Homophonic substitution can be extremely effective if the statistics of the message are known

beforehand. The homophones can then be chosen so that the more commonly occurring

symbols, such as the letter E in English, map on to a larger set of homophones than the less

frequent ones, thus producing ciphertext that approaches statistical independence from the

plain,text.

For example, if a binary message source produces '0' with a probability of 0.25 and '1' with a

probability of 0.75, then the following transformation will provide a perfect homophonic

substitution.

00
1x 	0 	1/3 	01

1 	
I Y

Encryption

1/3

Selector

Figure 2.8 Homophonic Encryption System

page 16

In the above the selector randomly chooses the mapping for '1', thus the output sequence X

will be a sequence of random bits. The redundancy of the ciphertext will be zero and the unicity

distance 	—3 00

These probabilistic techniques help to ensure the same ciphertext is never produced twice

from the same message, thus improving security against a chosen plaintext attack. The price

paid is, of course, the expansion of the plaintext although this is likely to be acceptable where

security is important. The benefits afforded by probabilistic encryption have prompted Massey

to suggest in [821 that research in this area offers the best chance of leading to practical

provable computationally-secure ciphers with small keys.

The importance of all three of the above is that they can be applied to any encryption system

and will greatly enhance the secrecy.

To conclude this section on improving security, Shannon's two principles of diffusion and

confusion are be discussed. Unlike the previous methods, these techniques apply to cipher

design and cannot be used to "pre-process" the message.

In many non-ideal ciphers the statistics of the plaintext are reflected in the ciphertext. By

analysing the frequency distributions of letters in the cryptogram, the cryptanalyst can often

break these ciphers. Shannon suggested two methods to frustrate such statistical analysis.

In the method of diffusion the aim is to dissipate the statistical structure of the message into

the long range statistics of the ciphertext, the effect of this is to break up the digrams and

trigrams of the plaintext. To achieve this in practice means aiming to ensure that each symbol

in the message and the key affects as much of the ciphertext as possible. The "chaining"

modes of DES described in [6] are a good example of this technique.

page 17

The method of confusion recognises that some statistics "leak" through the encrypting

transformation, but aims to make the relationship too complicated to be of any use to the

cryptanalyst.

One of the strongest theoretical arguments against the use of additive stream ciphers,

described in section 2.4.1, is that they can never achieve good diffusion of the key. Each key

symbol can only influence one ciphertext symbol.

Product ciphers provide a way to design good confusion and diffusion into a cipher without

making the algorithms themselves too complex. These ciphers are composed of many

component ciphers, each one contributing a small amount to either the diffusion or confusion

of the complete cipher. As explained in section 2.3.2, DES is a classic example of how strong

ciphers may be built up by this method.

2.2.4 Authenticity

The discussion so far has concerned itself mainly with cryptography as a means of providing

secrecy. Another increasingly important use of cryptography is to provide authenticity. When

the recipient of a cryptogram deciphers the text to form a message that makes sense, he may

still be uncertain that the message was sent by a valid party. For example, unless precautions

are taken, anyone could interrupt messages between the two users and replay them, or even

replace them with new ciphertext.

It is only a recent realization that although a system may be highly secure, that does not have

any bearing on its authenticity. In other words, secrecy and authenticity are independent

attributes of a security system. The theory of authenticity owes much to the work of Gus

Simmons of the Sandia National Laboratories in the U.S.A. Simmons was interested in

authenticity with respect to nuclear test-ban monitoring by remote seismic observatories [136].

The idea was that the U.S.A. and the Soviet Union put seismometers on each other's territory

to ensure the limits imposed on nuclear testing were observed. The difficulty lay in convincing

the monitoring nation that the host nation was not tampering with the data transmitted from the

observatory. Conventional cryptography was not applicable because the host nation had to

page 18

know what information the monitoring nation was transmitting back home. What was needed

was authenticity without secrecy.

In addressing this problem Simmons suggested that Shannon's model of a cryptosystem,

Figure 2.1, be modified to allow the cryptanalyst more freedom. In Simmons' model, Figure 2.9

the cryptanalyst is not only eavesdropping, he is now actively tampering with the transmitted

messages.

secure area 	 secure area

e--------------------->[
	secure channel

X
 j Encryption 	>fCrtanalyst 	> Decryption

-

plaintext

Authenticity
Checker

Figure 2.9 Simmons' Cryptosystem

Simmons defined two kinds of authenticity attack. An impersonation attack where the

cryptanalyst sends a fraudulent cryptogram without waiting to see the genuine cryptogram;

and a substitution attack where the cryptanalyst waits for a genuine cryptogram to be sent,

examines it, and then forwards a fraudulent cryptogram. Success under an impersonation

attack means that the fraudulent cryptogram is accepted as valid under key Z. Success under

a substitution attack has the additional constraint that the message decrypted be different from

the message sent.

page 19

Let P 1 be the probability of success under an impersonation attack, and Ps the probability of

success under a substitution attack. If

the total number of possible cryptograms is N,

the total number of possible messages is Nx,

and the total number of possible keys is NZ,

then for each key there must be at least Nx possible cryptograms.

So, if the cryptanalyst selects one cryptogram at random from N y , then the probability of

success under an impersonation attack will be

Nx 	
(EQ 2.13)

Y

The implications of this are:

Complete protection, P 1 = 0, is impossible.

For good security Ny should be much greater than Nx.

Equality exists only when there are exactly Nx valid cryptograms for each key.

Thus probabilistic encryption adversely affects security against impersonation

attacks.

In the example on page 13, Nx = Ny and P 1 = 1, demonstrating how perfect secrecy may be

achieved with no authenticity.

In [137], Simmons shows how

	

logP1 ~t —I (Y;Z)
	

(EQ 2.14)

Where I(Y;Z) is the information Z gives about Y

I(Y;Z) = H(Y) - H(Y1 Z) 	 (EQ 2.15)

It can be shown that this information is always mutual information,

	

I(Y;Z) = I(Z;Y) 	 (EQ2.16)

Simmons defined the probability of deception as

page 20

Pd = max (P 19 	 (EQ 2.17)

and showed this too, to be bounded by

logP ~t —I (Y;Z) 	 (EQ 2.18)

Simmons then defined perfect authenticity to be equality in (EQ 2.18).

The conclusion from the above is that if the probability of deception is to be minimised, then

the cryptogram has to provide a lot of information about the key. In other words part of the

secret key has to be dedicated to providing authenticity, rather than secrecy. The following

example serves to illustrate the point.

The key is defined to be an even number of symbols

Z={Zl,Z2, --- ZK}

and the message X, is one bit, either a '1' or a'0'. The key is used only once for each message.

To transmit another message (another bit in this example) a new key is used.

If the following encryption transformation is used:

Ifx=O then y={0,Z 1 ,Z2, ...Z1 2 }

lfx=1 then y={1,Z 21 , ... Z}

then perfect authenticity is achieved with no secrecy. This is what Simmons required to solve

the problem mentioned in the introduction.

The preceding examples have illustrated that secrecy and authenticity are separate attributes

of a cryptographic system and that it should never be assumed that possession of one

automatically provides the other. That is not to say a system can not have both. If the above

example were modified slightly so that instead of transmitting X, X + ZK +., was sent, where

ZK+ 1 is an additional key symbol, then perfect secrecy and perfect authenticity is achieved.

Transmitting X + ZK+1 is equivalent to the one time pad.

page 21

2.3 Block Ciphers and the Data Encryption Standard

This section uses the Data Encryption Standard to illustrate the design principles behind block

cipher construction. These principles have their roots in Shannon's work [132], and formed the

basis of IBM's research into nonlinear block ciphers [53] which produced the LUCIFER cipher

[52], and ultimately resulted in the Data Encryption Standard or DES [5].

Although DES has several different modes of operation, when used in "Electronic Code Book"

mode, or ECB, it is an excellent example of a block cipher. The advanced modes of DES

operation such as Cipher Block Feedback illustrate how block ciphers may be adapted to take

on certain desirable properties of stream ciphers. These modifications to the basic cipher are

discussed in more detail in the section on stream ciphers, section 2.4.

The distinction between block and stream ciphers lies in the transformation that is applied to

successive plaintext blocks, and to a lesser extent the length of the plaintext blocks. With a

block cipher successive blocks always encounter the same transforming function, and the

transformation is usually over a large blocklength. Stream ciphers on the other hand have

some internal memory and, in general, transform successive blocks with a different function,

the transformation being governed by the internal state of the system. Thus, if the same

message is encrypted twice, a block cipher would produce two identical blocks of ciphertext

whereas the stream cipher would produce two different cryptograms.

2.3.1 The DES Controversy

The Data Encryption Standard is the most widely used cipher. It is also the most controversial.

Before the introduction of DES, cryptography algorithms could be classed as belonging to one

of the following three categories:

Outdated ciphers, up to about Word War II

Commercial ciphers with proprietary algorithms known only to the vendors

Classified government ciphers.

This meant that apart from the government and commercial organisations who designed the

ciphers, users could not have any confidence that the algorithms available offered enough

security. The United States National Bureau of Standards (NBS) therefore undertook to

page 22

develop a high quality cipher for public use. They invited the public to submit algorithms for

consideration as the new cipher and asked the National Security Agency (NSA) to evaluate the

responses or provide an algorithm if none were received. The algorithm chosen was a

modification of a cipher that used a 128 bit key, IBM's LUCIFER [52]. The company's original

submission used a 768 bit key, but this was to be reduced to the 56 bits used at present. It is

reported in [83] that the NSA were "instrumental in reducing the DES secret key to 56 bits".

The reduction of the key was immediately met with scepticism and prompted Diffie and

Hellman [46] to publish the conceptual design of a machine capable of trying every possible

key which they estimated would break DES in about 12 hours. Hellman later proposed a

modification [66] to this design which he estimated could break 100 cryptograms in parallel

each day. These estimates were regarded by many to extremely optimistic, but the controversy

did raise questions about how secure the cipher should be to be considered practically secure,

or as Smid and Branstad [143] put it "how good is good enough". In their discussion of the DES

key length Smid and Branstad make the point that the key had to be small enough to keep

costs down and to maintain user friendliness.

The second criticism of the cipher lay with the design of the S-boxes described in section 2.3.3.

The S-boxes were designed by the NSA who refused to publish the principles on which they

based their decisions. It was argued that this was because the S-boxes concealed a

"trap-door" which would make it easy for the NSA to break them.

To answer their critics, the NBS held two workshops, one to discuss the mathematics of the

algorithm [7], the other to discuss the key length [8]. No "trap doors" were identified and the

key was considered to be adequate for the users needs for the next 10 to 15 years. The

standard was therefore accepted and published in January 1977 with the recommendation that

it be reviewed every five years. The last review was in 1988.

The latest development in the analysis of the DES cipher was presented at the CRYPTO '90

conference by Eli Biham and Adi Shamir [23] who described a chosen plaintext attack on DES.

The cryptanalysis algorithm described by Biham and Shamir is capable of breaking the DES

cipher in less time than an exhaustive search of the key space provided the number of

iterations of the encryption algorithm is 15 or less. The DES cipher uses 16 iterations. Attempts

page 23

by the authors to strengthen the cipher by changing the key schedule or the S-box design did

not work. These results highlight the importance of good S-box design and suggest that the

NSA were probably well ahead of the rest of the cryptographic community when DES was

designed.

2.3.2 Cipher Elements

The DES cipher is a product cipher consisting of sixteen "rounds", or iterations, of successive

transformations. The transformation carried out at each round is constructed from a

substitution and a transposition cipher. In a substitution cipher, each symbol in the plaintext

alphabet is mapped on to a fixed substitute in the ciphertext alphabet. Homophonic substitution

is an exception. A weakness of substitution ciphers, such as the Caesar cipher, is that the

relative frequencies of letters and groups of letters leak through the transformation and unless

precautions are taken these ciphers may be broken by frequency analysis of the ciphertext. If

the methods of section 2.2.3 are not appropriate, then the key should be changed often enough

to ensure no plaintext symbol occurs more than once in the key's lifetime. Another approach

would be to use a large alphabet.

Substitutions were the earliest ciphers to be used. Next were transposition ciphers. The key in

a transposition cipher is a fixed permutation of the plaintext block. Although the frequency of

single symbols still leak through, digrams, trigrams, etc. are broken up thus altering the

statistics of the ciphertext.

Although substitution and transposition are weak ciphers when used alone, combining them,

and repeatedly applying the transformations as aproductcipher, as is done in the DES cipher,

can result in extremely strong algorithms. The distinguishing feature of product ciphers is that

a single key, or some part or permutation of it, is used to control each individual transformation

as illustrated in Figure 2.10.

page 24

x --- 	 ~"Y

Figure 2.10 Product Cipher

This is the difference between a product cipher and a cascade cipher where each

transformation is controlled by a separate key as in Figure 2.11.

Figure 2.11 Cascade Cipher

The functions used in each round of DES are involutions. An involution is a function that is its

own inverse such as f(x) = -x, or a transposition that swaps two halves of a block. If an

involution is used to encrypt plaintext then the same function can be used for decryption. So in

DES, if the algorithm is run backwards then each transform undoes the previous one as shown

in Figure 2.12, thus both encryption and decryption use the same algorithm and key. The only

difference is that the sub keys used in each round are applied in the reverse order.

z

X-4x.4 I thJ........ 4~ x

4' 	'1'
The second f(x) undoes the first

Figure 2.12 Effect of Involutions

page 25

2.3.3 DES Structure

The DES algorithm operates on 64 bit blocks of plaintext and produces 64 bit blocks of

ciphertext using a 56 bit key. The complete definition may be found in [5] where the following

figures have been adapted from, and a software version of the cipher written in C may be found

in [125].

Each iteration of the DES algorithm depends on one of 16 intermediate keys derived from the

input key using the key scheduling algorithm of Figure 2.13. The Permuted Choice 1 in the key

scheduling algorithm performs a permutation on the 64 bits of the input key and discards bits

8, 16, 24, etc. to create a 56 bit active key. The active key is divided into two halves C i and D,

and each half is then cyclically shifted left either once or twice each iteration. After shifting, the

two halves are re-combined and undergo another permutation where eight more bits are

discarded resulting in the 48 bit intermediate key Z 1

The encryption algorithm shown in Figure 2.14 transposes the 64 input bits under the Initial

Permutation, then splits the data into two 32 bit words which are transformed each round under

the control of key Z.

page 26

64

Key

Permuted Choice 1

1 	F 28 	29 	56

CO Do

'Jr 	 'Jr
(Left Shi ft 	Shift)

C 	 Di

______ i'ermutedi______
'Jr 	 Choice 2

(Left Shifi) 	

(~i
ft Shift)

C2 	 D2 	 _____

/Permutedi" 	
, z2

Coice2J

(Left Shift) 	(ft Shift)

C.6 	 D16

(

PermuteI______
Choice 2)

Figure 2.13 Des Key Scheduling Algorithm

page 27

	

1 	 64

F- Input

Initial Permutation

1 	_32 	 33 	 64

RO - __

70

— 	L1 = R0 	 R i LO f(R,Z)

	

L2 R1 	 R2 L1 	f(R 1 ,Z2)

L15 R14

R16 L15 EE'f(R 159Z16) 	 L16 R15

I 	 I

(Inverse Initial Permutation

Output

Figure 2.14 DES Encryption Algorithm

page 28

Examination of Figure 2.14 reveals that each round is composed of two ciphers as illustrated

in Figure 2.15. A substitution applied to the left half of the word followed by a transposition of

the left and right halves. The transposition does not depend on the key, but is included to

provide Shannon's diffusion. The substitution provides the confusion.

Figure 2.15 Composition of DES Round

It is clear from Figure 2.15 that since the transposition swaps left and right halves, it is an

involution. The substitution is the exclusive-or of the left half of the word with some function of

the right half of the word and the key. If this substitution is applied twice in succession to a block

of data, using the same key, the nature of the exclusive-or function ensures that this too is an

involution. Thus in the DES cipher the decryption algorithm is identical to the encryption

algorithm except that the intermediate keys have to be applied in the reverse order. The "Initial

Permutation" has no cryptographic significance - it "undoes" itself at the end of the algorithm.

The reason for the Initial Permutation is not published in the standard but it may be that its

eight-bit orientation eases hardware implementations as illustrated by Verbauwhede et al. in

[149] who use an array of eight-bit shift registers to perform the permutation.

Figure 2.16 shows the DES Cipher Function represented by '()" in the previous diagrams. In

this function the right half of the data word is expanded from 32 to 48 bits by duplicating some

page 29

of the bits during the permutation process. The intermediate key on the other hand is reduced

in the key scheduling algorithm, from 56 to 48 bits. In IBM's original submission the user could

choose these 48 bits in all 16 rounds giving the 768 bit key noted on page 23. The results of

these expansions and contractions are exor'd before entering the eight S-boxes which reduce

the data back down from 48 to 32 bits.

R11 (32 bits) 	 Z1 '(56 bits)

'Jr

(Expansion 	 Permuted Choice 2

R 1 ' (48 bits) 	 Z1 (48 bits)

S2
HU 	WH 	HILU) HH 	HUH 	T[EIflTil]flhIfll'
S1 C S4) 	_ _

(_Permutation

Output (32 bits)

Figure 2.16 The DES Cipher Function

The S-boxes perform a four bit substitution on the inner four input bits controlled by the outer

two input bits. They have been designed so that changing one input bit changes at least two

output bits which provides an avalanche effect as the cipher proceeds.

2.3.4 Weak Keys

The nature of the key scheduling algorithm gives rise to some obviously bad choices of keys

that cause the decryption process to be exactly the same as the encryption process. For

example, any key resulting in C o and D0 both equal to zero will produce identical Zs. There are

page 30

four such weak keys. Semi-weak keys are similar but occur in pairs, encryption by one of these

keys is equivalent to decryption by its dual. A full list of weak keys is given in the NBS

Guidelines document [6].

The only danger is that weak keys might be used during multiple encryption, using DES to form

a cascade cipher. The existence of these keys however, has fuelled speculation that DES

might be a group. This would be catastrophic for multiple encryption since the closure property

of groups means that successive encryptions would be equivalent to a single DES encryption.

Fortunately there is strong evidence that DES is not a group [73].

2.3.5 The Future of DES

DES is probably the most closely analysed cryptography algorithm, yet despite intensive

scrutiny no one has identified a weakness that could be exploited better than exhaustive

cryptanalysis. The general consensus is that DES appears to be an excellent cipher given its

small key length, and should find wide use for many years yet.

However, as mentioned on page 23 the standard was recommended for 10 to 15 years use

with reviews every five years and is due its third review before January 1992. The NBS will

then have to decide whether to reaffirm, revise, or withdraw the standard. The NSA meanwhile

have been working on a program (CCEP) intended to design cryptography algorithms to

replace DES [15]. According to Smid and Branstadt [143], the NSA have stated in a letter that

the CCEP intends to provide Government endorsed cryptographic equipment. The algorithms

will be designed by the NSA and not published, but made available through tamper-proof

chips. Whether the CCEP program succeeds in finding a suitable replacement for DES

remains to be seen.

2.4 Stream Ciphers

The difference between block and stream ciphers was explained on page 22. This section

discusses stream ciphers in more detail and distinguishes between synchronous and self-

synchronous stream ciphers, concluding with several examples of how block ciphers may be

modified to take on certain desirable characteristics of stream ciphers.

page 31

The theory of stream ciphers is the subject of much research and may be pursued in more

detail in [18] and [122]

2.4.1 Synchronous Stream Ciphers

It was stated in section 2.3 that stream ciphers transform input symbols in a manner that

depends on the internal state of the system. In a synchronous stream cipher, the next state

depends only on the present state, and is unaffected by the input symbols. When comparing

block and stream ciphers, the absence of inter-symbol dependence may be advantageous in

a noisy channel since one corrupted symbol will have no effect on any others. On the other

hand, having no diffusion of the plaintext allows a cryptanalyst to alter one symbol in a

message without having to worry about how this will affect the remaining symbols. Diffie and

Hellman [47] discuss how error detecting codes may be applied to cryptosystems, and

observed that a keyed or non-linear error detecting code may be applied to a synchronous

stream cipher to provide automatic authentication.

The basic model of a synchronous stream cipher system is shown in Figure 2.17 where the

exclusive-or function is used to combine the message stream with the running key. With the

proliferation of digital information, it is easy to see why such binary additive stream ciphers are

the most popular stream ciphers in use today. The exclusive-or function allows the encryption

and decryption to be performed by identical devices since addition and subtraction are

equivalent operations modulo two.

Figure 2.17 Synchronous Stream Cipher

The running key generator (RKG) in the above uses the key Z as a seed to generate the

running key Z'. If this running key is truly random then the ciphertext will be statistically

independent from the plaintext and the system will have perfect secrecy as described in

page 32

section 2.2.1. Chaitin [33], however, has shown in that no truly random sequences can be

generated using a finite algorithm. Any finite state machine not subject to external influences

will always cycle repeatedly through a fixed number of states producing a periodic output.

Since a known-plaintext attack exposes the running key, the best a stream cipher designer can

do, is to build the RKG in such a way that it is difficult for a resource limited cryptanalyst, upon

observation of Z' 1 , Z' 2 . . . Z',, to reliably predict Z',,., 1 without knowledge of the secret key Z.

To achieve this, the running key Z' should have the following properties.

A long period

Good short term randomness

Large linear complexity.

The linear complexity of a sequence is defined as the length L, of the shortest linear-feedback

shift-register (LFSR) that could have produced the sequence.

The reason for insisting on a large linear complexity L, is that the Berl ekamp-Massey algorithm

[19] [81] describes an efficient method of finding the shortest LFSR that could have generated

the sequence after examining only 2L bits of the running key. This effectively precludes the use

of LFSRs alone as running key generators. The poor security of such a system under a known

plaintext attack is demonstrated in [47] [41] and [18]. Good RKGs can, however, be designed

using LFSRs as building blocks of a larger system as shown in Figure 2.18.

LFSR 1 LIIIIIIJ- 	_
Memoryless
Combining 	 IIz,

Function

Figure 2.18 Running Key Generator

page 33

For example, Geffe [59] suggested the arrangement of Figure 2.19 as the memoryless

combining function, where LFSR 2 selects the output from either LFSR 1 or LFSR 3.

Figure 2.19 Geffe's Combiner

Siegenthaler [135] has shown that stream ciphers constructed from this, and several other

combining functions, can be broken when subject to a ciphertext-only correlation attack.This

is possible because leakage of the LFSR statistics through the combining function makes the

cipher subject to a "divide and conquer" attack. In [134] Siegenthaler defined correlation-

immunity for nonlinear combining functions and showed how to design combining functions

that avoid leakage. He also proved that high correlation-immunity required the combining

function to have a low nonlinear order. Rueppel and Staffelbach's work on linear complexity

[123], however, showed that a high nonlinear order was needed if large linear complexity is

desired. Thus in the design of memoryless combining functions, there is a trade-off between

correlation-immunity and linear complexity.

To overcome this trade-off, combining functions with memory can be used although these

functions are in general much more difficult to analyse. The memory can be provided by the

LFSRs themselves as is done in [84]. Figure 2.20, adapted from [84], illustrates Massey and

Rueppel's running key generator where two LFSRs are clocked at different rates to construct

a combining function with memory that has a high linear complexity. In this example, the longer

LFSR is clocked at dtimes the rate of the shorter one.

page 34

Figure 2.20 Massey - Rueppel Generator

The addition of memory to the combining function introduces diffusion, and so goes some way

towards answering the criticisms of additive stream ciphers made on page 18.

Shift register sequences are not the only way to generate running keys. Figure 2.21 illustrates

how a block cipher, such as DES, may be used in output feedback
(OFB) mode to produce a

synchronous key stream. The first encryption uses an initialization vector (IV) as input to the

exclusive-or function.

IV

:

	 Block Cipher 	 delay

Figure 2.21 Output Feedback

page 35

Diffie and Hellman [47] demonstrate how the OFB cipher may be modified by using a counter

as shown in Figure 2.22. This scheme eases random access to files since individual symbols

can be deciphered by setting the counter to the appropriate value; with OFB the preceding

ciphertext block must be known beforehand.

Counter

z 	 Block Cipher

Figure 2.22 The Counter System

Becker and Piper [18] describe a similar system, replacing the counter with an LFSR.

2.4.2 Self Synchronous Stream Ciphers

The RKGs at the transmitter and receiver in the additive stream ciphers discussed above must

always run in perfect synchronism. This may not always be possible in a practical situation.

Self synchronous stream ciphers, on the other hand, derive each key symbol from a fixed

number of the preceding input symbols and so, by definition, must have a limited amount of

memory. Since these systems have limited memory, any errors in the input stream will produce

a fixed number of errors in the output, after which correct operation is resumed.

The idea of self synchronous stream ciphers can be traced back to the autokey ciphers

invented by Vigenere in the 16th Century. Vigenere's autokey ciphers were based on a

substitution as used in the Ceaser cipher, but instead of a fixed amount, each letter was shifted

by an amount determined by either the message or the ciphertext. Figure 2.23 illustrates the

scheme. In (a) the message symbols form the key whereas in (b) it is the ciphertext symbols

that are used. In both schemes the letter 'A' has been used as a seed.

page 36

CUCKOO 	 CUCKOO

ACUCKO
	 ACWYIW

CWWMYC 	 CWYIWK

A 	 A

	

(a) 	 (b)

Figure 2.23 Vigenère's Autokey Ciphers

The feedback loop of Figure 2.23 (b) makes each output symbol dependent on the entire

preceding message. Diffusing the message statistics over all the ciphertext makes

cryptanalysis of this scheme much harder than that of Figure 2.23 (a) where the diffusion is

only over message symbol pairs. Although the above procedure for generating the key stream

exposes the key in the ciphertext, this is easily overcome by using a non-linear function, such

as a block cipher, for this purpose. This is precisely what is done when DES is used in cipher

block chain (CBC) mode [6].

vi

L 	
Block Cipher 	 Block Cipher 	+

	

z 	 z

Figure 2.24 Cipher Block Chaining

Again, as with the OFB mode, CBC requires an initialization vector.

The cipher feedback (CFB) system shown in Figure 2.25 is similar to CBC in that it too

diffuses the message throughout the ciphertext and, as all stream ciphers do, makes data

tampering difficult for the cryptanalyst. Where the two approaches differ is in the data format:

CFB may be adapted to the user's data format, and is not restricted to the size of the block

cipher. The cost of this is the inefficiency in producing ciphertext that is not used.

page 37

Figure 2.25 Cipher Feedback

2.5 Public Key Systems

A major problem with conventional cryptosystems described previously is the difficulty in

distributing secret keys. In the classical system the encryption function and the decryption

function are inseparable, both the sender and receiver must have the same key. How then can

two users, who have never met before, agree in advance on a key that will be known to

themselves and to no one else? This problem, and several secret key solutions are discussed

by Diffie and Hellman in [47] section V-A, and by Ralph Merkle in [87].

Another limitation of conventional systems is the problem of digital signatures. Written

signatures are used to verify that documents came from, or were witnessed by, a particular

person. To be effective the signature has to be difficult to copy, so how can digital messages

which can be copied perfectly, bear a signature? The authenticity systems of section 2.2.4 can

prevent third party forgery but cannot settle disputes between sender and receiver.

These were the problems being addressed by Diffie and Hellman in 1976 [45] when they

revealed that practically-secure systems can be built that require no secure transfer of any

secret key whatsoever. Furthermore, by separating the encryption and decryption functions,

public key cryptography provides an elegant solution to the authenticity problem.

page 38

2.5.1 Elements of Modern Cryptography

The important contribution that Diffie and Hellman made was the proposal of the "trap door one

way function". One way functions were known at that time for their use in computer login

protocols and access control [151], and may be defined as a class of functions that are easy

to compute but difficult to invert. In a login protocol, the user's password is transformed by a

one way function and stored, together with his name, in a read only password file. Each time

the user logs in the password is transformed and checked against the contents of the file. Since

a one way transform has been used, knowledge of this file is of no help in retrieving original

passwords, and even a legitimate user will find it practically impossible to decipher his own

password.

Trap door one way functions were defined by Diffie and Hellman to be one way functions for

which a simply computed inverse does exist if certain "trap door information" is known. To be

more specific, a trap door function is defined as a family of invertible functions f(x) which may

be used to define algorithms E1(x) and D2(x) that allow easy computation of y = f(x) and

x = J'(,y). However, for virtually all zand all yin the range of f2(x), it is practically impossible,

without knowledge of z (the trap door information), to compute x = f,- '(Y), even if E(x) Is

known.

It is this ability to make E(x) known to the public that gave rise to the term public key

cryptography. With such a cryptosystem the encryption function and decryption function are

separated and key distribution problem may be solved by simply having a publicly available

directory of subscribers and their public keys. The digital signature problem is solved by a

subscriber encrypting his message with his private key, the message being verified by

decrypting it with the his public key. Figure 2.26 illustrates the public key cryptosystem and

may be compared to the classical system on page 5.

page 39

EAI)J Public Directory 1 < 	 11 EB

Key Generator 	 Key Generator

DA 	 DB

X 	
EB(x) 	 DB(y) 	

X

insecure channel

secure area 	 secure area

Figure 2.26 Public Key Cryptosystem

In Figure 2.26 authenticity is assumed to be guaranteed in all communications with the public

directory. Diffie and Hellman [45] defined five properties such a public key cryptosystem should

have:

The ciphertext space must be the same as the plaintext space

For all z E has an inverse D

For all z E and D are easy to compute for all messages and ciphertext

Without knowledge of z, it is infeasible to derive D from E

For all z it is feasible to compute inverse pairs E2 and D

2.5.2 Discrete Exponentials

In their 1976 paper, Diffie and Hellman conjectured the discrete exponential to be a good

candidate for a one way function and suggested how this might be used as the basis of public

key exchange protocol. This conjecture is based on the fact that if cx is a primitive element in

the Galois Field GF(q), and q is a large prime number, then the function

f(x) = aX modulo q 	 (EQ 2.19)

is easy to compute, taking at most 21092(q) multiplications using Knuth's square and multiply

procedure [75]. Calculating discrete logarithms on the other hand is not so straightforward

Pohlig and Hellman [107] have shown that when q is chosen so that q - 1 has a large prime

page 40

factor, then calculation of the discrete logarithm will take the order of ,.Jj multiplications

modulo q. Ideally q - 1 should be twice a prime number.

The operation of the Diffie - Hellman public key distribution scheme is illustrated here by the

introduction of Rivest Shamir and Adleman's hypothetical users Alice and Bob [120].

Alice and Bob choose random messages XA and XB respectively, and transform them using

(EQ 2.19) to obtain YA and a and q are assumed to be public knowledge. Alice and Bob

may now exchange YA and YB and calculate the common key KAB = aB modulo q as shown

below.

Alice calculates KAB = XA

Y B modulo q (EQ 2.20)

Bob calculates KAB = y modulo q (EQ 2.21)

Unless an intruder can calculate KAB from YA and YB without first obtaining either xA or XB, then

log J he has to compute KAB = YB 	modulo q. This technique forms the basis of CYLINK'S

Secure Electronic Exchange of Keys, or SEEK system [981.

In 1985 Taher El Gamal [48] showed how this scheme could be developed into a public key

cryptosystem for key distribution and digital signatures. El Gamal however, produced twice as

much ciphertext as the original message. More recently, Kevin McCurley [85] demonstrated

how, by using carefully chosen composite numbers for the key, security could be proved

mathematically. McCurley then showed how El Gamal's scheme could be modified so that a

cryptanalyst had to first factor the modulus before breaking the original cipher.

2.5.3 Knapsack Cryptosystems

Another noteworthy one way function is the knapsack function. This function is derived from

the notion of packing items into a knapsack with the intention of filling it completely with no

space left over, hence the name. Mathematically the problem may be stated as:

Given a set of n positive integers a 1 , a2, -'a, ,a,, and a positive integer s,

does there exist x1 , x2 , 	with x, € {O, 11 for i = 1, 2.....

such that s-x 1 a 1 +x2 a2 + ... +xa

page 41

This problem is well known in the field of complexity theory and belongs to a class of problems

known as NP - complete which, in the general case, are considered to be computationally

complex.

An n-bit message vector x = (x 1 , x2, . ,x,,) is encrypted by forming the dot product with the

cargo vector a = (a1 , a2 , . ,a). Although the general case of the knapsack problem is difficult

to solve there are particular cases, superincreasing knapsacks, that are easy to solve. A

superincreasing knapsack is one in which each integer in the series, is greater than the sum

of all those preceding it. In other words if in the above set of integers:

i-i
a> 	aj

j-1

then s<ax = 0. Indeed, if a = (1,2,4, ...,2' 1
) then the solution is trivial. Shortly after

Diffie and Hellman's 1976 publication Ralph Merkie began working with Hellman to use this fact

to build a trap door into the knapsack cipher.

The Merkle-Hellman knapsack cipher [88] begins with a superincreasing knapsack, then

multiplies each element in the cargo vector a' by a scalar constant w modulo m. The modulus

is chosen to be greater than the sum of all elements in the original cargo vector, and the scalar

w is chosen so that it has an inverse W 1 modulo m. The resulting vector, a = wa' mod mis then

transposed, the idea being that without knowledge of w, m and the transposition, the simple

knapsack problem has become a difficult knapsack.

Now if Alice and Bob wish to communicate, Alice can make a public, allowing Bob to encipher

his message x by calculating s = a x. Alice recovers the message by calculating:

S. = ws mod m

= w1 (Lajx1) mod m

= w1 (Lwa1'xj) mod m

= (a'x) mod m

And since m> Y. a'1 =* s'= Laj' x, in integer arithmetic as well as mod m. So, by using her secret

key information (W 1 , m, and the permutation), Alice can transform the difficult knapsack s to

a simple knapsack s' and then extract the message x.

page 42

Merkle and Hellman proposed improving security further by repeating the procedure to obtain

a from a' several of times, forming a more obscure public key with each iteration.

The trap door in the Merkie - Hellman knapsack cipher is the use of modulo multiplication to

disguise an easy problem, the superincreasing knapsack, as something difficult. In 1984 Adi

Shamir [129] broke this cipher, not by solving the problem, but by stripping off this disguise.

The following year Brickell [29] demonstrated how the iterated knapsack could be broken. The

events that led to the breaking of the knapsack cipher are described in the 1988 paper by

Brickell and Odlyzko [31].

2.5.4 The McEliece System

McEliece [86] based his encryption system on the error correcting codes known as Goppa

codes which belong to the same class of error correcting codes as the Reed - Solomon codes

and can be decoded by the same well known and efficient methods. McEliece applied a similar

technique to these codes as Merkle and Hellman applied to the superincreasing knapsack, that

is, he disguised the Goppa code as a more general linear code for which decoding without the

key, like the general knapsack problem, is considered to be NP complete [44].

The error correcting scheme multiplies the message vector x by a matrix G to produce a code-

word vector y for transmission. The received vector y' may contain errors that are removed

with knowledge of G to recover the original message x. McEliece modified this scheme by

disguising the matrix G by pre and post multiplying it by two other matrices to form the public

key G' where

G'=SGP
	

(EQ 2.22)

Using G' instead of C generates a linear code with the same rate and minimum distance as

the original Goppa code. To encrypt the message vector x, it is multiplied on to the public matrix

G' and the result added to a locally generated error vector e

y = xG' + e 	 (EQ 2.23)

To decode the ciphertext, it is first multiplied by P to obtain a Goppa code word that can be

decoded with knowledge of G. The result is multiplied by S 1 to recover x.

page 43

The McEliece system has never achieved wide acceptance. Several reasons have been

suggested for this: the data expansion may be undesirable, or the need for large public keys

(of the order of 106 bits). The similarity to knapsack ciphers may also be a reason, although

Adams and Meijer [10] have recently demonstrated that a knapsack like attack is extremely

unlikely to succeed. Adams and Meijer also show that with well chosen parameters

cryptanalysis of the McEliece system is significantly more difficult than cryptanalysis of DES

and compares favourably with RSA.

Perhaps the biggest weakness of McEliece's system, as far as public key encryption is

concerned is its unsuitability for authentication. The nature of the error correcting code

precludes a one to one mapping between ciphertext and plaintext. For authenticity, the

plaintext message must be signed with a private key in such a way that application of the

encryption transformation using the public key will only produce a meaningful message if the

correct key is used. For the McEliece system this is impossible.

2.5.5 Other Public Key Schemes

In addition to the three methods discussed in this section and the RSA cryptosystem described

in section 2.6, a number of other public key cryptosystems have been proposed.

In 1978 Rabin [112] produced a variant of RSA for which he could prove that cryptanalysis was

equivalent to factoring the modulus. This scheme was slightly more complicated than RSA but

was simplified in 1979 by Williams [152]. However, as pointed out by Rivest and cited in

Williams' paper, both these schemes are vulnerable to a chosen plaintext attack which in a

public key environment is a distinct possibility.

A fast signature scheme based on polynomial congruential equations was proposed by Ong,

Schnorr and Shamir [102] in 1984, the ass scheme, but was broken in 1987 by Pollard and

Schnorr [108]. Goldwasser Micali and Rivest [61] proposed a method which they proved to be

secure against a chosen plaintext attack and which was subsequently modified by Goldreich

[60] in 1986.

Another signature scheme has been suggested by Fiat and Shamir [54] and subsequently

modified [51] [90] to be provably secure against chosen plaintext attacks. However this

page 44

scheme results in data expansion which although improvements have been made [100]

remains slower than the original scheme. More recently, in 1990, a signature scheme has been

proposed by Okamoto [101] which although not provably secure, claims to be up to twenty

times faster than RSA.

page 45

2.6 RSA

By far the best known public key encryption scheme is due to Rivest Shamir and Adleman,

RSA [120]. This scheme, like the Diffie Pohlig Hellman scheme of section 2.5.2, employs

discrete exponentiation, however, the security of the RSA scheme lies in the fact that finding

large prime numbers is computationally easy whereas factoring a product of two primes

appears to be computationally infeasible.

2.6.1 The RSA Cryptosystem

In the RSA cryptosystem both the plaintext space and the ciphertext space are the ring of

integers Zm, where m is a modulus formed by the product of two large random prime numbers

p and q.

The encrypting transformation is controlled by a public key comprising a pair of numbers e and

m, where m is the modulus and e is an element of Zm The transformation is defined as

y = E(x) = e modulo m 	 (EQ 2.24)

The decrypting transformation is similarly defined by the same modulus, and a private key d.

x = D(y) = d modulo m 	 (EQ 2.25)

The private key d is chosen to be the multiplicative inverse of e in the ring of integers Zc(m)

where c(m) is Euler's totient function, explained in section A.4. The extended Euclidean

algorithm described in section A.1 may be used to calculate dgiven e and D(m). Examination

of this algorithm will show that inverses may be computed in polynomial time.

Both these transformations are easily computed provided the keys are known. To recover the

plaintext from the ciphertext without knowledge of the private key requires either calculating

discrete logarithms or alternatively, obtaining d from knowledge of e and m, this however is

known to be at least as difficult as factoring the modulus.

page 46

2.6.2 The Underlying Mathematics

To demonstrate that the RSA cryptosystem decrypts correctly it is necessary to show that

X = D(E(x)) 	 (EQ 2.26)

=

= (Xe) d modulo m

= (Xe)d modulom

=el modulom

So to prove correct decryption it is necessary to prove that:

	

e. d = X modulo m 	 (EQ 2.27)

Case 1: x and m relatively prime:

Since e and dare chosen such that

e d = 1 modulo 4(m), 	 (EQ 2.28)

e d = Q(m) + 1

= Qqm)+l

(EQ 2.29)
Now, Euler's theorem (see appendix A.4) states that if x and m are relatively prime then

	

Xm) = 1 modulo m, 	 (EQ 2.30)
thus

= 1Q i

and (EQ 2.29) simplifies to

= x modulo m 	 (EQ 2.31)

Thus for xand m relatively prime the RSA cryptosystem decrypts correctly, and since there are

only p + q - 1 integers in Zm divisible by p or q this covers virtually all cases when p and q are

large.

then

so

page 47

Case 2: x and m not relatively prime:

If x = 0 then the claim that Xe,d = x modulo m is trivial, so assuming x*O and that p

divides x (either p or q can divide x but not both) then we have:

• d = x 	 modulo p 	(EQ 2.32)

and

= 	 modulo q

= 	 moduloq

= .Q(P-l)(-l) 	 moduloq

	

• d = x (x'1
-1 modulo q)

Q(p-1) modulo q 	(EQ 2.33)

but Fermat's theorem (section A.5 on page 129) states that if q is prime then

= 1 modulo q, 	 (EQ 2.34)

so (EQ 2.33) simplifies to

• d = x modulo q 	 (EQ 2.35)

Now, since m = pq, x € Zm and e d € Zm it is straightforward to deduce from (EQ 2.32) and

(EQ 2.35) that:

= modulom 	 (EQ 2.36)

Equations (EQ 2.31) and (EQ 2.36) show that RSA decrypts correctly in all cases.

Furthermore, because

D(E(x)) = E(D(x)) = e d 	 (EQ 2.37)

the encryption and decryption functions are mutual inverses, and a decryption followed by an

encryption has the same effect as an encryption followed by a decryption. Thus RSA may be

used for authenticity as well as secrecy.

page 48

2.6.3 Operation of RSA Cryptosystem

The operation of the RSA public key cryptosystem is illustrated here referring again to Rivest

Shamir and Adleman's hypothetical users Alice and Bob [120].

Alice chooses two large random primes p and q, and from them calculates m and
CJ?(m). These primes may be chosen by probabilistic methods which are faster
than searching for true primes.

To ensure her private key has an inverse, Alice selects d such that
gcd (d, (b(m)) = 1, and then computes e, the inverse of din Z(m).

Alice publishes e and m, but keeps d, p, and q secret.

Bob may now send messages to Alice using Alice's public key, which only Alice

can decipher with her private key.

This provides secrecy but offers no authenticity whatsoever. Anyone with access to Alice's

public key can send messages to her claiming to be Bob and Alice has no means of verifying

the authenticity of the message. To provide authenticity,

Bob transforms the message he wishes to send using his own private key and
sends this result to Alice.

Since D(x) and E(x) are mutual inverses (EQ 2.37), Alice is able to recover the

message using Bob's public key.

This time we have authenticity without secrecy, anyone with access to Bob's public key may

decipher his message. One use of authenticity without secrecy is suggested in section 2.2.4

on page 18.

These two examples have shown how secrecy and authenticity are completely independent

attributes of the RSA cryptosystem. To combine both attributes, the message must be

transformed twice:

Bob first transforms his message using his private key D8(x) and then transforms

the result using Alice's public key and sends EA(DB(x)).

Now secrecy is ensured, since only Alice is able to invert the second transform.

Having done this, Alice can now use Bob's public key to recover the message and
verify its authenticity.

If, in the latter example, Bob's key used a modulus that was smaller than the modulus used by

Alice, the message would have to be re-blocked between transformations. Rivest Shamir and

Adleman recognised this and suggested a threshold scheme to avoid re-blocking. The idea is

page 49

to choose a threshold value, h, for the cryptosystem. Each user then maintains two sets of

keys, one set with modulus less than h, for authenticity, and a second set, with modulus greater

than h, for secrecy. Alternative solutions have been suggested by Konf elder [78], and Davies

and Price [38] [39].

2.6.4 Security of RSA

The security of the RSA cryptosystem relies on the difficulty of factoring the modulus m to

obtain 4(m) and thus the private key d. In order to defeat known factoring alorithms, the

primes p and q that form the modulus must be chosen very carefully. Rivest Shamir and

Adleman suggest the following restrictions on the choice of primes:

The primes p and q should differ in length by only a few digits.

Both p - 1 and q - 1 should have large prime factors.

The greatest common divisor of p - 1 and q - 1 should be small.

Rivest Shamir and Adleman also suggested restricting the private key d to the range

max(p, q) < d < m and restricting e such that e> 1092 (m).

Simmons and Norris [1411 showed how the RSA cipher could be broken when subject to an

iteration attack. They demonstrated that for certain keys, repeated application of the

enciphering transformation would eventually yield the original message. In response to this,

Rivest [115] showed that if p and q were chosen such that p - 1 and q - 1 both had a large prime

factors r and s, and that r - 1 and s - 1 also had large prime factors, then the probability of

success in an iteration attack was so small as to be inconsequential.

In another attack on RSA, Blakley and Borosh [25] demonstrated that for certain keys, there

are at least nine messages not concealed by RSA. That is to say, for certain keys Xe = x

modulo m. Blakley and Borosh suggest that to avoid this feature, p and q should be safe

primes, where p = 2r + 1, and q = 2s + 1 and rand s are odd primes. Pohlig and Hellman [107]

also suggest the use of safe primes in their scheme.

Although care has to be taken in the selection of primes for RSA, both Williams and Schmid

[153], and Gordon [62] [63] have shown that finding appropriate values for p and q is not

difficult.

page 50

So, assuming the primes have been chosen correctly, the cryptanalyst is faced with the

problem of either factoring the modulus, or calculating discrete logarithms. Algorithms for both

these problems are described by Lenstra and Lenstra [80], and Pomerance [109].

More recently, attention has been focused on the announcements in the press in June, 1990

by Lenstra and Manasse, that they had succeeded in factoring the ninth Fermat number, F9,

and the implications this has for the security of RSA. In an article posted on the Internet bulletin

board, Ronald L. Rivest presented an analysis of this, pointing out that the number field sieve

or NFS algorithm used by Lenstra and Manasse is specifically designed to factor numbers that,

like F9, have a very simple structure of the form a" + c where c is a relatively small, F9 = 2512

+ 1. Numbers with such a special structure are extremely rare and unlikely to arise in practical

cryptography. Rivest, however, identified three important points raised by this achievement:

The status of factoring is still subject to further developments, and conservative
choice of key length should be made.

The NFS algorithm may yet be developed to cope with more general numbers,

and the potential impact of this should be considered.

Despite best efforts, factoring remains a very hard problem, the best algorithm

[80] taking Q(J(1osn)1010n) time.

If the NFS algorithm were extended to cope with more general numbers, Rivest estimated that

the time required to factor a 512 bit number would be of the order of 2 x 107 MIP-year, (where

one MIP-year is the work done by a one MIP computer running for one year), which is clearly

a substantial degree of security.

page 51

Chapter 3 Implementing Public Key Cryptosystems

Chapter 2 presented a broad view of contemporary cryptographic techniques. This chapter

concentrates on public key cryptography and looks at the work that has been done to

implement these systems both in hardware and in software. Since public key techniques tend

to involve more computationally intensive algorithms than their secret key counterparts, they

present a technical challenge to achieve comparable data throughput. As will be evident in

conclusion to the following section, it is the poor performance of public key systems in this area

that has impeded their use in practical applications and motivated research to design more

efficient software or hardware solutions. As the results of such research have been emerging,

confidence in public key systems has been growing to the extent where they are now being

considered by such bodies as the ISO [110] and CCITT [9]

The public key algorithm most frequently referred to in the literature is RSA. The popularity of

this algorithm is probably due to its versatility, and in particular its suitability for digital

signatures. Other well known algorithms such as exponential key exchange, discussed in

section 2.5.2, and zero knowledge proofs [54], like RSA, rely on modular exponentiation and

it is this problem that the majority of research publications have addressed.

3.1 Software

The' prevalent opinion at the time the RSA cipher was published was that it could not be

implemented effectively in software, in 1980 Ronald Rivest even suggested that "a typical

microprocessor based implementation might achieve an encryption rate of ten bits per second"

[117]. This attitude did not, however, discourage the development of RSA software. Many

situations exist, such as key management, where high encryption rates are not crucial to

overall system performance.

3.1.1 Initial Work

Within a year of Rivest Shamir and Adleman's publication Michelman [91] announced a

general purpose computer based implementation of the algorithm, and in 1985 the National

Physical Laboratory published a PASCAL version [12] that would run on a BBC

page 52

microcomputer. Performance figures for RSA encryption, in software, with a 512 bit modulus

were presented at the 1986 cryptology conference, CRYPTO '86, by Gordon Rankine [113].

He suggested typical encryption times of 4 minutes using a Motorola 6809, 70 seconds on an

Intel 8086, and 30 seconds on a Motorola 68000. At the same conference Paul Barrett [16]

presented the work he had done to execute the RSA algorithm on the new digital signal

processing chip from Texas Instruments, the TMS3201 0. Making use of the special hardware

on this chip and a long multiplication algorithm that reduced propagation of carries, Barrett

achieved typical encryption times of 2.5 seconds for 512 bit RSA.

The following year Jung [70] described techniques to minimize both the space and time

requirements for the RSA algorithm when implemented on a general purpose computer. Jung

proposed a common encryption exponent to be shared by every user, thus defining the

modulus as the public key. The common encryption exponent suggested by Jung was the fifth

Fermat prime 216 +1 = 65537. In doing this, the storage requirement for public keys is

immediately halved and, by choosing a relatively short exponent, the encryption time is

drastically reduced. The decryption time however, will depend on the size of the decryption

exponent and hence the value of the modulus chosen by the user. Storage requirements are

reduced further by restricting moduli to be "close" to a power of two as is the case with the OSS

scheme [102]. To speed up decryption Jung performed the decryption calculations using the

shorter moduli p and q and used the Chinese Remainder Theorem, as suggested by

Quisquater and Couvreur [111], to obtain the result modulo m = pq.

Applying these techniques Jung implemented the RSA cryptosystem on three general purpose

computers. On a 0.8 MIPS Siemens mainframe Jung could generate a 512 bit signature in 1.5

seconds, and check the authenticity of a signature in 0.3 seconds. On a z80 based hand-held

computer, the same tasks took 45 seconds and 3 seconds respectively for a 256 bit modulus.

An 80186 based PC, programmed in 'C' and assembler could sign a 256 bit message in 1.5

seconds, and verify it in 0.2 seconds.

In 1989 Beth and Gollmann [22] reviewed several algorithms for public key cryptography.

Although these algorithms were originally intended for dedicated hardware, many of the ideas

can be directly applied to software solutions. In their paper, Beth and Gollmann suggest that

page 53

computers based on the 68000 family of processors should be capable of encrypting a 512 bit

modulus block in less than one second.

3.1.2 Bong and Ruland

Dieter Bong and Christoph Ruland [26] published their work on optimized software techniques

for modular exponentiation in 1989. Like Jung, they too advocate the use of a small fixed

modulus for encryption and the Chinese Remainder Theorem for decryption. Bong and Ruland

present several algorithms for modular arithmetic and show that a careful choice of algorithm

has to be made to suit both the key length and the characteristics of the processor to be used.

They tested their algorithms on two general purpose microprocessors, and a dedicated

encryption chip, the latter is discussed in section 3.2.4. For the 68000 microprocessor running

at eight MHz, encryption times of 110 ms. were achieved for 512 bit modular exponentiation,

with decryption times of 6.2 seconds. The second processor, an eight MHz 80286, achieved

encryption times of 63 ms. and decryption times of 3.7 seconds under the same conditions.

3.1.3 Laurichesse

in 1990 Denis Laurichesse [79] modified the standard "square and multiply" routine [75] for

exponentiation to a more general "raise to the power and multiply" algorithm not restricted to

arithmetic in base 2. Laurichesse found the optimal base for this algorithm to be 16, for which

a 14% reduction was achieved in the number of operations involved in 256 bit exponentiation.

Using this algorithm together with the Chinese Remainder Theorem and Montgomery's

"N residue" arithmetic [94], which eliminates division in modular calculations, Laurichesse

developed a multiple precision arithmetic algorithm for RSA encryption suitable for software

implementation.

The algorithm was coded in 'C' and assembler for several general purpose microprocessors

and for the 1800 transputer. The decryption rates for 512 bit RSA are shown in Figure 3.1,

where the performance benefits of 32 bit processors can be clearly seen.

Laurichesse proposed a hardware design making use of an AMD 29C323 for multiplication

which is claimed to achieve decryption rates of 50 Kbits/s. The author also suggests that rates

of 300 Kbits/s could be achieved using techniques developed by Shand et al. [130].

page 54

Host Processor Freq.(MHz) word length (bits) rate(bits/s) time(s)

PC AT 80286 8 16 205 2.50

PC AT 80386 16 32 900 0.57

PCAT 80386 20 32 1100 0.47

SUN 3/60 68020 20 32 1150 0.45

BULL DPX 2000 68030 25 32 1500 0.34

PC AT T800 20 32 1670 0.31

Figure 3.1 Decryption Rates Achieved by Laurichesse

3.1.4 Shand

Also in 1990, Mark Shand at DEC's Paris Research Laboratory completed his work on

hardware/software trade-off involved in long integer arithmetic [130]. This work was based on

the DEC BigNum [128] software package for high performance long integer arithmetic, which

Shand and his colleagues modified to optimise the inner loops of the algorithms. Again the

Chinese Remainder Theorem was used to speed up decryption, and Montgomery's technique

was applied to eliminate division from the modular arithmetic calculations. Shand et al. report

decryption times for 512 bit RSA of 3.53 seconds using the standard BigNum package on a

68020 based machine, without using the Chinese Remainder Theorem. Applying the Chinese

Remainder Theorem under the same circumstances resulted in a decryption time of 0.51

seconds which clearly illustrates the advantage of this technique. Running this modified

software on a MIPS R2000 machine resulted in decryption times of 49.7 ms. for 512 bit RSA,

or a decryption rate of 10300 bits per second.

Further increases in throughput were achieved by using hardware accelerators, as discussed

in section 3.2.

page 55

3.1.5 Summary

Figure 3.2 summarizes the software performance in implementing the RSA cryptosystem. The

times given in the Encrypt and Decrypt columns are for encryption and decryption with a 512

bit modulus unless otherwise stated, and the times for decryption, unless otherwise stated, are

all achieved by taking advantage of the Chinese Remainder Theorem.

Year Processor Encrypt Decrypt Comments

Rankine 1986 6809 4mm.

8086 70 sec.

68000 30 sec.

Barrett 1986 TMS32010 2.5 sec.

Jung 1987 z80 45 sec. 256 bits, short 'e' key

80186 1.5 sec. 256 bits, short 'e' key

mainframe 1.5 sec. 512 bits. short 'e' key

Bong & 1989 68000 110 ms. 6.2 sec. short 'e' key

Ruland 80286 63ms. 3.7 sec.

Laurichesse 1990 80286 2.50 sec.

80383 0.47 sec.

68020 0.45 sec.

68030 0.34 sec.

1800 0.31 sec.

Shand 1990 68020 3.53 sec. without CRT

68020 0.51 sec. with CRT

R2000 50 ms. with CRT

Figure 3.2 Summary of RSA Software Performance

To use the Chinese Remainder Theorem, the factors pand qof the modulus m must be known,

thus this technique can only be applied with knowledge of the private key. Transformations

involving public keys can not use this short-cut.

page 56

So given this restriction,. public key transformations in software will take the order of seconds

for a 512 bit block, giving encryption rates of around 500 bits/s at best. This does not compare

favourably with secret key cryptosystems, the DES cipher has recently been reported [143] as

achieving encryption rates ranging from 20 Kbits/s on a PC to 100 Kbits/s on a VAX 780.

To compete, in terms of data throughput, with conventional cryptosystems either new

algorithms for computing the modular exponential will have to be developed, or the RSA

system will have to implemented efficiently in hardware. From a security point of view the

hardware solution is obviously most attractive, ideally implementing the whole encryption unit

in VLSI inside a tamper proof package.

3.2 Hardware

With such comparatively low encryption rates, it is hardly surprising that much research over

the past decade has concentrated on improving the performance of public key algorithms by

designing dedicated hardware systems.

3.2.1 Initial Work

Rivest Shamir and Adleman's paper was published in 1978. The following year the U.S. Sandia

National Laboratories announced a board level implementation of the RSA system [44]

capable of between 100 and 400 bits/s, followed by chip designs by Reiden et al. [114] and by

Brickell [28]. Reiden used two identical chips to execute the square and multiply exponentiation

algorithm [75], one chip for squaring, the other for multiplying. Each chip was a dedicated 336

bit modular multiplier designed in 3p. CMOS technology that adopted Blakley's [24] approach

of reducing the partial products as they were formed to restrict word growth. Reiden et al.

expected 20 MHz. operation, and encryption times of 0.78 seconds for 336 bit blocks, or 420

bits/s. In the second Sandia design, Norris and Simmons [99] examined the modular

multiplication algorithm and realised that eliminating carry propagation during the formation of

partial products could reduce the time required to form a product from 0(n) to 0(n) for n-bit

data. They modified the well known carry save adder, used to eliminate carry propagation in

ordinary multiplication, to deal with what they called "delayed carry" integers. Brickell adopted

page 57

this technique and in 1982, proposed a design that used four delayed carry multiplier chips

running at 20MHz. This design was expected to achieve encryption rates of up to 20 Kbits/s

for 512 bit modular exponentiation.

According to Diffie [44], Ronald Rivest also produced a board at approximately the same time

as the Sandia designers, capable of encryption with a 100 bit modulus in one twentieth of a

second. This was intended as proof of concept. Rivest Shamir, and Adleman then proceeded

to design an NMOS chip [117] with a 512 bit ALU intended to be used as a general purpose

big number processor. Running at 4 MHz. this chip was expected to achieve a throughput in

excess of 1.2 Kbits/s. The chip was fabricated but due to a design error was too unreliable to

complete a full encryption [118].

The Japanese company NIT had also been working on the design of an RSA chip, and in 1982

Miyaguchi [92] published the design of cascadable chip for calculating the modular

exponential. The algorithm Miyaguchi used performed multiplication and division by the

modulus in one operation and, as Brickell had done, used an approximation method to

compute the residues. This design was claimed to be capable of 50 Kbits/s for 512 bit

encryption.

In the following year, Simmons and Tavares [142] from Queen's University in Canada

announced the design of modular multiplication chip designed in 6p. NMOS technology. Their

chip computed the product first, and then performed modular reduction by subtracting the

modulus from the result until the sign bit changed. Three intermediate designs had been

completed by the time their paper was published, one of which had returned from fabrication.

Although no performance figures were available, Simmons and Tavares hoped to obtain

encryption times of 200j.is. for 128 bit data. In subsequent work [103] [104] published in 1986,

this group adopted Blakley's method [24] of reducing the partial products as they are formed.

Reduction was again performed by monitoring the sign and magnitude of intermediate results

and subtracting the modulus accordingly. By performing several additions in parallel, and using

an asynchronous clocking scheme with self-timed adders to detect carry propagation, the

group hoped to achieve encryption rates of up to 40 Kbits/s. for 512 bit encryption. At the

CRYPTO '86 conference Orton et al. [105] reported the design of a 32 bit synchronous chip

page 58

fabricated in 3p. CMOS technology that ran at 200 KHz. with a throughput of 4 Kbitsls. A 22 bit

version of the asynchronous chip was also reported to have been fabricated in 34 CMOS, and

test results from this design were extrapolated to estimate performance of 40 Kbits/s for 512

bit encryption for a 2p. CMOS chip running at 30 MHz.

In 1985 Martin Kochanski of Business Simulations Ltd., in England, announced the availability

of a chip set based on a 32 bit bit-sliced processor, capable of performing 512 bit RSA at typical

rates of around 5 Kbits/s at 5 MHz. [76] [77]. The chip was essentially a modular multiplier

implemented on a 2.3 p. CMOS gate array and was cascadable, without additional circuity to

1023 bits. Although the design details were not published, it was a bit serial design similar to

Brickell's performing n bit modular multiplication in n cycles plus some overhead. Kochanski

claimed his design was less complex than Brickell's, requiring less circuitry to implement, and

being less sensitive to details of implementation.

Another RSA system announced in 1985 was the security processor C.R.l.P.T. [106],

designed by Jean Claude Pailles and Marc Girault from the French PIT research centre. The

system was designed as a removable unit for use on more than one host and was implemented

on two separate chips, a microcontroller, and an RSA chip that performed the basic modular

multiplication. The RSA chip design is reported in more detail by Gallay and Depret [58]. This

was 2p. CMOS design resulting in a 10.5mm x 8.4mm chip capable of performing 512 bit

modular exponentiation in 320ms which corresponds to 1.6 Kbits/s. The architecture was

based on a 256 bit machine coping with 512 and 1024 bit data in two and four clock cycles

respectively. Modular multiplication was carried out MSB first according to Blakley's algorithm

and reduction of the partial products done by examining the overflow resulting from the addition

of the multiplicand to the running total. If overflow was detected, the modulus was subtracted

from the running total. To reduce carry propagation times, the 256 bit adders were constructed

from 16 x 16-bit adders that saved the carries allowing them to be dealt with on the next clock

cycle.

In 1986 British Telecom and RAANND Systems announced the design of a single chip RSA

processor capable of 512 bit exponentiation in 750 ms., or 680 bits/s. [113]. As was the case

with Kochanski's design, the details were not published, although a general description was

page 59

given. The chip was a standard cell design measuring 16 mm per side, based on a 64 bit ALU

architecture running at 20MHz. According to Rankine [113], there was a cubic relation for

encryption times, which would suggest that carries were being allowed to propagate through

the adders.

Another chip announced in 1986 was the CY1 024 from CYLINK [1]. This was a 28 pin CMOS

device that performed modular arithmetic on data up to 1028 bits, cascadable to 16384 bits, or

16 chips. The chip ran at clock rates up to 20MHz. and could perform 512 bit modular

exponentiation in 80 ms. giving a throughput of 6.4 Kbits/s. Again, no details of this design

were published.

3.2.2 Sedlak

A novel approach to modular multiplication was proposed by Holgar Sedlak in 1987 [126].

Sedlak suggested partitioning the multiplicand into runs of l's and 0's and using look ahead

algorithms to decrease the number of operations involved in the multiplication and the

reduction of the partial products. A look ahead technique is also applied to the two addition

operations required in Sedlak's design. By using 20 bit carry look ahead adders, Sedlak

expects to be able to achieve 30 MHz. operation and a throughput of 200 Kbits/s for

exponentiation with a 780 bit modulus. With the fourth Fermat number as the encryption key,

rates of up to 3 Mbits/s are theoretically possible. These figures however, assume two 440 bit

processors operating in parallel making use of the Chinese Remainder Theorem. From

Sedlak's data, the encryption rate for a single 440 bit machine would be around 100 Kbits/s,

extrapolating this to a 512 bit machine would imply an encryption rate of 94 Kbits/s.

3.2.3 Kawamura and Hirano

The popularity of digital signal processing (DSP) applications which employ residue arithmetic

has motivated the development of table look up implementations of these algorithms [144]

[146]. Cryptology algorithms however, tend to use much larger moduli than their DSP

counterparts, and regularly require the modulus to be changed, thus making look up tables

unattractive.

page 60

Realising that complete look up tables for modular arithmetic are not practical when applied to

cryptology systems, Kawamura and Hirano [74] from Toshiba Corporation, suggested a

method for the construction of a reduced look up table for modular reduction. In the modular

multiplication scheme suggested in 1988 by Kawamura and Hirano, the full product is formed

first. The result is then split into blocks b bits long, and the residues corresponding to the most

significant block stored in a look up table. Reduction is performed by an iterative process where

the most significant block is replaced by its residue until the result is less than the modulus.

Kawamura and Hirano conclude by discussing the trade off then between block size and the

number of iterations needed to complete reduction.

3.2.4 Ciyptech

At the 1988 conference Eurocrypt '88, Frank Hoornaert et. al. from Cryptech and the University

of Leuven presented the design of an RSA chip capable of 512 bit encryption at an impressive

17 Kbits/s. [68]. Modular multiplication is carried out by the usual method of reducing the partial

products as they are formed. The reduction procedure is based on the idea of calculating the

quotient by division, multiplying this by the modulus, and subtracting the result from the original

number to obtain the modulus. Thus if R is the number to be reduced, then q 4- LR/nJ, and

R4—R—qn. However, instead of performing a division, a sub-estimation of the quotient is

carried out based on only a few bits of the number and the residue. Furthermore, by restricting

the number of possible quotients, the multiplication qn may be implemented by a look up

table. The estimate of q has to be accurate enough to avoid divergence.

This algorithm, illustrated in Figure 3.3, requires two additions per iteration, one for the multiply

and one for the reduction. These are implemented Out using carry save adders to prevent the

addition being delayed by the length of the numbers.

Hoornaert et. al. reported on an ASIC design of a 120 bit datapath chip in 1.5g CMOS. The

chip could run at 14 MHz. and was cascadable to cope with larger moduli. A board designed

with six of these chips and capable of handling moduli up to 712 bits was reported to have

achieved a throughput of 17 Kbits/s. for 512 bit RSA. Rates of 512 Kbits/s. were achieved by

using short exponents such as F4.

page 61

Cryptech subsequently announced several commercially available boards for personal

computers capable of encryption rates of at least 12.6 Kbits/s. for 512 bit RSA [3]. Bong and

Ruland [26] used one of these boards to achieve encryption times of 49 ms. or 10.5 Kbits/s.

product
table

Adder 	 Shift(x2)

AL

multiplicand A 	eliminate
overflow

Adder 	 register R

Figure 3.3 Cryptech's Multiplication Algorithm

3.2.5 Lu

Also in 1988, Lu Erl-Huei et al. [49] published the design of VLSI modular multiplier in 1988

that performed n-bit multiplication in n steps. This design reduced intermediate products by

subtracting both the modulus, N, and 2N, from the intermediate result and using the overflow

bits from these operations to determine which result should be selected. By performing these

operations concurrently the algorithm could execute in n steps. The design of a four bit

cascadable multiplier was presented that used carry look-ahead to speed up the additions.

This design was estimated to run at 6 MHz. and consume a chip area of approximately 6mm

x 6mm if implemented in 2.5.t CMOS.

3.2.6 British Telecom

The following year, Peter Ivey et. al. [69] from British Telecom published the design of a single

chip RSA device implemented in 2g CMOS which used a self timed methodology to speed up

multiplication. The standard square and multiply algorithm was used for exponentiation and

page 62

13

modular reduction during multiplication was performed by comparing the intermediate result

with the modulus and subtracting the modulus accordingly. The 256 bit data path used carry

propagate adders with carry completion circuits placed at every fourth bit slice. The method of

addition used allowed addition times of the order nlogn for n bits, resulting in a performance of

5 Kbits/s for 256 bit RSA encryption. Later versions of the chip are expected to achieve 15 to

20 Kbits/s performance.

3.2.7 Hatfield

A novel approach to modular reduction was presented at the Crypto '89 conference by Paul

Findlay and Brian Johnson [55] from Hatfield Polytechnic. Multiplication and modular reduction

were treated as two separate tasks in this design with the output of the multiplier feeding the

input of the reduction unit. Findlay and Johnson realized that the double precision multiplier

output can be represented by the sum of residues of powers of 2 which can be easily stored in

a look up table. For n-bit multiplication, a table of 2n residues, each n-bits wide would be

required. Since such a table would not be practical for implementation in silicon Findlay and

Johnson suggested a simple algorithm that can be used to calculate the residues. A bit-serial

unit to carry out the reduction calculation was described which when used with a bit-serial

multiplier combined to form a modular multiplication unit requiring 2n cycles to perform an n-bit

modular multiplication.The advantage of this approach is that no bit testing or conditional

branching is required and the hardware may be designed to have no broadcast bits, thus

allowing faster clock rates.

3.2.8 Morita

Also at the Crypto '89 conference, Hikaru Morita from NTT presented the design of a higher

radix modular multiplication algorithm [96]. Morita's algorithm is capable of performing n bit

modular multiplication in n/109 2(,) clock cycles when the radix r is greater than or equal to four.

The basic multiplication operation in this algorithm reduces partial products as they are formed

by an estimation technique. Using the latest CMOS technology Morita expects to be able to

design a 512 bit modular multiplier chip capable of performing RSA encryption at 80 Kbits/s

with a 30 MHz. clock.

page 63

3.2.9 Shand

Mark Shand's work in 1990 [130] at DEC PRL on software implementations of RSA was

discussed in section 3.1.4. To achieve higher rates Shand investigated the use of hardware

accelerator boards, DEC's Programmable Active Memory or PAM arrays [20]. These

accelerator boards are based on a 5 x 5 array of Xilinx 3020 programmable gate array chips

with 512 K of RAM and a VME interface and allowed several different multiplier architectures

to be tested.

With a single hardware accelerator unit rates of 1.8 Kbits/s were reported for 512 bit RSA

encryption. Employing the Chinese Remainder Theorem and fine tuning the assembly code

.gave rates of 3.9 Kbits/s for a single unit. By adopting a modular multiplication technique that

avoided comparisons with the modulus and using three hardware multiplier units encryption

rates were increased further. Two of the multiplier units used Montgomery's recoding

technique and worked modulo p and q, the factors of the RSA modulus. The third multiplier

employed Booth recoding to combine the results from the first two to retrieve the desired

product. With this arrangement the team at DEC PRL achieved the outstanding encryption rate

of 200 Kbits/s for 512 bit RSA.

3.2.10 Recent Developments

cetin K. Koç and Ching Yu Hung [32] have recently completed work on the design of systolic

arrays for modular multiplication. This design performs modular multiplication by using Carry

Save Adders and estimating the sign of the partial products to flag subtraction of the modulus.

The proposed design takes 3n clock cycles to perform n bit modular multiplication but the

systolic nature allows multiplications to pipelined thus producing a new result every clock cycle.

3.2.11 Summary

Figure 3.4 summarizes the hardware performance of RSA cryptosystems and may be

compared with Figure 3.2 on page 56. The omissions from this table are due to encryption

rates not being published in the original material.

page 64

Year Technology Rate (bitsis) Comments

Sandia 1979 Discrete 100 - 400
1982 NMOS 420 336 bit modulus
1982 20 K Estimated performance

Rivest 1979 Discrete 2K 100 bit modulus,
"proof of concept"

1980 NMOS 1.2 K Failed to Function

NTT 1982 50K Estimated performance

Queens 1983 6 p. NMOS 640 K Estimated performance for
University 128 bit modulus

1986 2 p. CMOS 40 K Estimated performance
1986 3 p. CMOS 4 K Actual performance for

32 bit modulus

Kochanski 1985 2.3 p. CMOS 5 K Gate array design
Commercially available

C.R.I.P.T 1985 2p.CMOS 1.6K

RAANND 1986 680 Standard Cell ASIC

Cylink 1986 1.5 p. CMOS 6.4 K Commercially available

Sedlak 1987 94 K Estimated performance

Cryptech 1988 1.5p.CMOS 12K- 17K ASIC design,
Commercially available

British 1989 2 p. CMOS 5 K 256 bit modulus
Telecom design for key management

Morita 1989 80 K Radix 4 multiplier

DEC PRL 1990 PAM 1.8 K One accelerator board
200 K Three accelerator boards and CRT

Figure 3.4 Summary of RSA Hardware Performance

Brief reviews of RSA hardware have been presented at the cryptology conferences

EUROCRYPT '84 and CRYPTO '89 by Ronald Rivest [119] and Ernest BrickeD [30].

page 65

3.3 	Discussion

Since the conception of public key cryptography, the implementation of practical systems with

data throughput comparable with secret key systems has proved both a technological and

commercial challenge. Much research has been carried out into the design of algorithms and

hardware accelerators to speed up modular exponentiation, and in particular, the core

operation of this process, modular multiplication. While much has been accomplished in

software, data throughput still remains at least an order of magnitude slower than for secret

key systems. The need for a hardware solution to the problem of fast public key systems is

reflected in the number of publications suggesting this approach.

With the exception of Laurichesse [79], little work has been done to investigate the

exponentiation algorithm, the consensus of opinion being that the core operation of modular

multiplication is where optimization will yield best results. In addressing this problem two

different approaches have been taken. The earliest designs [28] [114] adopted the approach

of reducing partial products as they were formed during multiplication as described by Blakley

[24] in a later publication. The alternative is to allow the data to grow and reduce the double

precision product on completion of the multiplication [55], [74], [142]. This allows standard

hardware multipliers to be used and if a pipelined reduction unit can be designed such as was

done at Hatfield [55], may produce acceptable results.

The most popular method of modular multiplication however, is to reduce the partial products

as they are formed. This has the obvious advantage of restricting word growth and reducing

hardware requirements.

Multiplication is generally carried out by examining the multiplier one bit at a time and

conditionally adding the multiplicand to the partial product. Some [130] have used recoding

techniques to examine more than one bit of the multiplier at a time but this has yet to be

implemented in hardware for a large integer modular multiplier. If, as is the case in the majority

of publications, reduction of the partial products is desired then the multiplier must be

examined most significant bit (MSB) first as explained by Blakley [24]. Addition of the

multiplicand to the partial product is often carried out using parallel adders that allow carries to

propagate along the word length [49], [69], [113], [114], [117], [126]. Since the carry

page 66

propagation time is proportional to the number of bits in the modulus, this approach results in

a quadratic relation for multiplication times, and a cubic relation for encryption times as

reported by Rankine [113]. This relation may be improved upon by adopting the look-ahead

techniques proposed by Sedlak [126] and Erl-Huei [49] although the area requirements of

these techniques may inhibit extension to arbitrary length. The self timed adders used by Orton

[105] and Ivey [69] also offer some improvement at the expense of increased complexity.

The use of carry save adders [28], [32], [55], [68], [76] and [106] on the other hand eliminates

carry propagation completely and, provided care is taken in the reduction process, can

produce quadratic relations for encryption times. The hardware overhead in this type of design

is more than compensated for as security demands the use of encryption moduli up to 1024

bits and beyond.

Where most researchers differ is in the means of modular reduction. Many ([49], [69], [105],

[106], [126]) use some form of magnitude comparison with the modulus followed by a

subtraction. Although improvements may be made by performing concurrent subtractions of

multiples of the modulus for post selection [49], [105], any magnitude comparisons inevitably

involve carry propagation which when carried out at each step of the multiplication algorithm

result in the undesirable cubic relationship between encryption times and modulus size. To

avoid magnitude comparisons, estimation techniques may be applied [28], [92] which when

coupled with a short look up table [68] give excellent performance.

If progress is to made in practical public key cryptography, then the way forward lies in

designing efficient hardware to speed up the modular multiplication operation so crucial to

many public key algorithms. As pointed out by Hoornaert et. al. [68], "hardware knowledge has

to be integrated into the algorithmic study to obtain the optimal calculation scheme". One

specific area where this integration has to occur is in the modular reduction operation, where

algorithms and hardware are required to perform modular reduction without incurring any carry

propagation. The means by which this is accomplished is the subject of the following chapter.

page 67

Chapter 4 Algorithm Design

Chapter 3 identified modular multiplication as a key area for optimization to enhance the

performance of public key cryptosystems. This chapter describes a novel modular

multiplication algorithm suitable for a hardware design which avoids any carry propagation,

thus allowing n bit modular exponentiation to be performed in 0(n 2) time.

As discussed in the previous chapter, although algorithms may be designed to perform

modular exponentiation in 0(n2) clock cycles, if hardware limitations are ignored, these same

algorithms will require 0(n3) time for execution. This distinction is crucial for the large moduli

needed in public key cryptosystems

To achieve performance in 0(n2) time, carry propagation along the word length must be

avoided completely. This effectively precludes apy magnitude comparisons, so the problem is

then, how to perform modular reduction without involving magnitude comparisons. One

solution is to estimate the residues as was successfully demonstrated in the Cryptech chip

[68]. The alternative proposed in this thesis is to perform modular multiplication without any

modulo reduction steps.

4.1 Modular Multiplication with Partial Reduction

Multiplication is carried out MSB first according to the add - shift - reduce procedure described

by Blakley [24], but with the following modifications.

The partial product is allowed to grow by two bits each iteration.

At the end of each iteration, these upper bits are reset to zero.

The residue corresponding to the two reset bits is added to the

partial product on the next iteration.

That the reduction of the partial products may be incomplete, in that after resetting the upper

bits the remaining number may be greater than the modulus, is of little practical consequence.

What is important is that the result is constrained to the length of the multiplier array.

On completion of this procedure reduction may be carried Out, if desired, by subtracting the

modulus, but since the word length has been constrained to two bits of growth only a few

subtractions of the modulus will be needed to accomplish this. Furthermore, as the result of

page 68

the multiplication is only one step in the much longer procedure of exponentiation, this

reduction step need typically only be performed once in every 512 multiplications.

Figure 4.1 illustrates the algorithm in the style of Hoornaert et. al. [68], and may be compared

with Figure 3.3 on page 62. Figure 4.2 illustrates the algorithm using pseudo code.

Figure 4.1 Illustration of Multiplication Algorithm

Although the size of the product table in [68] is not stated, it is unlikely to require less storage

than the three residues the overflow table in the above needs to represent the two upper bits

that have been reset.

Figure 4.3 demonstrates the operation of the algorithm by showing how 14 * 15 mod 17 (= 6)

is calculated. First of all the residues have to be calculated for the modulus 10001, since the

word is allowed to grow by two bits the residues of 01 00000, 10 00000, and 11 00000 are

required. However, as the residues are added on the following cycle, they are effectively left-

shifted in significance thus it is the residues of 010 00000, 100 00000, 110 00000 that are

needed. These are 01101, 01001, and 00101 respectively.

page 69

program modxnult;

const wordlength = 5, 	(k number of bits in the machine *)

modulus = 17, resi = 13, resi = 9, resi = 5;

type vector = array[0. .wordlength-i],

long = array[0. .wordlength+2],

bit = (0,1);

var a, b: integer, 	(* input multiplier & multiplicand *)
res : integer, 	(* residue corresponding to overflow bits *)

acc : integer, 	(* accumulator *)

i : integer, 	(* counter *)

vO, vi: bit, 	(* overflow bits *)

bvec: vector, 	(* binary equivalent of input b *)
accvec: long; 	(* binary equivalent of accumulator *)

BEGIN (* modmult *)
i := wordlength;

res := 0;

read(a, b);

bvec := Convert—to—Vector(b);

REPEAT

IF bvec[i-1] = 1 THEN acc := acc + a;

acc := acc + res;
IF i < 1 THEN acc := acc * 2;

accvec := Convert _to_Long(acc);
vO, vi) := Most _Significant_Two_Bits_of(accvec); (*vO=MSB*)

res := CASE (vO, vl) OF

0, 0) : 0;

0, i) : resi;

1, 0) : res2;

i, i) : res3;
END; (* Case (vO, vi)

*)

Reset_Most_Significant_Two_Bits_of (accvec);
acc := Convert to Int(accvec);
I := i - 1;

UNTIL i = 0;

WHILE acc < modulus DO acc := acc - modulus;

writeln(a, ' * ', b, ' mod ', c, ' = ', acc

END. (* modmult *)

Figure 4.2 Pseudo Code for Multiplication Algorithm

page 70

Example: 14 * 15 mod 17= 6

Residues are: 	01 = 13

10=9

11 =5

Figure 4.3 Example of Algorithm

In the above, b[i] is the ith bit of the multiplier (15, 01111) and determines whether the

, no shift is

carried out on the last step of the multiplication procedure.

Figure 4.4 shows how this algorithm may be implemented in hardware with "A" representing

the multiplicand, and "R" representing the residue to be added. Both these numbers are input

Iteration (I) b[i] Residue PP2 PP10 Comment

5 0 0 00 	00000 00

4 1 0 00 	01110 14 add 14

000 	1110 28 shift

0 	1110 28 reset

3 1 0 01 	01010 42 add 14

010 	1010 84 shift

0 	1010 20 reset

2 1 13 01 	00010 34 add 14
01 	01111 47 add residue

010 	1111 94 shift

0 	1111 30 reset

1 1 13 01 	01100 44 add 14

01 	11001 57 add residue

no shift

40 -17

23 -17

06

multiplicand (1 4) is added or not. PP is the partial product. As explained in [24]

page 71

in parallel, A4 and R 4 being the MSBs. "A" will of course be masked with each bit b[i] of the

multiplier, and "R" selected by the two overflow bits.

Figure 4.4 Hardware Implementation of Algorithm

Having demonstrated that complete modular reduction is not necessary to restrict word

growth, the partial reduction technique may now be applied to bit serial designs to eliminate

carry propagation in the above.

4.2 	Bit Serial Design

Figure 4.5 shows how the basic cell of Figure 4.4 is modified for bit serial implementation. In

Figure 4.6 each bit serial cell is represented by a block to illustrate how the five bit multiplier

array is constructed.

page 72

Figure 4.5 Bit Serial Modular Multiplier Cell

Figure 4.6 Five Bit Multiplier Array

The four inputs on the right of the array are all logical zeroes, the four outputs at the left extend

the array to larger bit lengths. The result of the multiplication is held in sum and carry form in

the two registers formed by the SR and CR latches.

To complete the circuit, the overflow bits representing the data lost oft the left hand side of the

array must be resolved by adding all bits with the same significance, as shown in Figure 4.7.

page 73

Figure 4.7 Resolution of Overflow Bits

In Figure 4.7 the maximum possible overflow appears to be '100', not 11' as suggested by the

carry propagate hardware. However, for n bit unsigned operands, the largest possible number

resulting from the addition of the four n bit numbers A, R, SR, and CR, is

4(21t 1) 	 (EQ4.1)

But since the accumulator is only n bits long, it can only hold

4(2"-1) mod 2" 	 (EQ4.2)
But

4(2 n - 1) mod 2 = (3-2 n
+ 2 n —4) mod 2" 	 (EQ 4.3)

And since (2" —4) mod 2" can be held in the n bit accumulator, the worst case overflow is:

(3-2 n) mod 2 n = 011... 	 (EQ 4.4)

Thus the carry output from the last adder is never set.

page 74

The worked example of Figure 4.3 is repeated in Figure 4.8 to demonstrate the operation of

the bit serial algorithm.The data shows the inputs and outputs for each adder in the array and

the result of the overflow calculation. This is done for five cycles, then the sums and carries are

added to produce the result.

Example: 14 * 15 mod 17 = 6

Residues are: 	001 = 13 	011 = 5
010=9 	100=1

CR+SR=56+1 =57=6

iteration (j) b[i] First Adder Second Adder Overflow

5 0 A 00000 R 00000
SR j- 1 00000 SA 1 00000
CR 12 00000 CA .. 1 00000

CA 00000 CR 00000
SA 00000 SR 00000 000

4 1 A 01110 R 00000
SR j- 1 00000 SA 01110
CR 12 00000 CA j- 1 00000
CA 00000 CR 00000
SA 01110 SR 01110 000

3 1 A 01110 R 00000
SR j- 1 11100 SA 10010
CR 2 00000 CA j- 1 11000

CA 01100 CR 10000
SA 10010 SR 01 01 0 010

2 1 A 01110 R 01101
SR j- 1 10100 SA 11010
CR 2 00000 CA j- 1 01000
CA 00100 CR 01000
SA 11010 SR 11111 010

A 01110 R 01101
SR j- 1 11110 SA 1 10000
CR 1..2 00000 CA j- 1 11100
CA 01110 CR 11100
SA 10000 SR 00001

Figure 4.8 Example of Bit Serial Algorithm

page 75

4.3 Testing the Algorithm

A program was written in PASCAL to test the algorithm by comparing its results with those

obtained by standard computer arithmetic and exiting if there was a difference. This program

exhaustively tested all combinations from 0 * 0 mod 1, to 277 * 277 mod 278, a total of over

seven million multiplications, without error.

The test program itself was verified by introducing a deliberate bug into the algorithm which led

to an erroneous result, halting the program execution.

4.4 Performance Estimates

The throughput for RSA encryption using this multiplication algorithm may now be estimated.

It is assumed that the square and multiply algorithm for exponentiation is to be used without

modification, and that two hardware multipliers are used, one for squaring the other for

multiplying. An n bit exponentiation will then take n multiplications. The effect of using only one

hardware multiplier is data dependent, exponentiation taking between n and 2n multiplications.

It is further assumed that the results of each multiplication remain in sum and carry form until

the exponentiation has ended, thus the reduction step need only be carried out once in every

n multiplies and may effectively be ignored. Each multiplication may then be carried out in n

clock cycles, and exponentiation in n2 cycles. In hardware, the final reduction step may be

carried out on a separate carry propagate adder allowing the subsequent exponentiations to

proceed immediately.

Examination of Figure 4.7 shows the longest path that signals have to propagate through to be

via six adders. If 5a is the maximum delay through a one bit adder, then maximum frequency

the array can operate at is

f= 	 (EQ4.5)
a

And since an n bit exponentiation takes n2 cycles the throughput is

1
(EQ 4.6)

n 66a

page 76

Figure 4.9 tabulates the data throughput in Kbits/s based on (EQ 4.6) and may be compared

with Figure 3.4 on page 65. Even assuming the worst case operating frequency, these figures

compare favourably with the best designs summarised in Figure 3.4.

6a 	ns.
3 5 .10 15

256 217 130 65 43

512 109 65 33 22

1024 54 32 16 11

Clock! MHz. 55.6 33.3 16.7 11.1

Figure 4.9 Performance Estimates

page 77

Chapter 5 Chip Design

This chapter describes the design of a chip capable of performing most of the modular

arithmetic operations commonly used in public key cryptography. The core element of the

design is the modular multiplier described in Chapter 4.

5.1 	Design Criteria

The intention of this research, as stated in section 1 .4, is to design fast hardware for public key

cryptography. To achieve this goal it was decided at the outset of the project to aim for a design

that did not propagate any carries when performing modular multiplication. This decision

precluded the use of any magnitude comparisons during modular reduction and led to the

partial reduction technique described in Chapter 4.

A second constraint on the hardware design is that it should not be restricted to a specific key

length. One advantage that the RSA scheme has over block ciphers, like DES or FEAL, is that

the security of the system may be increased at any time, simply by using longer keys. If the

hardware is restricted to a fixed key length, then this advantage is lost and the chip will soon

become obsolete. To provide a facility for variable key length the processor must either

multiplex in time, or be cascadable. As the first option detracts from the prime aim of the

research, a cascadable design was chosen, thus providing the option to increase security with

no loss of performance.

A third design consideration was testability. Here the basic requirements of good VLSI design

and good cryptosystem design diverge. In the former it is desirable to have easy read and write

access to as many internal nodes in the circuit as possible, whereas in the latter such an

attribute would seriously compromise security. Since this was envisaged as a prototype design

only, the former approach was taken. All registers on the chip being accessible either directly

from the data ports or via scan paths. The problem of ensuring testability in commercial

designs without compromising security is not addressed in this thesis. One possible solution

may be to use fusable links, as is done in PROM design, to disable memory read functions

after final production tests.

Another practical consideration was to keep the pin count low to avoid packaging the finished

device in a pin grid array which would complicate any future board design.

page 78

5.2 Chip Architecture

Having established a rough specification for the chip and a basic multiplier design, the support

circuitry for the multiplier, and the interface circuits were defined.

Output from the multiplier array is a number in sum and carry form that may be used in

subsequent operations on chip with complete reduction being carried out externally if required.

However, this may not always be convenient and so a means of completely reducing the

number internally is desirable. This is accomplished by including a ripple adder, an

accumulator, and a register for the modulus on the chip as indicated in Figure 5.1. Inclusion of

these elements allows reduction to be completed while the next product is being formed in the

array, and provides facilities for simple modular addition and subtraction. The clock for this part

of the circuit obviously has to run at a slower rate than the clock for the array.

	

ft 	B register 	pio

I/O buffer E 	piso

	

A register 	

I

Residue Ri

Select A or Zero 	
Residue R2 	

N register

Residue R3

overflow 	
Multiplier Array

	

mux 	 mux

L17 J
Ripple Adder

Accumulator I
I I

Figure 5.1 Modular Arithmetic Chip Architecture

page 79

The Input/Output (I/O) buffer may be loaded and read either in parallel or serially, permitting

simultaneous reading and writing of data while multiplication is being carried out on the array

and reduction on the adder and accumulator. Eight-bit parallel to serial (PISO) and serial to

parallel (SIPO) converters at either end of this buffer permit byte oriented input and output with

slower strobes than those required for the serial links. Two data input ports allow the

multiplicand "A", and the multiplier "B", to be loaded simultaneously. The modulus and residues

will not change as frequently as "A" and "B" and therefore share the "A" input port.

Figure 5.2 indicates how this architecture allows modular multiplication to be pipelined for

maximum throughput.

Operation Data Block

Load Data i 	k-i 	i+2 	i+3
Multiply i-i 	i 	i+i 	1+2
Reduce i-2 	i-i 	i 	k-i
Read Data i-3 	i-2 	i-i

Figure 5.2 Pipelined Modular Multiplication.

5.3 Logic Design

At this stage in the design the behaviour of the chip was modelled using the hardware

description language ELLA to facilitate testing and debugging of the proposed architecture

without describing the low level details of the hardware.

5.3.1 Description of Single Chip

After defining basic data types and cells such as single bit adders and latches, the multiplier

cell of Figure 4.5 was described as shown in Figure 5.3

page 80

FN MULTCELL = (bool: aini caimi crim2 sriml clock rbar enable
-> [3]bool:

BEGIN
MAKE BITADD addi add2,

FULATCH { 1 } : latchl latch2.

JOIN 	(ai, sniml, crim2) -> addl,

ri, addl[l], caimi) -> add2,

REF1(add2[1]), rbar, enable, clock) -> latchi,

REF1(add2[2]), rbar, enable, clock) -> latch2.

OUTPUT REF3(REF1(addl[2]), latch2, latchl

CA(i), CR(i), SR(i) #

END.

Figure 5.3 ELLA Description of Multiplier Cell

This cell was then replicated to define the parameterisable multiplier array of Figure 5.4.

MAC ARRAY { INT n } = ([n]bool: ain nfl, [4]bool: sigin, bool: clock

rbar enable) -> ([4]bool, [3]bool, [n+3]bool, [n]bool)

BEGIN

MAKE [n-2]MULTCELL : mcell,

NMI10ELL : ncell,

ENDCELL : ecell.

LET

ca = sigin[1] CONC ([INT k=1. .n-2] mcell[k] [1]
CONC (REF2A (ncell[1] [1], ecell[1] [1]

cr = sigin[4] CONC (sigin[2] CONC ([INT k=1. .n-2] mcell[k] [2]
CONC (REF2A (ncell[l] [2], ecell[1] [2])))),

sr = sigin[3] CONC ([INT k=1. .n-2] mcell[k] [3]

CONC (REF2A (ncell[1] [3], ecell[1] [3]))),

sigout = ecell[1] CONC ncell[1] [2],

addout = ecell[2] [2. .4],
sums = (sr[2. .n] CONC ecell[2]),

cars = (cr[2. .n] CONC f

FOR INT k=1. .n-2

JOIN (ain[k], rin[k], ca[k], cr[k], sr[k],clock, rbar,
enable)-> mcell[k].

JOIN (ain[n- 1], nin[n-1], ca[n-1], cr[n- 1], sr[n- 1], clock,

rbar, enable) -> ncell,

ain[n], rin[n], ca[n], cr[n], sr[n], ncell[2],
clock, rbar, enable) -> ecell.

OUTPUT (sigout, addout, sums, cars

Figure 5.4 ELLA Description of n-bit Multiplier Array

page 81

Once the multiplier array and modular reduction circuits had been defined, an interface was

added which included serial links not shown on Figure 5.1, to allow cascading of several chips.

Finally, a mnemonic instruction decoder was described and the design tested and debugged.

5.3.2 Description of Cascaded Chips

This single chip model was then used to describe and simulate a complete cascaded system
of three eight bit chips.

FN SYST = (instruc: mem mul, [2]hex: data, [4]bool: ext_addr,

bool: s_buff s_b ldbb 1db_ps 1db ci lcLb C 1db cm

seladdr acik rclk) -> ([2]hex, bool

BEGIN

MAKE CHIP 	{ 8 } 	: lschip midchip mschip,

MUX2 { [4]bool 	} 	: 	addr.
LET intaddr = (BITREV { 3 } mschip[2]) 	CONC f,

b_ctl = mschip[4],

sigl = 1schip[1], 	sig2 = midchip[11,

s_bfl = 1schip[3], 	s_bf2 = midchip[3],
sbl = 1schip[4], 	s_b2 = midchip[4].

JOIN (int_addr, ext_addr, seladdr) 	-> addr,

mem, mul, 	data, 	addr, s_buff, s_b,

bcti, 1db_ps, 	1db_b, ldbcl, aclk, 	rclk) 	-> lschip,

mem, mul, 	sigi, 	addr, sbfl, 	sbl,
bctl, t , 	t , 	1db_c , aclk, 	rclk) 	-> midchip,
mem, mul, 	sig2, 	addr, s_bf2, 	s_b2,

bctl, 1db_ps, t , ldbcm, aclk, 	rclk) 	 -> mschip.

OUTPUT (mschip [1], 	mschip[5]
END.

Figure 5.5 ELLA Description of Cascaded System

In Figure 5.5 three chips are instanced, each one having an eight bit wide modular multiplier,

and are combined to form a 24 bit multiplier. Each chip has a 'mem' and 'mul' input, these are

mnemonic instruction inputs to control memory and multiplier operations. The least significant

chip has a hexadecimal 'data' input port that connects to both the B register port and the I/O

Buffer of Figure 5.1. The 'addr' input accepts the address of the residue and may come from

either the overflow bits of the most significant chip during normal operation, or from an external

source to allow residues to be accessed directly. The remaining inputs control the loading and

reading of the PISOs and SIPO, selection of serial/parallel input and output, and masking of

page 82

the 'A' register during multiplication. A second external clock provides a means of running the

ripple adder at a slower rate than the multiplier array. As this was a prototype design, this was

thought to be safer than generating the slow clock internally.

This cascaded system was tested and debugged until the multiplication results agreed with

those calculated by the PASCAL program of section 4.3, and all other features of the chip

behaved as required. Once satisfied with the logical design, the physical design could proceed

with the knowledge that functionality is correct. This allowed attention to be concentrated on

implementation issues such as timing, buffering and clock distribution.

5.4 Physical Design

It was known in advance that the chip was to be fabricated using ES2's ASIC design tools,

SOLO 1200, so the final ELLA description was constructed in a manner that would easily map

on to the basic gates available in the SOLO library. A rough draft of the design was produced

using the SOLO schematic capture tools to describe a parameterisable design that could

generate a multiplier chip of user defined word length. From this schematic description, circuit

layout is synthesised very quickly and it was soon clear from the resulting silicon area, that the

target design should be a 32-bit processor. A full custom approach may have produced more

efficient layout resulting in a 64 or 128 bit processor but the time and effort required to do so

was considered too much for a prototype design. In adopting this semi-custom approach,

control over floorplanning and routing is forfeited and so the most efficient layout is not

realised, consequently each component has to be heavily buffered leading to even greater chip

area. Furthermore, dynamic logic was unavailable and all storage had to be constructed from

fully static d-type latches.

Since routing is done automatically, following the design hierarchy, it was decided to adopt a

bit slice approach to this design in an attempt to minimise the wire lengths needed for local

routing and avoid the difficulties involved in routing 32 bit busses.

5.4.1 Basic Cell Designs

The basic latch used throughout this design was the edge triggered d-type flip flop arranged to

form the enable type latch of Figure 5.6. Here, the enable input 'en' determines whether to gate

page 83

new data d' into the latch or to hold previous data. This type of latch was chosen to avoid

having to gate the clock, thus reducing the possibility of race conditions that may arise due to

the lack of control over floorplanning and circuit delays resulting from the automatic design

layout. A synchronous reset 'r' is also included in this design.

Output from the latch is via a parameterisable buffer to simplify the matching of drive capability

to circuit loads in the complete design.

The latch in Figure 5.6 is a scan path latch used in preference to ordinary d-types to improve

testability of the design in areas where register access was not straightforward.

Figure 5.6 Enable-type Latch

The circuit diagrams shown in this chapter are screen dumps taken from the SOLO schematic

capture tool DRAFT, used to create the design.

page 84

Figure 5.7 Adder for Multiplier Array: 'madd'

The badd' cells in Figure 5.7 are based on the standard single bit binary add cell available in

the SOLO library, to which parameterisable buffers have been added at the output. These two

adders form the multiplier add cell 'madd' used to build the multiplier cell 'mcell' Figure 5.8.

Figure 5.8 Multiplier Array Cell: 'mcell'

Figure 5.8 is the final version of the cell originally proposed on page 73.

page 85

Memory for the residues was constructed from enable type latches, a decoder with write

enable, and a multiplexer as shown in Figure 5.9. No user defined RAM was available.

Figure 5.9 Storage for Residues: 'cram'

The residue, or congruence RAM, 'cram', is combined with the multiplier cell in Figure 5.10

together with storage for the modulus 'nreg' and the multiplicand 'areg'. The output from 'areg'

is masked with each bit of the multiplier 'bb' before being input to the multiplier cell. Separate

reset lines allow either the memory, or the array to be reset at the user's discretion.

This combined cell 'ccell' is connected to the ripple adder and accumulator 'addr' in Figure 5.11

to form the basic bit slice cell. Like 'mcell' and 'cram' in 'ccell' (Figure 5.10) 'addr' also has

separate reset and enable lines, but a separate external clock is required for this part of the

chip as explained in section 5.2. Figure 5.11 is a bit slice of the chip architecture shown in

Figure 5.1 with the slight modification of the multiplexer used to route either the residues or the

modulus (n) to the ripple adder. This allows the partial reduction technique to be applied to the

final reduction operation as well as multiplication, and reduces the number of times the

modulus has to be subtracted to achieve complete reduction. The other multiplexer controlled

by 'ser' in Figure 5.11 is constructed from the two multiplexers of Figure 5.1 determining

whether the ripple adder adds sums and carries from the array, or is used for reduction.

page 86

Figure 5.10 Combining Storage and Multiplier Cells: 'ccell'

Figure 5.11 Complete Bit Slice Cell: 'cell'

The multiplicand register 'breg' is serially linked to higher and lower order bits and reset by the

same signal as 'ccell'. The I/O buffer is constructed from scan path type latches to allow both

serial and parallel data input and output.

page 87

ct1(O12)

ctctctct:c€ct:ctctrttctctctl(l2)

HWWWW' 	"

ctcttctctctctctctct1(i2) 	ab(02)

WWWW
tsr ra 	ea itch ft r ra -

sea 	rr 	er ebv.sl
 n 	rotu

"° hf vs
Cs.

.. sb(O:2)
bb.
. ab(O:2

<J__. ca 	________ hi, Csbb 	...__.(j hi,.

£c. ._. sc.......... sbf 	______________ 	.

I___ 2c a 	sbf __' shf

cc.............

I. 01 	-.---.. sot
Co. Co. £2 	 . 	ccl 	 . __ 	coc2 j

.
cc2

..ci 	___________________ 	. I ci. _., Cat
obo I 	''

..ci. 	_________________ ._J ci. —c] ci.
ho . (J....... 	ho........... hi 	___________________ ho........... hi. 	_..__.J

.

hi.
tel

..................
...

Sal OS St.
eel od 	__________________ rd........... od

I I jrdk
eel

..............

Figure 5.12 Combination of Two Single Cells: W112'

Figure 5.12 shows how two single cells are combined, and Figure 5.13 shows how two 'cell2s'

are combined to form a ceIl4'. The complete chip is built up in this hierarchical manner to ease

buffering and clock distribution.

mv boiler . 	. 	•. Ts\

_[joib:r

ab(O 2)

.
hi,

hi, ob(Octi(O:12)

............
bb ob(O::c±1(O:12)

c2. c2 . 	. 	. 	CC2 c2. 	. 	. 	. 	cc2 ----------- 	 3 .cc2 Cc. cc. . 	. 	. 	cc CC. 	. 	. 	. 	ccl 	J 	.CcJ. Ca. Ca . 	. 	. 	cii ca. 	. 	. 	. 	cal 	 ..e 	cat SC cell2- 	sri _________ ___________ SC. ce112- 	oci 	.j 	sd be. ho . 	. 	. ho. 	. 	. 	. bi ________ 	hi
CO. Co . 	U. 	ci co. 	. 	12. Cl 	..-j 	ci........

she . abo . 	. 	. elf she 	. 	. 	. 	cbf elf
—kkSd

I

Figure 5.13 Combination of Two cell2's: 'cell4'

page 88

For flexibility, it was decided to allow separate commands for memory and multiplier operations

and, from the ELLA simulations, it was known that a minimum of nine commands were needed

for both operations. The command decoder therefore required two four bit inputs, and a

thirteen bit output as shown in Figure 5.13. Decoding was carried out at this level to minimise

the routing of the thirteen control signals without allocating too much silicon to the decoders.

5.4.2 End Cell Designs

The cells at the most significant end of the array differ slightly from the rest of the array as

described in the following.

In Figure 4.7 on page 74, both carry outputs and the sum output from the cell at the end of the

array are connected to the input of the two bit ripple adder used to calculate the overflow. To

allow this, the multiplier cell of Figure 5.8 is modified by adding the unlatched carry output

signal 'ccd' and the unlatched sum output signal 'scd'. The ca' output from this cell is

connected directly to an output pin, hence the heavy buffering.

Figure 5.14 End Celifor Multiplier Array: 'mcelle'

The (n - 1) cell is similarly modified to provide access to the unlatched carry from the residue

addition.

page 89

Figure 5.15 and Figure 5.16 highlight these additional signals to show how they propagate up

through the design hierarchy, and may be compared to the basic bit slice cell of Figure 5.11

Figure 5.15 Bit Slice Cell (n - 1): 'celln'

bb 	..r' 'ft

........[JdJ[J[][]ah(O:2)

. J 	. 	I 	I 	Jill J 	Ja. 	II 	1 11111111 	III
hb r. 	ca 	ab(D ' 2) .FF________

. ca db. 	ca. 	ab.
cin XC•ccelle - 	 . 	. ad j 	ad.........

. . 	CC ai
_____ co . c2

nb.ck. a. 	e Cl • 	
. • 	•

. .c1 1

CO.

I I

bfbf

CCcd ..ra 	. .

..........................

: E- 1••

hi. 	______ be.
.............

.................

cb.
ri

...........
............... II 1I1 	 I• II.)

Figure 5.16 End Celifor Bit Slice: 'celle'

page 90

When adding the sums and carries from the array to form the normal binary representation of

the data, the carry from the end cell has already been dealt with in the calculation of the

overflow bits, thus the 'addr' cell is missing from Figure 5.16.

6 2 - [L
— ,

6

 1 ... 	 en

Figure 5.17 Decoder for Overflow Bits: 'mydecode'

Figure 5.17 shows where the sum and carry from the end cell are combined. The result is the

signal bO above. The four outputs from this circuit are connected to both the address output

port for selecting residues, and the upper bits of the ripple add reduction circuit, Figure 5.18.

Although bO and b3 in the above are not needed externally, they are routed out to improve

testability of the circuit.

The basic bit slice cell includes one bit of a ripple adder and a latch to facilitate reduction by

subtraction of the modulus. The contents of the array however, once sums and carries have

been resolved, may form an (n + 3) bit number. Thus the ripple adder formed by combining the

bit slices has to be extended by three bits which is the purpose of the circuit of Figure 5.18.

page 91

	

• : 	c(O3)

	

- 	(0)

	

1 	I.i 	:;'
n—c—se--F--s7
• b

_

c1

badd

a.

0. 2

an El ck

an

Figure 5.18 Upper Bits of Ripple Adder: 'rip4'

In Figure 5.18, the s(O3) inputs are the overflow bits already calculated by the decoder of

Figure 5.17. There is no need to combine sums and carries as the 'addr' cell does for lower

order bits, and so the carry input 'c' to the multiplexer is connected to logical zero. The

synthesis software optimises the layout of cells with inputs connected to VDD or VSS so no

area is wasted in the above by connecting the inputs to VSS.

The other inputs to the adder, selected by control signal 'Se', are from the accumulator register

'r' and modulus or residue W. As discussed on page 86, the adder may perform partial

reduction by adding residues, followed by complete reduction by subtracting the modulus. The

'n' input to the ripple adder must therefore be set to logical zero when adding the positive

residues, and logical one when adding the two's compliment of the modulus. This sign is

controlled by the input signal 'si'.

The 'ci' input is the carry from lower order bits. 'ss', and 'Sd' are scan path select and scan path

data. 'rr', 'en', and 'ck' are reset, enable, and clock signals for the latches.

The 'r2' input is a reset signal used to clear the two most significant bits during partial reduction.

page 92

car 	ra Ca 	nab lbf Mn

Fr 	Cr 	abE va —
 ab(0:2

ca. bb, ..._.__. Lb.

abE ahf
ccd al. .—_--(j cci
•° c2j

ci,
---4c:j at

abe.
ciJ ci.

I ...

_____ 	ho........... Li
'celia

I
ack as __aa.

j 	
[T 	rek ad

..1I

ca

Ll(cti(
cc

oh(O:3)
	 III

ra Ca nab ibi Mn

can
....ab(O:2

ca. 	.e..........
Cc.

Ca........... bb
........... .cc .c:J— ebf :cd
 al.

.....c2.

_______ I'd i.
IrL nbc - coll.e r.

,o 	
._.. be........... hi

ack 	
..........

ss Ir

Lb

The output signal 'co' is the ripple carry output that connects to the next device when chips are

cascaded. The register output 'ro' transfers data to the I/O buffer in 'celle' Figure 5.16.

The output 'f' is a 'finish' signal that indicates reduction has been completed by outputting a

logical one as soon as subtraction of the modulus yields a negative result. At this point the

contents of the accumulator have been completely reduced and may be transferred to the I/O

buffer.

The remaining output signals in Figure 5.18, bl and b2, form the address of the residue to be

added during partial reduction when they will be reset by 'r2'.

ctl(O:12)

- e2 	 (1.2)
	

(12) .ab(O:2)

	

hO1 'no- . 	S

J,(3> o,(2) 0(liJLO) I

'2 	9 '9 1 	11 	I 	1 	11

Figure 5.19 Combination of Two Most Significant Cells: 'cell2e'

Figure 5.19 shows the combination of the two most significant cells and connection to the

overflow decoder to calculate the address of the next residue.

When the sums and carries from the multiplier array are resolved in 'rip4' the carry from bit bO

in Figure 5.17 has already propagated and does not appear anywhere in Figure 5.18. The

carry out signal from 'rip4' will therefore be incorrect during this particular operation. To correct

this, the adder in 'celI2e' computes the carry out directly from the last cell. All other arithmetic

operations carried out on the ripple adder and accumulator will produce the correct value on

page 93

0)

.bb(3)

ii

signal co' of Figure 5.18. The correct carry signal is selected by the multiplexer in the lower

right hand side of Figure 5.20 before leaving the chip. The other multiplexer in this circuit

determines whether the residue address is taken from the overflow decoder or the upper bits

of the ripple adder.

r2. 	. 	 . 	
.

ctl(0:12).

...... T bb
ab(0,2)

hi, ab(0:ctl(0,i2)

aZ 	. 	 . 	 . 	 aaZ...........j 	ac2
cc. 	. 	 . 	 . 	 — cci
'- c.112e ccl— Ccl
Z. 	. 	 . 	 . bi—_ ____.,-j 	bi.........

-T CC

jrck __
ack

cU(0)

— J - -,' - 	— - - 	Ca

Figure 5.20 Selection of Outputs From End Cells: 'c2end'

5.4.3 Peripheral Cell Designs

The two most significant cells in the array, 'c2end' above, are combined with two standard

cells, 'ce112' of Figure 5.12, to form a 'cell4e' and the hierarchy is built up until ce1132' is created.

This 'ce1132' is connected to the peripheral circuits to form the core design of Figure 5.21.

In Figure 5.21 either the serial output from the PISOs or an external serial input may be

selected as input to the B register or I/O buffer. The serial input to the SIPO is also available

at an output pin. The enable input to these registers allows data to shifted in/out serially, and

the load signal latches parallel data.

Finally, multiplexers are added to the core design that select internal or external addresses and

multiplier inputs b 1 . The unconnected signals on Figure 5.22 are all routed to the external pins

of the chip.

page 94

:.
.cUcD:3).......... .

. 	______
eb .eb J ff

, 	*

. 	I 	-

I 	J b(0:3) d I

I . _______ - 	
.... 	Ip(0.7)

0:7) - . 	 - 	I - 	 . . 	I 	- dL......J
[p<>11 	I 	

-
I 	I ____________

rel esck[. .1 . 	. 	.

I________ I r 	e
•

jrck .

—J1 [if 	.

ef

Figure 5.21 Core Design: 'core32'

Inv buffer ...
h(O:2) . 	• f

dl
b(0)

__ _

J) u b I

Figure 5.22 Top Level of Hierarchy

page 95

5.4.4 Buffering Strategy

ES2 measure drive capability by comparison with standard inverters, thus two inverters

connected in parallel have a drive capability of two and so on. A similar scheme applies to input

loads, and the two measures are combined to give an indication of relative fanout.

The standard ES2 latches used throughout this design have a drive capability of 0.3 units.

Used as it stands, this latch would not have sufficient capability to drive the circuit of Figure 5.6

without unacceptably high relative fanout. Two inverters were therefore added to the outputs

of the basic latch to form the 'sff' latch which is capable of driving the output buffer of the enable

type latch. The output buffer has a drive capability of four units which is the default value for

these parts. Most of the basic cells described in the preceding were buffered in this manner

with a default drive of four units on their outputs. In most cases this was sufficient to cope with

the local routing and loads encountered by these cells, however, once circuit loads were

extracted from the layout, a more detailed estimate of fanout could be made and the drive

capability of the buffers adjusted accordingly.

Global signals on the other hand were buffered in a tree like structure that was an automatic

consequence of the hierarchical construction. The tree structure attempted to balance the

delay of all global signals to each cell thereby reducing the possibility of skewing.

5.4.5 Bus Strategy

It is well known that automatic routing is a non trivial problem and that as much silicon area in

a design may be allocated to routing as to active devices. One benefit of the bit slice approach

and hierarchical description taken with this design is that routing is kept local, eliminating the

need to route 32 bit wide busses throughout the chip.

As mentioned in section 5.4.1, the limited influence the designer has on floorplanning makes

circuit delays difficult to control. As a consequence exact control over the timing of tristate

buffers is difficult to achieve, which may lead to tristate driven busses being left in a high

impedence state for an unacceptable amount of time. Since this could result in busses drifting

to the inverter threshold voltage and drawing current, it was decided to use multiplexed busses

throughout the design to avoid this possibility.

page 96

5.4.6 Control

It was originally intended to include some form of programmable logic array control circuit on

the chip. Such a circuit would however, have to be constructed from separate logic gates

resulting in the consumption of a large amount of silicon, reducing the data path from thirty two

to sixteen bits. Opting for external control not only allows a wider data path but, together with

separate memory and arithmetic control ports, gives more flexibility to the device operation.

The ELLA simulations defined a minimum set of instructions needed to perform modular

arithmetic, to which several more diagnostic type commands were added. The instruction set

is tabulated in Figure 5.23 where the hexadecimal value of the control inputs to the chip is

given.

Arithmetic Instructions Memory Instructions

Mnemonic 	Description 	Hex Value Mnemonic Description 	Hex Value

FIST Reset All 0 RST Reset All 0

RBA Reset Array 8 TBA Xfer I/O Buffer -> A A

RBR Reset Register 4 TBN Xfer I/O Buffer -> N 6

SPC Add Sums + Carries 9 TBM Xfer I/O Buff -> Mem 2

PLR Add Residue 5 TRB Xfer Register -> Buff E

HAA Halt Array A HAB Halt B register 9

HAR Halt Register 6 HAF Halt I/O Buffer 5

HA2 Halt Both 3 HA2 Halt Both 8

RUN Run F RUN Run F

Figure 5.23 Instruction Set

Arithmetic Instructions:

RBA: Resets the multiplier array and overflow decoder. Activates control bit ctl(2) which is

connected to the 'ra' signal in the bit slice cells Figure 5.11, Figure 5.15, and

Figure 5.16.

page 97

RBR: Resets the ripple adder register (accumulator). Activates control bit ctl(2) which is

connected to the 'rr' signal in Figure 5.11, Figure 5.15, and Figure 5.16. The 'rr' signal

also resets the latches in 'rip4'.

RST: Resets both the array and the accumulator.

SPC: Activates control signal ctl(0) which is connected to 'ser' in the bit slice cells and 'Se' in

'rip4'. This signal normally selects the modulus and accumulator inputs to the adder but,

when activated, ctl(0) connects the sum and carry outputs from the multiplier array to

the adder. Control signal ctl(4), is also activated during this operation to disable the

latches in the multiplier array.

PLR: Activates control signal ctl(1) which is connected to 'sen' in the bit slice cells. This signal

is used in the bit slice cell to select between output from the modulus register 'n', and

the residue memory, to be routed to the ripple adder. During normal operation data from

the modulus register (-N) is added to (subtracted from) the number in the accumulator.

Control signal ctl(1), when active, selects data from the residue memory according to

the address inputs and allows partial reduction to be carried out in the ripple adder.

This command also activates the 'r2' input to 'rip4', resetting the two upper bits before

the residue is added on the next cycle.

HAA: This disables signal ctl(4), disabling the latches in 'mcell', and halting the multiplier

array.

HAR: Disables signal ctl(5) which is connected to the 'er' signal in the bit slice cells, and the

'en' signal in 'rip4'. This effectively halts the accumulator register in the reduction circuit.

HA2: Halts both the multiplier array, and the ripple adder accumulator.

RUN: This command will enable both the multiplier array and the ripple adder. The ripple

adder will be configured to add the contents of 'nreg', the two's compliment of the

modulus, to the accumulator. Since a two's compliment number is being added, this

command also sets the 'si' input in 'rip4' to a logical one.

page 98

Memory Instructions:

RST: Activates ctl(6), connected to 'rm' in the bit slice cells, and resets the I/O register, A, B,

and N registers, and the residue memory. Also resets the three interface registers in

Figure 5.21.

TBM: Activates ctl(12), connected to 'wb' in the bit slice cells, enabling the latches in the

residue memory to accept data from the bus connected to the I/O buffer.

TBN: Activates ctl(1 1), connected to 'wn' in the bit slice cells, enabling the N register to accept

data from the bus connected to the I/O buffer.

TBA: Activates ctl(1 0), connected to 'Wa' in the bit slice cells, enabling A register to accept

data from the bus connected to the I/O buffer.

HAF: In response to this command, ctl(7), 'eb' in the bit slice cells, remains active while ctl(8)

'ef' and ctl(9) 'If' are disabled. This effectively halts the I/O buffer. The 'eb' and 'ef'

signals in the core circuit Figure 5.21 are affected in the same manner.

HAB: This command disables the B register by deactivating ctl(7). Control signals 8 and 9

however remain active. CtI(8) is connected to the scan select input of the I/O buffer and

configures this register for serial I/O. Ctl(9) is the enable signal for the I/O buffer.

HA2: Both the I/O buffer and the B register are halted

TRB: This sets control signal ctl(8) to allow parallel input to the I/O buffer, and ctl(9) to load

data from the accumulator.

RUN: Control signal ctl(8) is set to configure the I/O buffer for serial I/O and ctl(9) enables this

register. Ctl(7) enables the B register which allows the multiplicand to be shifted out

most significant bit first. Control signals 10, 11, and 12, the memory write signals are all

disabled.

Figure 5.24 shows how the commands are decoded and which signals in the basic bit slice

cells are affected.

page 99

Arithmetic Instructions Memory Instructions

Ctl signal 0 1 2 3 4 5 CtI signal 6 7 8 91011 12

cell' W. sr sn ra rr ea er cell' W. rm eb ef If wa wn wm

RST 001100 RST 1101110

RBA 001000 TBA 0101010

RBR 000100 TBN 0101100

SPC 100010 TBM 0101111

PLR 010000 TRB 0100110

HAA 000010 HAB 0110110

HAR 000001 HAF 0001110

HA2 000011 HA2 0101110

RUN 000000 RUN 0010110

Figure 5.24 Control Signals

5.4.7 Verification

The schematic descriptions in the preceding sections are automatically translated into ES2's

hardware description language, MODEL. The same model description is subsequently used

for both simulation and synthesis.

Two levels of simulation are available: a switch level simulator capable of modelling circuit

loads extracted from layout, and a logic level simulator that is less accurate but runs faster.

The logic simulator was used at this stage in the design to verify correct logical operation.

Simulations are driven by setting up signals then specifying a time in nanoseconds for the

simulation to run before changing the inputs again. Output signals and internal nodes may be

marked for tracing and displayed either as a timing diagram, or as a truth table.

Low level drive files were defined first, to execute the basic commands of the previous section.

Giving these files the same names as the mnemonics allowed higher level drive files to be

described in a pseudo assembly language by calling the lower level files.

page 100

Before testing the full thirty two bit chip a smaller, eight bit design was used to debug the basic

cells. By monitoring internal signals, the correct loading of data was established, and the

multiplier array operation could be compared with both the PASCAL and ELLA simulations.

Once the eight bit device had been debugged three of these chips were cascaded, modelling

the ELLA of Figure 5.5. This cascaded system was thoroughly tested to verify correct operation

of all serial links between chips before the thirty two bit chip was simulated.

The thirty two bit chip was tested to make sure all registers could be loaded and read back

through external ports. As stated in the introduction to this chapter, this feature is not good

cryptographic practice and would have to be disabled if the chip were to be used in a practical

system. Full pipelined operation of the chip was then tested by running several multiplications

according to the procedure described by Figure 5.2 on page 80.

Each time a modification to the design or test vectors was required both the thirty two bit device

and the three chip system were re-simulated to make ensure the change had no undesirable

side affects.

5.5 	Silicon Production

To complete the physical design, the silicon layout of the device must be generated, circuit

loads extracted, and simulations repeated before sending the design for fabrication. Once

circuit loads are known, buffers can be adjusted to minimise relative fanouts. Placement may

also be controlled to some extent, allowing wire lengths to be optimised.

5.5.1 Optimization of MODEL Code

During synthesis, the basic ES2 gates are placed in an array of rows and columns in an attempt

to produce a die with a 1:1 aspect ratio. As a result, some cells may be split over two rows or

columns introducing unpredictable variations in the performance of identical cells. Gaps may

also be left within cells to assist routing between rows.

Fortunately the MODEL language has some features that allow limited control over cell

placement.

page 101

The "uninterrupted" qualifier below forces the components that form the 'sff' latch of Figure 5.6

to be placed on the same row without leavingr gaps for routing.

Part sff [ck, d, Sc, Sd] -> q, i4b

Signal slb2xl, slc2xl

Uninterrupted

bsdffn [Vdd, d, sd, c, ck] -> slc2x]., slb2xl

not [slc2xl] -> qb

not [slb2xl] -> q

End

Figure 5.25 Uiiinterrupted Qualifier

The "serial" qualifier in the definition of the enable type latch instructs the software to maintain

the textual order of calls within 'sffn' and any parts called from this part. Use of this qualifier

and careful arrangement of the code can help local routing.

Part sffn [ck, d, en, r, sd, Sc] -> q

Signal qb, qq, slclx3, db, sicixi

Serial

not [en] -> sicixi

not [Sd] -> slclx3

andnor(3,3) [qq,slclxl,r,r,en,d] -> db

sff [ck,db,sc,slclx3] -> qb,qq

buffer(4,4) [qb] -> q

End

Figure 5.26 Serial Qualifier

The penalty incurred by these qualifiers is that more silicon area may be required for the

design, particularly where the "uninterrupted" qualifier is concerned. Only the circuit of

Figure 5.6, and its non scan path equivalent, made use of these features to provide latches

with consistent timing parameters.

page 102

5.5.2 Fanout Checks

The silicon layout was synthesised from the MODEL code and circuit loads extracted by the

design software to produce a list of absolute and relative fanout for every node in the circuit.

The initial layout had seven nodes with relative fanout of around 40, and two at 20. Buffers

driving these nodes were adjusted to reduce these figures to below 14 as shown below. The

maximum relative fanout suggested by ES2 is 16, although for some nodes even this is not

acceptable. Clock signals throughout this design were buffered to keep relative fanouts below

eight.

Rel. Fanout Number of Nodes

10-11 25

11-12 4

12-13 4

13-14 3

>14 0

Figure 5.27 Relative Fanouts

Several nodes with large absolute fanouts were also modified, either by adding intermediate

stages or by forming tree buffers, to produce more acceptable values. The suggested limits for

absolute fanout were 35 for fast nodes and 60 for all others. Figure 5.28 shows the final

distribution of absolute fanouts.

(Abs. Fanout 	Number of 	Nodes

	

30-40 	 114

	

40-50 	 16

	

50-60 	 2

	

60-70 	 2

	

>70 	 0

Figure 5.28 Absolute Fanouts

page 103

Adjusting fanouts by modifying buffers is obviously an iterative process: each time a buffer is

modified the placement is changed, altering circuit loads. The data presented in Figure 5.27

and Figure 5.28 are the final values obtained before the design was fabricated.

5.5.3 Wire Length Checks

In addition to providing fanout information, the design software produced a record of the wire

lengths for each node in the circuit and issued a warning for each wire over 10,000 p.m long.

The route of these long wires could be identified by instructing the synthesis software to plot

the layout of single nets only. Several wires were routing signals from one side of the chip to

the other, a distance of approximately 8mm. The source and destination of these wires could

be traced back to the placement data file, which could be modified to physically move parts

and reduce wire lengths. As with the fanout adjustments, this too was an iterative process:

shortening one wire inevitably lengthened another. For some exceptionally long tracks, extra

buffers had to be inserted to split the wire at a convenient point.

Many of the longer wires were routing signals from the core design to external pads so, where

possible, the offending pads were moved closer to the signals source or destination.

Unfortunately this was not always possible since some degree of order was required of the

external pins. Most of the longer wires in Figure 5.29 are connections between the core design

and the bonding pads. Clock signals were all well below the 10,000 p.m warning limit.

page 104

20

10

20

10

10 	11 	12 	13 	14 	15 	16 	17
	

10 	11 	12 	13 	14

wire length (mm)
	

wire length (mm)

	

(a) initial distribution
	

(b) final distribution

Figure 5.29 Wire Lengths Over 10 mm.

5.5.4 Layout

The final physical design task undertaken was the manipulation of the array parameters to

minimise unused silicon area, and produce a die that would fit into one of ES2's standard

packages. The array parameters that could be adjusted were the number of columns; the

number of rows per column; and the number of cells per row. The situation is illustrated below.

Figure 5.30 Arrangement of Cells

From initial attempts at generating artwork it was known that the device would be too big to fit

any of the Dual In Line packages supplied by ES2. The most suitable package available from

ES2 was the ceramic 68 pin Leadless Chip Carrier, the next largest size was an 84 pin

page 105

package. Sixty eight pins are more than enough for this device so the extra pins were used to

improve testability by bringing out difficult to observe signals and allowing direct control over

several registers and multiplexers.

Once the rows and columns had been adjusted to minimise area, the width of the power and

ground rails were increased as far as possible within the constraints of the package.

The effects of altering the array parameters, moving cells to shorten wires, and buffering to

improve fanouts are all inter-related, so each time a modification was made all three had to be

checked again to make sure there were no adverse side affects. The final layout is the result

of many iterations of the previous three processes and is presented in Figure 5.31.

page 106

iL!

I.I
f'lIl.'.!. It

IL U , 	'I
•

tV.tILI '.tl'. .LS I

All. .. •.-I at

.1 	L:J.,..t I 	•' 	-

01. - 	it 	aiim,,
• 	l'l 	.7 	•t

Olt I .-. :

I.f 	11
-q

_.iilI 	I
•IiVr" ', 41

-

.1. 	- LIII

,.
rr 	1
 ...

tilt 	if 	f.flJ.f'

.. a
..r ... "."I

• 	I 	I 	ISIS

.............
pt

I 	111111

!
l 	•i.. 	fl.! 	,.r.rrt . 	s -. 	VI 	 . 	,. I I I 	r

- 	 ...4, •
I 	-

I 	lI• 	1.•.0 I....... 	.-..... qj

iifllf,'.?.'f'I?.?ii't

• 	frf"U".f'ft,JL' !.'I
• t".......t.• ti'S' .1 	t CI1, 5 1 	fl1' 	 IC -II

- . 	 -. tIll........
-'.•I'I

sq: - • 	-._-_..
t L,'.tt',.....J.Nt

..... ..
I 	sF 	. 	'l•'

-
• 	; ;,

iimsi '' 	''

r
,1fl1. •11. £11 II.. , L. 	• 	II 	•'II 	II'

LiIi.'iJU.tMlC • ti'. 	:. 	t

F
vAn.5p.4•

i'. SIl'J''fit • tIfIPil,.'t,fItf.t?

•

- ttaVn.nJaIa.at v.---

— ?I 	.1111tC VII 11.1 ili.IlLl'.1 t —
Ll.Lf.. •

- -
• 	I_u 	•

fill Null - 	L 	I 	t 	III. I
- 	III. III 	IL! •
• 	fI'f.L. r tIl

r 	I •
11.1 ii 	LtSI U I • u 	ii 	_ i 	& 	a

-;
•

ir 	- I 	I' 	£ 	I • 	i 	I I 	L 	 .11 I
[it ?iLt t,.f i.I.II

r..................
—.

'.,.. :- ...
1 .1....

t I.L1 	I. 	?1' 	.l '-• ...

I' 	-ni,it.........1.. 	5t
IIF _IJL.J i.i'l?t. I?I 	II 	1111

,:i. 'it.L.'ft r..ii.t....

dl

•.,..._.

111111 	
' 	

' a
I 	it IPA Str_

it Ii
Ill! 	III ; Il ,uJirI_itrtI_
L

JI 	1111111 	J
' 	IS SJItItS'fl r

1 	II 	I ' 	•I - 	— 	I
.fl'V.'V 'll'l.lIil,' flit t?.f. MIY..Y. f'iJ lint tb' 	ii 	ii a'. '

IIIJ 	I I
iru V 	tIff

.4t

I 	 . I 	 jj
1_I I 	!! t 	till...........

%lM,'..J 	I 	. 	.. 	Li. 	'flit
r,iI 'III 	Ji

'II--' 	.__ 	. 	•, •L1L .1.1.. ii.. I,

•.j 	lit t't 	 1

1,1.1.1.......• 'Ii'-' 	' 	III
I 	_fl

'[I 	. 	!' 	- 	. 	-

.. • th 	V.11 	'l

II' 	 •
ii

X. Li
? I

i:i '.t i1 • . •'ai • F lLIft.

iLl VlITi- lSflVr 	 VISULJ 	s 	 tL 	 i 	
• 	

_.i__
a 	- 	

IIILR L 	 ' 	i ll N
I 	 J_._ 	• 	UII&JVZJJALIJ L 	 -wj'p

	

I 	 J 	 I.Y.It 	4.I

: 	 , 	1iiLttLjLti..0 	
- 	ifi 1 UIIr II 	 Illt!1t2 l.LLI.lJ

It a

I r 	 I 	 LII fill
irrrl 	

IlI • 	1 tL. 	 I 	 I II 	 III LI 	I 	I 	_i 	 • i 	I ii I Ii
_I_ttnhIIiitn_t ii

	r, 	- 	 _?I Fr 	
Iii II 1311 -

	

II1 S1i&t HI itt 	 11.1 Ft. 	 I 	I 	III 	L 	111111±- .. 	 .Q Sit II
-.

!

	

Ii tLII LI.IXjj
	

_ rmn • 	1 Ii £ 	 - 	-. • 	ala

- 1.'PLLLLL_WJ,'I_LIfI.JI -

	

7L, —
L, - ...-.- 	

— 	!UJIIUf.I.1..II??.•I!IJII!

:::Ib; :;Ib'.

t.r

I'!

. la

Ii....
f 'S
t .lI

PIN NAME PIN No. DESCRIPTION

mu3 - mu0 68 - 3 Multiply control inputs
me3 - me0 4 - 7 Memory control inputs

fs 8 I/O buffer serial input

bs 9 B register serial input
If 10 Load I/O buffer PISO

Read I/O butter SIPO - active low
lb 11 Load B register SIPO - active low
sf 12 I/O buffer input select serial/parallel
Sb 13 B register input select serial/parallel

fp7 - fpo 14 - 21 I/O buffer parallel data input
bp7 - bpo 22 - 29 B register parallel data input

VSS 30
obO - ob3 31 - 34 Overflow bits

fin 35 Finish flag - active high
c2 36 CC(n - 2) output
cc 37 CC(n) output
ca 38 CA(n) output
sc 39 SC(n) output
bo 40 B register serial output
co 41 Ripple carry output

sbo 42 I/O butter serial output
VDD 43

VSSR 44
p0 - p7 45 - 52 I/O buffer parallel output
VDD 53

aO-a2 54-56 Address input
ack 57 Array clock input
rck 58 Ripple adder clock input
ss 59 Scan path control
sd 60 Scan path data input
b 61 B(i)input

se 62 Select mt / ext address & b inputs
cc2 63 CC(n - 2) input
cc 64 CC(n) input
ca 65 CA(n) input
scl 66 SC(n) input
ci 67 Ripple carry input

Figure 5.32 Pin Description

page 108

if

se lb

mel meO
00
me3 me2

mul muO

mu3 mu2

ccl cc2

scl cal

ci 	bs

b 	fs

sd

sf f7 fp5 f3 fl b7 b5
0

sb f6 fp4 f2 f 	b6 b4

Bottom View

ss ack al Vdd p6 p4 p2

rck a2 aO p7 p5 p3 p1

ROM
bpl b2

Gnd b 0

obi obO
©©
ob3 ob2

c2 fin

ca cc

bo Sc

sbo Co

PO Vdd
©©
Gnd

Figure 5.34 Pin Locations: Carrier

5.6 Test Vectors

The tests described in section 5.4.7 to establish functionality used logic models of the circuits

and took no account of circuit loads. When the silicon layout was finalised, this data could be

taken into consideration in the simulations and more detailed switch level circuit models could

be used.

In addition to verification of device operation, the test vectors described in this section are

submitted to the silicon foundry with the design files and used by the manufacturer to test

device operation after fabrication. The test vectors therefore, must do more than checking that

the chip functions as intended, but must also identify any fabrication defects likely to affect

device operation. Two sets of test vectors are described here. The first tests the chip as it is

intended to be used when configured as a thirty two bit multiplier. The second set tests all

page 110

registers and latches in the device to ensure both a logical one and zero can be loaded and

read back. The ripple adder is then tested, and finally a series of random test vectors are

applied to the inputs in an attempt to toggle as many nodes as possible in the remaining

circuits.

5.6.1 Functional Test

This test resets the device then loads the modulus and corresponding residues. A series of five

multiplications are then carried out fully pipelined. Once the fifth result is read back, a new

modulus and set of residues are loaded and one more multiplication is done. Results are

compared with those obtained from software models of the chip.

Several more examples were simulated to check functionality before submitting the design, but

the above was thought adequate for post fabrication test. Figure 5.35 is a timing diagram

showing the multiplication of the hexadecimal data:

(50 96 81 C2) X (AE DA 8F 6C) modulo (C3 71 F9 D9) = (24 ED 57 7C)

Figure 5.35 Timing Diagram of Simulation Results

page 111

The RUN command is issued just after 487000 ns. in Figure 5.35 at which point the address

bits begin to appear on the overflow output pins OB1 and 0B2, OBO and OB1 are not

displayed. The multiplier data, shifted out from the B register is displayed as signal BO. ACK

and RCK are the clocks applied to the Array and the Ripple adder, FIN is the finish signal.

Since the finish signal is the overflow from the ripple add, some glitches are inevitable, a

suitable delay will be required before sampling this signal. When this flag is eventually set, the

result is transferred to the I/O buffer and read out either from the parallel port using the LF

strobes, or from the serial port SBO. The simulation results shown in Figure 5.35 were for both

clocks running at 5 MHz. as is indicated by the 200 ns. figure in the lower right hand corner that

measures the interval between the start of the display and the dotted bar. The data for this

example was used to test the chip after fabrication, and a similar timing diagram is presented

in Chapter 6.

5.6.2 Fault Coverage

The chip is reset and the hexadecimal value AA AA AA AA is loaded into the I/O buffer and

55 55 55 55 loaded into the B register via the parallel ports. These data are then read back

from the I/O buffer's parallel port, and the B register's serial port. This sequence is then

repeated with inverted data, thus ensuring none of the latches or nodes in the in the I/O circuits

have 'stuck-at' faults.

The test continues by switching the chip into scan path mode and serially loading a pattern of

alternating ones and zeroes through the scan path in the multiplier array, the decoder circuit,

Figure 5.17, and the upper bits of the ripple adder Figure 5.18, to emerge at the overflow

output pins.

The multiplier sum and carry latches are then loaded with data that results in the hexadecimal

FF FF FE FE in the accumulator after addition. The result is read back and the test repeated

with data that yields a result of zero, with a carry propagating all the way through the adder.

A pattern of alternating ones and zeroes is then loaded alternately into the A register, the N

register, and the three residue registers via the parallel input port. After reading this data back,

page 112

via the multiplier array and accumulator, the test is repeated with opposite patterns of ones and

zeroes. At this point any faults in the internal registers will be identified

The chip is then configured for serial input to the I/O buffer and B register and a pattern of

alternating ones and zeroes shifted through both registers. The data is observed at the serial

outputs of both these registers.

The carry inputs are then set to one, and a final multiplication carried out. Finally, all

combinations of control vectors are applied to the inputs including those that do not relate to

the specific commands described in section 5.4.6.

5.6.3 Random Vectors

Although the previous tests toggle all latches, some nodes still exist that remain untested. In

an attempt to cover the remaining nodes, a short program was written in C' to generate a drive

file for simulation that applied a random sequence of test vectors to the device. Applying 3,000

random test vectors to the device at this stage achieved a toggle rate of 87.6%. Extending this

to 10,000 random vectors increased this figure to 88.0%. Many of the untoggled nodes were

traced back to the 'setbar' and 'clearbar' inputs of the basic latches which in this design were

tied to VDD. Taking this into consideration, the toggle rate for 3,000 random vectors was

estimated to be at least 95%. The improvement gained in running more random vectors was

too small to justify the extra simulation and test time required.

5.6.4 Performance Simulations

Further simulations were run to provide an indication of device performance in terms of

encryption throughput. These tests were carried out using the following delay models for the

transistors and circuit loads extracted from the layout.

Temperature I °C 	VSS / volts

	

Maximum delays: 	70 	 4.5

	

1Minimum delays: 	0 	 5.5

Figure 5.36 Conditions for Performance Simulations

page 113

Array Speed

The multiplier array was tested by running repeated simulations at increasing clock speeds and

observing the data as it left the most significant bits of the array. That is, the four carry out

signals and the overflow bits calculated by the decoder of Figure 5.17 were monitored.

With minimum delay models the simulations produced the expected results until the clock rate

reached 25 MHz. Maximum delay simulations ran correctly up to 15 MHz.

These data imply a throughput for 512 bit RSA encryption of between 30 and 50 kbits/s.

This estimate however takes no account of delays incurred by signal propagation between

chips, and makes no allowance for global clock distribution between chips.

Adder Speed

The speed of the ripple adder was estimated by timing the carry propagation delay from the

carry input pin 'cm' to the finish flag output pin 'fin' connected to the end of the ripple adder in

Figure 5.18. With minimum delay models the carry propagation time was 88.8 ns. giving a

clock rate of 11.3 MHz. Maximum delay models resulted in a carry propagation time of 153.5

ns. which is equivalent to 6.5 MHz.

5.7 Design Release Procedures

Before the silicon foundry would accept the design for fabrication, a series of checks were

carried out by the design software.

First of all the design was simulated twice with the test vectors of section 5.6, once with

maximum estimates of circuit delays, and once with the minimum estimates. The results of

both simulations were compared by the software, and any discrepancies flagged as errors. The

number of nodes toggled, the fanouts, and wire lengths were all checked to ensure they were

above acceptable limits. Finally, the design rules for packaging and bonding were checked.

page 114

Once the software had successfully completed its checks, the design files were loaded on to

tape and sent to the foundry for fabrication.

page 115

Chapter 6 Post Fabrication Tests

6.1 	Static Tests

The test vectors described in section 5.6 were used by the silicon foundry to test the chips after

fabrication. These signals were applied to the device at 1000 ns. intervals and 990 ns. allowed

for the outputs to settle before being compared with the results predicted by simulation. Forty

chips were fabricated and successfully tested before being delivered.

6.2 Dynamic Tests

6.2.1 Test Equipment

Before the dynamic tests could proceed a small board was built to supply power to the device

and to connect the pins of the Leadless Chip Carrier (LCC) to vero pins where signals could

be applied and observed.

A Textronix DAS 9100 logic analyser was used to apply the input vectors and monitor the

response of the Device Under Test (DUT). The DAS could supply up to thirty-two input signals

and monitor sixteen outputs from the device. Clock signals of up to 5 MHz. were also available

and were used to drive the both array clock input 'ack' and the ripple adder clock 'rck'.

DAS9100

printer

32 	16

FUT

1!
'scope

Figure 6.1 Test Equipment

page 116

The synchronisation of the two external clocks proved crucial to the device operation at high

speeds and was optimised empirically by trying several of the clock waveform settings

available from the DAS. Figure 6.2 illustrates the timing of the two clocks and the data input

signals used during the 5 MHz. tests. The phasing of the two external clocks may prove to be

a limitation on device operation at higher frequencies. Any projections therefore assume that

the clock phasing is due to the test equipment, and can only be based on simulation results.

data
7

ack <— 110 4 80_H________

rck

-,
100 	 200 	 300 	400

time/ns

Figure 6.2 Timing for Input Signals

6.2.2 Test Procedure

As with the simulations and static tests, the operation of the two input buffers were verified to

ensure data could be loaded and read back correctly first at 1 MHz., then at 5 MHz. Secondly,

the scan path was used to verify the operation of the latches in the multiplier array by clocking

a pattern of logical ones and zeroes through the device at 5 MHz. and observing the output at

the 'fin' pin. The scan path was then used to load data to test the adder by observing carry

outputs and reading results back from the accumulator.

Once these circuits were confirmed to be operating correctly the remaining registers were

tested at 5 MHz. by loading them with alternating ones and zeroes and reading back the

contents, where necessary through the multiplier array and ripple adder. Having established

confidence in the memory transfer operations, the modular multiplication operation was tested.

page 117

6.2.3 Results

Figure 6.3 is the timing diagram acquired by the logic analyser during the modular

multiplication operation for the example described in section 5.6.1 on page 111. The overflow

bits that provide the address of the residue to be added may be compared to the results

predicted by simulation, Figure 5.35, to verify correct operation.

TIMING DIAGRAM 	hAG: CuRSOR SEQ 	316.
C 	M 	+1Ø..Øi9 DELTA TIME:

SRH 	III -

I I
:POOcHME 	I I

I 	RSLrLFL.JL.J1JLT _8
58 6 081 	_JJ1J1SLILJL...nJThJU

I 	1

585 580 _L 	ruln_n_rrLL__nhJLrlJ 0
58480 	._1J1JT1I1Y1J1J1.J1flfl I

I_________
5B3FIN

I
L___rL.J1i

582LFB ____________________ 1
5B1RCU(

11111111 	I 	1

588 	ICLK 	1flmflnfflflLIImnflnllWflflmmflflflflnmmflflhInJLr1llllnL_JL.Rnllm1nflnrn 0

5A 7 PE3
5A 6 h'E2
5A 5 MEl
5A4 MED

5A 3 NO
5A2J2
5AlJ1
5A 8 MIJO

iLi 	 UI 	1
i - I .0_ I

Lj

	

ul 	1

I LrinI
LJL.J1 I

	

I 	1
I 	

_
Liii

Figure 6.3 Overflow Bits From Logic Analyser

Figure 6.4 is the continuation of this example and shows the correct result being read out from

the serial output port, SBO.

page 118

TIMING DIAGRAM MAC: CURSOR SEQ: 	488
C - M = +10.888jaS DELTA TIME:
SRH 	IIII$I

I A
POD Q1NAME I ft

1 	190 [IJ*_1J1 I ile l
586 081 	flTh _I_ il 	1.
585 S&) 	J1 _I_rUl_rinsulj-Lr—u '_L_ e
5B4BO 	fl I L_0

__ I 0 I 	583FIN 	' _ fl_ n
582 LFB ___ - r-i
5B1LK 	1111111
58 0 ACLK 	innnn RL....s1nnnnnnnnnmmnnnmnnn1uInnnmmmnnnn _ft._ 0

I ft
5A7PE3 I

PEI NU

'H1
5A 3 M1J3 	Lr1J1 n !- 8
5A 2 ML12 	1J1Ji _ JL...J.... 8
5A 1 PJ1 	—U _j _ft•• 1
5A 0 PL 	—1i1 fL_L_ 8

Figure 6.4 Multiplication Results From Logic Analyser

The oscilloscope photographs of Figure 6.5 show characteristic pulses from the '0B2' output

pin and were taken during the execution of this example at 5MHz.

The simulation data allowed the signals appearing on all other pins to be verified, including the

serial links, thus predicting correct operation of a cascaded system. Several more examples

were tested in this manner, all of which were successful at 5 MHZ.

page 119

Figure 6.5 Characteristic Pulses From Overflow Bits

page 120

6.2.4 Power Consumption

The current drawn by the device was measured with VDD at 5.0 volts. When idle, the device

drew 1 mA., when running at 5 MHz., a current of 7mA. was measured, giving a power

consumption of 35 mW.

Device operation was also verified with the positive supply voltage reduced to 4.0 volts, and

again at 6.0 volts. In both cases the chip performed as expected.

6.3 	Discussion

The tests described in this chapter have demonstrated correct device operation up to the

5 MHz. limit of the test equipment used. According to the analysis of section 4.4, this clock rate

will result in a throughput for 512 bit RSA of 10 Kbits/s.

However, since the 32 bit ripple adder functioned correctly at this speed too, the delay through

a single add stage may be calculated by dividing the clock period of 200 ns. by 32 to give

6.25 ns. The maximum clock rate for this device may then be calculated using equation

(EQ 4.5) to be at least 27 MHz., which would imply a projected throughput for 512 bit RSA of

52 Kbits/s.

In practice, communication delays between chips and synchronisation of global signals across

several chips may restrict the maximum operating frequency before the above limit is reached.

Allowing a 50% derating factor for board level considerations gives an upper bound on the

maximum operating frequency of around 15 MHz. At this frequency an encryption rate of 30

Kbits/s. can be expected for 512 bit RSA.

These figures are in good agreement with the results predicted by the simulations in section

5.6.4 which suggest worst and best case operating frequencies of 7 MHz. and 11 MHz. for the

ripple adder, and 15 MHz. and 25 MHz. for the multiplier array.

page 121

Chapter 7 Concluding Remarks

A survey of modern cryptography has identified public key cryptography as an area where

revolutionary theoretical developments are experiencing difficulty achieving commercial

acceptance due to the poor performance of practical systems. Both hardware and software

implementations of public key systems were reviewed and it emerged that the complexity of

modular multiplication was by far the biggest restriction to high performance public key

cryptosystems.

The modular multiplication operation was examined in detail from both theoretical and practical

viewpoints and a novel algorithm presented to perform this operation. This algorithm uses

modular arithmetic to restrict word growth as opposed to completely reducing data during

intermediate calculations. Comparisons with the modulus are thereby eliminated, thus

completely eliminating carry propagation from the multiplication procedure. This technique of

partial reduction is proposed as practical means of improving the throughput of public key

cryptosystems, allowing a fast clock rate which is independent of the long word lengths

required to provide adequate security. In theory, the architecture proposed in this thesis could

run up to 50 MHz. resulting in encryption rates for 512 bit RSA of 100 Kbits/s.

To demonstrate the proposed architecture and explore the practical aspects of implementing

cryptology algorithms in VLSI, a modular arithmetic ASIC has been designed and fabricated.

The device is a 32 bit wide data path cascadable to user defined word length which, when

tested, functioned correctly up to the 5 MHz. limit of the test system. These tests allowed a

figure of 27 MHz. to be estimated as a lower bound on the maximum clock rate for the device.

Allowing a 50% reduction of this estimate for board level design considerations, it is feasible

to expect an array of 16 of these chips to perform 512 bit RSA encryption at a rate of at least

30 Kbits/s.

7.1 Comparison with Similar Work

To allow comparison of this architecture with other published work, a figure of merit has been

estimated for each design. The first stage in calculating this figure is to estimate cost, in terms

of production yield. by estimating the hardware requirements of each architecture. This has

been accomplished by referring to circuit diagrams and descriptions presented in the published

page 122

material to estimate the number of logic gates, adders, and latches needed for each bit of the

modulus. The area consumed by each component is then allocated a number proportional to

the silicon area it is expected to consume. To ensure these numbers are process independent,

all data are based on figures given by ES2 for their logic cell library and are presented in

Figure 7.1

Device Units of area

Inverter 1

n Input And /Or n+2

Xor/Xnor 9

Adder 19

Latch 24

Figure 7.1 Silicon Area Occupied by Logic Gates

The encryption rate for each device is divided by the area per bit to yield the final figure of merit

(FOM) in Figure 7.2. The column headed ND indicates whether the published rate is for a

proposed architecture (A) or for a physical device (D).

Design Latches Adders Xors 4 l/P 2 I/P Inv. Area / bit Rate ND FOM

Tomlinson 6 2 1 186 100 A 537

Sedlak 6 2 59 418 94 A 224

Morita 9 6 15 	15 450 80 A 177

Tomlinson 6 2 1 186 30 D 161

Q.U.CMOS 8 3 1 	8 2 291 40 A 137

Q.U.NMOS 11 1 1 	4 2 309 40 A 129

Brickell 6 5 13 241 20 A 82

Cryptech 10 2 1 282 17 D 60

B.T. 5 1 0.25 0.5 1.25 144 5 D 34

Kochanski 75 300 5 D 16

C.R.I.P.T 5 2 2 166 . 	1.6 D 9

Rivest 11 2 302 1.2 A 3

Figure 7.2 Comparison of Published Architectures

page 123

The principal advantage of the approach proposed in this thesis is the benefit achieved by

applying systolic techniques to large integer arithmetic. That is, the maximum clock rate and

hence device performance is independent of word length.Also of importance is the fact that the

method of partial reduction does not result in over complicated algorithms or circuit designs,

and greatly reduces the storage requirements when compared with other table lookup

approaches to modular arithmetic.

Although the storage requirements are low when compared with architectures based on lookup

tables, the overall hardware requirements of the proposed architecture are necessarily greater

than for the slower architectures based on carry propagate adders, some of which have no

need to store any residues at all. Nor is the architecture completely systolic. The global clock

and 'b[i]' signals will ultimately prove to limit device performance as word length increases.

Synchronising the global clock will always be critical in any implementation of this architecture.

As mentioned above, one reason for designs in Figure 7.2 having a low figure of merit is their

high hardware requirements. The Area/bit column in Figure 7.2 shows that only two designs

require less hardware than the architecture presented in this thesis. This is a direct

consequenáe of the partial reduction technique proposed in chapter four. It should be pointed

out, however, that some of the architectures with low figures of merit, such as CRIPT or the

British Telecom design are commercial designs with specific applications in mind which may

not require high encryption rates. Other designs, such as Rivest's and Kochanski's use a

technology that is now out of date and would probably achieve higher encryption rates if

modern fabrication processes were used. Another point about Rivest's design is that it was one

of the first RSA chips to be built. It was an early attempt at designing a general purpose 512

bit ALU to demonstrate that the RSA cipher could achieve reasonable encryption rates and not,

therefore, finely tuned for large integer modular arithmetic.

Of the architectures that have higher figures of merit, both Sedlak and Morita have proposed

modifications to the multiplication or exponentiation algorithms that imply some degree of

parallelism. These two designs have by far the highest figures for Area/bit but make up for the

excess hardware by increased encryption rates. The best figure of merit for a device that has

been fabricated and is commercially available is due to the design by Cryptech. It is interesting

page 124

to note that the Cryptech design is similar to the architecture presented in this thesis as is

illustrated by Figure 3.3 and Figure 4.1. The main difference being in the way that the partial

products are reduced.

7.2 Future Directions

7.2.1 The Device

Work is under way to design a 512 bit modular arithmetic accelerator based on an array of 16

of the chips that were fabricated. As far as the device itself is concerned, the obvious

improvement is to design some look ahead logic to reduce the critical delay in calculating the

overflow bits. For a small hardware overhead the 66a delay of section 4.4 could be reduced to

26, the delay through a single stage of the multiplier array. This would effectively treble the

frequencies and encryption rates of Figure 4.9, which for a 5a of 5 ns. would imply an

throughput of 200 Kbits/s for 512 bit RSA, and an upper limit on the operating frequency of 100

MHz.

The pin count could be reduced by using a common B-register and I/O buffer port, using an

internal configuration register instead of external pins, and perhaps removing some of the test

pins. These measures could allow the device to be mounted in a DIL package. Further

improvements may be achieved by taking advantage of fabrication geometry reductions which

may allow a 64 bit wide ASIC to be designed in a short time scale. Alternatively, a custom

design may even allow a 128 or 256 bit device to be fabricated.

7.2.2 The Architecture

One of the major criticisms of the type of architecture presented in this thesis is the need to

maintain a synchronous global clock. In response to this, it will be worth investigating the

possible use of self timed circuits, or the systolic arrays for modular multiplication proposed by

çetin and Ching [32]. The method of partial reduction may also be adapted to take advantage

of the fast multiplication algorithms proposed by Sedlak[1 26] and Morita [96].

page 125

7.3 Conclusion

The aim of the research presented in this thesis has been to improve the performance of public

key cryptosystems. In pursuit of this goal the interdependence of algorithm and hardware

design has become increasingly apparent. Investigating the requirements of both these areas

has resulted in the proposal of a novel algorithm and demonstration of a device architecture

that can be used to improve the throughput of modular arithmetic processors.

The techniques of proposed in this thesis could, in theory, be applied to design an RSA

processor capable of 512 bit encryption at a rate of 200 Kbits/s with a 100 MHz. clock. In

practice however, other design constraints such as delays through pad drivers will restrict the

maximum operating frequency to around the 50 MHz. achievable with today's MOS

technology.

This demonstrates that the methods proposed in this thesis have moved the throughput

bottleneck from the basic multiplier architecture, to the limits imposed by the choice of

implementation technology. Although this suggests an upper bound of 100 Kbits/s. for 512 bit

RSA encryption, higher rates may be achieved with parallel processing architectures which is

essentially what Sedlak[126], Morita [96], and cetin and Ching [32] have suggested.

In conclusion, it may be stated that modular arithmetic is by far the most important algebraic

system for cryptology, and is virtually the exclusive means by which public key cryptosystems

are designed. Although conventional systems will always have an important role to play, the

potential market for key management and authentication schemes will provide increasing

motivation to research efficient public key cryptosystems. While key management schemes,

by their nature, do not require high speed ciphering rates, digital signatures and identification

schemes do. It is these applications that stand to benefit most from high performance modular

arithmetic chips, and it is hoped that the work presented in this thesis may be developed further

by researchers wishing to bring the benefits of public key cryptology to public use.

page 126

Appendix A. Background Maths for RSA

A.1 Greatest Common Divisor Theorem for the Integers

Given n 1 and n2 not both zero in the ring of integers Zm then there exists a and bin Zm such

that:

gcd(n 1 ,n2) = an 1 +bn2 	 (EQA.1)

Expressing the gcd in this way allows inverses to be computed by the extended Euclidean gcd

algorithm below.

program extended Euclidean gcd;

(* calculates g = gcd(nl, n2) = a*nl + b*n2 *)

var g, nl, n2, a, b, 	 (* variables identified above, *)

q, r, 	 (* quotient, remainder, and 	*)

al, bl, a2, b2, t: integer; (* temporary storage. 	 *)

BEGIN

al := 1; bi := 0; a2 := 0; bl := 1; (* initialisation *)

writeln('Enter ni and n2

readln(ni, n2);

REPEAT 	 -

q := ni div n2; r := ni mod n2;
IF r= 0

THEN BEGIN g := n2; a := a2; b := b2; END
ELSE BEGIN

nl := n2; n2 	r;

t := a2; a2 := al - q*a2; al := t;

t := b2; b2 := bl - q*b2; bl := t;

END;

UNTIL r = 0;

writeln('gcd(', nl, ', 'n2,') = ',g, ' = (' ,a '*' ,nl,' + ',b,1*,n2,1))

END.

page 127

A.2 Inverses in the Ring of Integers Z m

In the ring of integers Zm, if gcd (u, m) = i then u is relatively prime and said to be a unit in Zm .

If u is a unit in Zm then u will have a unique multiplicative inverse since from (EQ A.1)

gcd (u, m) = am + bu = 1 	 (EQ A.2)

and since a m = o modulo m, bu = i thus:

b = 	 (EQA.3)

A.3 Closure of the Set of Units Zm

Let the set of units in Zm be denoted Zm*. If a and b are members of the set Zm* then there

exist unique multiplicative inverses a 1 and b 1 . So

(axb)x(a 1 Xb 1) =ax(bxlf t)Xa 1 =axa 1 = 1 modulom 	(EQA.4)

Thus the product, modulo m, of two members of the set Zm* also has a unique inverse.

So if every element in Zm* is multiplied by the same unit, modulo m, then the same set of units

Zm* is generated only in a different order.

page 128

A.4 Euler's Theorem

The number of integers in Zm which are relatively prime to m is measured by Euler's Totient

Function and usually given the symbol ct(m). Thus for the set of units Zm*, cJ?(m) is simply the

total number of elements in the set.

From section A.3 it can be seen that multiplying all is in Zm* together will give the same result

as multiplying all ar/s together. More formally,

cI(m) 	cI(m)

H ar
= fl r 	modulo m 	(EQ A.5)

i=1 	i=1

So, taking a out of the product in (EQ A.5)

'(m) 	cP(m)

a
	

r1
= fl r 	modulo m 	(EQ A.6)

thus:

a
(m) = 1 	 modulo m 	(EQ A.?)

Euler's Theorem may be stated as follows:

If a is a unit in Zm, then am) = 1 modulo m

A.5 Fermat's Theorem

Fermat's theorem is a special case of Euler's theorem for prime modulii. If m is a prime

modulus then every nonzero element in Zm will be relatively prime to m, and the set of units

Zm* \ {O} will be equal to Z m . Thus t(m) = m - 1 and

am -1 = 1 	 modulo m 	(EQ A.8)
Fermat's Theorem may be stated as follows:

If a is an element in Z m , and mis prime then d's' = 1 modulo m

page 129

A.6 Totient Function for Composite Numbers

Finding the totient function for prime numbers is trivial, composite numbers however, are more

difficult to deal with directly. Let m be a composite number that can be factored into two primes

p and q.

To find '(m), all the elements of Zm that are relatively prime to m must be found. To do this, it

is easier to find the elements of Z m that are not relatively prime, these will be all multiples of p,

and all multiples of q, less than m = pq.

That is: {p,2p,3p (q-1)p}, (q-1) elements

and: {q, 2q, 3q (p - 1) q}, (p - 1) elements

So 	1(m) = Total no. of elements in Zm - no. of elements that are not relatively prime

c1(m) = m - 1 - (p - 1) - (q - 1) 	 (EQ A.9)

'1(m) =pq— 1— (p—i) - (q-1)

4)(m)=pq—p—q+1

'T'(m)= (p-1)(q-1)

4(m) = cI(p)(q) 	 (EQ A.10)

So if m can be factored into p and q then:

4(m) = p)'l(q) = (p — i) (q-1)

page 130

Appendix B. Bibliography

CY512 and CY1024 Key Management Processors. CYLINK, 110 South Wolfe Road,

Sunnyvale, CA94086, USA

RSA Cryptochip. RSA Security Inc., 1717 Karameos Drive, Sunnyvale, CA94087, USA

RSA Processor and PC-RSA Processor. CRYPTECH NEDERLAND, Gronigeweg 6,

2803 PU Gouda, The Netherlands

Data Ciphering Processors Am9518, Am9568, AmZ8068. Advanced Micro Devices, 901

Thompson Place, P0 Box 3453, Sunnyvale CA94088 USA

Data Encryption Standard FIPS PUB 46, National Tech. Info. Service, Springfield, VA,

Jan. 1977.

Guidelines For Implementing and Using the NBS Data Encryption Standard FIPS PUB

74, National Tech. Info. Service, Springfield, VA, Apr. 1981.

NBS Report on Workshop, Fall 1976

"Report of the workshop on estimation of significant advances in computer technology,"

NBSIR 76-1189, National Bureau of Standards, Dec. 1976.

"The Directory-Authentication Framework", CCITT, Draft Recommendation X.509, COM

VII-204-E, Jan. 1988

Adams, C. M., and Meijer H., "Security related comments regarding McEliece's public

key cryptosystem", in Advances in Cryptology - Proceedings of CRYPTO '87, ed.

C. Pomerance, Lecture Notes in Computer Science, No. 293, pp. 224 - 228,

Springer-Verlag, 1988.

Alia, G., and Martinelli, E., "A VLSI Structure for X (mod m) Operation", Journal of VLSI

Signal Processing, Vol. 1, No. 4, April 1990, pp. 257 - 264,

Aruliah, A. A., "A Pascal Implementation of the RSA Algorithm", NPL Report DITC 66/

85, Sept. 1985

Baker, P.W., "Fast computation of A*B modulo N," Electronics Letters, vol. 23, pp. 794 -

5, May 1987.

Bamford, J., The Puzzle Palace, Penguin, 1982

page 131

Barker C., "An industry perspective of the CCEP," presented at the 2nd Annual AIM

Computer Security Conference Proceedings, Dec. 1986

Barrett, P., "Implementing the Rivest Shamir and Adleman Public Key Encryption

Algorithm on a Standard Digital Signal Processor," in Advances in Cryptology -

Proceedings of CRYPTO '86, ed. A.M. Odlyzko, Lecture Notes in Computer

Science, No.263, pp. 311-323, Springer-Verlag, 1987.

Beker, H. J., Friend, J. M. K., and Halliden, P. W., "Simplifying Key Management in

Electronic Fund Transfer Point Of Sale Systems", Electronics Letters, Vol. 19, No.

12, June 1983, pp. 442-444.

Beker, H., and Piper, F., Cipher Systems: The Protection of Communications,

Northwood Books, London, 1982.

Berlekamp, E. R., Algebraic Coding Theory, McGraw-Hill, 1968.

Bertin, D. R., and Vuillemin, J., "Introduction to Programmable Active Memories", in

Systolic Array Processors, ed. J.McCanny, J. McWhirter, and E. Swartzlander,

Prentice -Hall, pp. 301 -309, 1989.

Beth, T., B.M. Cook, and D. Goliman, "Architectures for exponentiation in GF(2**n), in

Advances in Cryptology - Proceedings of CRYPTO '86, ed. A.M. Odlyzko, Lecture

Notes in Computer Science, No.263, pp. 302 - 310, Springer-Verlag, 1987.

Beth, T. E., and Gollmann, D., "Algorithm Engineering for Public Key Algorithms", IEEE

Journal on Selected Areas in Communications, Vol. 7, No. 4, May 1989, pp 485 -

466.

Biham, E. and Shamir, A. "Differential Cryptanalysis of DES-like Cryptosystems".

presented at CRYPTO '90

Blakley, G.R., "A Computer Algorithm for Calculating the Product AB Modulo M," IEEE

Trans. On Computers, vol. C-32, pp. 497-500, May 1983.

Blakley, G.R., and Borosh, I., "Rivest-Shamir-Adleman Public Key Cryptosystems do not

always conceal messages", Comp. and Math. with Applic. vol. 5, pp 169 - 178,

1979.

page 132

Bong, D., and Ruland, C., "Optimised Software Implementations of the Modular

Exponentiation on General Purpose Microprocessors", Computers and Security,

Vol. 8, 1989, pp 621 - 630.

Branstad, D. "Heliman's data does not support his conclusion", IEEE Spectrum, July

1979, pg. 41.

Brickell, E. F., "A fast modular multiplication algorithm with application to two key

cryptography," in Advances in Cryptology - Proceedings of CRYPTO '82, ed. A.T.

Sherman, pp. 51 - 60, Plenum Press, 1983.

Brickell, E. F., "Breaking Iterated Knapsacks", in Advances in Cryptology: Proceedings

of CRYPTO 84, ed. G.R. Blakley and D. Chaum, Lecture Notes in Computer

Science, No. 196, Springer-Verlag, 1985.

Brickell, E. F., "A Survey of Hardware Implementations of RSA", in Advances in

Cryptology: Proceedings of CRYPTO 89

Brickell, E. F., and Odlyzko A. M., "Cryptanalysis: A Survey of Recent Results", Proc.

IEEE, vol. 76, pp. 578-593, May 1988.

cetin K. Koç and Ching Yu Hung, "Bit-level systolic arrays for modular multiplication",

The Journal of VLSI Signal Processing. (to be published).

Chaitin, G. J., "Information-Theoretic Limitations of Formal Systems", J. ACM, Vol.

24(2), pp 403 -424, July 1974.

Clayden, D.O., "Some methods for computing the RSA modular exponential," NPL

Technical Memo TTCC 20/85, Aug. 1985.

Davida, G. I., "Heilman's scheme breaks DES in its basic form", IEEE Spectrum, July

1979, pg. 39.

Davida, G. I., and F. B. Dancs, "A Crypto-Engine," in Advances in Cryptology -

Proceedings of CRYPTO '87, ed. C. Pomerance, Lecture Notes in Computer

Science, No. 293, pp. 257-268, Springer-Verlag, 1988.

Davio, M., Y. Desmedt, J. Goubert, F. Hoornaert, and J. -J. Quisquater, "Efficient

Hardware and Software Implementations for the DES," in Advances in Cryptology:

Proceedings of CRYPTO 84, ed. G.R. Blakley and D. Chaum, Lecture Notes in

Computer Science, No. 196, pp. 144-146, Springer-Verlag, 1985.

page 133

Davis, D. W., "Applying the RSA Digital Signature to Electronic Mail", Computer,

February 1983, pp. 55 - 62.

Davis, D. W., and Price, W. L., 'The application of digital signatures based on Public Key

Cryptosystems", NPL report DNACS 39/80, National Physical Labs., Teddington,

Middlesex, England, Dec. 1980

De Milo, R., and Merritt, M., "Protocols for Data Security", Computer, February 1983, pp.

39-51.

Denning, D. E. R., Cryptography and Data Security, Addison-Wesley, Reading, MA,

1982.

Denning, D. E. R., "Protecting Public Keys and Signature Keys", Computer, February

1983, pp.27 -35.

Desmedt, Y., Vandewälle, J., and Govaerts, A., "How Iterative Transformations can help

to crack the Merkie - Hellman cryptographic scheme", Electronics Letters, Vol. 18,

No. 21, October 1982, pp. 910 - 911.

Diffie, W., "The First Ten Years of Public-Key Cryptography," Proc. IEEE, vol. 76, pp.

560-577, May 1988.

Diffie, W., and M. E. Hellman, "New Directions in Cryptography," IEEE Trans. Info.

Theory, vol. IT-22, pp. 644-654, Nov. 1976.

Diffie, W., and M. E. Hellman, "Exhaustive Cryptanalysis of the NBS Data Encryption

Standard", Computer, vol. 10, pp 78-84, June 1977.

Diffie, W., and M. E. Hellman, "Privacy and Authentication: An Introduction to

Cryptography", Proceedings of the IEEE, Vol. 67, No. 3, March 1979.

El Gamal, T., "A Public Key cryptosystem and a signature scheme based on discrete

Logarithms", IEEE Trans. on Information Theory, Vol. IT-31, No. 4, July 1985, pp.

469 - 472.

Erl-Huei, Lu Lein Ham, Jau-Yein Lee, and Wen-Yih Hwang, "A programmable VLSI

architecture for computing multiplication and polynomial evaluation modulo a

positive integer," IEEE J. Solid-State Circuits, vol. 23, pp. 204 - 207, Feb. 1988.

page 134

Fairfield, R. C., A. Matusevich, and J. Plany, "An LSI Digital Encryption Processor

(DEP)," in Advances in Cryptology: Proceedings of CRYPTO 84, ed. G.R. Blakley

and D. Chaum, Lecture Notes in Computer Science, No. 196, pp. 115-143,

Springer-Verlag, 1985.

Feige, U., Fiat, A., and Shamir, A., "Zero Knowledge proofs of identity", Journal of

Cryptology, Vol. 1, No. 2, pp. 77- 94, 1988.

Feistel, H., "Cryptography and Computer Privacy", Scientific American, Vol.228(5),

pp.1 5-23,May 1973

Feistel, H., Notz, W., and Smith, J.L., "Some cryptographic techniques for machine-to

machine data communications", Proceedings of the IEEE, Vol. 63, NO. 11,

November 1975, pp. 1545 - 1554.

Fiat, A., and Shamir, A., "How to prove yourself", in Advances in Cryptology -

Proceedings of CRYPTO '86, ed. A.M. Odlyzko, Lecture Notes in Computer

Science, No.263, pp. 186- 194, Springer-Verlag, 1987.

Findlay, P. A., and Johnson, B. A., "Modular exponentiation using recursive sums of

residues", in Advances in Cryptology - Proceedings of CRYPTO '89

Fitzgerald, K., "Data Security", IEEE Spectrum, pp. 22-26, Aug. 1989.

Fumy, W., "On the F-function of FEAL", in Advances in Cryptology - Proceedings of

EUROCRYPT '87, ed. D. Chaum and W.L. Price, Lecture Notes in Computer

Science, No. 304, Springer-Verlag, 1988.

Gal lay, P., and E. Depret, "A Cryptography Processor," IEEE International Solid-State

Circuits Conference, pp. 148-149, Feb. 1988.

Geffe, P.R., "How to protect data with ciphers that are really hard to break", Electronics,

Jan. 1973, pp. 99-101.

Goldreich, 0., 'Two remarks concerning the GMR signature scheme", in Advances in

Cryptology - Proceedings of CRYPTO '86, ed. A.M. Odlyzko, Lecture Notes in

Computer Science, No.263, pp. 278-301, Springer-Verlag, 1987.

Goldwasser, S., Micali, S., and Rivest, R. L., "A digital signature scheme secure against

adaptive chosen message attacks", SIAM J. Computing, vol. 17, pp. 281 - 308.,

April 1988.

page 135

Gordon, J. A., "Strong RSA keys", Electronics Letters, Vol. 20, No. 12, pp. 514 -516,

June 1984.

Gordon, J. A., "Strong Primes are easy tofind", in Advances in Cryptology Proceedings

of EUROCRYPT 84, ed. 1. Beth, N. Cot, and I. Ingemarsson, Lecture Notes in

Computer Science, Springer-Verlag, 1985, pp. 216 - 223

Hellman, M. E., "An extension of the Shannon theory approach to cryptography'" IEEE

Trans. on Info. Theory, vol. IT-23, pp. 289-294, May 1977

Hellman, M. E., "DES will be insecure within ten years", IEEE Spectrum, July 1979, pp.

32 - 39.

Hellman, M. E., "A Cryptanalytic Time-Memory Trade off", IEEE Trans. on Info. Theory;

vol. IT-26, pp401 -406, July 1980. 	 -

Herlestam, T., "Critical remarks on some public-key cryptosystems", BIT, Vol. 18, 1978,

pp. 493 - 496.

Hoornaert, F., M. Decroos, J. Vandewalle, and A. Govaerts, Fast RSA-hardware:

Dream or reality. Presented at EUROCRYPT 88

Ivey, P. A., A. L. Cox, J. R. Harbridge, and J. K. Oldfield, "A single-chip public key

encryption subsystem," IEEE J. Of Solid-State Circuits, vol. 24, pp. 1071-5, Aug.

1989.

Jung, A., "Implementing the RSA Cryptosystem", Computers and Security, Vol. 6, 1987,

pp 342-350.

Kahn, 0., The Codebreakers, The Story of Secret Writing, abridged ed., Signet, New

York, NY, 1973.

Kak, S. C., "Data security in computer networks", Computer, February 1983, pp. 8 - 10.

Kaliski B. S., Rivest R. L., and Sherman A. T., "Is the Data Encryption Standard a

group?", Journal of Cryptology, Vol. 1, No. 1, pp. 3-36, 1988

Kawamura, S., and K. Hirano, "A Fast Modular Arithmetic Algorithm Using a Residue

Table.", Presented at EUROCRYPT 88

Knuth, D.E., The Art of Computer Programming, Vol.2, Semi-numerical algorithms, 2nd

ed., pp. 441-442, Addison-Wesley, Reading, MA, 1981.

page 136

Kochanski, M., "Developing an RSA Chip," in Advances in Cryptology - Proceedings of

CRYPTO '85, ed. H.C. Williams, Lecture notes in Computer Science, pp. 350-368,

Springer-Verlag, 1986.

Kochanski, M., "Split Key," Systems International, p. 103, Oct. 1986.

Konfelder, L. M., "On The Signature Reblocking Problem in Public-Key Cryptosystems",

Comm. ACM, Vol. 21(2) p.179, Feb. 1978.

Laurichesse, 0., "Mise en Oeuvre Optimisee du Chiffre RSA", Rapport LAAS No. 90052,

Mars 1990

Lenstra, A. K., and Lenstra Jr., H. W., "Algorithms in Number Theory", in Handbook of

Theoretical Computer Science.

Massey, J. L., "Feedback shift register synthesis and BCH decoding", IEEE Trans. on

Information Theory, Vol. IT-1 5, pp. 122- 127, Jan. 1969.

Massey, J. L., "Probabilistic Encipherment", E & M Journal of Osterreichische Verband

für Elektotechnik, 1987

Massey, J. L., "An Introduction to Contemporary Cryptology," Proc. IEEE, vol. 76, pp.

533-549, May 1988.

Massey, J. L., and Reuppel, R. A., "Linear ciphers and random sequence generators

with multiple clocks", in Advances in Cryptology Proceedings of EUROCRYPT 84,

ed. T. Beth, N. Cot, and I. lngemarsson, Lecture Notes in Computer Science,

Springer-Verlag, 1985.

McCurley, K. S., "A Key Distribution System Equivalent To Factoring", Journal of

Cryptology, Vol. 1., No. 2., pp95 -105,1988.

McEliece, R. J., "A public key cryptosystem based on algebraic coding theory", JPL DSN

Progress Report 42 - 44, pp. 114 - 116, Jet Propulsion Labs, Pasedena Ca. Jan. -

Feb. 1978

Merkle, R. C., "Secure Communications Over Insecure Channels", Comm. ACM, Vol.

21, No. 4, pp. 294-299, April. 1978

page 137

Merkle, R. C, "Hiding information and signatures in trap door knapsacks", IEEE

Transactions on Information Theory, Vol. IT-24, No. 5, September 1978, pp. 525 -

614111

Meyer, C.H., and S.M. Matyas, Cryptography: Anew dimension on computer data

security, Wiley, New York, 1982.

Micali, S., and Shamir, A., "An improvement of the Fiat-Shamir identification and

signature scheme", presented at CRYPTO '88

Michelman, E. H., "The Design and Operation of Public Key Cryptosystems", NCC, ,Vol.

48, pp. 305-311, 1979.

Miyaguchi, S., "Fast Encryption Algorithm for the RSA Crypto- graphic System," Proc.

COMPCON '82, pp. 672 - 8,1982.

Mohan, S.B., and B.S. Adiga, "Fast algorithms for implementing RSA public key

cryptosystem," Electronics Letters, vol. 21, p. 761, Aug. 1985.

Montgomery, P.L., "Modular multiplication without trial division", Mathematics of

Computation, Vol. 44, No. 170, April 1985, pp 519-521.

Moore, J., H., "Protocol Failures in Cryptosystems", Proc. IEEE, vol. 76, pp. 594-602,

May 1988.

Morita, H., "A fast Modular multiplication algorithm based on a Higher Radix", in

Advances in Cryptology: Proceedings of CRYPTO 89.

MUller-Schloer, C., "A Microprocessor-based Cryptoprocessor", IEEE MICRO, Oct.

1983, pp5- 15.

Newman, D. B. Jr., Omura, J., and Pickholtz, R. L., "Public Key Management for Network

Security", IEEE Network Magazine, Vol. 1, No. 2, April 1987

Norris, M. J., and Simmons, G. J., "Algorithms for high speed modular arithmetic",

Congressus Numeratium, Vol. 31, pp. 153 - 163, 1981

Ohta, K., and Okamoto, T., "A modification of the Fiat-Shamir scheme", presented at

CRYPTO '88

page 138

Okamoto, 1., "A fast signature scheme based on congruential polynomial operators",

IEEE Transactions on Information Theory Vol. IT-36, No. 1, January 1990, pp. 47-

53.

Ong, H., Schnorr, C. P., and Shamir, A., "An efficient signature scheme based on

quadratic equations", Proc. sixteenth STOC, 1984, pp. 208 - 216.

Orton, G.A., L.E. Peppard, and S.E. Tavares, "A Fast Asynchronous RSA Chip," IEEE

Custom Integrated Circuits Conference, pp. 439-443, Rochester, NY, May 1986.

Orton, G.A., M.P. Roy, P.A. Scott, L.E. Peppard, and S.E. Tavares, "New results in

mapping data encryption algorithms into VLSI," Presented 4th mt. Workshop on

VLSI in Communications, Ottowa, June 1986.

Orton, G.A., M.P. Roy, P.A. Scott, L.E. Peppard, and S.E. Tavares, "VLSI Implementation

of public-key encryption algorithms," in Advances in Cryptology - Proceedings of

CRYPTO '86, ed. A.M. Odlyzko, Lecture Notes in Computer Science, No.263, pp.

278-301, Springer-Verlag, 1987.

Pailles, J.C., and M. Girault, 'The security processor C.R.I.P.T.," Fourth IFIP security on

information systems security, Dec. 1986.

Pohlig, S.C. ,and Hellman, "An Improved algorithm for computing logarithms in GF(p)

and its cryptographic significance.", IEEE Trans., on Information Theory, Vol. 11-24,

Jan. 1978, pp. 106-ill

Pollard, J. M., "An efficient solution of the congruence x2 + y2 = m (mod n)", IEEE Trans.

on Information Theory, Vol. IT-33, pp 702 - 709, Sept. 1987

Pomerance, C., "Fast, rigorous factorisation and discrete logarithm algorithms", in

Discrete Algorithms and Complexity, ed. D. S. Johnson et. al., New York,

NY: Academic Press, 1987, pp 119 - 143.

Price, W.L., "Standards for data security - a change of direction," in Advances in

Cryptology - Proceedings of CRYPTO '87, ed. C. Pomerance, Lecture Notes in

Computer Science, No. 293, pp. 3-8, Springer-Verlag, 1988.

Quisquater, J. -J., and Couvreur, C., "Fast decipherment algorithm for RSA Public Key

Cryptosystem", Electronics Letters, Vol. 18, No. 21, October 1982, pp. 905 - 907.

page 139

Rabin, M. 0., "Digitized signatures and public key functions as intractable as

factorization", MIT Laboratory for Computer Science, MIT/LCS/TR-212, Jan. 1979

Rankine, C., 'THOMAS - A complete Single Chip RSA Device," in Advances in

Cryptology - Proceedings of CRYPTO '86, ed. A.M. Odlyzko, Lecture Notes in

Computer Science, No.263, pp. 480-487, Springer-Verlag, 1987.

Rieden, R.F., J.B. Snyder, R.W. Widman, and W.J. Barnard, "A two chip implementation

of the RSA public-key encryption algorithm," 1982 Government Microcircuit

Applications Conference, pp. 24 - 7, Orlando, FL, Nov. 1982.

Rivest, R.L., "Remarks on a Proposed Cryptanalytic Attack of the M.I.T. Public Key

Cryptosystem", Cryptologia, Vol. 2(1), pp. 62- 65, January 1978.

Rivest, R. L., "Critical remarks on 'Critical remarks on some public-key cryptosystems' by

1. Herlestam", BIT, Vol. 19, 1979, pp. 274- 275.

Rivest, R.L., "A Description of a Single-Chip Implementation of the RSA Cipher,"

Lambda, vol. 1, pp. 14-18, Fourth Quarter 1980.

Rivest, R.L., "A short report on the RSA chip," in Advances in Cryptology - Proceedings

of CRYPTO '82, ed. A.T. Sherman, p. 327, Plenum Press, 1983.

Rivest, R.L., "RSA Chips (Past/Present/Future)," in Advances in Cryptology

Proceedings of EUROCRYPT 84, ed. T. Beth, N. Cot, and I. Ingemarsson, Lecture

Notes in Computer Science, pp. 159-165, Springer-Verlag, 1985.

Rivest, R.L., A. Shamir, and L. Adleman, "A Method for Obtaining Digital Signatures and

Public Key Cryptosystems," Comm. ACM, vol. 21, pp. 120-126, Feb. 1978.

Roy, M.P., L.E. Peppard, and S.E. Tavares, "A CMOS Bit-Slice Implementation of the

RSA Public Key Encryption Algorithm," 1985 Canadian Conference on VLSI, pp.

52-56, Toronto, Nov. 1985.

Rueppel, R. A., Analysis and Design of Stream Ciphers, Springer-Verlag, Hiedelberg

and New York, 1986.

Rueppel, R. A., and Staffelbach, "Products of linear recurring sequences with maximum

complexity", IEEE Trans., on Information Theory, Vol. IT-33, Jan. 1987, pp. 124 -

131.

page 140

Scott, P.A., S.E. Tavares, and L.E. Peppard, "A Fast VLSI Multiplier for GF(2**n), IEEE

J. On selected areas in comm., vol. SAC-4, pp. 62-66, Jan. 1986.

Seberry, J., and Pieprzyk, J., "Cryptography: An Introduction to Computer Security",

Prentice Hall, 1989

Sedlak, H., "The RSA Cryptography Processor," in Advances in Cryptology -

Proceedings of EUROCRYPT 87, ed. D. Chaum and W.L. Price, Lecture Notes in

Computer Science, No. 304, pp. 95-105, Springer-Verlag, 1988.

Selim, C. A., "Digital Signatures: A tutorial survey", Computer, February 1983, pp. 15 -

24.

Serpette, B., Vuillemin, J., and Hervé, J-C., "BigNum: A Portable and Efficient Package

for Arbitrary-Precision Arithmetic", DEC Paris Research Laboratory Report, May

Shamir, A., "A polynomial time algorithm for breaking the Merkle-Hellman

cryptosystem", IEEE Transactions on Information Theory Vol. IT-30, Sept. 1984,

pp. 699 - 704.

Shand, M., Bertin, P., Vuillemin, J., "Resource tradeoffs in fast long integer multiplication

(Extended Abstract)", DEC Paris Research Laboratory Report, Jan. 1990.

Shannon, C. E., "A Mathematical Theory of Communication", Bell Syst. Tech. J., vol.27,

pp. 379-423, and pp. 623-656, July and Oct., 1949. 	 -

Shannon, C.E., "Communication Theory of Secrecy Systems," Bell Syst. Tech. J., vol.

28, pp. 656-715, Oct. 1949.

Shimizu, A., and Miyaguchi, S., "Fast Data Encipherment Algorithm FEAL", in Advances

in Cryptology - Proceedings of EUROCRYPT 87, ed. D. Chaum and W.L. Price,

Lecture Notes in Computer Science, No. 304, pp. 267-278, Springer-Verlag, 1988.

Siegenthaler, T., "Correlation immunity of nonlinear combining functions for

cryptographic applications", IEEE Transactions on Information Theory Vol. IT-30,

Oct. 1984, pp. 776 - 780.

Siegenthaler, T., "Decrypting a class of stream ciphers using ciphertext only", IEEE

Transactions on Computers, Vol. C-34, Jan. 1985, pp. 81 - 85.

page 141

Simmons, G.J., "Authentication without secrecy: A secure communications problem

uniquely solvable by asymmetric encryption techniques," IEEE EASCON '79, pp.

661 -2, Washington D.C., Oct. 1979.

Simmons, G.J., "Authentication Theory/Coding theory", in Advances in Cryptology:

Proceedings of CRYPTO 84, ed. G.R. Blakley and D. Chaum, Lecture Notes in

Computer Science, No. 196, pp. 411 - 431, Springer-Verlag, 1985.

Simmons, G.J., Editorial Comment, Proc. IEEE, vol. 76, pp. 515-518, May 1988.

Simmons, G.J., "A Survey of Information Authentication", Proc. IEEE, vol. 76, pp. 603 -

620, May 1988.

Simmons, G.J., "How to Insure that Data Acquired to Verify Treaty Compliance are

Trustworthy", Proc. IEEE, vol. 76, pp. 621 -627, May 1988.

Simmons, G.J., and Norris, J. N., "Preliminary comments on the M.I.T. Public Key

Cryptosystem", Cryptologia, Vol. 1(4), pp. 406 - 414, October 1977.

Simmons, D.E., and Tavares, S. E., "An NMOS Implementation of a Large Number

Multiplier for Data Encryption Systems," Proc. 1983 Custom Integrated Circuits

ConI, pp. 262-266, Rochester, NY, May 1983.

Smid, E. M., and Branstad, "The Data Encryption Standard: Past and Future", Proc.

IEEE, vol. 76, pp. 550-559, May 1988.

Soderstrand, M. A., Jenkins, W. K., and Jullien, G. A., editors, Residue Arithmetic:

Modern Applications in Digital Signal Processing. IEEE Press, 1986.

Stoll, C., "The Cuckoo's Egg", The Bodley Head, 1989

Taylor, F. J., "Large VLSI modulii multipliers," Proc. IEEE Symp. Circuits and Systems,

vol. Pt. 1, pp. 379 - 383, April 1980.

Tuchman, W. "Hellman presents no short-cut solutions to the DES", IEEE Spectrum,

July 1979, pp. 40 - 41.

van Tilborg, H. C. A., An Introduction to Cryptology, Kluwer Academic Publishers, 1988

Verbauwhede, I., F. Hoornaert, J. Vandewalle, and H. De Man, "Security Considerations

in the Design and Implementation of a New DES Chip," in Advances in Cryptology

page 142

- Proceedings of EUROCRYPT 87, ed. D. Chaum and W.L. Price, Lecture Notes in

Computer Science, No. 304, pp. 287-300, Springer-Verlag, 1988.

Vernam, G. S., "Cipher Printing Telegraph Systems for Secret Wire and Radio

Telegraphic Communications," Journal of American Institute of Electrical

Engineers, Vol. XLV, pplO9-115, 1926.

Wilkes, M.V., Time-Sharing Computer Systems, American Elsevier, 1972

Williams, H. C., "A Modification of the RSA Public Key Encryption Procedure", IEEE

Trans. on Information Theory, Vol. 11-26, No. 6, November 1980, pp. 726- 729.

Williams, H. C., and Schmid, B.,"Some remarks concerning the M.I.T public key

cryptosystem", B11 vol.19, pp. 525 - 538, 1979

page 143

Appendix C. Author's Publications

Tomlinson, A., "A Bit-Serial Modulo Multiplier", Electronics Letters, Vol. 25, No. 24,

pg. 1664, November 1989.

Tomlinson, A., "Modulo Multiplier to enhance encryption rates", Electronic Engineering,

Vol. 62, No. 760, April 1990, pg. 25

These articles have been photocopied and included in this thesis with permission from the lEE

and Electronic Engineering.

page 144

BIT-SERIAL MODULAR MULTIPLIER

Indexing terms: Information theory. Signal processing. Mathe-
matical techniques. Modular arithmetic, Data encryption

A bit-serial modular multiplier is presented which uses a
table look-up method to perform modular reduction. Since
the clock Frequency is independent of word length, this design
is most useful when dealing with large integers, and is
required by many modern cryptographic systems.

Introduction: One of the most interesting developments in the

field of cryptology is that of public-key encryption.' In this
scheme the cipher has two separate keys, one for encryption
and a second for decryption. The encryption key can be stored

in a public directory, allowing anyone to encrypt messages,
which can then only be deciphered by the intended recipient

who holds the decryption key. Although several public-key
algorithms have been proposed, the predominant encryption
technique in this area is the RSA' system. This algorithm is
based on the modular exponentiation of very large integers,

typically 512 bits long or more.
When this system is implemented on general-purpose

machines, the resulting data rates are disappointing in com-

parison with those obtained by conventional secret-key tech-
niques. For example, a 512-bit modular exponentiation may
take up to 30s to complete on a 68000, or 25s on a

TMS32010.4 To overcome this problem dedicated hardware is

needed to carry out modular arithmetic on large integers.

Reviews of existing h ardware b reveal that many designs

perform modulator multiplication using ripple adders for

multiplication and reduction. The carry propagation time in
such designs becomes a limiting factor as the word length
increases. One notable exception is the bit-serial design pro-

posed by Brickell 7 in 1982, which has been reported as per-

forming 512-bit modular exponentiation at a rate of 25kbit/s.

The design proposed here is also bit-serial, but differs from

Brickell's in the way modulo reduction is performed.

Multiplication procedure: Modulator multiplication is per-

formed most significant bit first according to the add-shift-

reduce procedure described by Blakley 8 in 1983, but with the

following modifications:

(I) The intermediate product is allowed to grow by to its

each cycle.

At the end of the cycle, these upper bits are reset to zero.

The residue corresponding to the two reset bits is added to

the intermediate product on the next cycle.

The benefit of this approach is that it eliminates the need to
compare the intermediate product with the modulus to

perform modulo reduction. The operation simply involves the

decoding of two bits to select the appropriate residue from a
look-up table. That the intermediate reduction may be incom-

plete. in that after resetting the upper bits the remaining
number may be greater than the modulus, is of little practical

consequence. Once the multiplication has ended, reduction is
completed by subtracting the modulus, but because the word

length has been constrained to two bits of growth, no more
than seven subtractions of the modulus will be needed to do

this.

C,

SC-1

.__,co .ct
Cc I__ 	

1_1 Cc 	Ci[2

' JSSII
CA

9:';0 1 '.4,Ir,nlipr roll

Hardware design: The basic multiplier cell to compute A • B

modulo N can be seen in Fig. 1. The multiplier B is examined

most significant bit first and the first adder adds the multi-

plicand A to the array if the bit is set. If the bit is not set then

zero is added. The second adder then adds the residue C,
selected from the look-up table, and outputs the sum and
carry to two latches. Fig. 2 shows how five basic cells are

cascaded to form a 5-bit modular multiplier. Three registers

are needed to store the residues, and an adder and accumula-
tor to add the sums and carries at the end of the multiplica-

tion and subtract the modulus N to complete the reduction.

Once the sums and carries stored in the array have been
added, the next multiplication can proceed in parallel with the

subtractions.

C4 A 4

Cc Cc Cc 	Cc Cc Cc Cc Cc Cc 	Cc

Cc Cc Cc Cc co Cc co Cc Cc co

C SC SC SC SC Sc Sc SC Sc Sc

Fig. 2 Five-bit multiplier array

Performance estimation: Since the final subtractions can be

carried out in parallel with the next multiplication, the time
taken to complete an N-bit modulator multiply is simply N

clock cycles. The bit-serial nature of this design means that
the clock frequency will be independent of the word length
and limited only by the delay through a single cell. Thus the

time for an N-bit exponentiation using the square and multi-
ply algorithm," with concurrent squaring and multiplying, will

be N 2 & where ô is the delay through one cell. Assuming a

delay of roughly 40 n through each cell, the time for a 512-bit

exponentiation will be 10 ms and the data rate SOkbit,s.
A modular arithmetic ASIC is currently being designed

using this technique, and prototypes are expected to be tested

within the next few months.

Summary: An architecture for bit-serial modulator multiplica-
tion has been presented which uses a look-up table to perform
modulo reduction. It is estimated that this structure can
achieve data rates of up to 50kbit.'s for 512-hit modular expo-
nentiation. and a semicustom IC is currently being fabricated

to test the design.

A. TOMLINSON 	
9th Octoher I9'9

Department of Electrical Enj.iineering
University of Edinburgh
Kings Buildings, Edinburgh E119 3JZ. United Kingdom

References

DIFFIE, w.. and HELLMAS. M. .: 'New directions in cryptography.

IEEE Trans.. 1976. IT-22. pp. 644-654
2 RIVEST. R. L., SHAMIR. A.. and ADLEMAN. L.: 'A method for obtaining

digital signatures and public key cryptosystems. Comrnun. ..4C.l.

1978, 21. pp. 120-126
3 RANKJNF_ c.: 'THOMAS—a complete single chip RSA device'. in

oDLyzKo. A. M. (Ed.l: 'Advances in cryptology—Proc. of Crypto

'86' (Lecture Notes in Comput. Science. Springer-Verlag. 1987.

263). pp. 480-487
4 BARRETT. p.: 'Implementing the Rivest. Shamir and Adleman

public key encryption algorithm on a standard digital signal pro-

cessor'. Ibid.. 1987. pp. 311-323

5 RiVEST. R. L.: 'RSA chips past/presentfuturel'. in BETH. T.. COT. S..

and 1NGEMARSSON. i: (Eds.): 'Advances in cryptology—Proc.

Eurocrypt 84' (Lecture Notes in Comput. Sci.. Springer-Verlag.

1985). pp. 159-165
6 DIFFIE. w.: 'The first ten years of public-ke y cryptography'. PrOC.

IEEE, 1988. 76, pp. 560477
7 BRICKELL F. F.: 'A fast modular multiplication algorithm with

application to two key crytography'. in SHERMAN, A. T. (Ed.):

'Advances in cryptology—Proc. Crypto '82' (Plenum Press. 1983).

pp. 51-60
8 BLAKI-EY, G. R.: 'A computer algorithm for calculating the product

AB modulo M'. IEEE Trans.. 1983. C-32, pp. 497-500

9 KNUTH, D. E.: 'Semi-numerical algorithms', in 'The art of computer

programming. vol. 2. 2nd edn.' (Addison-Wesley. Reading. MA.

1981), pp. 441-442

Modulo multiplier to enhance encryption rates
he use of public key encryp-
n to encode digital communi-
tionS has advantages in
rrns of providing data secu-
ty. The RSA technique [1) is
equently used but has the
sadvantage that it relies on
,odular exponentiation, and
ence multiplication, of large
tegers of the order of 512 bits.
Although dedicated RSA

ardware is available, the en-
ryption rates from these imple-
tientationS are of the order of
5-2Okbits/S. Alan Tomlinson at
e University of Edinburgh has

jeveloped an improved algo-
ithm for bit-serial modulo multi-
alication, using a look-up table
o perform partial modulo
'eduction, which it is claimed
ias the potential to improve on
nese rates.
Blakley [2] has explained

hat for modulo multiplication it
s possible to reduce the partial
Droducls as they are formed.
fhrs has the advantage of
avoiding word growth and the
tnal time-consuming division
process to find the residue. It
does however require large
kook-up tables or. the use of
division to determine the resi-
dues at the partial product
stage

Tomlinsons refinement is to
- 3in word growth at the
;.ai product stage to two bits

at most. Instead of completely
reducing the partial product.

Used in -; -
• next cycle•4 Latch;;

-.--.--- rn- ..
Carry CC
to 1+2 --::

Latch 	,.

y.

Carry -&'1

i+1

Figure 1: Single bit multiplier cell

the residues implied by the
upper two overflow bits are
added at the next cycle of bit-
serial multiplication.

Only three possible residues
are implied by the upper bits
and this allows them to be
loaded into a small look-up
table at the time of modulo
selection. -

The fact that the partial pro-
ducts are not completely re-
duced is not of practical signi-
ficance What is of significance
is that the result is limited to the
length of the multiply array and
an n-bit modulo multiply will
return an n-bit result in n-cycles.

The basic cell to compute the
i-lh bit of AB modulo N is
shown in figure 1. The first
adder conditionally adds its
position bit of the multiplicand
A. The second adder then adds
the position bit of the residue C

- 1

-.

- -: 	CA.Carry

Carry

:

-:jsum 	ned in-
previous cycle

selected by the overflow bits
from the previous cycle. The
outputs are sent to sum and
carry latches.

These results are used at the
+1 and i+2 bit multiplier cells
respectively in the next cycle
(the next MSB of the multiplier).

Such cells can be cascaded
to form an n-bit multiplier array
where all cells operate in paral-
lel, left shifting partial results at
each cycle.

Figure 2 shows an IC archi-
tecture which has the multiplier
array at its core.

The hardware description
language ELLA was used to
model both a single system and
a cascade of four ICs with this
architecture. Subsequently a
size was selected for the regis-
ter and multiplier array length
(32bit) and a semi-custom de-
vice designed and fabricated

using SOLO 1200, the ASIC
design toot from ES2. The result
was a 64,000 transistor IC rn
plemented in 2tim CMOS tech-
nology and measuring 8.77mm
x 8.38mm.

To date the IC has been
tested at up to 5MHz which
should, where devices are cas-
caded, yield 5Mbit/s through-
put for multiplication or 5/n
Mbit/s for n-bit exponentiation.
This translates to 10kbits/s for
512bit exponentiation. If the
frequency of operation can be
increased to 25MHz then
50kbits/s transmission rates
could be obtained. Also a full
custom approach to IC design
is expected to produce a more
efficient layout making 64-or
128bit register and array
lengths viable.

For further information contact Mr A
Tomlinson. Department of Elec-
trical Engineering. University of
Edinburgh. The Kings Buildings.
Mayfield Road. Edinburgh. EH9 3JL
Tel 031 668 1550 ext. 219

References

[1] Rivest. Shamir. and Acleman
A method for obtaining digital
signatures and public key crypto-
systems. Commun ACM. 1978.21
ppl2O 126
[2) Blakiey A computer algorithm
for calculating the product AB
modulo IA'. IEEE Trans.. 1983. C32.
pp497.500

Serial

	

Multiplier 	 ay link out 	 pIier

Overt low/
address

br residue 	mux table

I'
_ I
mux Serial

links in

B register —j PISO

SIPO
	

yi.iiiir = I

Residue C
Residue C2 N register
Residue C,

Ripple adder
Serial

links out
Accumulator

L-9.2 	I

Figure 2: 'Aodu!o multiplier IC architecture

Electronic Engineering April 1990 	 25

Appendix D. Index

A 	 digital signatures 38, 39, 41
access control 39 	 discrete exponential 40,46
additive stream cipher 32, 36 	 discrete logarithms 40, 46, 51
asynchronous clocking 58 	 drive capability 96
authenticity 18, 38, 44, 48
autokey cipher 36 	 E

ELLA 80
B
Berlekamp- Massey algorithm 33
bit serial 59, 72
block cipher 22
buffering 96

C
carry propagation 57, 59, 67, 68
carry save 57, 64, 67
cascade cipher 25
CCEP 31
CCITT 52
Chinese Remainder Theorem 53, 54,

55,56
cipher block chain 37
cipher feedback 22, 37
classical cryptosystem 4, 38
cleartext4
combining functions 34
complexity theory 42
confusion 18
correlation attack 34
correlation immunity 34
cryptanalysis 4, 5
cryptography 4
Cryptology 4

encryption 4
equivocation function 8
error correcting codes 43
error detecting codes 32
Euler's theorem 47
Euler's totient function 46

F
factoring 46, 50, 51
fanout 103
Fermat numbers 51, 53, 60, 61
Fermat's theorem 48

G
Goppa codes 43

H
homophonic substitution 15

impersonation attack 19
improving secrecy 13
information theory 6
instruction set 97
involution 25, 29
ISO 52
iteration attack 50

D
data compression 13
decryption 4
DES 11, 15, 17, 18, 22, 35, 37,44,57,
DES key length 23, 30
design constraints 78
device simulation 100
device synthesis 101
diffusion 17, 32, 37
digital signal processing 60

K
Kerckchoff 5
key distribution 39, 41

78 key exchange 40
knapsack function 41

L
latch design 83
LFSR33
linear complexity 33, 34

page 147

login protocols 39
took ahead algorithms 60
look up tables 60, 61
LUCIFER 22,23

M
magnitude comparison 67, 68
modular exponentiation 52, 54, 59, 66
modular multiplication 57, 58, 59, 66,

68
modular reduction 58, 61, 67
mutual information 20

N
NBS 22, 31
NFS algorithm 51
NSA 23, 31

0
one way functions 39,40
one-time pad 7
OSS scheme 44
output feedback 35

P
partial products 57, 58, 59, 68
partial reduction 68, 86
perfect authenticity 21
perfect secrecy 6, 32
pin count 78
pin identification 107
pipelining 80
plaintext 4
plaintext padding 13
practical security 7, 11
probabilistic cryptography 13
probability of deception 20
product cipher 18, 24
programmable active memory 64
public key cryptography 38, 46, 52, 66
public key cryptosystem 40

R
Rabin 44
race conditions 84
random sequences 33
redundancy 9, 13, 14

routing 96
RSA 11, 44, 46, 52, 57, 65, 76, 78
RSA hardware 57
RSA key length 78
RSA software 52,56
running key 32
running key generator 32

S
safe primes 50
S-boxes 23, 30
scan path design 84
self synchronous stream ciphers 36
Shannon 6
signatures 52
silicon layout 105
Simmons 18
SOLO 120083
statistical independence 6,32
stream cipher 22, 31
substitution attack 19
substitution cipher 24, 29
synchronous stream cipher 32
systolic arrays 64

I
test vectors 110,116
testability 78
theoretical security 7
threshold schemes 49
transposition cipher 24, 29
trap door functions 39

U
unicity distance 9, 12, 13, 17

V
Vernam Cipher 6
Vigenere 36

W
wire lengths 104
word growth 57, 68
work characteristic 11

Z
zero knowledge proofs 52

page 148

