
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Some Notes on Code-Based Cryptography

Löndahl, Carl

2015

Link to publication

Citation for published version (APA):
Löndahl, C. (2015). Some Notes on Code-Based Cryptography.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/6a9d5d9d-4e4a-45ae-93d5-7071bc57180d

Some Notes on
Code-Based

Cryptography

Carl Löndahl

Doctoral Dissertation
Information Theory

Lund, December 2014

Carl Löndahl
Department of Electrical and Information Technology
Information Theory
Lund University
P.O. Box 118, 221 00 Lund, Sweden

Series of licentiate and doctoral dissertations
ISSN 1654-790X; No. 67
ISBN 978-91-7623-119-7

c© 2014 Carl Löndahl
Typeset in Palatino and Helvetica using LATEX 2ε.
Printed in Sweden by Tryckeriet i E-huset, Lund University, Lund.

No part of this dissertation may be reproduced or transmitted in any form or
by any means, electronically or mechanical, including photocopy, recording,
or any information storage and retrieval system, without written permission
from the author.

Abstract

This thesis presents new cryptanalytic results in several areas of coding-
based cryptography. In addition, we also investigate the possibility of
using convolutional codes in code-based public-key cryptography.

The first algorithm that we present is an information-set decoding algo-
rithm, aiming towards the problem of decoding random linear codes. We
apply the generalized birthday technique to information-set decoding, im-
proving the computational complexity over previous approaches.

Next, we present a new version of the McEliece public-key cryptosystem
based on convolutional codes. The original construction uses Goppa codes,
which is an algebraic code family admitting a well-defined code structure.
In the two constructions proposed, large parts of randomly generated par-
ity checks are used. By increasing the entropy of the generator matrix, this
presumably makes structured attacks more difficult.

Following this, we analyze a McEliece variant based on quasi-cylic MDPC
codes. We show that when the underlying code construction has an even di-
mension, the system is susceptible to, what we call, a squaring attack. Our
results show that the new squaring attack allows for great complexity im-
provements over previous attacks on this particular McEliece construction.

Then, we introduce two new techniques for finding low-weight polynomial
multiples. Firstly, we propose a general technique based on a reduction to
the minimum-distance problem in coding, which increases the multiplicity
of the low-weight codeword by extending the code. We use this algorithm
to break some of the instances used by the TCHo cryptosystem. Secondly,
we propose an algorithm for finding weight-4 polynomials. By using the
generalized birthday technique in conjunction with increasing the multiplicity
of the low-weight polynomial multiple, we obtain a much better complexity

than previously known algorithms.
Lastly, two new algorithms for the learning parities with noise (LPN) prob-

lem are proposed. The first one is a general algorithm, applicable to any
instance of LPN. The algorithm performs favorably compared to previously
known algorithms, breaking the 80-bit security of the widely used p512, 1

8 q

instance. The second one focuses on LPN instances over a polynomial ring,
when the generator polynomial is reducible. Using the algorithm, we break
an 80-bit security instance of the Lapin cryptosystem.

Contents

Contents v

Preface ix

Acknowledgments xi

1 Introduction 1
1.1 Outline . 4

1.2 Notation . 5

1.3 Probability Theory and Combinatorics 7

1.4 Information Theory . 10

1.5 Hypothesis Testing . 14
1.5.1 The Walsh Transform . 17

1.6 Algorithms and Complexity Theory 18

1.7 The Birthday Paradox and Collision Search 21
1.7.1 Searching for collisions in vectorspaces 24

1.8 Cryptography and Cryptanalysis 28
1.8.1 One-Way Functions . 29
1.8.2 Symmetric Cryptography 30
1.8.3 Public-Key Cryptography 31
1.8.4 Attack Models and Settings 32
1.8.5 Distinguishing Attacks . 35

1.9 Summary . 36

2 Linear Codes 37
2.1 General . 38

2.2 Channel Error Models . 40

2.3 Types of Decoding . 41

2.4 Random-Coding Bounds and Covering Codes 43

2.5 Computational Problems in Coding 45

2.6 Efficiently Decodable Families 47
2.6.1 Convolutional codes . 47
2.6.2 Cyclic codes . 49
2.6.3 Hamming Codes . 49
2.6.4 LDPC and MDPC Codes 50

2.7 Summary . 51

3 Information-Set Decoding 53
3.1 Plain ISD and Lee-Brickell’s Algorithm 53

3.2 Stern’s Algorithm . 56

3.3 A New Algorithm . 60
3.3.1 Explaining the Ideas Behind the Algorithm 62
3.3.2 Complexity Analysis . 63
3.3.3 Parameters and Security 66

3.4 Summary . 68

4 Code-based cryptography 69
4.1 McEliece Cryptosystem . 69

4.1.1 The Original McEliece Construction 71

4.2 Attacks in Code-Based Cryptography 72

4.3 New Variants of McEliece Cryptosystem 72
4.3.1 McEliece Based on Convolutional Codes 73
4.3.2 McEliece Based on MDPC codes 80

4.4 The TCHo cipher . 82
4.4.1 Proposed parameters . 84

4.5 Summary . 84

5 A Squaring Attack on QC-MDPC-based McEliece 85
5.1 A Key-Recovery Attack . 86

5.1.1 Polynomial Square Roots 87

5.1.2 The Attack . 90

5.2 A Message-Recovery Attack . 93

5.3 Analysis . 95

5.4 Results . 98

5.5 Summary . 101

6 Searching for Low-Weight Polynomial Multiples 103
6.1 The Low-Weight Polynomial Multiple Problem 104

6.1.1 Time–Memory Trade-off Approach 105
6.1.2 Finding Minimum-Weight Codewords in a Linear Code . 106

6.2 A New Algorithm Solving LWPM 107
6.2.1 Complexity Analysis . 110
6.2.2 Simulation Results . 113
6.2.3 The Attack . 114

6.3 A New Algorithm for Finding a Weight-4 Multiple 115
6.3.1 Complexity analysis . 117
6.3.2 Simulation results . 118

6.4 Attacks on QC-MDPC McEliece in relation to LWPM 118

6.5 Summary . 121

7 Learning Parity With Noise 123
7.1 The LPN Problem . 125

7.2 The BKW Algorithm . 126
7.2.1 LF1 and LF2 variants . 128

7.3 A New Algorithm . 130
7.3.1 A Toy Example . 134

7.4 Algorithm Description . 137
7.4.1 Gaussian Elimination . 137
7.4.2 Merging columns . 138
7.4.3 Partial Secret Guessing . 139
7.4.4 Covering-Coding Method 140
7.4.5 Subspace Hypothesis Testing 141

7.5 Analysis . 144

7.6 Results . 146
7.6.1 Lapin with an Irreducible Polynomial 148

7.7 More on the Covering-Coding Method 148

7.8 Summary . 149

8 LPN over a Polynomial Ring 151
8.1 The Ring-LPN Problem . 152

8.1.1 Formal Definition . 153

8.2 A New Algorithm for Ring-LPN with Reducible Polynomial . . 154
8.2.1 A Low-Weight Code from the CRT Map 154
8.2.2 Using Low-Weight Relations to Build a Distinguisher . . 155
8.2.3 Recovering the Secret Polynomial 157

8.3 Lapin Authentication Protocol 160

8.4 The Improved Version for the Proposed Instance of Lapin . . . 161

8.5 Complexity Analysis . 162

8.6 Results . 163

8.7 Summary . 164

9 Concluding Remarks 167

References 169

Preface

This thesis contains results from research performed by the author at the
Department of Electrical and Information Technology at Lund Univer-
sity. Parts of the material have been presented at international confer-

ences. Publications and reports have appeared as follows.

‚ T. Johansson, C. Löndahl, »An Improvement to Stern’s Algorithm,« Internal
report, September 2011.

‚ C. Löndahl, T. Johansson, »A new version of McEliece PKC based on convo-
lutional codes,« in T. W. Chim and T. H. Yuen, editors, Information and Commu-
nications Security, volume 7618 of Lecture Notes in Computer Science, pp 461–470.
Springer-Verlag, 2012.

‚ T. Johansson, C. Löndahl, »A new algorithm for finding low-weight polyno-
mial multiples and its application to TCHo,« in L. Budaghyan, T. Helleseth,
M. G. Parker, editors, Workshop on Coding and Cryptography. Preproceedings,
2013.

‚ C. Löndahl, T. Johansson, »Improved Algorithms for Finding Low-Weight
Polynomial Multiples in F2rxs and Some Cryptographic Applications,« in De-
sign, Codes and Cryptography, volume 73 issue 2, pp 625–640. Kluwer Academic
Publishers, 2013.

‚ C. Löndahl, T. Johansson, M. Koochak Shooshtari, M. Ahmadian-Attari,
M. Reza Aref, »Squaring Attacks on McEliece Public-Key Cryptosystems Us-
ing Quasi-Cyclic Codes of Even Dimension,« submitted to Design, Codes and
Cryptography.

‚ Q. Guo, T. Johansson, C. Löndahl, »Solving LPN using Covering Codes:,«
in T. W. Chim and T. H. Yuen, editors, Asiacrypt 2014, Taiwan, China, volume
8873 of Lecture Notes in Computer Science, pages 1–20. Springer-Verlag, 2014.

ix

‚ Q. Guo, T. Johansson, C. Löndahl, »A New Algorithm for Solving Ring-LPN
with a Reducible Polynomial,«, submitted to IEEE Transactions on Information
Theory.

The paper marked with : was selected for the best-paper award. During my
time as a Ph.D. student, I have also co-authored the following publications, which
are not included in this dissertation.

‚ M. Ågren, C. Löndahl, M. Hell, T. Johansson, »A Survey on Fast Correla-
tion Attacks,« in C. Carlet, editor, Cryptography and Communications,, volume 4
issue 3-4, pp 173–202. Springer-Verlag, 2012.

‚ M. Ågren, M. Hell, T. Johansson, C. Löndahl, »Improved message passing
techniques in fast correlation attacks on stream ciphers,« in Proceedings of 7th
International Symposium on Turbo Codes & Iterative Information Processing, pp.
260-264, 2012.

The research work included in this dissertation is supported in part by the Swedish
Research Council through Grant No. 621-202-4259.

x

Acknowledgments

The completion of this thesis has been a long journey, with support from many
contributors. First and foremost, my deepest gratitude goes to my supervisor
Thomas Johansson. Without your profound knowledge and countless sharp
ideas, this work would not have been possible. You have constantly encour-
aged me and lead my own ideas and sometimes scattered thoughts in the
right direction.

My colleagues and friends at the department, and in particular the mem-
bers of the crypto group, have contributed greatly to my personal and pro-
fessional time at Lund University. Especially, I want to thank Martin Hell,
Paul Stankovski and Martin Ågren for their support in so many ways; always
happy to answer more or less clever questions.

I want to thank my co-author Qian Guo. It has been a pleasure working
with you during the final year of my Ph.D. studies. I also want to thank
room mate Christopher Jämthagen for many interesting discussions, both in
the office and on the badminton court. I wish to thank all who contributed
by proofreading my thesis. My thanks also go to Fredrik Rusek, with whom I
had many enlightening discussions. I also want to thank the people in the fika
and Friday-lunch group for many laughs and the occasional sugar rushes.

Last, but not least, I want to express my sincere gratitude to my family –
my mom Kerstin, my dad Kenneth and my sister Malin, for your patience
and for greatly supporting me during my entire life. Most importantly, my
deepest thanks goes to my love Stina and the little person soon to see the light
of day.

Carl
Lund, December 2014

xi

1
Introduction

Just as the technology of printing altered and reduced the power
of medieval guilds and the social power structure, so too will
cryptologic methods fundamentally alter the nature of corpora-
tions and of government interference in economic transactions.
– Timothy C. May, Crypto Anarchist Manifesto

S ome secrets need to be kept. Ever since the cradle of civilization and
the invention of writing, mankind has tried to hide information from
prying eyes. Historical evidence indicates that cryptographic schemes

were used by many early civilizations1, such as the Egyptians, Hebrews and
Greeks. During the Medieval era, quite sophisticated ciphers were discovered,
but it would take until the First and Second World Wars for ciphers to escalate
beyond ad-hoc approaches.

Cryptology is the mathematical science of ciphers, and incidentally, its ety-
mology is the greek kryptós logia which means the »study of secrets«. Cryp-
tology is an umbrella term for its two subfields cryptography and cryptanalysis.
These subfields relate to each other much like a cat-and-mouse game; while
cryptography is the art of constructing algorithms and protocols, cryptanaly-
sis takes the adversarial viewpoint of cryptology in breaking or analyzing the
security of the cryptographic constructions.

Prior to the dawn of the digital revolution, cryptography was basically
used exclusively to ensure secrecy when communicating secret information
between two parties over a non-secure channel, such as a radio link or a
phone line. But during the modern era of computers and its vast flows of

1Probably most well-known, but maybe not most significant among the ancient ci-
phers, is the Roman cipher commonly called the »Caesar cipher«.

1

2 Introduction

information, cryptography evolved rapidly and became something amazing.
On the one hand, it became a necessity for data security, authentication, digi-
tal signatures etc. – something electronic commerce, banking and credit cards
could not exist without. On the other hand, cryptography has become a tool
in politics. Anonymization by strong cryptography allows journalists and
whistleblowers to keep their integrity. It also has given birth to movements
such as crypto anarchism and crypto capitalism, that employ cryptography to
protect privacy and political freedom.

One of the pillars of cryptography is unarguably Kerckhoffs’s principle, adopted
by most cryptographers. Kerckhoffs’s principle essentially states that the se-
curity of a cryptographic construction must depend only on the secret key.
Any remaining part of the construction should be assumed to be known to a
potential adversary.

Roughly speaking, the aim of a cryptographic encryption scheme is to ren-
der a message unintelligible in some way such that the resulting ciphertext
reveals little or no information about the content to an adversary, while still
enabling the receiver to reverse the procedure in order to obtain the original
message. These two procedures are called encryption and decryption.

Message Encryption Ciphertext

Key

Decryption Message

Key

Figure 1.1: A typical model of encryption and decryption.

Encryption schemes (and cryptography as a whole) can be divided into
symmetric and asymmetric (or public-key). Cryptography should not be con-
fused with steganography, which is a term for hiding information rather than
obfuscating it.

Symmetric encryption allows for two parties to communicate securely, but
they need to agree beforehand upon a common secret key. The same key
is used for encryption and decryption. The first modern asymmetric cryp-
tographic scheme was introduced in the groundbreaking work of Diffie and
Hellman [DH76], in which the authors vaticinated the needs of a world-wide
spanning network which today is the Internet, a place where communication
between strangers occurs constantly. This raised a rather severe problem with
symmetric cryptography – how to securely exchange keys. The exchange has
historically been done by a trusted courier. In a network interconnecting a
whole planet and beyond, this is not a practical solution.

Public-key encryption is advantageous over its symmetric counterpart in

3

the sense that it allows two separate and independent parties to securely com-
municate without any shared information. One might argue that to decrypt
a message, you need a key; to encrypt a message, you also need that key; if
not, the ciphertext is independent of the key and thus, anyone can decrypt.
This argument has an implicit and false assumption – the keys need not to
be the same. Indeed, this is reason for the choice of the term asymmetric.
The authors of [DH76] suggested to base the cryptosystem upon a mathe-
matical procedure, in which knowing the procedure does not imply knowing
how to reverse the procedure (find the inverse). The paper by Diffie and
Hellman suggested a cryptosystem, the DH cryptosystem, based on a mathe-
matical problem called the discrete logarithm problem, which initiated a hunt
for problems of similar nature. Shortly after, several different problems were
suggested, thereamong the knapsack problem.

The knapsack problem is easy to describe, without involving in-depth math-
ematics. Think of having collection of various items, where the weight of each
item is known. Suppose that you are told it is possible to put some of the
items in the knapsack such that the knapsack has a certain weight. The prob-
lem consists of finding which items’ weights together add up to that certain
weight. Assume that the collection of items can be used to describe a message,
and that the collection is known to everyone. Given a message, everyone can
find the weight. However, given the weight, it is hard to find the message.
To conclude, it is easy perform the mathematical procedure, but inverting the
procedure is hard. This is what we call a one-way function.

One-way functions can be used to construct public-key cryptosystems, if
they can be equipped with a trapdoor. Knowing the trapdoor, the mathemat-
ical procedure is easy to invert. A trapdoor could be a pattern which can
be exploited to find the solution without trying all possibilities. Without go-
ing into the details, Merkle-Hellman cryptosystem [MH78] is a public-key
cryptosystem constructed from the knapsack problem, but was broken and
is therefore not used today. At the same time, Rivest, Shamir and Adleman
created the RSA cryptosystem [RSA78], which still remains unbroken and is
one of the most used public-key cryptosystems today.

The RSA cryptosystem is based on multiplication and factoring; multiply-
ing numbers is easy – even large ones, but factoring a number is very hard.
This is the short story of RSA. In the middle of the 90’s, Shor [Sho94] formu-
lated an algorithm which has a remarkable trait; it can factor integers very
efficiently. There is only one drawback: to run it, one needs a quantum com-
puter2. If the quantum revolution in computing had not yet begun – then
Shor’s paper certainly ignited the spark.

2The algorithm can be simulated on a classical computer, but then with no advantage
over classical factoring algorithms.

4 Introduction

Quantum computers, introduced by Manin [Man80] and Feynman [Fey82]
in the early 80’s, exploit quantum-mechanics, which, roughly speaking, allow
the quantum computers to perform simultaneous computations on a massive
scale. With a quantum computer, cryptosystems based on problems from
number theory, including discrete logarithm, are rendered insecure. The se-
ries of overwhelming discoveries lead researchers into a new direction: post-
quantum cryptography – the pursue to create cryptography resistant to quan-
tum attacks. In fact, a cryptosystem from the same era as the Diffie-Hellman
and RSA cryposystems was already known to be post-quantum secure (or
rather, »not post-quantum insecure«). The McEliece cryptosystem, introduced
in [McE78] by McEliece had, mostly because of its comparably inefficient key
representation, long been left in the dark, but now gained interest in the re-
search community. In contrast to RSA and DH, McEliece is based on a funda-
mentally different problem, which has not yet been proven to be solvable by
a quantum computer.

The McEliece cryptosystem has given birth to a field of its own, called code-
based cryptography. This field is the focus of attention for this thesis.

1.1 OUTLINE

The main idea of the subsequent sections of this chapter is to give a broad
picture of the mathematics and different concepts used in this thesis. It does
not contain the full amount of details wanted from a textbook, so we will
attempt to provide the reader with sufficient references for further reading
whenever possible.

We begin with the global notation, then we proceed with some brief notes
on probability theory and combinatorics. This is followed by information-
theory basics and hypothesis testing. Then, we discuss algorithms and com-
plexity theory and finally conclude with the birthday paradox and its algo-
rithmic implications.

In Chapter 2, we introduce the fundamentals of coding theory and linear
codes. Then, we discuss different types of decoding, theoretical results in
coding and the computational problems that arise when decoding information
in the presence of noise. The remainder of the chapter presents some typical
families of codes used in this thesis.

Chapter 3 contains a survey of different information-set decoding algo-
rithms, used to solve problems in decoding. Then, we present one of the
contributions of this thesis, which is a new information-set decoding algo-
rithm. We show that the algorithm is more efficient than the state-of-the-art
algorithms at the time.

In Chapter 4, we introduce code-based cryptography and the McEliece

1.2. Notation 5

cryptosystem. We also propose a new variant of McEliece based on convo-
lutional codes. In response to an attack on the proposed cryptosystem, we
give new updated parameters for an 80-bit security level.

Chapter 5 introduces a new cryptanalytic technique called a squaring at-
tack. We use it to attack a fairly new variant of McEliece based on even-
dimension QC-MDPC codes. The new technique significantly improves attack
complexity over other known approaches.

Chapter 6 provides two new algorithms for finding low-weight polyno-
mial multiples. The first is a very general algorithm, applicable to any target
weight. The second focuses on weight-4 polynomial multiples, having appli-
cations in cryptanalysis such as correlation attacks on stream ciphers.

Chapters 7 and 8 are dedicated to the LPN-problem. In the first chapter,
we give a new state-of-the-art algorithm based on covering codes. In the last
chapter, we attack the Ring-LPN problem instances used in Lapin. Although
it is applied on a specific cryptosystem, it has theoretical ramifications – in
particular, we give new design criteria for Ring-LPN instances with a reducible
polynomial.

1.2 NOTATION

Throughout this thesis, we will use the notation Fq for a finite field with
q elements, R for the set of real numbers, Z “ t. . . ,´2,´1, 0, 1, 2, . . . u for
the set of integers and N “ t0, 1, 2, . . . u for the natural numbers. Unless
stated otherwise, all vectors are row vectors and given in bold face letters, i.e.,
x P F1ˆk

q for some integer k ą 0. Indices start from 1 (unless there is a reason
not to), i.e.,

x “
`

x1 x2 ¨ ¨ ¨ xk
˘

.

For simplicity, we write x P Fk
q. Sequences over a finite field are treated as

vectors in a vector space, i.e.,

pxiqiPt1,2,...,ku “ x P Fk
2.

if xi P F2 for i P t1, 2, . . . , ku. The canonical inner product (or scalar product)
between two vectors x, y P Fk

q is denoted

xx, yy P Fq.

Matrices A P Fkˆn
q are given in the capital bold face letters. The transpose

of x P F1ˆk
q is xT P Fkˆ1

q , and equivalently for A the transpose is AT P Fnˆk
q .

Horizontal concatenation of two vectors x P Fk
q and y P Fl

q will be denoted

x}y P Fk`l
q ,

6 Introduction

while for two matrices A P Fkˆn
q and B P Flˆn

q we use the notation

`

A B
˘

P F
pk`lqˆn
q .

A matrix A P Fkˆn
q is a row vector where each entry is a column vector, i.e.,

A “
`

aT
1 aT

2 ¨ ¨ ¨ aT
n
˘

.

When referring to the ith column vector of a matrix A, we write ai. Equiva-
lently, if we refer to the ith row vector, we write Row pA, iq.

We denote linear subspaces as U Ă Fn
q . The dual (orthogonal subspace) of

U is denoted
UK “ tx P Fn

q : xx, yy “ 0, y P Uu.

For a random variable X having a distribution D, we write X „ D. If x is a
variable taking a value according to a distribution D, we write

x $
Ð D.

If S is a set, then the same notation as above

x $
Ð S

means that the value of x is drawn uniformly at random from S .
Note: We will abuse the functional names f and g extensively, so we advise

the reader to think of it as a function with characteristics connected to the
current context.

ASYMPTOTIC NOTATION

Frequently, we will use asymptotic notation. Below is a list of the ones occur-
ring in this thesis;

f pnq P O pgpnqq | f pnq| ď k ¨ gpnq for some positive k,

f pnq P Ω pgpnqq | f pnq| ě k ¨ gpnq for some positive k,

f pnq P Θ pgpnqq k ¨ gpnq ď | f pnq| ď l ¨ gpnq for some positive k, l,

f pnq P o pgpnqq | f pnq| ď k ¨ gpnq for every positive k,

f pnq „ gpnq f pnq{gpnq Ñ 1 when n Ñ8.

1.3. Probability Theory and Combinatorics 7

1.3 PROBABILITY THEORY AND COMBINATORICS

Randomness is a fundamental characteristic of the physical world and is a
necessity for virtually all cryptography. Random numbers are a natural com-
ponent in generation of cryptographic keys, and often also play a key role
in the cryptographic algorithm as a whole. Alas, randomness is incredibly
difficult to embody mathematically, and generation of truly random numbers
must rely on unpredictable processes in the physical world. In many theoreti-
cal models in cryptography, constructions are given access to true randomness
(random oracles). In practice, such assumptions about randomness are inher-
ently false – many cryptographic schemes have been broken due to lack of
randomness3.

This section introduces some basic concepts on probability theory and re-
lated facts that constitute useful tools in the area of cryptographic construc-
tion and cryptanalysis. Although we desire to be as thorough as possible,
large parts of the theory will be only be implicitly defined. For more details,
see for instance [ASE91].

Given a set of symbols X , called the alphabet, a (discrete) random variable X
is defined from its probability mass function P pX “ xq. We say that the prob-
ability mass function P pX “ xq determines the probability distribution of X.
Moreover, we say that two random variables X and Y are pair-wise independent
if and only if

P pX “ x, Y “ yq “ P pX “ xq ¨P pY “ yq (1.1)

for all values of x and y. The expectation of a variable X with alphabet X is

E pXq “
ÿ

xPX
x ¨P pX “ xq , (1.2)

provided that this sum converges absolutely. The variance of X is defined as

Var pXq “ E
´

X2
¯

´E pXq2 . (1.3)

The expectation operator E p¨q is linear in the sense that for any two random
variables X and Y and constants α, β, γ P R, it holds that

E pα ¨ X` β ¨Y` γq “ α ¨E pXq ` β ¨E pYq ` γ. (1.4)

Regarding the expectation operator, we will succumb to some abuse of nota-
tion. If S is a random set or L is a random list, we consider its cardinality

3Or as Donald Knuth [Knu98] phrases it: random numbers should not be generated with
a method chosen at random.

8 Introduction

or length a random variable. Expected cardinality and expected length is
denoted E p|S |q and E p|L|q, respectively.

Returning to the distribution of a random variable X, a special and very
simple kind of distribution called the Bernoulli distribution will be of great
interest to us.

Definition 1.1 (Bernoulli distribution) Let ρ P r0, 1s and X be a binary dis-
crete random variable with probability mass function

P pX “ xq “
"

1´ ρ if x “ 0,
ρ if x “ 1,

(1.5)

then we say that X follows the Bernoulli distribution Berρ.

Commonly, Bernoulli trials are used when modeling a toss of a coin, which
typically has only two outcomes: heads or tails. For an unbiased (or symmet-
ric) coin we have ρ “ 1

2 . If the coin is asymmetric and ρ “ 1
2 p1˘ εq for some

real-valued number ε P r0, 1s, we say that it has bias ε (or is ε-biased).
Many of the results presented in this thesis rely on probabilistic arguments.

The following bounds are very common in probability analysis. Markov’s in-
equality is a useful bound that holds for any probability distribution.

Theorem 1.1 (Markov’s inequality) For any random variable X and a ą 0 it
holds that

P p|X| ě aq ď
E pXq

a
. (1.6)

Another bound, Chebyshev’s inequality bounds the probability that a random
variables deviates from its mean.

Theorem 1.2 (Chebyshev’s inequality) For any random variable X and a ą 0
it holds that

P p|X´E pXq | ě aq ď
Var pXq

a2 . (1.7)

Another incredibly useful result from the mathematical folklore is the piling-
up lemma. We state the lemma as follows.

Lemma 1.3 (Piling-up lemma) Let X1, X2, ..., Xn be a set of n independent
binary random variables, where P pXi “ 0q “ 1

2 ¨ p1` εiq for 0 ă i ď n and
εi P r0, 1s. Then,

P pX1 ` X2 ` ¨ ¨ ¨ ` Xn “ 0q “
1
2
¨

˜

1`
n
ź

i“1

εi

¸

. (1.8)

1.4. Information Theory 9

In the later parts of this thesis, we will draw binary matrices at random
from a uniform distribution. A beautiful and well-known result, somewhat
surprisingly, states that a square matrix over a finite field Fq with randomly
drawn entries has a non-zero determinant with constant probability.

Lemma 1.4 (Random-matrix determinant) For any k P Z`, it holds that

P
´

det A ‰ 0 | A $
Ð Fkˆk

q

¯

ě exp
ˆ

´
2 ln 2
q´ 1

˙

. (1.9)

Proof. We use a counting argument on the non-singular matrices in Fkˆk
q . The

first row a1 of A can be chosen uniformly in Fk
qzt0u, while the second row a2

must chosen such that it is not in the space spanned by a1. For the ith row,
we have

|Fk
q z spanpa1, a2, . . . , aiq| “ qk ´ qi, (1.10)

since spanpa1, a2, . . . , aiq “
!

ři
j“1 aj ¨ xj : x1, x2, . . . , xi P Fq

)

. Hence, the num-

ber of non-singular matrices is
śk´1

i“0 pq
k ´ qiq. By division with |Fkˆk

q | “ q2k,
we obtain

P
´

det A ‰ 0 | A $
Ð Fkˆk

q

¯

“ q´2k ¨

k´1
ź

i“0

pqk ´ qiq “

k´1
ź

i“0

p1´ qi´kq

ě

k´1
ź

i“0

exp
´

´qi´k ¨ 2 ln 2
¯

ě exp

#

´2 ln 2 ¨ lim
kÑ8

8
ÿ

i“0

qi´k

+

“ exp
ˆ

´
2 ln 2
q´ 1

˙

.

(1.11)

�

As an example, for a binary kˆ k matrix A P Fkˆk
2 we have

P
´

det A ‰ 0 | A $
Ð Fkˆk

q

¯

ě
1
4

, (1.12)

for an arbitrary k.

10 Introduction

1.4 INFORMATION THEORY

In this section, we outline some basics in information theory. For a more
detailed introduction of the described concepts, we refer to [CT91].

Classical information theory concerns transmission of information over a
channel. A channel is a medium through which the exchange of information
takes place and the channel can take many forms. A typical model of infor-
mation transmission is given in Figure 1.2.

TransmitterSource Channel

Noise source

Receiver Destination

Message Signal Signal Message

Figure 1.2: A model of an information-transmission system.

The mathematical study of information originates back to the celebrated
landmark work of Shannon [Sha48]. Among many things, Shannon intro-
duced the theory of error-correcting codes (which we will return to in Chap-
ter 2) and a measure of the information content from a random source, called
entropy.

Definition 1.2 (Entropy) Let X be a discrete random variable defined over the
alphabet X , taking values according to the probability distribution PXpxq “
P pX “ xq. The (Shannon) entropy of X is then defined as

HpXq def
“ ´

ÿ

xPX
pX pxq ¨ log2 pX pxq , (1.13)

with the convention that 0 ¨ log 0
q “ 0 and p ¨ log p

0 “ 8 for p ą 0.

The entropy HpXq is a measure of the uncertainty associated with a ran-
dom variable X. The entropy of a Bernoulli process, called the binary entropy
function and denoted h2ppq, is defined as follows,

h2ppq
def
“ ´p ¨ log2 p´ p1´ pq ¨ log2p1´ pq. (1.14)

We emphasize that the entropy HpXq of a random variable X „ Berp and
the binary entropy function h2ppq are essentially the same, but the former
takes a random variable X as input and the latter takes a real-valued number

1.4. Information Theory 11

p P r0, 1s. In approximation of the binary entropy function, the following
Taylor series expansion is useful,

h2ppq “ 1´
1

2 ln 2

8
ÿ

i“1

p1´ 2pq2i

i ¨ p2i´ 1q
. (1.15)

The binary entropy function can be extended to a larger alphabet Fq. More
specifically, for a positive integer q ě 2, the q-ary entropy function hq : r0, 1s Ñ
R is defined as

hqppq
def
“ p ¨ logqpq´ 1q ´ p ¨ logq p´ p1´ pq ¨ logqp1´ pq. (1.16)

In Figure 1.3, we plotted the entropy function for different values of q.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

p

h q
p
pq

q “ 2
q “ 3
q “ 5
q “ 7

Figure 1.3: The entropy function hq for different values of q.

While entropy is a measure of uncertainty about information, the relative en-
tropy (sometimes called divergence or Kullback-Leibler distance) is a measure
of distance between two distributions. Strictly speaking, the relative entropy
is no proper metric because it neither satisfies the symmetric property nor the
triangle inequality, but from time to time it can be useful to think of it as a
distance. We define the relative entropy as follows.

Definition 1.3 (Relative entropy) Let p0 pxq and p1 pxq be probability distri-
bution functions for the distributions D0 and D1 over alphabet X . The relative
entropy is then defined as

D pD0}D1q
def
“

ÿ

xPX
p0 pxq ¨ log

p0 pxq
p1 pxq

. (1.17)

The relative entropy gives the expected amount of information that is lost
(in bits and per event) when a distribution D0 is approximated by another
distribution D1.

12 Introduction

Note: In the case of relative entropy, we use the symbol } as separation of
the distributions, rather than as a concatenation operator.

Another distance measure in information theory is Hamming distance, which
in contrast to relative entropy is a proper metric. The Hamming distance gives
the difference between two strings or vectors of equal length.

Definition 1.4 (Hamming distance and weight) The Hamming distance be-
tween two vectors x, y P Fn

q is defined as the number of non-agreeing posi-
tions, i.e.,

dH px, yq def
“ |ti P t1, 2, . . . , nu : xi ‰ yiu| . (1.18)

Analogously, we define the Hamming weight of a vector x as the number of
non-zero elements, i.e.

wH pxq
def
“ |ti P t1, 2, . . . , nu : xi ‰ 0u| . (1.19)

From above, it follows that dH px, 0q “ wH pxq, where 0 is the all-zero vector of
length n.

Using the Hamming distance, we can define geometrical objects, e.g. , Ham-
ming balls. A Hamming ball with radius r is a set of points in a n-dimensional
space, such that every point has Hamming distance at most r from the all-zero
vector 0 P Fn

q . We define it as follows.

Definition 1.5 (Hamming ball and sphere) A Hamming ball, denoted Bqpn, rq,
is a set of elements in Fn

q such that

Bqpn, rq def
“

!

v P Fn
q : wH pvq ď r

)

. (1.20)

Similarly, a Hamming sphere, denoted Sqpn, rq, is a set of elements in Fn
q such

that
Sqpn, rq def

“

!

v P Fn
q : wH pvq “ r

)

, (1.21)

implying

Bqpn, rq “
r
ď

i“0

Sqpn, iq. (1.22)

In particular, when a Hamming ball or sphere is centered around a point
c P Fn

q rather than around 0, we will write it as c` Bqpn, rq and c` Sqpn, rq,
respectively.

We will spend the remaining part of this section studying the cardinalities
|Bqpn, rq| and |Sqpn, rq|, in which asymptotic analysis of binomial coefficients
will prove to be useful.

1.4. Information Theory 13

Proposition 1.5 For α P r0, 1s it holds that

lim
nÑ8

1
n
¨ log2

ˆ

n
αn

˙

“ h2 pαq ` op1q. (1.23)

Proof. The Stirling approximation (see e.g. [Gri04]) asserts n! „
` e

n
˘n
¨
?

2π.
Therefore, it holds that

ˆ

n
αn

˙

„
pn{eqn

pαn{eqαn ¨ pp1´ αq ¨ n{eqp1´αqn
¨

?
2πn

?
2πn ¨ α ¨

a

2πn ¨ p1´ αq
.

The pn{eqn term cancels with pn{eqαn ¨ pn{eqp1´αqn, and
?

2πn cancels with one
of the terms in the denominator. The expression simplifies to

ˆ

n
αn

˙

„
1

pαn{eqα ¨ pp1´ αq ¨ n{eq1´α
¨

1
a

2πn ¨ α ¨ p1´ αq
.

So, we have

1
n

log2

ˆ

n
αn

˙

„ ´ α log2 α´ p1´ αq ¨ log2p1´ αq ´
1

2n
¨ log2p2π ¨ α ¨ p1´ αqq

“ h2pαq ` op1q.

We obtain the limit as n tends to infinity. �

Corollary 1.6 For α P r0, 1s and β P r0, αs it holds that

lim
nÑ8

1
n
¨ log2

ˆ

αn
βn

˙

“ α ¨ h2 pβ{αq ` op1q. (1.24)

Using the q-ary entropy function, we can obtain asymptotically tight bounds
for the size of a Hamming ball (and Hamming sphere).

Lemma 1.7 For α ď r0, 1s and n Ñ8, it holds that the volume of a Hamming
ball Bqpn, α ¨ nq is

|Bqpn, α ¨ nq| “
αn
ÿ

i“0

ˆ

n
i

˙

pq´ 1qi “ qnhqpαq`opnq, (1.25)

where hqp¨q is the q-ary entropy function.

Proof. The q-ary entropy function can be expressed in terms of the binary
entropy function as follows

hq ppq “ p ¨ logqpq´ 1q ` h2pxq ¨ logq 2.

14 Introduction

Let r def
“ tα ¨ nu. Using the result in (1.23) in conjunction with the above, we

have that

1
n
¨ logq

„ˆ

n
r

˙

pq´ 1qr

“
r
n
¨ logqpq´ 1q ` h2

´ r
n

¯

¨ logq 2
loooooooooooooooooooomoooooooooooooooooooon

hqpαq

`op1q,

which yields an expression for the (overwhelmingly) largest term in (1.25). �

1.5 HYPOTHESIS TESTING

Hypothesis testing is a statistical method that is highly relevant to cryptog-
raphy. It has been extensively used in the past as a powerful tool in many
different cryptanalytic contexts, where the problem of distinguishing between
distributions is met. In this section, the notation of [CT91] is adopted.

We will now outline the problem of hypothesis testing. Let D0 and D1 be
two different probability distributions defined over the same alphabet X . The
simplest form of hypothesis test is the binary hypothesis test; given a collection
of elements x1, x2, . . . , xn P X drawn at random (i.i.d.) from either D0 or D1,
one should decide with distribution the collection of elements comes from.
The two hypotheses are H0, which is the null hypothesis, and the alternative
hypothesis H1, which are defined as follows

H0 : D “ D0,
H1 : D “ D1.

(1.26)

For this purpose, one defines a decision rule – a function δ : X Ñ t0, 1u taking
a sample of X as input and defining a guess for each possible x P X , i.e.,

δ “

"

0, D “ D0,
1, D “ D1.

(1.27)

Associated to the decision rule are two different types of incorrect decisions:

• Type I error: Rejecting the null hypothesis H0 when it is true. This is
sometimes called a false positive. The error probability is

α
def
“ P preject H0 | H0 is validq . (1.28)

• Type II error: Rejecting the alternative hypothesis H1 when it is true.
This is sometimes called a false negative. The error probability is

β
def
“ P preject H1 | H1 is validq . (1.29)

We illustrate the error probabilities α and β in Figure 1.4.

1.5. Hypothesis Testing 15

D0 D1

β α

Figure 1.4: The error probabilities α and β of a hypothesis test.

THE NEYMAN-PEARSON LEMMA

A very important result, known as the Neyman-Pearson lemma, derives the
shape of the optimal hypothesis test between two simple hypotheses. It can
be formulated as follows.

Lemma 1.8 (Neyman-Pearson) Let X1, X2, . . . , Xn be a sequence of i.i.d. vari-
ables distributed according to a probability distribution D, and let p0 pxq
and p1 pxq be probability distribution functions for the distributions D0 and
D1. Consider the decision problem corresponding to the two hypotheses
H0 : D “ D0 and H1 : D “ D1. For some τ ě 0, define a decision region

A def
“

"

x1, x2, . . . , xn :
p0 px1, x2, . . . , xnq

p1 px1, x2, . . . , xnq
ą τ

*

(1.30)

and let α “ p0
`

AC˘ and β “ p1 pAq. Let B be any decision region associated
with error probabilities α˚ and β˚. If α˚ ď α, then β˚ ě β.

The set A is called the acceptance region and its cardinality depends heavily
on τ. Normally, we set τ “ 1 to obtain an equal comparison between the
probability distributions D0 and D1.

Under the assumption that all samples are independent, we can formulate
(1.30) as

A def
“

#

x1, x2, . . . , xn :
n
ÿ

i“1

log2
p0 pxiq

p1 pxiq
ą log2 τ

+

, (1.31)

commonly referred to as a likelihood-ratio test.

ERROR ESTIMATION AND SAMPLE REQUIREMENT

We conclude the section about hypothesis testing by discussing the errors
made in hypothesis tests and the number of samples required to achieve a
certain error level. Although finding exact and analytic expressions for the

16 Introduction

error probabilities α and β is normally not possible, estimates can be obtained
by asymptotic approximation.

Stein’s lemma [CT91] states that for a fixed α, the asymptotic behavior of
the error probability β is given by

lim
nÑ8

log2 β

n
“ ´D pD0}D1q. (1.32)

The rate of which β decreases is independent of α, and according to Stein’s
lemma this situation always occurs. By some reformulation of the above ex-
pression, we can asymptotically express β as

β « 2´nDpD0}D1q. (1.33)

Suppose that we have a set S of 2k sequences, where one sequence x is
drawn from the distribution D0 and the remaining 2k´ 1 sequences are drawn
from the distribution D1. Moreover, assume that we want to distinguish x for
a fixed α (type I error). What is the required number of samples (the length
of each sequence), denoted n, for a certain error probability β? Denote the
number of false positives with a random variable Y. Then, we have

E pYq “
ÿ

yPSztxu
P py is misclassifiedq

“ p2k ´ 1q ¨ β “ p2k ´ 1q ¨ 2´nDpD0}D1q.
(1.34)

From the Markov bound (1.6), it holds

P pY ě 1q ď E pYq . (1.35)

Hence, we can bound the probability of guessing incorrectly (type II error)
with a constant probability θ P p0, 1q by setting E pYq “ θ. Setting (1.34) equal
to θ, we can solve for n and we get

n “
log2

2k´1
θ

D pD0}D1q
«
´k ¨ log2 θ

D pD0}D1q
. (1.36)

In cryptanalysis, we often encounter problems where we need to distin-
guish between a uniform and a Bernoulli distribution. The following propo-
sition will be relevant to us in the sequel.

Proposition 1.9 Let S be a set containing 2k sequences, where one sequence x
is drawn from the distribution Berρ and 2k´ 1 are drawn from the distribution
U. Then, the required number of samples n required to distinguish x from the
other samples is given by

n «
´k ¨ log2 θ

1´ h2pρq
, (1.37)

for an error probability θ.

1.5. Hypothesis Testing 17

Proof. Let Xi P Berρ for 1 ď i ď n be independent random variables. Assume
that a sequence x1, x2, . . . , xn of samples from the distribution D has been
observed and consider the hypotheses

H0 : D “ Berρ,
H1 : D “ U.

Then, the relative entropy of the two distributions is given by

D
`

Berρ}U
˘

“ ρ ¨ log2
ρ
1
2
` p1´ ρq ¨ log2

1´ ρ
1
2

“ 1´ h2pρq. (1.38)

Finally, we know from (1.36) that the number of required samples is approxi-
mately

n «
´k ¨ log2 θ

D
`

Berρ}U
˘ “

´k ¨ log2 θ

1´ h2pρq
. (1.39)

�

Corollary 1.10 Under the same assumption as in Proposition 1.9, and with
ρ “ 1

2 ¨ p1´ εq where ε is small, we have that

n «
´k ¨ log2 θ

1´ h2pρq
« 2 ln 2 ¨

´k ¨ log2 θ

ε2 . (1.40)

Proof. Using the Taylor expansion of h2pρq, we have

1´ h2pρq
(1.15)
“

1
2 ln 2

¨

!

p1´ 2ρq2 `O
´

p1´ 2ρq4
¯)

“
1

2 ln 2
¨

!

ε2 `Opε4q
)

.
(1.41)

Since ε is small, we may neglect the Opε4q term. �

1.5.1 THE WALSH TRANSFORM

The Walsh transform is a special case of the discrete Fourier transform and it has
shown to be extremely useful in cryptanalysis. We define the Walsh transform
as follows.

Definition 1.6 (Walsh transform) The Walsh transform of an n-ary boolean
function f “ f px1, x2, ...xnq is a Fn

2 Ñ Fn
2 mapping defined by

Fpyq “
ÿ

xPFn
2

p´1q f pxq`xx,yy , (1.42)

18 Introduction

for y P Fn
2 . The inverse is computed according to

f pxq “ 2´n ¨
ÿ

yPFn
2

p´1qFpxq`xx,yy . (1.43)

The Walsh transform can be computed in time Opn ¨ 2nq using a divide-and-
conquer technique. This is called the fast Walsh-Hadamard transform.

1.6 ALGORITHMS AND COMPLEXITY THEORY

In this section, we introduce some concepts on algorithms and computational
complexity theory. For more details, we refer to [Sha98] for a basic introduc-
tion and [Mor98] for a more in-depth reading.

Computers are devices which can perform one single thing: carry out com-
putation steps to process information. An algorithm – a series of steps of
computation, will be denoted A. Although algorithms are executed in com-
puters, they need not to have anything to do with them. A so-called classical
algorithm, which can be carried out by a (classical) computer, could also be
carried out by hand. If the steps of computation can be simultaneously com-
puted by a set of computational devices, the algorithm is called parallelizable.

As opposed to a classical algorithm, a quantum algorithm can only be ex-
ecuted using a quantum computer making use of quantum superposition
and entanglement to achieve, sometimes exponential speed-up over a clas-
sical computer.

The amount of computation needed when carrying out the steps of an al-
gorithm is called the computational complexity. In essence, there are three types
of complexity: best case, average case and worst case. Naturally, we will fo-
cus on average case and worst case, as these two measures will indicate the
performance constraints of an algorithm.

One usually derives upper bounds and lower bounds on the number of com-
putational steps. Let an arbitrary problem be denoted L. A problem is a
collection of instances (which is the input string) along with a solution for
every instance. The upper bound on the complexity of the problem L is de-
termined by the complexity of the best known algorithm that determines the
solution to every instance in L, while the lower bound is determined by what
is theoretically possible to achieve in terms of algorithmic performance. A
problem can be a decision problem, for which the answer is yes or no. It may
also be a search problem4, where the answer is solution.

Definition 1.7 (Polynomial and negligible) A function f is said to be poly-
nomial if there exists a c such that f pnq ď nc for all n. We denote f being

4For instance, »which is the 100th prime?« or »who is the fifth ninja turtle?«.

1.6. Algorithms and Complexity Theory 19

polynomial as f pnq “ polypnq. A function f is said to be negligible if there
exists an integer N such that f pnq ď 1{polypnq for all n ą N. Negligible is
asymptotically smaller than any inverse polynomial.

From a computational perspective, one is often interested in how efficient
an algorithm can perform when the size n of the input is large. If the time
Tpnq required to run through all steps of the computation is exponential, it is
intractable. If the running-time on the other hand is polynomial, it is tractable
and the computation is expected to finish within a »reasonable« amount of
time. Particularly interesting are probabilistic polynomial-time (PPT) algorithms,
which constitute a class of algorithms that are said to be efficiently computable.

Definition 1.8 (PPT algorithm) An algorithm (or Turing machine) A with in-
put x is said to be a probabilistic polynomial-time algorithm if it uses randomness
(coin flips) and has running time bounded by some polynomial Tpnq “ polypnq
in the input size n “ |x|.

Probabilistic algorithms are so-called randomized algorithms, because they
use random bits (or coin flips). Typically, we make a distinction between two
types of randomized algorithms.

• A Monte Carlo algorithm is a randomized algorithm with a determinis-
tic running time that has a non-zero probability of giving an incorrect
output.

• A Las Vegas algorithm on the other hand, is a randomized algorithm that
always produces a correct answer or raises a flag indicating failure (the
symbol K is commonly used for this purpose). Its running time is not
deterministic, but it runs in expected finite time.

A Las Vegas algorithm can always be transformed into a Monte Carlo algo-
rithm by forcing it to terminate at an early stage. A Monte Carlo algorithm on
the other hand, can only be transformed into a Las Vegas algorithm if there
exists a function that can verify that both negative and positive output pro-
duced by the Monte Carlo algorithm indeed is correct. If so, its probability of
success can be arbitrarily amplified by running the algorithm several times to
obtain a Las Vegas algorithm.

Proposition 1.11 (Las Vegas running time) Consider a Las Vegas algorithm
which succeeds to produce a correct answer with probability ρ and outputs K
with probability 1´ ρ. Let X be a random variable that represents the running
time of the algorithm. Then, its expected running time is E pXq “ 1

ρ .

20 Introduction

Proof. Since we will run the algorithm until we observe a correct answer, X
is distributed according to a geometric distribution. More specifically, the
probability that we have to run the algorithm i times is given by

P pX “ iq “ ρ ¨ p1´ ρqi´1. (1.44)

It is a well-known result that a random variable with distribution given by
(1.44) has expected value E pXq “ 1

ρ . �

Definition 1.9 We say that a randomized algorithm AL pTpnq, θq-solves prob-
lem L if it runs in time at most Tpnq and produces a correct solution with
probability at least θ.

Algorithms are theoretic constructions, sometimes embodied in lines of ex-
ecutable code, that are designed to solve a computational problem. Complexity
theory concerns the classification of such computational problems in terms of
their inherent difficulty and how to relate the different classes to each other
(illustrated, somewhat simplified, in Figure 1.5).

P
NP

NPC

co
-N

P

Figure 1.5: The polynomial hierarchy, under the well-established and
widely accepted conjectures that P ‰ NP and co-NP ‰

NP.

Informally, P is the set of all decision problems solvable by a deterministic
Turing machine in polynomial time, and NP is the set of all decision prob-
lems solvable by a non-deterministic Turing machine in polynomial time5. P
is a subset of NP, because problems solvable by a deterministic Turing ma-
chine in polynomial time can also be solved by a non-deterministic machine
in polynomial time. NP-complete problems are the hardest problems in NP
and share a curious characteristic. A decision problem L is NP-complete if:

• L is in NP, and

• Every problem in NP is reducible to L in polynomial time (reduction is
defined later).

5Or using algorithms that by magic always guess right.

1.7. The Birthday Paradox and Collision Search 21

Note that search problem versions of NP-complete problems are NP-hard
(although, they are equally difficult to solve). We stress that NP-complete
problems are not known to be solvable by a quantum computer. As previously
mentioned, such problems are suitable for post-quantum cryptography.

Definition 1.10 (Reduction, informal) Problem L1 is reducible to problem L if
a (possibly hypothetical) algorithm AL that solves L efficiently may be used
as sub-routine to solve problem L1 efficiently. If the sub-routine is executed a
polynomial number of times, it is a polynomial reduction, implying that prob-
lem L1 is no harder than problem L, up to polynomial factors.

In cryptology, we often use oracles when building theory, in particular when
constructing complexity reductions. An oracle is a black box with »magical«
powers capable of solving some problem in a single step of computation.
For instance, the oracle represent the hypothetical algorithm AL in previous
definition. A special kind of oracles, random oracles, are capable of providing
true randomness. Random oracles are particularly useful in schemes where
strong randomness assumptions are required.

1.7 THE BIRTHDAY PARADOX AND COLLISION SEARCH

We will now discuss some variations of a very specific algorithmic problem
and how to solve it efficiently. The results we give here serve as basis for many
of the algorithms presented in this thesis and will be referenced frequently in
subsequent chapters.

The birthday paradox is a well-known result from elementary probability
theory, which has proven itself invaluable when constructing randomized al-
gorithms for collision search. More specifically, we are concerned with algo-
rithms that store information in memory to be able to execute certain pro-
cedures, e.g., matching more efficiently. Algorithms of this kind are often
referred to as time–memory trade-off (or space–time trade-off) algorithms.

Consider the following. Let S be a set with cardinality |S | “ N. Suppose
that items are sampled at random from S . The birthday paradox states that
as N becomes larger, the expected number of samples we need to randomly
pick some item in S twice approaches

c

π

2
¨ N. (1.45)

The birthday problem can be stated as a general computational problem, if
we carefully define the operations associated with the problem. Consider the
following:

22 Introduction

Problem 1.12 (2-COL) Given lists L1,L2 containing elements from the set S ,
determine the (possibly empty) list

L “ tpx, yq : x P L1, y P L2 such that x‘ y “ 0u (1.46)

under some operation ‘. We define this operation to be L1 ˛L2 “ L.

FINDING COLLISIONS

If S is an ordered set, then the elements can be deterministically ordered6 in
some way (to define the concepts of small and large) using binary relations ĺ

and ľ. If so, then to solve Problem 1.12, we can employ a sort-and-match algo-
rithm, which sorts two lists L1,L2 separately, and then sequentially matches
their elements. It is a well-known fact that sorting a list of n elements costs
Opn log nq operations. To simplify analysis, we will frequently assume that
the number of elements in each list is equal. Therefore, the complexity of
sorting the two (or a constant number of) lists of length n remains Opn log nq.

The algorithm begins simultaneously to read at the bottom of each list,
comparing their respective elements. Each element is compared according to
the following rules:

• If one element is smaller than the other, it is discarded. Since the lists
are sorted in descending order, the next element cannot be smaller than
the one it discarded. This procedure is iterated until one list is empty
or a match is found.

• If a match is found, the elements are included in the target list. Then,
we fix the element in one list L1 and compare it with the element above
in the other list L2. This is also a match, so it is included in the target
list. We repeat until there are no matches. Then, we discard the fixed
element and return to (a).

The piece of pseudocode given in Algorithm 1 describes the sort-and-match
procedure in more rigor.

Every element in a list is potentially a match with n elements in the other
list, so if all element are equal we obtain the worst case. The upper bound of
matches is the number of pairs we can choose, which is n2 (if the operation ˛
is commutative, then this number is

`n
2

˘

). Therefore, the worst case complexity
of Sort-and-match is Opn2 ` n log nq “ Opn2q. However, if the length n of lists
L1 and L2 are chosen according to (1.45), then the average-case complexity is
Opn log nq.

6Although the Problem 1.12 is defined for any type of comparable mathematical
object, we suggest the reader to think of elements of Z.

1.7. The Birthday Paradox and Collision Search 23

Algorithm 1 (Sort-and-match)

Input: Lists L1,L2 with
comparable ele-
ments.

Output: List L.

Sort the lists L1,L2;1

n Ð |L1| ` |L2|;2

i Ð 0, j Ð 0;3

while do4

if L1ris ă L2rjs then5

i Ð i` 1;6

else if L1ris ą L2rjs then7

j Ð j` 1;8

else9

l Ð i;10

while L1rls “ L2rjs do11

LR Ð pL1rls,L2rjsq;12

l Ð l ` 1;13

return L14

Algorithm 2 (Hash-match)

Input: Lists L1,L2 with
comparable ele-
ments.

Output: List L.

for x P L1 do1

H rxs Ð x;2

for y P L2 do3

if H rys has at least one entry then4

for x P H rys do5

LÐ py, xq;6

return L7

Another algorithmic approach is hash-based matching, which is inherently
more efficient than Sort-and-match and does not require S to be an ordered set.
Instead of matching the elements by sorting, one uses a hash table (a constant-
time access associative data structure) to carry out matching of elements in the
lists. Problem 1.12 is solved in the following way: all elements are read from
the first list in any order and inserted into the hash table. With the elements
stored in the hash table, all elements are read from the other list and for each
element the algorithm checks in the hash table whether there is a match or
not.

Clearly, Hash-match has to read through each list one time which requires

24 Introduction

Opnq time and computation. The worst case is the same as for Sort-and-match,
i.e., when all elements are equal in which case we have a complexity of Opn2q.
By choosing the list size n according to (1.45), the expected complexity is
Opnq.

Observation 1.13 (2-COL complexity) We can expect to find at least one colli-
sion among N distinct elements using n „

?
N randomly drawn samples and

the same order of time and computation.

It is clear from above that Algorithm 1 and Algorithm 2 implements the
operation ˛, and that both algorithms are sound and complete.

INCREASING THE NUMBER OF LISTS

A natural step is to make a generalization of the collision problem of two
lists into a collision problem of k lists. The problem becomes particularly
interesting when k is a power of 2. To the best of the author’s knowledge,
the generalization of the birthday problem was introduced in by Blum, Kalai
and Wasserman in [BKW00] and later on extended to other applications by
Wagner in [Wag02].

Problem 1.14 (k-COL) Given lists L1,L2, . . . ,Lk, for some positive integer k,
containing elements from the set S , determine the (possibly empty) list

L “

$

&

%

pxiqiPt1,2,...,ku : xi P Li such that
à

iPt1,2,...,ku
xi “ 0

,

.

-

(1.47)

under some operation ‘.

1.7.1 SEARCHING FOR COLLISIONS IN VECTORSPACES

We will now study the special case when the set S is a vectorspace over some
alphabet X . Consider the following function.

Definition 1.11 (Masking function) LetM Ď t1, 2, . . . , nu with |M| “ m and
x “ pxiqiPt1,2,...,nu P X n. If φM is a linear map such that

φM : X n ÝÑ Xm

P P

x ÞÝÑ pxiqiPM,
(1.48)

then φM is called a masking function for the masking set M. When there is
no ambiguity, we usually leave out the subscript and write φ for notational
simplification.

1.7. The Birthday Paradox and Collision Search 25

The masking function φ defines an equivalence relation on Xm, and all
elements that are equal in the positions M belong to the same equivalence
class.

Example 1.1 Let X be an alphabet,

x “
`

x1 x2 x3 x4 x5
˘

P X 5

be a vector andM “ t1, 2, 5u be a masking set. Then

φMpxq “
`

x1 x2 x5
˘

P X 3.

Let us now consider the k-COL problem over a vectorspace X n when k “ 4,
i.e., when we have four lists that we assume have equal size. A solution
x1 ` x2 ` x3 ` x4 must satisfy the constraints

xi P Li, i P t1, 2, . . . , 4u , such that x1 ` x2 ` x3 ` x4 “ 0. (1.49)

By exhaustive search, we would need to spend
ś

iPt1,2,...,4u |Li| operations.
Clearly, a square-root gain in time complexity is possible by matching two
separate sets pL1 ˆ L2q ˛ pL3 ˆ L4q, at the expense of memory trade-off pro-
portional to the gain, because two of the lists must be put in a data structure.

A different algorithmic approach takes advantage of the masking function
φ. First, we select a random masking set

M $
Ð t1, 2, . . . , nu (1.50)

such that |M| “ α ¨ n for some α ą 0. Secondly, we merge the lists L1 and L2
using φM, according to

L12 “ φMpL1q ˛ φMpL2q

“ tx‘ y : x P L1, y P L2, φMpxq ‘ φMpyq “ 0u
(1.51)

and equivalently,
L34 “ φMpL3q ˛ φMpL4q. (1.52)

Finally, we compute L “ L12 ˛ L34. The whole merging tree is illustrated in
Figure 1.6.

Let us analyze the above procedure. Every element x P L must be a solu-
tion to the k-COL problem, so this algorithm must be sound. However, the
algorithm is not complete because a correct solution may not be included in
the list, since the operation ˛ in general is not associative, meaning that for
lists A, B, and C, there is not necessarily equality between the sets pA ˛ Bq ˛ C
and A ˛ pB ˛Cq. Obviously, this will pose a problem if there is only a single or
a few solutions and the probability of finding a solution is very small.

26 Introduction

L

˛

L12 L34

˛

L1 L2

˛

L3 L4

Figure 1.6: Merging tree for 4-COL.

Lemma 1.15 Assume that the elements in the lists Li and Lj are uniformly
sampled from X n. Let |Li| “ |Lj| “ |X |m. Then, if M Ď t1, 2, . . . , nu and
|M| “ m,

E
`

|Lij|
˘

“ E
`

|φpLiq ˛ φpLjq|
˘

« |X |m (1.53)

is the number of elements in the resulting list.

Proof. For any x P Li and y P Lj, we have that

P pφpxq ‘ φpyq “ 0q “ |X |´m. (1.54)

There are |X |m ¨ |X |m such pairs px, yq, so the expected list size is

E
`

|Lij|
˘

“
ÿ

xPLi ,yPLj

P pφpxq ‘ φpyq “ 0q “
ÿ

xPLi ,yPLj

|X |´m “ |X |m. (1.55)

�

Let us now consider a concrete example. For the case k “ 4, we may set
the m “ α ¨ n “ 1

3 ¨ n. Then, the expected number of elements in each list is
|L12| “ |X |n{3 and |L34| “ |X |n{3. Since the number of remaining positions is
| t1, 2, . . . , nu zM| “ 2

3 ¨ n, we have

P px‘ y “ 0 | φpxq “ φpyq “ 0q “ |X |´2n{3. (1.56)

There are |X |2n{3 pairs of the form px, yq where x P L12 and y P L34, so the
expected size of the resulting list is

E p|L|q “
ÿ

xPLi ,yPLj

P px‘ y “ 0 | φpxq “ φpyq “ 0q “ 1. (1.57)

1.7. The Birthday Paradox and Collision Search 27

Thus, we expect to have at least one solution in the list Lwith high probability.
To analyze the complexity, we use the results we derived for Hash-match,
implying that lists can then be merged under the operation ˛ in (expected)
linear time, i.e., proportional to the list size. As we previously established, the
size of each list is |X |n{3, so the total complexity is Op|X |n{3q.

A more general result for k being an arbitrary power of two, is the follow-
ing.

Lemma 1.16 LetMt
$
Ð t1, 2, . . . , nu at merging level t P t1, 2, . . . , ku be chosen

such thatMt XMs “ H for all s ‰ t and |Mt| “ α ¨ n with α “ p1` log kq´1.
Furthermore, let the elements of the lists be uniformly and independently
sampled from the vectorspace X n. Then with high probability, k-COL can be
(partially) solved in Opk ¨ |X |n{p1`log kqq time and Op|X |n{p1`log kqq memory.

Proof. Set β “ log k. For every list, we sample |X |n{p1`βq elements uniformly
and independent from X n. We create 1

2 ¨ β disjoint pairs of lists and merge
them, as given in Figure 1.7.

L

˛

˛ ˛

˛

L1 L2

˛

Lk´1 Lk¨ ¨ ¨

Figure 1.7: Merging tree for k-COL.

By recursively merging levels t P t1, 2, . . . , β´ 1u in the above tree, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t1, 2, . . . , nu z
ď

tPt1,2,...,β´1u

Mt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ n´
ÿ

tPt1,2,...,β´1u

|Mt|

“ n ¨
ˆ

1´
β´ 1
β` 1

˙

“ n ¨
2

1` β
.

(1.58)

If the pair px, yq is chosen from the two final lists, then the probability that the
two vectors match in the remaining positions is

P px‘ y “ 0 | φpxq “ φpyq “ 0q “ |X |´2n{p1`βq, (1.59)

28 Introduction

Lemma 1.15 states that for any pair of lists pLi,Ljq, the expected resulting list
size is

E
`

|Lij|
˘

“ E
`

|φMtpLiq ˛ φMtpLjq|
˘

« |X |n{p1`βq. (1.60)

By induction, the above is satisfied at any stage t P t1, 2, . . . , β´ 1u and for
any pair of lists. The lists that will merge into the final list contains together
|X |2n{p1`βq such pairs. Therefore, list final list is expected to be of size

E p|L|q “
ÿ

xPLi ,yPLj

P
´

x‘ y “ 0 | φMt´1pxq “ φMt´1pyq “ 0
¯

“
ÿ

xPLi ,yPLj

|X |´2n{p1`βq “ 1.
(1.61)

From (1.61) it follows that, with high probability, there is at least one surviving
candidate in the final list L.

�

1.8 CRYPTOGRAPHY AND CRYPTANALYSIS

A natural question one might ask is: what characterizes a good measure of
the security of a system? Security is a broad concept and the answer is not
straightforward. Intuitively, it means that a ciphertext encrypted with a secure
cryptosystem should reveal no information about the secret key and message.
But this is by no means a rigorous definition.

Different paradigms are used to reinforce the security claims of cryptog-
raphy. Security of some cryptographic primitives is based on pure heuristic
arguments, while the security of others is supported by the simple fact that
they have resisted cryptanalysis for a long time. This kind of security is often
called empirical security. Primitives that are unconditionally secure are under no
circumstances possible to break; such claims are backed up by information
theoretical arguments. No adversary, even equipped with unbounded com-
putational power, can break a cryptographic primitive that achieves uncon-
ditional security. Unfortunately, primitives of this kind are in general rather
impractical and therefore uncommon in practice. The security of most cryp-
tosystems today rely on computational hardness assumptions. Essentially, this
means that the security is based on reduction from problems that are widely
believed to be hard on average. The security proofs usually involve informa-
tion theoretical and complexity theoretical arguments.

Cryptanalysis are for obvious reasons directed towards systems with secu-
rity of empirical or provable nature; a cryptographic attack directed towards
an unconditionally secure primitive would be absurd, implying a (partial) col-
lapse of information theory or mathematics as a whole. A successful crypt-

1.8. Cryptography and Cryptanalysis 29

analytic attack is usually characterized by that it uses some, possibly uninten-
tional, structure in the primitive which in some sense reduces the cryptana-
lytic problem space into something smaller.

During the recent decades, cryptanalysis have shown that even provably
secure cryptography can be compromised (e.g., RSA in SSL7). In implementa-
tions, both software and physical hardware can, and does, in some sense leak
information which can be used to exploit, say power leakage in the circuitry,
to attack a theoretically secure system. Although it is far out of scope for
this thesis, it should not be left without mention. One can argue, as a rule of
thumb, that Kerckhoffs’s principle should not only apply to the cryptographic
primitive, but also to all the levels of the implementation that are, or could be,
prone to attacks.

1.8.1 ONE-WAY FUNCTIONS

We will start off by introducing the concept one-way functions. A one-way
function is a function that can be efficiently computed on every input, but is
computationally hard to invert given an image of a random input. A one-
way function is a so-called key-less primitive. We define it (adopting notation
from [Gol07]) as follows.

Definition 1.12 (One-way function) Let f : X Ñ Y be a function that satisfies
the following two conditions:

• Easy to compute: f pxq is efficiently computable for all x P X ,

• Hard to invert: for a randomly drawn y $
Ð Y , computing f´1pyq is

computationally infeasible in the average case. For all sufficiently large
n and for every randomized algorithm A that runs in time polynomial
in n

P
´

Apyq “ f´1pyq
¯

ă neglpnq. (1.62)

If so, then we say that f is a one-way function.

In order to be useful, the computation of an efficiently computable function
should not lead to unacceptable execution speeds in the cryptographic appli-
cations it is intended to be used for. In order to be secure, infeasible must
assert that it is not possible to evaluate the function in a reasonably long time
period using the best known algorithm.

When constructing one-way functions, one often takes inspiration from in-
tractable problems, such as the class of NP-complete8 problems. Another

7See Common Vulnerabilities and Exposures – CVE-2003-0147.
8In the introduction, we discussed the possibility of using the knapsack problem for
the purpose of building a one-way function.

30 Introduction

popular source of computationally hard problems used in construction of one-
way functions is number theory; two very familiar problems are factoring and
discrete logarithm problems in cyclic groups. Unfortunately, many problems
in number theory, including the two previous ones, have shown to be unsuit-
able for post-quantum cryptography as they can be efficiently computed by a
quantum computer.

Whether one-way functions exist or not is still an open question in com-
puter science, and proving their existence would resolve the long-lived open
question regarding P ‰ NP, implying that the two classes are not equal
[Gol07].

Cryptographic hash functions are attempts to create one-way functions, al-
though their one-wayness is usually a heuristic claim (cf. empirical security);
a hash function is in most cases needed to be very fast in practice, while a
provably secure function that involves an intractable problem is inherently
slow in implementation.

In cryptography, so-called trapdoor one-way functions play a very significant
role, which will be thoroughly assessed in the sequel. Figure 1.8 illustrates
the principle of a trapdoor one-way function.

Without trapdoor With trapdoor

x f pxq

easy

hard

x f pxq

easy

easy

Figure 1.8: An ideal one-way function f .

We define a trapdoor one-way function as follows.

Definition 1.13 (Trapdoor one-way function) We say that a function is a trap-
door one-way function, if it is one-way and has the property that given some
non-trivial information, its inverse can be computed efficiently.

1.8.2 SYMMETRIC CRYPTOGRAPHY

Symmetric-key ciphers constitute a class of cryptographic algorithms that al-
lows for secure communication using the same key for both encryption and
decryption. There are essentially two (main) subclasses of symmetric-key ci-
phers: block ciphers and stream ciphers. Block ciphers encrypt the ciphertext in a
block-wise manner, with a typical block size ranging between 64 and 256 bits.
Some block ciphers also support a variable length. In contrast, stream ciphers

1.8. Cryptography and Cryptanalysis 31

use pseudorandom generators to obfuscate the message, usually by simply
adding the pseudorandom stream, called the keystream, onto the message9.
The receiver decrypts by subtracting the same keystream from the ciphertext.
Stream ciphers accept a continuous stream of message bits making them very
suitable for high-demand applications such as cellular networks and digital
media streams.

The symmetric-key ciphers, and stream ciphers in particular, are often used
in time-constrained environments, such as in mobile communication proto-
cols. Whereas this kind of ciphers are constructed using simple building
blocks and operations such as finite field arithmetic and substitution, their
simplicity allows them to perform both encryption and decryption at a very
high speed.

Apart from applications in encryption schemes, the symmetric ciphers can
be used to construct other cryptographic primitives such as message authenti-
cation codes and cryptographic hash functions. We omit the details as this is out
of scope for this thesis – for a thorough review, refer to, e.g., [Sma03].

Definition 1.14 (Symmetric-key cryptosystem) A (complete) symmetric-key
encryption scheme is a triple ∆ “ pKeyGen,Enc,Decq of efficiently computable
functions (algorithms) such that

• KeyGenpλq outputs key k, given security parameter λ as input,

• Encpm, kq outputs ciphertext c, given message m and key k,

• Decpc, kq outputs message m, given ciphertext c and key k.

Additionally, it must hold for all λ, all k by KeyGen, all messages m, and all
ciphertexts c output by Enc, that Decpcq “ m.

The security parameter λ describes the asymptotic behavior of a scheme.
Ideally, the algorithms (KeyGen, Enc, Dec) used in the cryptosystem should
run in time polynomial in λ. At the same time, the cryptosystem must not
be susceptible to attacks that run in time polynomial in λ, and therefore any
polynomial-time attack may succeed with probability at most negligible in λ.

1.8.3 PUBLIC-KEY CRYPTOGRAPHY

In public-key cryptography, a key pair consisting of a public and a secret key
is used. The public key is accessible10 to anyone and can be used solely for
encryption. In order to decrypt, the corresponding secret key must be used.

9Sometimes, this kind of cipher is called additive stream cipher.
10Since the same key is assumed to be used in encryption of several messages, public-

key cryptography cannot achieve perfect security.

32 Introduction

To achieve public-key cryptography, (conjectured) trapdoor one-way func-
tions are employed. Informally, we could say that the computation x Ñ f pxq
is used for encryption, while the inverse computation f pxq Ñ x is used for
decryption.

Definition 1.15 (Public-key cryptosystem) A (complete) public-key encryp-
tion scheme is a triple ∆ “ pKeyGen,Enc,Decq of efficiently computable func-
tions (algorithms) such that

• KeyGenpλq outputs a key pair with secret and a public key pks, kpq, given
security parameter λ as input,

• Encpm, kpq outputs ciphertext c, given message m and public key kp,

• Decpc, ksq outputs message m, given ciphertext c and secret key ks.

As before, we require that for all λ, all k by KeyGen, all messages m, and
all ciphertexts c output by Enc, it holds Decpcq “ m. In some cryptographic
schemes, this holds except with exponentially small probability; this is gener-
ally sufficient in practice.

With kp With kp, ks

x f pxq

easy

hard

x f pxq

easy

easy

Figure 1.9: An ideal public-key cryptosystem based on a trapdoor
one-way function f .

1.8.4 ATTACK MODELS AND SETTINGS

There are essentially three different cryptanalytic attacks applicable on asym-
metric cryptography.

• Key recovery: In a key-recovery attack an adversary will recover the se-
cret key. Resilience against key-recovery attacks is a very weak property,
since it does not guarantee that no information leaks from the cipher-
text.

1.8. Cryptography and Cryptanalysis 33

• Message recovery: Related to the prior attack, in a message-recovery at-
tack an adversary will recover one out of possibly many messages. Re-
silience against key-recovery attacks is a stronger property. Naturally, a
successful key-recovery attack implies a message-recovery attack.

• Distinguishing: In a distinguishing attack an adversary neither recovers
the key nor a message. Instead, it classifies whether an intercepted
sequence is random or stems from a (fixed) cipher.

Security of a cryptographic primitive must hold in the presence of a ma-
licious adversary. Attack settings depend heavily on different assumptions
of what the adversary is capable of doing. A passive adversary can only ob-
serve (and intercept communicated information), while an active adversary
can interact – sometimes even adaptively.

• Known ciphertext: The weakest adversary model is the known-ciphertext
(or ciphertext-only, COA) attack. Given a set of intercepted ciphertexts c,
the adversary tries to reveal the message m PM, or more preferably, the
secret key ks P K. For instance, if the key space is very small it allows
for an exhaustive search to be carried out, computing the decryption
for all keys. If the message is known to be distributed according to
some distribution D, then the distribution of each decryption can be
tested against D using some distance measure to verify if the guess is
correct or not. More generally, if |M| ¨ |K| ą |C|, then we require more
ciphertexts to uniquely determine m or ks.

• Chosen plaintext: Slightly stronger is the chosen-plaintext attack model
(CPA), in which the adversary is given access to an encryption oracle
under some key kp, which allows for choosing messages arbitrarily and
determine their corresponding ciphertexts. For instance, in differential
cryptanalysis the attacker chooses a set of messages that differ in a way
which makes it beneficial to the attacker. In the batch chosen-plaintext
attack, the adversary chooses all messages in anticipation. On the con-
trary, in the adaptive chosen-plaintext attack the adversary performs a se-
quence of queries, where subsequent messages can be chosen using
information from prior encryptions.

• Chosen ciphertext: The strongest, but also least realistic attack model
is chosen-ciphertext (CCA). The adversary is given access to both an en-
cryption oracle and a decryption oracle and may therefore both encrypt
messages and decrypt ciphertexts, but only a polynomial11 number of

11This is the reason why it is sometimes called a lunchtime or midnight attack; the
attacker is given access to the machine while the legitimate owner is at lunch or
asleep.

34 Introduction

them and the challenge ciphertext may not itself be decrypted. In a
slightly boosted adversarial setting (CCA2), the attacker can adaptively
choose messages and obtain ciphertexts, which in turn may be used to
choose ciphertexts that can be decrypted to obtain messages.

BRUTE-FORCE ATTACKS

The simplest cryptanalytic attacks are brute-force attacks. As the name sug-
gests, this kind of attack relies on the assumption that the attacker has access
to computational power comparable to the claimed security level (or is lucky).
If the key space is |K|, then the expected number of tries is 1

2 ¨ |K|.
Since brute-force attacks in no way exploit underlying properties of the

cipher, they can be applied to virtually all cryptography. Therefore, the brute
force complexity serves as a very crude upper bound on the security of a
cipher.

It might seem that brute force is a simple theoretical and impractical up-
per bound. However, brute-force attacks are easily parallelizable and the task
can be distributed over computer clusters or specialized hardware (e.g. FPGA
based circuitry or GPU computation). Bernstein argues in [Ber05] that albeit
(at most) linear speed-up is achieved, the cost often is less than serially exe-
cuted attacks that are considered to break a cryptographic construction.

TIME–MEMORY TRADE-OFF ATTACKS

A time–memory trade-off (as introduced in Section 1.7) attack uses memory
to speed up computation. It is divided into a pre-processing phase and a
real-time phase. First, during the pre-processing phase, the algorithm makes
a series of computational steps collecting information about the cipher, or
storing information of frequently occurring computations. The information
retrieved or computed is stored in memory, usually in look-up tables or sim-
ilar. When entering the real-time phase, the algorithm uses the stored in-
formation with unknown information retrieved during the real-time phase.
Time–memory trade-off techniques are not restricted to cryptanalysis; as an
example, dynamic programming is a very general method for solving a prob-
lem by dividing it into sub-problems.

The first published time–memory trade-off attack appears in [Hel80], suc-
cessfully mounting a chosen-plaintext attack on a block cipher. The attack
in [Hel80] describes a time-memory trade-off technique commonly called a
meet-in-the-middle (MITM) attack12. When applicable, it is usually used – like

12This attack should not be confused with the man-in-the-middle attack.

1.9. Summary 35

the brute force attack – as security upper bound (or equivalently, as a com-
plexity lower bound). We will now give a very simple example of such an
attack.

Example 1.2 Assume that an attacker knows a message m and a ciphertext c that
was encrypted twice with two unknown keys k1 and k2 such that

c “ EncpEncpm, kq, k1q.

A brute force attack would require to exhaust all pairs of keys in K ˆK, requiring
Op|K|2q time. A meet-in-the-middle attack proceeds as follows.

First, in the pre-processing stage, the adversary computes all ciphertexts Encpm, kq
for all keys k P K and stores the key in a table or list L1 indexed by the cipher text.
Then, the adversary computes for all keys k1 P K all ciphertexts Decpc, k1q and stores
the keys accordingly in L2. The adversary then enters the real-time phase and starts
computing the list LÐ L1 ˛L2. If L is non-empty, then each entry will be a pair of
keys such that m encrypts to c. A simple complexity analysis shows that meet-in-the-
middle attack requires O p|K|q time and memory, which is a square root improvement
over brute force.

1.8.5 DISTINGUISHING ATTACKS

All cryptographic attacks can be turned into decision problems. In the deci-
sional setting, the adversary is given a sequence of symbols and must answer
either Cipher if the intercepted sequence originates from a (known and fixed)
cryptographic primitive, or Random if the sequence is distributed according to
the uniform distribution. An adversary is considered to be successful if it is
able to produce a correct answer with probability greater than 1

2 . Of course, a
successful attack by no means implies a practical one. In fact, a distinguisher
may require immense amounts of time and memory, which in some cases may
cause it to be slower than brute force.

The idea of a distinguishing attack is based the assumption that some in-
formation leaks from the cryptosystem. For a public-key encryption scheme,
indistinguishability under chosen plaintext attack (IND-CPA) is defined by a com-
putational game between an adversary A and a challenger, as given in Game
1. In a cryptographic scheme based on computational security, the adversary
A is a computationally bounded eavesdropper and modeled by a probabilis-
tic polynomial-time algorithm. Since A is a PPT algorithm, it must output a
guess of which message was encrypted, within a polynomial number of com-
putation steps. We say that a public-key cryptosystem pKeyGen,Enc,Decq is
secure in terms of indistinguishability if for all probabilistic polynomial-time
algorithms A holds that |P pA guesses correctlyq ´ 1

2 | is negligible in security
parameter λ.

36 Introduction

Game 1 (IND-CPA)

Challenger Adversary A
KeyGenpλq generates pks, kpq;

kp
ÝÝÝÝÝÑ

MÐ tm0, m1u;
M

ÐÝÝÝÝÝ

Flips coin b $
Ð t0, 1u;

Computes c Ð Encpmb, kpq;
c

ÝÝÝÝÑ

A makes a guess b1;
b1

ÐÝÝÝÝ

if b “ b1 then accept
else reject;

1.9 SUMMARY

In this chapter, we have provided a mathematical background to various the-
oretical concepts from fundamental probability, information theory and com-
plexity theory. We have given the necessary details for hypothesis testing,
and in particular Neyman-Pearson’s lemma. We have also treated the birth-
day attack and how to approach it algoritmically. Finally, we have provided
some background to cryptography and cryptanalysis, introduced the symmet-
ric and public-key encryption in more detail and outlined different relevant
attacks and attack settings for the two.

2
Linear Codes

I just wondered how things were put together.
– Claude E. Shannon

In this chapter, we will provide the reader with fundamentals of coding
theory necessary for the sequel of this thesis. Essentially, coding theory
concerns achieving and studying means of reliable and efficient informa-

tion transmission over a noisy channel. Error-correcting codes have found
direct applications in telecommunication, data storage and data compression,
but also more subtle theoretical implications in cryptography, complexity the-
ory, pseudo-randomness and combinatorics.

As a general coding-theoretical model, we assume that a sequence of sym-
bols called message is transmitted over a noisy channel. With a non-zero
probability, an arbitrary symbol will be inflicted by an error, and therefore the
received message is likely to become corrupted to the receiver. To overcome
this problem, the transmitted information will not only contain the message,
but also include some redundancy based on the message symbols. For in-
stance, the sender can transmit each symbol in the message several times to
include information redundancy. Then the receiver may use a majority deci-
sion for each symbol to obtain the message. This simple encoding is called
repetition coding.

In the realm of linear codes we find a wide range of code families that offer
reliable and efficient information transmission. There is typically distinction
between two types of codes: block codes encode information block by block,
while convolutional codes encode a continuous stream of information bits.

37

38 Linear Codes

2.1 GENERAL

We will now introduce some basics on linear codes. A linear code, which we
denote C, is a linear subspace. The elements of the code are called codewords.

Definition 2.1 (Linear code) An rn, ksq linear code C is a linear subspace over
Fq of length n and dimension k.

The cardinality of C is |C| “ qk and the (information) rate, denoted R, of
an rn, ksq linear code is k

n . We will sometimes omit the subscript and simply
write rn, ks linear code, which implicitly means that the code is binary, i.e.,
q “ 2. A highly important property of a code is its minimum distance. We
define it as follows.

Definition 2.2 (Minimum distance) The minimum distance of a linear code
C, denoted dmin, is the minimum distance of its codewords

dmin “ min
c,c1PC

dH
`

c, c1
˘

“ min
c,c1PC

wH
`

c´ c1
˘

“ min
cPC,c‰0

wH pcq .

(2.1)

If C has minimum distance dmin, then we say that C is an rn, k, dminsq linear
code over Fq. From the above, we see that the minimum distance is equal to
the minimum of codeword weights in C. A linear code C can be expressed as
the image of a matrix, and as the kernel of another matrix:

Definition 2.3 (Generator matrix and parity-check matrix) Let C Ď Fn
q be a

linear code of dimension k. If G P Fkˆn
q is a basis matrix of C, i.e.,

C “
!

uG : u P Fk
q

)

, (2.2)

then we say that G is a generator matrix for C. Therefore, C has an encoding
map f : Fk

q Ñ Fn
q , which is u ÞÑ uG.

If C is the kernel of a matrix H P F
pn´kqˆk
q , i.e.,

C “ kerpHq “
!

v P Fn
q : HvT “ 0

)

(2.3)

then we say that H is a parity-check matrix of C. It follows that GHT “ 0.

A basis matrix for a linear subspace is not unique, so a code C has many
generator matrix representations. In particular, a generator matrix is said to
be in systematic form if the first k columns of G form the kˆ k identity matrix.

2.1. General 39

For any systematic generator matrix Gsys, each entry of the message vector
appears among the entries of the codeword. Given the generator matrix in
systematic form Gsys “

`

Ik A
˘

, the parity-check matrix in canonical form is
H “

`

´AT In´k
˘

, where Ii is the iˆ i identity matrix. To see that this indeed
is the case, we can form the product GsysHT “ Ikp´Aq `AIn´k “ 0.

Definition 2.4 (Information set) Any subset I Ă t1, 2, . . . , nu of the coordi-
nate positions of a rn, ksq linear code is called an information set if there is
a generator matrix for the code that is systematic on the columns in those
positions, i.e., if the columns are linearly independent.

More informally, the positions of an information set carry the information,
while the remaining positions contribute redundancy (sometimes, these sym-
bols are called parity-check symbols). The amount of redundancy of C is
n´ k.

If a word v P Fn
q does not satisfy HvT “ 0, then v is not a codeword in C.

By writing v “ c` e, with c P C and e P Fn
q , we obtain

HvT “ Hpc` eqT “ HeT P F
1ˆpn´kq
q . (2.4)

We call this the syndrome of the received word v, being a linear combination
of the columns of H corresponding to the error positions in e. The syndrome,
in some sense, is an indicator of error.

Definition 2.5 (Support) The support of a codeword c P C is the set of posi-
tions in which the non-zero elements appear and denoted supppcq.

Definition 2.6 (Coset) Let C Ď Fn
q be a rn, ksq linear code. Moreover, let x P Fn

q .
Then, the subset

x` C “ tx` c : c P Cu (2.5)

is called a coset of C. In particular, if x P C, then x` C “ C.

Definition 2.7 (Dual code) The dual code of C, which we will denote CK, is a
linear subspace containing the words that are perpendicular to all codewords
of C, i.e.,

CK def
“

!

v P Fn
q : xv, cy “ 0, @c P C

)

“

!

v P Fn
q : GTv “ 0

)

. (2.6)

From above, we note that GT is a parity-check matrix of the code CK. Simi-
larly, HT is a generator matrix of the dual code CK.

Two codes C and C 1 over Fn
q are called permutation equivalent provided there

is a coordinate permutation f , which sends C to C 1, i.e.,

C 1 “ t f pxq : x P Cu . (2.7)

40 Linear Codes

In particular, if f maps C to itself, then g is called an (permutation) automor-
phism. If there exists a permutation between C and C 1 with generator matrices
G and G1, respectively, then there must necessarily exist a non-singular matrix
S and a permutation matrix P such that

G “ SG1P. (2.8)

If so, then the two generator matrices encode the same code (up to codeword
symbol permutation); the matrix S causes the information sequence to code-
word mapping to change, and the permutation matrix P permutes coordinates
in all codewords.

Most code-based cryptography schemes use the property of code equiva-
lence (and, in some sense, relies on the hardness of it; see e.g. [SS13] for further
details on this matter), which usually involves coordinate permutations and
linear transformations – among others, the McEliece public-key cryptosys-
tem [McE78] and the CFS signature scheme [CFS01].

2.2 CHANNEL ERROR MODELS

Information transmission is a situation with presence of noise. To be able to
understand and to analyze the noise factor and its impact on the transmis-
sion system, one usually approximates the noise with some well-defined and
mathematically well-behaving model. Obviously, different situations require
different models to obtain a suitable approximation of reality. Two such mod-
els that we will use is the binary symmetric channel and the fixed-error model.

Definition 2.8 (Binary symmetric channel) If the channel is discrete and
memoryless with a constant crossover (bit error) probability ρ P r0, 1s, we
say that is a binary symmetric channel, denoted BSCρ.

The error of a binary symmetric channel BSCp is Bernoulli distributed and
can be interpreted as an arbitrarily long sequence pXiqtą0, where each random
variable is i.i.d. and Xi „ Berρ. It is commonly used in the setting of a
»real-world« scenario, i.e., for transmission of radio signals or on an ethernet
network.

In a more uncommon and highly artificial scenario, a constant and known
number of errors occurs each time n information symbols are transmitted
over a channel. In this thesis, we denote it as the fixed-error model. While
the positions of the errors occur randomly, the quantity of the error is non-
random. We define the fixed-error model as follows.

Definition 2.9 (Fixed-error model) If a n symbols are transmitted over a dis-
crete channel and the total number of errors that occur is exactly ρ ¨ n, then
we say that the channel is in the fixed-error model.

2.3. Types of Decoding 41

It is equivalent to say that the error sequence e is drawn uniformly from a
Hamming sphere over Fn

q with radius ρ ¨ n, i.e.,

e $
Ð Sqpn, ρ ¨ nq. (2.9)

2.3 TYPES OF DECODING

Decoding comes in many flavors. In this section, we will briefly introduce
different types of decoding approaches. The focus will be on unique decoding,
i.e., when one desires a unique solution to the decoding problem. In unique
decoding, the number of errors that an rn, k, dminsq linear code is able to correct
is given by the error-correction capability

t def
“

Z

dmin ´ 1
2

^

. (2.10)

MAXIMUM-LIKELIHOOD DECODING

A maximum-likelihood decoding is a central algorithmic error-correction prob-
lem in coding theory. Any algorithm that solves the problem is an optimal
decoding algorithm.

Given a rn, ksq code C and a received word r P Fn
q , a maximum-likelihood

decoding procedure chooses the most likely codeword c P C, i.e., it will find a
solution to the maximization problem

arg max
cPC

P pr received | c sentq . (2.11)

If all codewords are sent according to a uniformly random distribution, it
allows for a reformulation of the maximization problem. Using Bayes’ rule,
we obtain

P pr received | c sentq “
P pr received, c sentq

P pc sentq

“ P pc sent | r receivedq ¨
P pr receivedq

P pc sentq
loooooooomoooooooon

constant

, (2.12)

which in turn yields the maximization problem

arg max
cPC

P pc sent | r receivedq . (2.13)

This reformulation of the maximum-likelihood decoding problem is called
ideal observer decoding.

42 Linear Codes

MINIMUM-DISTANCE DECODING

Closely akin to maximum-likelihood decoding, we have minimum-distance de-
coding, in which one searches for the nearest codeword in terms of Hamming
metric.

A minimum-distance (or nearest neighbor) decoding procedure chooses the
codeword c P C closest to the received word r. More specifically, a minimum-
distance decoding procedure solves the minimization problem

arg min
cPC

dH pr, cq . (2.14)

When the error model is that of a binary symmetric channel BSCρ with
ρ ă 1

2 , minimum-distance decoding is equivalent to maximum-likelihood de-
coding. This follows from that the probability-distribution function of the
error

P pr received | c sentq “ p1´ ρqn´d ¨ ρd (2.15)

obtains its maximum when d “ dH pr, cq is minimal.

SYNDROME DECODING

Syndrome decoding is an efficient method to solve minimum-distance decoding.
Recall the definition of the syndrome. If HTr “ 0, then r P C and no error
within the correction radius t has occurred. On the other hand, if HTr has
non-zero weight, then it is compared with a list of pre-computed syndromes
(usually stored in a look-up table for constant time access). If there is a match
in the list, then that entry will hold the error vector. If no match is found, then
the decoder concludes that there was more than t errors.

Given received word r “ c` e where c P C and e, r P Fn
q , the syndrome is

computed as follows
f : Fn

q ÝÑ Fn´k
q

P P

r ÞÝÑ HTe.
(2.16)

For special codes, such as Hamming codes (see Subsection 2.6.3), no list
of pre-computed syndromes is required. Instead, the error can be directly
derived from the syndrome.

OTHER DECODING METHODS

List decoding is a decoding procedure which also solves minimum-distance
decoding. Given a code C with error correction capability t, a received word

2.4. Random-Coding Bounds and Covering Codes 43

r P Fn
q and a parameter

m ą t “
Z

dmin ´ 1
2

^

, (2.17)

output a list of codewords from the code C that are located a distance at most
m from the received word r. By using a list decoding procedure, it allows the
decoder to go beyond the error correction capability t. This is out of scope of
this thesis and we will refrain from going deeper into the details.

In the subsequent chapters, we will consider fixed-distance decoding, which
is the problem of decoding a block code for a fixed error rate, i.e., in the fixed-
error model. This is particularly interesting in code-based cryptography.

2.4 RANDOM-CODING BOUNDS AND COVERING CODES

The probabilistic behavior of random codes will play a significant role in this
thesis, in particular when we study the average case complexity of certain
algorithms. In this section, we will give some results on random codes that
are useful in the analysis. For more details, refer to [MS78] [CHL97].

First, we introduce two relevant problems in coding.

• Packing problem: given integers n and r, what is the maximum number
of non-intersecting Hamming balls of radius r that can be placed in n-
dimensional space?

• Covering problem: given integers n and l, what is the minimum num-
ber of Hamming balls of radius l that can be placed in to completely
cover the n-dimensional space?

The packing problem is the basis of error correction; any two codewords in
such a packing are at least distance d “ 2r` 1 apart, meaning that at least r
errors can be corrected. We have illustrated this in Figure 2.1.

Definition 2.10 (Hamming bound) The Hamming bound (or sphere-packing bound)
states that if the code C is a rn, ksq linear code with minimum distance at least
d, then the number of codewords satisfies

|C| ď qn ¨

ˇ

ˇ

ˇ

ˇ

Bq

ˆ

n,
Z

d´ 1
2

^˙
ˇ

ˇ

ˇ

ˇ

´1
. (2.18)

Proof. If the code C has a minimum distance at least d, then the code can cor-
rect up to r “ t d´1

2 u errors. Every pair of Hamming balls are non-intersecting
and each ball has size |Bqpn, rq|. Taking the union over all balls, we obtain
|C| ¨ |Bqpn, rq| ď qn. �

44 Linear Codes

r

d

Figure 2.1: Sphere packing (rhombohedral).

The covering radius of a code of length n is defined as the smallest integer
dC such that all vectors in space Fn

q are within Hamming distance dC of some
codeword. The sphere-covering bound states how many such codewords that
are needed to cover the whole space.

Theorem 2.1 (Sphere-covering bound) For every integer q ą 1 and n, k such
that 1 ď k ď n and covering distance dC it holds that

|C| ě qn ¨ |Bqpn, dC ´ 1q|´1. (2.19)

Later on, covering codes will be a useful tool in linear approximation in
cryptanalysis. These codes have the property that any word is within some
fixed distance l of a codeword in the code. More formally, we define a covering
code as follows.

Definition 2.11 (dC-covering code) Let C be a rn, ksq linear code and an integer
dC ě 0, then C is called an dC-covering code if there for any received word
r P Fn

q is a codeword c P C such that dH pr, cq ď dC.

Theorem 2.2 (Gilbert-Varshamov bound) Let n, k and d be positive integers
such that

|Bqpn´ 1, d´ 2q| ă qn´k. (2.20)

Then, there exists an rn, ks linear code having minimum distance at least d.

The Gilbert-Varshamov bound ensures the existence of a q-ary linear code
with a rate R linear code that has an minimum distance at least d. For instance,
a binary linear code with rate R “ 1

2 has the GV bound d “ 0.11n. This means
that there exists at least one such code that is able to correct up to 1

2 ¨ 0.11n
errors. In fact, one can show that a random linear code attains the GV bound
with high probability, implying that most random codes meet the GV bound.

2.5. Computational Problems in Coding 45

2.5 COMPUTATIONAL PROBLEMS IN CODING

The vast majority of the computational problems in coding theory are inclined
towards the decoding procedure (which seemingly is the most intractable),
i.e., retrieving encoded information from a noisy observation. The general
decoding problem can be stated as follows: given an encoding function f :
M Ñ C and an encoded message f pmq P C that is inflicted by random noise,
determine the original message m P M. In general decoding, the encoding
function f can be an arbitrary mapping which not necessarily is linear.

In this thesis, we will concern only the linear setting, in which the (linear)
encoding function generates a codeword

c “ fGpuq “ uG

that is perturbed by noise (according to some error model) when sent over
a channel, and received on the other end as r “ c ` e. The problem which
the receiver will face consists of finding c under the constraint that wH peq is
minimized. More formally, this problem is defined as follows.

Problem 2.3 (Minimum Distance Decoding) Let C be an rn, ksq linear code.
Given a received word r and an integer w, find a codeword c P C such that
dH pr, cq ď w. If no such codeword exists in C, output K. We denote the
problem MDD.

The MDD problem is intractable and inherently hard to solve in general. The
decision problem version of MDD was proven NP-complete for binary linear
codes by Berlekamp, McEliece and van Tilborg in [EBvT78] (and subsequently
extended to q-ary linear codes by Barg in [Bar94]). The authors of [EBvT78]
achieved the result by reduction to a well-known NP-complete problem called
Three-Dimensional Matching. Since the groundbreaking work [EBvT78],
similar hardness results have been published for many types of codes and
settings. Not surprisingly, MDD can be (equivalently) formulated as a problem
of syndrome decoding. We define it as follows.

Problem 2.4 (Computational Syndrome Decoding) Let C be an rn, ksq linear
code. Given an pn´ kq ˆ k parity-check matrix H for C, a syndrome s P Fn´k

q
and an integer w ą 0, find a word e P Fn

q such that HeT “ s and wH peq ď w.
If no such word exists, output K. We denote the problem CSD.

Consequently, the decision problem version of CSD is also NP-complete
(and, thus CSD as a search problem is NP-hard), and conjectured difficult in
the average case [Sen11]. To illustrate an upper bound on the complexity of
CSD, we consider a naïve (brute-force) algorithm that solves CSDpH, wq by
enumerating all possible solutions to e such that wH peq ď α ¨ n. This set of

46 Linear Codes

vectors is contained in Bqpn, α ¨ nq, which according to Lemma 1.7 is of size
„ qnhqpαq`opnq. Since a brute-force algorithm exhausts the entire solution space,
its running time is

TCSD-BFpnq “ Opqnhqpw{nq`opnqq, (2.21)

and clearly exponential in n for a fixed ratio α “ w
n .

The best (known) average performance when solving arbitrary1 instances
of MDD and CSD obtained by using information-set decoding algorithms (dis-
cussed in Chapter 2). This quite narrow class of algorithms has, just like the
brute-force algorithm we previously outlined, exponential-time complexity
Tpnq “ 2Opnq when the rate R is fixed and the error weight is parameterized
(typically a linear function) in n.

Tightly related is the problem of finding a codeword in the code C, such that
it has a certain Hamming weight w, where w typically is very small (compared
to the GV bound).

Problem 2.5 (Minimum Distance Problem
2) Let C be an rn, k, dminsq linear

code. Given an integer w ą 0, find a codeword c P C such that wH pcq “ w. If
no such codeword exists, output K. We denote the problem MDP.

As shown by Canteaut and Chabaud in [CC98], MDD can be reduced to
MDP. Let C be an rn, k, dminsq linear code with generator matrix G. Moreover,
let r “ c` e be the received word, where c P C and e P Fn

q . Since a machine
solving MDP must be able to terminate with a solution on any input, a new
extended code C 1 generated by the extended generator matrix

G1 “
ˆ

G
r

˙

(2.22)

can be constructed. By definition, in order for the codeword c to be uniquely
decodable, the error weight must satisfy wH peq ď t ă 1

2 ¨ dmin, where t is the
error-correction capability of the code C. Hence,

C 1 “ C Y tr` Cu (2.23)

has minimum distance wH peq and therefore the minimum-weight codeword
is e. Solving MDP on inputs pC 1, jq for 0 ď j ď t will necessarily give the

1Assuming that the codeword weight or the error weight is below the Gilbert-
Varhamov bound.

2In literature, this problem is sometimes referred to as Low-Weight Codeword or
Subspace Weight.

2.6. Efficiently Decodable Families 47

error vector e, after which the contribution from the error can be reverted by
forming r´ e.

A similar argument holds for the other direction in reducing MDP to MDD.
Let C be an rn, ksq linear code generated by G. Suppose that we want to find a
codeword of weight t. Remove the ith row gi from G forming Gi. Gi generates
the rn, k´ 1sq linear code Ci. We can then solve MDD on input pCi, giq. If the
output c has weight t, then terminate. If not (the algorithm outputs K), choose
another 0 ă i ď k.

2.6 EFFICIENTLY DECODABLE FAMILIES

A family of codes is said to be efficiently decodable if there exists a PPT ma-
chine that can solve the MDD problem for all given instances in that particular
encoding. Ever since the introduction of error-correcting codes in [Sha48],
constructing efficiently decodable (and encodable) codes with good error-
correction properties has been one of the major problems in coding theory.
A lot of progress has been made in this area. For instance, it is known how to
construct asymptotically good codes that are able to correct a constant frac-
tion of errors, and for which decoding can be performed in polynomial or
even linear time using expander constructions as in [Spi96] [GI01].

2.6.1 CONVOLUTIONAL CODES

Convolutional codes are a widely used family of error-correcting codes that
allow for efficient decoding [JZ99]. This family differs from block codes in
that the encoder has memory containing a number of previous symbols.

Encoding is done by a sliding window (this is the reason for the name convo-
lutional codes) to calculate parity symbols by linear combinations of message
symbols in the window. The length of the sliding window is called the con-
straint length or memory m of the code. Naturally, the larger the constraint
length is, the more influence a single message symbol has on the parity bits,
yielding better error-correction capability. However, (optimal) decoding time
complexity scales exponentially with the constraint length, making it a trade-
off between correction properties and decoding complexity.

Let b and c be positive integers. In encoding of a rate R “ b
c convolutional

code C, b-bit information symbols are transformed into c-bit symbols. The
code rate R can be modified using symbol puncturing, i.e., excluding some
parity symbols in the codeword3. In contrast to block codes, a convolutional
code may be of infinite length.

3One could interpret code puncturing as a masking function φ being applied on every
codeword such that C1 “ tφpcq : c P Cu.

48 Linear Codes

Definition 2.12 (Time-invariant convolutional code) A time-invariant or fixed
convolutional code C has a generator matrix G such that

G “

¨

˚

˝

G1 G2 ¨ ¨ ¨ Gm
G1 G2 ¨ ¨ ¨ Gm

.

˛

‹

‚

,

where Gi is a bˆ c matrix. The empty spaces of G are all-zero.

The output at any time is a linear combination of the current information
symbol and the m´ 1 previous ones. The integer m is called the memory of the
code. The sub-matrices Gi of each row are the same as the previous row, but
shifted c steps. If the sub-matrices in any sense are different from previous
row it is called a time-variant code, which we define as follows.

Definition 2.13 (Time-variant convolutional codes) A time-variant convolu-
tional code C has a generator matrix G such that

G “

¨

˚

˝

G1,1 G1,2 ¨ ¨ ¨ G1,m
G2,1 G2,2 ¨ ¨ ¨ G2,m

.

˛

‹

‚

, (2.24)

where all the Gij matrices may be different.

Convolutional codes also allow for finite constructions by terminating the
code in some way. One such terminated construction is a tail-biting code,
i.e., the encoder will start in the same state as it will stop after encoding all
information blocks.

Definition 2.14 (Tail-biting convolutional code) A tail-biting convolutional
code C has a generator matrix G such that

G “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

G1,1 G1,2 ¨ ¨ ¨ G1,m

G2,1
.
. . . Gi,m

Gi`1,m
. . .

...
...

.
...

GL,2 ¨ ¨ ¨ GL,m GL,1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.25)

Optimal decoding of convolutional codes can be carried out using the
Viterbi algorithm [Vit67] in time complexity Op2mb ¨ kq, where k is the number
of information symbols being transmitted. Alternatively, more efficient but
sub-optimal decoding can be achieved by sequential decoding, e.g., by the stack
algorithm [JZ99].

2.6. Efficiently Decodable Families 49

2.6.2 CYCLIC CODES

Cyclic codes constitute an important family of linear block codes, first explored
by Prange in [Pra57]. In particular, they are attractive since they achieve good
error-correction capability. Many code constructions fall into the family of
cyclic codes, thereamong BCH codes, Reed-Solomon codes, Euclidian geome-
try codes and quadratic residue codes. Refer to [LC04] for an excellent cover-
age of these code families.

Definition 2.15 (Cyclic code) Let C be a rn, k, dminsq linear code. If every
circular shift of a codeword c “

`

c1 c2 ¨ ¨ ¨ cn
˘

P C again is a codeword
c1 “

`

cn c1 ¨ ¨ ¨ cn´1
˘

P C, then we say that C is a cyclic code.

The description of cyclic codes may become more understandable if we
regard them as polynomials, i.e.,

`

c1 c2 ¨ ¨ ¨ cn
˘

ÞÑ c1 ` c2x` ¨ ¨ ¨ cnxn´1 P Fqrxs{ xx
n ´ 1y . (2.26)

If so, then every right-circular shift in codeword space corresponds to a mul-
tiplication by x in the polynomial counterpart, i.e.,

`

cn c1 ¨ ¨ ¨ cn´1
˘

ÞÑ cn ` c1x` ¨ ¨ ¨ cn´1xn´1

“ x ¨ pc1 ` c2x` ¨ ¨ ¨ cnxn´1q.

While cyclic codes are cyclically symmetric [LC04], meaning that they be-
have exactly like polynomials, there are linear block codes that partially pos-
sess this property, called quasi-cyclic codes. We define a quasi-cyclic code as
follows.

Definition 2.16 (Quasi-cyclic code) Let C be a rn, k, dminsq linear code. If each
circular shift by n0 ą 1 coordinates of a codeword c “

`

c1 c2 ¨ ¨ ¨ cn
˘

P C
again is a codeword c1 “

`

cn´n0`1 cn´n0`2 ¨ ¨ ¨ cn´n0

˘

P C, then we say
that C is a quasi-cyclic code of order n0.

The integer n0 is commonly called the shifting constant.

2.6.3 HAMMING CODES

The Hamming codes are a family of (binary) linear error-correcting (block)
codes that are able to correct one error and able to detect up to two errors.
Hamming codes are special in the sense that they are perfect4, meaning that
they attain the Hamming bound and thus achieve the highest possible rate
for a certain block length and minimum distance dmin “ 3. For any integer
r ą 1, there is at least one Hamming code of length n “ 2r ´ 1 and dimension
k “ 2r ´ r´ 1.

4Hamming codes are, along with the trivial perfect codes and Golay codes, the only
binary linear codes that attain the Hamming bound.

50 Linear Codes

Example 2.1 (r7, 4s Hamming code) A very simple way to construct a r7, 4s Ham-
ming code is to use a Venn diagram that maps the information bits into parity bits.

v5

v6

v7

u1

u2

u3
u4

`

u1 u2 u3 u4
˘

ÞÑ
`

u1 u2 u3 u4 v5 v6 v7
˘

G “

¨

˚

˚

˝

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

˛

‹

‹

‚

2.6.4 LDPC AND MDPC CODES

Low-density parity-check (LDPC) codes (also called Gallager codes) are a fam-
ily of codes having very sparse parity-check matrices. LDPC codes are one
of few codes that are capacity-approaching, which means they allow for the
noise threshold close to the theoretical maximum for a symmetric memoryless
channel.

Decoding of LDPC codes is achieved via iterative belief propagation on the
Tanner graph representation of the code. A Tanner graph is a bipartite graph-
ical representation of the code which contains a very small number of edges
(each edge corresponds to a non-zero element in H). Notably, probabilistic
inference methods (such as iterative belief propagation) on sparse graphs is
known to have linear complexity in the code length [Pea88].

Example 2.2 (Tanner graph) A shortened r6, 3sHamming code having parity-check
matrix and corresponding Tanner graph representation as follows.

v1 v2 v3 v4 v5 v6

c1 c2 c3

H “

¨

˝

0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

˛

‚

Let us now consider the following: if an LDPC code is constructed with
»slightly« relaxed weight constraints, one obtains a code which admits denser
parity-check matrix than a normal LDPC code, but still sparser than those
of classical block codes. This type of code is commonly referred to as mod-
erate density parity-check (MDPC) codes. The performance degrades with the
increased weight, but algorithms based on e.g. iterative belief propagation
yield acceptable decoding performance.

2.7. Summary 51

Note: Both LDPC and MDPC codes may be cyclic or quasi-cyclic. In Chap-
ter 5, we will explore some properties of quasi-cylic MDPC codes.

2.7 SUMMARY

In this chapter, we have given the basics of linear codes and provided a suf-
ficient coding-theoretical foundation for the remaining chapters of this thesis.
In particular, we have introduced three related computational problems in de-
coding, which are very relevant for the remaining part of the thesis. We have
also introduced a few common code families that occur in the subsequent
chapters.

3
Information-Set Decoding

All information look like noise until you break the code.
– Neal Stephenson

D ecoding random linear codes is a fundamental problem in coding
and complexity theory, but also in cryptography. In the previous
chapter, we established that decoding is a very hard problem and it

has been conjectured to be hard on average. We have seen a few examples
of code families that have efficient decoding procedures, but such code con-
structions are very rare – most encodings are not known to have an efficient
decoding procedure.

There are several known techniques for decoding random linear codes. The
best1 algorithms that we know of rely on information-set decoding (ISD), orig-
inally proposed by McEliece in [McE78] and inspired by the work [Pra62] of
Prange. In short, the idea behind information-set decoding is to pick a suf-
ficiently large set of error-free coordinates in a sent codeword such that the
corresponding columns in the generator matrix form an invertible sub-matrix.
Then, the information sequence can easily be obtained by linear algebra.

Since its introduction in [McE78], numerous different algorithmic tech-
niques have been explored to improve complexity of information-set decod-
ing. We will briefly outline some of the proposals in this chapter.

3.1 PLAIN ISD AND LEE-BRICKELL’S ALGORITHM

A plain information-set decoding algorithm randomly selects an information set
and then computes the information by solving linear equations. Consider the

1When the error weight is below the Gilbert-Varshamov bound.

53

54 Information-Set Decoding

Algorithm 3 (Plain-ISD)

Input: Generator matrix G P Fkˆn
2 , received vector r P Fn

2 and algorithm
parameter w P N.

Output: Information vector u P Fk
2.

while do1

Choose a subset I $
Ð t1, 2, . . . , nu and define φI pGq “ pgT

i qiPI ;2

Compute the information vector x Ð φI prqφI pGq´1;3

if wH pr` xGq ď w then4

return x5

following. Let u P Fk
2 be an unknown information sequence and

r “
`

r1 r2 ¨ ¨ ¨ rn
˘

“ uG` e P Fn
2 (3.1)

a received codeword encoded by an rn, ks linear code with generator matrix

G “
`

gT
1 gT

2 ¨ ¨ ¨ gT
n
˘

. (3.2)

Suppose we pick an information set I Ă t1, 2, . . . , nu of size k. Recall that
I is an information set if and only if the vectors pgiqiPI are all linearly inde-
pendent. Now, define a masking function φ (see Definition 1.11) such that
φpGq “ pgT

i qiPI and, thus,

φprq “ priqiPI “ puG` eqiPI “ puGqiPI ` peqiPI . (3.3)

As noted before, there is non-zero probability of symbols in the information
set being perturbed by error, and therefore the procedure usually needs to
be iterated with different information sets until it finds one that is entirely
error free. Whenever the selected information set I is non-corrupted, i.e.,
peqiPI “ 0 ðñ I X supppeq “ H, then the information symbols can be
obtained by computing

φprqφpGq´1 “ φpuGqφpGq´1 “ u. (3.4)

If, on the other hand, the information set contains a non-zero number of er-
rors, then consequently φprqφpGq´1 ‰ u, and therefore another different I
must be chosen, until a solution satisfying the weight constraint is found. We
summarize the procedure as given in Algorithm 3.

3.1. Plain ISD and Lee-Brickell’s Algorithm 55

Let us now move on to analyze iteration success probability and algorithm
complexity. Algorithm 3 succeeds to produce correct answer when it chooses
an information set I disjoint from the support of e.

Denote the iteration success probability PPlain-ISD. Then,

PPlain-ISDpn, k, wq def
“ P pI X supppeq “ Hq

“
Sqpn´ k, wq
Sqpn, wq

“

ˆ

n´ k
w

˙ˆ

n
w

˙´1
,

(3.5)

by simple counting argument; there are
`n´k

w
˘

different patterns of the error
positions, given that errors are absent in the |I | “ k positions corresponding
to the information set. Again, with no restriction, the number of error patterns
is
`n

w
˘

.
The algorithm performs a series of independent iterations, where each iter-

ation consists of random choices. Therefore, by Proposition 1.11, the expected
running time is P´1

Plain-ISD iterations until Algorithm 3 succeeds with finding an
error-free information set.

To obtain an expression for the complexity in terms of binary operations,
we also need to include the amount of binary operations used in each iter-
ation. The steps in Algorithm 3 are quite simple, and it suffices to compute
the inverse of a matrix by Gaussian elimination. We denote the complexity
of Gaussian elimination as CGausspn, kq. Hence, the expected complexity of
Plain-ISD, denoted CPlain-ISDpn, k, wq, is

CPlain-ISDpn, k, wq def
“ CGausspn, kq ¨ P´1

Plain-ISDpn, k, wq. (3.6)

Note: By Lemma 1.4, choosing a uniform random matrix out of all binary
matrices Fkˆk

2 gives a non-singular matrix with probability at least 1
4 (this

probability is around 0.288). Although the probability remains constant with
increasing k, it will add a constant factor around 4 in the random case to the
overall complexity. This might not seem to be a problem – however, for cer-
tain classes of codes the columns may be highly biased, yielding a much larger
additional factor. Therefore, Stern suggested in [Ste89] to choose the informa-
tion set adaptively by picking the columns one at the time and subsequently
performing row reduction before choosing the next column.

Note: Common practice is to set

CGausspn, kq “
pn´ kq ¨ k2

2
, (3.7)

although significant improvements are known. To remain consistent with lit-
erature, we will assume complexity according to (3.7) throughout this chapter.

56 Information-Set Decoding

In [LB88], Lee and Brickell explored a generalization of plain information-
set decoding, allowing a set of p P t0, 1, . . . , wu errors in the information.
The parameter p is typically chosen to be a small number, and Peters proved
in [Pet11] that p “ 2 in fact is optimal in the binary case, improving the
complexity by a factor Θpn ¨ log nq over plain information-set decoding (p “ 0).

The Lee-Brickell algorithm enumerates the vectors in the Hamming sphere
centered in r, i.e., S2pn, pq ` r, and then checks if any of them is a codeword.
In practice, this is accomplished by first computing y Ð φprqφpGq´1G, and
then for each size-p pattern S Ď I compute e Ð y`

ř

iPS Row pG, iq, i.e., y
summed up with rows in positions indexed by S . If wH peq “ w, the correct
codeword has been found. Assuming that the error e is uniformly random,
the probability of having exactly p errors in the k-sized information set is

P p|I X supppeq| “ pq “
ˆ

n´ k
w´ p

˙ˆ

k
p

˙ˆ

n
w

˙´1
, (3.8)

which also gives the probability of success in one iteration of the Lee-Brickell
algorithm.

We will leave out asymptotic analysis of information-set decoding. For a
thorough asymptotic complexity analysis of most algorithms presented in this
chapter, see e.g. [Pet11] and [Meu12].

3.2 STERN’S ALGORITHM

Most modern information-set decoding algorithms of today are based on
Stern’s algorithm, which incorporates birthday attack methods to speed-up
decoding (cf. 2-COL). This idea was first proposed by Stern in [Ste89]. A simi-
lar idea was proposed by Dumer in [Dum91], but we will refer to it as Stern’s
algorithm. The algorithm finds a weight-w codeword in a rn, ks linear code
C, generated by G P Fkˆn

2 . Stern’s algorithm allows, like the Lee-Brickell al-
gorithm, a certain number of errors in the information set. Apart from the
generator matrix G, the algorithm takes as input parameters p P t0, 1, . . . , wu
and l P t0, 1, . . . , n´ ku.

We will now go through the steps of the algorithm. First, two disjoint and
equally sized subsets I1 and I2 are chosen at random, such that I “ I1Y I2 is
an information set. We assume that |I1| “ |I2| “

k
2 . The systematic generator

matrix Gsys is computed from G with respect to I . The algorithm proceeds
by picking a masking function φ defined from a randomly chosen set Q Ă

t1, 2, . . . , nu zI of size l.
The above steps are achieved by randomly choosing a column permutation

π : Fkˆn
2 Ñ Fkˆn

2 (3.9)

3.2. Stern’s Algorithm 57

and computing πpGq. Gaussian elimination are then performed on πpGq,
to obtain Gsys. Q is random, but since the columns already are randomly
permuted, we can use a fixed masking function φ with the same result:

φpxq “
`

xk`1 xk`2 ¨ ¨ ¨ xk`l
˘

. (3.10)

In systematic form, the permuted generator matrix π pGq is of the form

Gsys “
`

I Q J
˘

, (3.11)

where I is the kˆ k identity matrix corresponding to the information set, Q is
a kˆ l matrix corresponding to Q, and J is a kˆ n´ k´ l matrix.

The algorithm proceeds by computing two lists L1 and L2, after which
u runs through all weight-p vectors of length k

2 , i.e., the Hamming sphere
S2p

k
2 , pq is computed. Then all vectors x “ pu}0 qGsys (for each u) are stored

in L1, sorted according to φpxq. Equivalently, a list L2 is constructed, sorted
according to φpxq and containing all vectors x “ p0}u qGsys where again u
runs through all weight-p vectors.

Finally, all pairwise sums of vectors x P L1 and x1 P L2 that match in
coordinates indexed by Q are computed, yielding the list

L “ L1 ˛L2. (3.12)

If there exists at least one codeword in L with weight at most w, the algorithm
outputs the first one it finds (or a list of all) and terminates. The full procedure
is described in Algorithm 4.

We will move on to analyze the complexity of Stern’s algorithm. First, we
analyze the success probability within one iteration. Stern’s algorithm will
produce a correct answer in the event that there are exactly p errors in I1 and
p errors in I2, i.e., |I1 X supppeq| “ p and |I2 X supppeq| “ p. Moreover, it
must hold that QX supppeq “ H. Then, the errors will be arranged according
to Figure 3.1.

As before, we can sketch an expression for the probability of such an ar-
rangement by a counting argument. There are

`k{2
p
˘

different patterns in each
half of the information set. In the l-symbol collision window there is only one
pattern: the all-zero one. Finally, in the last n´ k´ l we have

`n´k´l
w´2p

˘

different
patterns. Hence, based on the above argument, we can express the probability
of success in one single iteration as

PStern-ISDpn, k, w, p, lq “
ˆ

k{2
p

˙2ˆn´ k´ l
w´ 2p

˙ˆ

n
w

˙´1
, (3.13)

58 Information-Set Decoding

Algorithm 4 (Stern-ISD)

Input: Generator matrix G P Fkˆn
2 and algorithm parameters w, p, l P N.

Output: Codeword c P C of weight w P N.

repeat1

Choose a random column permutation and form π pGq;2

Bring the generator matrix π pGq to systematic form:3

Gsys “
`

I Q J
˘

,

where I is the kˆ k identity matrix, Q is a kˆ l matrix and J is a
kˆ n´ k´ l matrix;
Let u run through all weight-p vectors of length k

2 . Store all vectors4

x “ pu}0 qGsys in a sorted list L1, sorted according to φpxq;
Then construct a list L2 sorted according to φpxq, containing all5

vectors x “ p0}u qGsys where u runs through all weight-p vectors.
Add all pairs of vectors x P L1 and x1 P L2 for which φpxq “ φpx1q and
put in a list L;

until there is an x P L such that wH pxq “ w´ 2p6

return the codeword c P C corresponding to x7

I

I

Q J

k
2

k
2

k
2

k
2

l n´ k´ l

looooooomooooooon

p
looooooomooooooon

p
looooomooooon

0
loooooooooooooooooooomoooooooooooooooooooon

w´ 2p

Figure 3.1: The different fields used in Stern’s algorithm and their
error distributions.

provided that I1, I2 and Q are picked at random. The iteration cost in terms
of binary operations of Stern’s algorithm, denoted WStern-ISDpn, k, w, p, lq, is

3.2. Stern’s Algorithm 59

given by

CGausspn, kq ` pn´ kq ¨ p|L1| ` |L2|q ` pn´ k´ lq ¨E p|L1 ˛L2|q . (3.14)

The size of the lists L1 and L2 is determined by code dimension k and algo-
rithm parameter p, i.e.,

|L1| “ |L2| “

ˆ

k{2
p{2

˙

, (3.15)

and the expected size of the resulting merged list is given by

E p|L1 ˛L2|q “ |L1| ¨ |L2| ¨ 2´l . (3.16)

according to Lemma 1.15. Again, by Proposition 1.11, the expected time com-
plexity of running Stern’s algorithm on instance parameters pn, k, wq, denoted
CStern-ISDpn, k, wq, can be estimated to be

min
p,l

!

WStern-ISDpn, k, w, p, lq ¨ P´1
Stern-ISDpn, k, w, p, lq

)

. (3.17)

Typically, the optimal value for the algorithm parameter l is

l “ log2 |L1| “ log2 |L2|. (3.18)

Then, the expected list size is

E p|L1 ˛L2|q « |L1| “ |L2|, (3.19)

and therefore, the complexity of the final merging step will match the com-
plexity of creating the initial lists L1 and L2.

CANTEAUT-CHABUAD

In [CC98], Canteaut and Chabaud investigated how to improve the Gaussian
elimination step by re-using previous computations – a technique commonly
referred to as bit-swapping. Initially, this approach was intended for use in
Stern’s algorithm, but applies to all information-set decoding algorithms.

Instead of picking a completely new information set at random in the be-
ginning of each iteration of the information-set decoding algorithm, the au-
thors of [CC98] suggest to only permute one or a few positions. As a result,
the work performed in the Gaussian elimination step is reduced (roughly, by
a factor k). However, iterations are not independent, leading to a different
probability distribution. The probability mass function is rather involved, but
can be estimated by the limiting distribution of Markov chains (see [CC98] for
more details).

A generalization of the bit-swapping technique appears in [BLP11] and fur-
ther investigation of the method appears in [Pet11].

60 Information-Set Decoding

FINIASZ-SENDRIER AND BALL-COLLISION DECODING

Instead of a fixed collision window, Finiasz and Sendrier explored in [FS09]
the possibility of allowing the support of the error vector to spread across both
the information set and the collision window, thereby increasing the success
probability in one iteration. This is accomplished by computing the Hamming
sphere over the coordinates in the set I YQ, rather than only I .

In its original form, the Finiasz-Sendrier algorithm operates on the parity-
check matrix H, essentially meaning that it solves the CSD problem. Stern’s al-
gorithm, on the other hand, operates on the generator matrix G and solves the
MDP problem. In principle, there is no difference in the two approaches – it is
easy to transform Stern’s algorithm into an algorithm solving the MDP prob-
lem. Consider the following. Let Gsys be a systematic and column-permuted
generator matrix. Then, by operating on the rows of the matrix

G1 def
“

ˆ

Gsys
0 Il 0

˙

“

ˆ

Ik Q J
0 Il 0

˙

P F
pk`lqˆn
2 , (3.20)

we can solve MDP as efficiently as [FS09] solves CSD. The success probability
in one iteration of Finiasz-Sendrier algorithm is

PFS-ISDpn, k, w, p, lq “
ˆ

pk` lq{2
p

˙2ˆn´ k´ l
w´ 2p

˙ˆ

n
w

˙´1
. (3.21)

In the spirit of the Finiasz-Sendrier algorithm, Bernstein, Lange and Pe-
ters proposed a generalization of collision decoding, which they called ball-
collision decoding [BLP11]. The essential idea behind ball-collision decoding is
to allow a certain number of errors in the the collision fields. It was shown
in [MMT11] that Finiasz-Sendrier algorithm is asymptotically at least as fast
as ball-collision decoding.

3.3 A NEW ALGORITHM

We will now describe a new ISD algorithm that we proposed in [JL11]. Our
algorithm extends Stern’s algorithm beyond the birthday collision algorithm
(which solves 2-COL), increasing the number of lists from two to several. In
the original description, four lists were used, transforming the problem into
4-COL, which is solvable by the generalized birthday attack [Wag02].

A nearly identical algorithm was independently proposed by May, Meurer
and Thomae in [MMT11]2. Analogous to the algorithm by Finiasz and Sendrier

2After a correspondence with the authors of [MMT11], we decided not to publish our
report beyond the scope of this thesis.

3.3. A New Algorithm 61

[FS09], the MMT algorithm solves CSD and, therefore, is applied on the
canonical parity-check matrix H, rather than on the generator matrix G. The
MMT algorithm takes advantage of the idea presented by Finiasz and Sendrier
[FS09], allowing errors in the collision fields.

We briefly summarize the operation of our new algorithm as follows. Being
an information-set decoding algorithm, it initially chooses an information set
I of size k, and two disjoint setsQ1 andQ2 such thatQ1,Q2 Ă t1, 2, . . . , nu zI .
The input generator matrix G is brought to systematic form with respect to I ,
yielding Gsys. Then four identical lists which we denote L, each containing
linear combinations of p

2 rows of Gsys, are computed. Since every list is the
same, it suffices to compute one of them and merge it by itself via a masking
function φQ1 to obtain the first level in the collision tree. To avoid triple
subscripts, we simply denote this operation by ˛. We write the merging of the
lists as

L2 “ L1 ˛L1.

In the next step, again, we merge L2 by itself via the masking function φQ2 .
To keep the notations of the two operations distinct, we denote it ˛, and write
the last merging step as

L “ L2 ˛L2.

Finally, we examine the weight of the entries in Q2. If we find one that has
weight w, we output that entry.

Again, without loss of generality, we can assume that the columns corre-
sponding to the information set are permuted into the first k positions, fol-
lowed by the columns indexed by Q1 and Q2. We then obtain a generator
matrix Gsys in the following systematic form:

Gsys “
`

I Q1 Q2 J
˘

, (3.22)

where I is the kˆ k identity matrix, Q1 is a kˆ z matrix, Q2 is a kˆ l matrix
and J is a k ˆ n ´ k ´ z ´ l matrix. Let φ1pxq P Fz

2 be the value of x in the
positions of Q1, i.e.,

φ1pxq “
`

xk`1 xk`2 ¨ ¨ ¨ xk`z
˘

. (3.23)

Similarly, let φ2pxq P Fl
2 be the value of x in positions in L, i.e.,

φ2pxq “
`

xk`z`1 xk`z`2 ¨ ¨ ¨ xk`z`l
˘

. (3.24)

We have illustrated the different fields used in the algorithm and their corre-
sponding expected error weight in Figure 3.2.

62 Information-Set Decoding

I Q1 Q2 J

k

k

z l n´ k´ z´ l

loooooooooooooooomoooooooooooooooon

2p
looooomooooon

0
looooomooooon

0
loooooooooooomoooooooooooon

w´ 2p

Figure 3.2: The different fields used in the new algorithm and their
error distributions.

3.3.1 EXPLAINING THE IDEAS BEHIND THE ALGORITHM

First we note that the algorithm is similar to Stern’s algorithm in its steps.
Being a Las Vegas type algorithm, it makes a series of independent iterations
where each iteration can be successful, i.e., succeed in finding the weight-w
codeword.

Each iteration starts with selecting a random permutation of the columns
in the generator matrix, and bringing it to systematic form. As for Stern’s
algorithm, this means that the non-zero entries in the low-weight codeword
appear in randomly selected positions in the codeword. In an iteration, we
require that in the first k positions (systematic part) of the desired codeword
has weight 2p, and in the following z` l positions has weight 0. We can hope
for a successful iteration, if this condition is fulfilled. Stern’s algorithm has a
similar (but not the same) condition.

The main improvement comes from introducing a second condition, which
needs to hold for an iteration to be successful. A second necessary condition
lowers the probability of a successful iteration, which is not to our benefit.
However, it also lowers the number of active candidates in each iteration,
hence reducing the computational complexity of each iteration.

The second condition can be explained as follows. Assuming that the first
condition is valid, our desired codeword cw of weight w has weight 2p in
the first k positions, and in the following z` l positions has weight 0. Then
we can see that we will successfully find the codeword cw in the iteration if
and only if there are two words x, x1 P L2 such that cw “ x` x1 and φ1pxq “
`

0 0 ¨ ¨ ¨ 0
˘

. Since φ1pcwq “
`

0 0 ¨ ¨ ¨ 0
˘

from our first condition, we

3.3. A New Algorithm 63

Algorithm 5 (JL-ISD)

Input: Generator matrix G P Fkˆn
2 and algorithm parameters w, p, z, l P N.

Output: Codeword c P C of weight w P N.

repeat1

Choose a column permutation and form π pGq, where π is a random2

column permutation and G is the given generator matrix;
Bring the generator matrix π pGq to systematic form:3

Gsys “
`

I Q1 Q2 J
˘

,

where I is the kˆ k identity matrix, Q1 is a kˆ z matrix, Q2 is a kˆ l
matrix and J is a kˆ n´ z´ l;
Let u run through all weight-p vectors of length k. Store all vectors4

x “ uGsys such that φ1pxq “
`

0 0 ¨ ¨ ¨ 0
˘

in a sorted list L2, sorted
according to φ2pxq. This is done by constructing a list L1 containing
all vectors x “ uG1 where u runs through all vectors of weight p

2 .
Then add all pairs of vectors x, x1 P L1 in the list with φ1pxq “ φ1px1q
and such that the largest index of the non-zero entries in x is smaller
than the smallest index of non-zero entries in x1;
As above, combine the list L2 with itself to receive a new list L of all5

codewords x “ uGsys with u of weight 2p, such that
φ2pxq “

`

0 0 ¨ ¨ ¨ 0
˘

;
until there is an x P L such that wH pxq “ w´ 2p6

return the codeword c P C corresponding to x7

have φ1px1q “
`

0 0 ¨ ¨ ¨ 0
˘

. Hence, if x remains in the list L2, then so must
x1. With this in mind, we may now proceed with the complexity analysis of
our new algorithm.

3.3.2 COMPLEXITY ANALYSIS

We derive formulas for the computational complexity similar to existing com-
plexity formulas for the Stern’s algorithm. Note that we consider the basic
approach where some implementation-oriented improvements have not been
made.

Since the proposed algorithm has a structure similar to Stern’s algorithm,
we can use the same approach to evaluate its computational complexity. The
algorithm runs a number of iterations and a first requirement is that the error
vector after the random permutation is such that there are 2p errors in the first

64 Information-Set Decoding

k positions, followed by zero errors in the z` l following bits. We derive the
probability, denoted P1, for this event using a standard counting argument.
This yields

P1
def
“

ˆ

k
2p

˙ˆ

n´ k´ z´ l
w´ 2p

˙ˆ

n
w

˙´1
. (3.25)

Let us now analyze amount of computation performed in the individual steps
of the algorithm.

1. In the first step of an iteration, we apply a random permutation and
transform the generator to systematic form. The complexity for this
step, denoted C1, is the same as for Stern’s algorithm and is as in pre-
vious work set to

C1
def
“ CGausspn, kq. (3.26)

2. Next, we construct all codewords with weight p
2 in the information set.

They are put in a list L1 sorted according to φ1pxq. The complexity of
this step, denoted C2 is

C2
def
“ |L1| ¨ c1 “

ˆ

k
p{2

˙

¨ c1, (3.27)

where c1 denotes the actual work that has to be done to find φ1pxq and
then possibly storing more. The standard approach would set c1 “

p
2 ¨ z

as we need to sum p
2 vectors over z bits to find out φ1pxq.

3. We now come to the first collision step. We build a new list L2 of all
codewords with weight p on the information set such that φ1pxq “ 0,
by adding pairwise all weight- p

2 vectors with the same φ1pxq. Assume
that we only add weight- p

2 vectors that result in weight p in the first k
bits. As every pairwise addition then gives a weight p vector such that
φ1pxq “ 0 and we assume that only a fraction 2´z of all weight-p vectors
will have φ1pxq “ 0.

Observation 3.1 There exist several pairs of vectors of weight p
2 that

sum up to the same weight-p vector.

In fact, we will have
` p

p{2

˘

pairs that sum up to the same vector. Since we
desire to pick only one among these, we add a condition which holds
for one and only one pair. Suppose that for xi1 , xi2 , xi3 , xi4 , it holds that

xi1 ` xi2 “ xi3 ` xi4 . (3.28)

3.3. A New Algorithm 65

There are
`4

2

˘

sums involving these four vectors, but matching them
under the condition

i1 ă i2 ă i3 ă i4, (3.29)

there is only one such sum. Of course, this can be generalized to any p.
In total, the collision step gives rise to complexity

C3
def
“ E p|L1 ˛L1|q ¨ c2 “

ˆ

k
p

˙

¨ 2´z ¨ c2, (3.30)

where c2 is the cost of computing the value of φ2pxq. The standard
approach would set c2 “ p ¨ l as we need to sum p vectors over l bits to
find out φ2pxq.

4. The final step is the generation of a subset of all weight 2p vectors x such
that φ2pxq “ 0. The array contains about

`k
p
˘

¨ 2´z elements, and we sum
together any two of them, x, x1, with the same φ2pxq “ φ2px1q. As is
argued in the analysis of Stern’s algorithm, the total number of weight
2p vectors x2 “ x ` x1 such that φ2px2q “ 0 is then p

`k
p
˘

¨ 2´zq2 ¨ 2´l .
For each of them we need to check if its weight is w and we get the
complexity for this part as

C4
def
“ E p|L2 ˛L2|q ¨ c2 «

„ˆ

k
p

˙

¨ 2´z
2
¨ 2´l ¨ c3, (3.31)

where c3 is the cost of deciding if a vector is the desired vector. Follow-
ing previous work, the standard value for c3 would be c3 “ 2p ¨ pn´ kq.

The final issue is the following. Assuming that the desired low-weight
codeword has 2p ones in the first k positions and zero ones in the next z` l
positions, what is the probability that this codeword is actually in the subset of
the remaining codewords of weight 2p in the information set. In the process of
building this subset there is one filtering stage. Namely, we keep only vectors
with p ones in the first k positions such that φ1pxq “ 0.

If the desired codeword x2 can be written as x2 “ x` x1 where φ1pxq “ 0,
then it must hold that φ1px1q “ 0. This means that the desired codeword x2

remains in the subset if there is an x such that φ1pxq “ 0.
As x2 has 2p ones in first k positions corresponding to the information set,

there are 1
2 ¨

`2p
p
˘

different ways to choose two vectors x, x1 of weight p in the
first k positions. Note that the vectors in this step are not restricted by the
condition in (3.29). This means that the probability that there exists at least
one pair of vectors x, x1 with φ1pxq “ φ1px1q “ 0, denoted here by P2, is

P2
def
“ 1´

`

1´ 2´z˘p
2p
p q{2 . (3.32)

66 Information-Set Decoding

We may now put all the expressions together to get the overall average
complexity for finding the low-weight codeword.

Theorem 3.2 The total complexity of Algorithm 5 is given by

CGausspn, kq `
` k

p{2
˘

¨ pz{2`
`k

p
˘

2´z ¨ pl `
´

`k
p
˘

2´z
¯2

2´l ¨ 2ppn´ kq
´

` k
2p
˘`n´k´z´l

w´2p
˘`n

w
˘´1

¯

¨

ˆ

1´ p1´ 2´zq
p

2p
p q{2

˙ . (3.33)

Proof. Putting together the parts we obtained, in conjunction with the result
in Proposition 1.11, we get

E p#operationsq “
C1 ` C2 ` C3 ` C4

P1 ¨ P2
, (3.34)

which yields (3.33). �

3.3.3 PARAMETERS AND SECURITY

Various examples of parameters were given in [BLP11] to obtain certain se-
curity levels. New bit-security levels of our new algorithm applied the given
parameters are presented in Table 3.1.

As for the case p6624, 5129, 117q, that is recommended for 256-bit security,
we solve it with on average 2247.29 operations with p “ 12, z “ 52 and l “ 74.
Moreover, for the 1000-bit security level with parameters p30332, 22968, 494q,
we obtain a much better complexity of 2976.55 operations using our algorithm
with p “ 28, z “ 53 and l “ 264.

Instance Complexity (log2)

n k w Stern Algorithm 5 Ball-collision˚

1632 1269 34 82.23 78.91 81.33
2960 2288 57 129.84 125.06 127.89
6624 5129 117 258.61 247.29 254.15

30332 22968 494 1007.4 976.55 996.22

Table 3.1: Choice of parameters and their security with correspond-
ing algorithm. Entries marked with ˚ are taken from
[BLP11].

Becker et al. introduced a refined information-set decoding technique in
[BJMM12], further lowering the upper bound on asymptotic complexity. We
will not give the details here, but we will provide a complexity comparison

3.3. A New Algorithm 67

between different algorithms. In [HS13], Hamdaoui and Sendrier investigated
the non-asymptotic complexity of the algorithms presented in [MMT11] and
[BJMM12]. In contrast to our bit-oriented complexity analysis, the authors
of [HS13] measured complexity in terms of column operations. Converting
the complexity expressions into row-oriented ones (loosing approximately a
factor z` l), we obtain figures comparable with those of [HS13]. The results
are given in Table 3.2.

Instance Complexity (log2)

n k w LB Stern Alg. 5 MMT˚ BJMM˚

1024 524 50 62.51 58.46 55.71 54.29 52.50
2048 1696 32 91.07 84.37 79.87 79.32 75.78
4096 3844 21 93.73 84.42 78.33 78.11 74.34
4096 3616 40 134.20 124.67 117.68 118.05 114.62
8192 7945 19 105.33 92.71 85.19 85.87 82.58
8192 7815 29 138.70 125.85 116.46 118.67 115.65
9600 4800 84 98.75 91.65 90.17 87.75 85.82

22272 14848 85 149.87 140.61 138.71 137.07 134.78

Table 3.2: Complexities of different algorithms measured in column
(row) operations. The entries marked with * are taken from
[HS13] and measured in column operations.

For some of the instances in Table 3.2, Algorithm 5 performs seemingly
better than MMT. We believe that this is due to the assumptions made by the
authors of [HS13] to simplify analysis. It is reasonable to believe that MMT
should be slightly more efficient, using the technique introduced in [FS09]. Of
course, this technique can be used in the presented algorithm, spreading the
p errors along both collision fields. For instance, we can construct a matrix
such that

G1 def
“

¨

˝

Ik Q1 Q2 J
0 Iz 0 0
0 0 Il 0

˛

‚P F
pk`z`lqˆn
2 , (3.35)

and apply Algorithm 5 on G1 to find a low-weight codeword (and at the same
time make sure that at least one row of the first k rows are present in the linear
combination). There are obvious implementation improvements that can be
done to this approach, but it is out of scope for this thesis.

As a final remark, we note that the complexity expressions given in this
chapter are valid when there is only one solution. When several codewords
of weight w are be present, and provided that any of the low-weight vectors

68 Information-Set Decoding

is an acceptable solution, we can use the following lemma to obtain a more
accurate expression for algorithmic complexity.

Lemma 3.3 (Codeword multiplicity factor) Let C be an rn, ks random code
with a subset Cw Ď C of weight-w codewords. Then, an arbitrary ISD algo-
rithm solves MDPpC, wq with complexity CISD ¨ |Cw|

´1.

Proof. Since C is random, all codewords in Cw are independent. Assume that
the ISD algorithm finds a solution with probability ξ. It suffices to find a
single solution, so the probability of succeeding is that of finding at least one
out of |Cw| codewords is

1´ p1´ ξq|Cw| « |Cw| ¨ ξ,

since all codewords are equally likely to be found. The complexity CISDp, n, k, wq
is O

`

ξ´1˘ and therefore CISD ¨ |Cw|
´1.

�

3.4 SUMMARY

In this chapter, we treated different information-set decoding algorithm used
for fixed-distance decoding. Then, we have presented one of the contributions
of this thesis – a new information-set decoding algorithm. We have shown
that generalized birthday techniques are also applicable with good results in
information-set decoding, also for instances with a single solution (when the
weight w is below the Gilbert-Varshamov bound). We have provided results
showing that the proposed algorithm is more efficient than the state-of-the-art
algorithms at the time.

4
Code-based cryptography

Door: “Why it’s simply impassible!”
Alice: “Why, don’t you mean impossible?”
Door: “No, I do mean impassible. Nothing’s impossible!”
– Lewis Carroll, Alice’s Adventures in Wonderland

In public-key cryptography there are several different cryptosystems based
on different hard problems. Integer factorization and discrete logarithms
are among the most common and most trusted problems used. But many

other problems, like knapsack problems, hard coding theory problems, lat-
tice reduction problems to name a few, are also intensively studied. One
motivation for this is that a large future quantum computer, if ever con-
structed, will be able to solve factorization and discrete logarithms in polyno-
mial time [Sho94], whereas other problems might remain more difficult. For
a more detailed discussion on this, see [Ber09]. A second motivation is that in
constrained environments we might see a sufficient performance gain when
we use some alternative cryptosystem compared to common ones (like RSA,
El Gamal) based on factorization or discrete logarithms.

4.1 MCELIECE CRYPTOSYSTEM

The original McEliece construction as proposed by McEliece in [McE78] is
an asymmetric encryption scheme using a family of error correcting codes.
McEliece proposed a construction based on Goppa codes, and this original
construction remains unbroken today. A few years later, Niederreiter [Nie86]
proposed a different scheme and proposed to use generalized Reed-Solomon
codes. It can be shown that if one uses Goppa codes then Neiderreiter PKC

69

70 Code-based cryptography

is equivalent to McEliece PKC. It was also shown by Sidelnikov and Shes-
takov [SS92] that the choice of generalized Reed-Solomon codes is insecure
(in both cases). There has been many proposals of modified schemes, mostly
by replacing the Goppa codes by another family of codes, e.g., LDPC codes
[MRS09] or codes for the rank metric [Del78]. Interestingly, most of these pro-
posals have turned out to be insecure and the choice of Goppa codes is still
the standard solution.

A motivating factor for studying McEliece PKC is that the cryptosystem is a
candidate for post-quantum cryptography, as it is not known to be susceptible
to attacks using quantum computers. There have also been modifications of
McEliece PKC with proved formal security (CCA2-secure), some of which are
presented in [EOS07]. Attempts on improving the rate of the system by using
a subset of the message bits as error vectors have been done. Some approaches
appear in [Sun98]. We should also note that there have been many attempts to
build other public-key primitives based on coding theory, e.g., the signature
scheme CFS proposed by Courtois, Finiasz and Sendrier in [CFS01] and the
hash function FSB proposed by Augot, Finiasz and Sendrier in [AFS05].

Several versions of McEliece, for example, using quasi-cyclic or quasi-dyadic
codes have been attacked in structural attacks. Faugère et al. [FOPT10] give
the basic setting of structural attacks using algebraic attacks. In this approach,
the problem of reconstructing the secret matrix is formulated as the problem
of solving a specific over-defined algebraic system, and it applies to any al-
ternant code (among them Goppa codes). Even though the attack is currently
not successful against Goppa codes, as the system is too difficult to solve, we
do not know what improvements will come in the future.

Definition 4.1 (McEliece cryptosystem) The McEliece cryptosystem is a triple
∆ “ pKeyGen,Enc,Decq such that

1. Let C be randomly chosen from a family of efficiently decodable linear
codes. Let G be a generator matrix for C. Furthermore, let S be a
random and non-singular matrix and P a permutation matrix. Key-
generation is

pkp, ks, wq “ pSGP, G, wq Ð KeyGenpλq,

where ks Ð G with G a generator matrix for an efficiently decodable
code C with error-correction capability t ě w.

2. The encryption function c Ð Encpm, SGPq “ mpSGPq ` e models in-
formation transmission under a fixed-error model, so e $

Ð Bwpn, qq for
some integer w depending on λ.

4.1. McEliece Cryptosystem 71

3. An efficient decoding algorithm solves the decoding problem instance
pG, uG` eq in polynomial time as guaranteed by the code family.

4. Decpc, ksq outputs the message m.

The security of McEliece PKC is based on the hardness of decoding a ran-
dom linear code in the fixed-error model. We established in Section 2.5 that
MDP is an NP-hard and, thus, intractable problem. The core idea is to trans-
form a special and polynomially solvable instance into something that looks
like a random instance. Not knowing how to perform the inverse transforma-
tion, the attacker will face a presumably hard problem:

c “

hard
hkkkikkkj

mĜ` e “ mpSGPq ` e “ pmSqGP` e. (4.1)

Knowing the trapdoor, i.e., S and P, the presumably hard instance can be
turned into one that is efficiently decodable:

cP´1 “ ppmSqGP` eqP´1 “ pmSqG` eP´1 “ m̂G` ê
looomooon

easy

. (4.2)

The hardness of inverting the encryption function Enc is based on an as-
sumption that it maps the set of messages into a set of instances of the in-
tractable problem that are hard on average. Alas, it has shown that many
proposed code constructions used in McEliece admit an unavoidable struc-
tural characteristic, which in the end has lead to a partial or total breakdown
of security.

4.1.1 THE ORIGINAL MCELIECE CONSTRUCTION

Let us start by giving a short overview of the original McEliece construction
of a public-key encryption scheme.

Let G be a kˆ n generator matrix for a code C capable of correcting e errors,
P a n ˆ n random permutation matrix and S a k ˆ k non-singular matrix.
We require an efficient decoding algorithm associated with C. The sizes of
these matrices are public parameters, but G, P and S are randomly generated
secret parameters. Furthermore, G is selected from a large set of possible
generator matrices, say G P G, where the generator matrices in G all allow a
very computationally efficient decoding procedure. Also, P is selected among
all permutations and S is selected among all non-singular matrices. Then,
pre-processing, encryption and decryption can be described in the following
three steps.

A key issue is the selection of a set of easily decodable codes, from which
we select G. The original suggestion was to use all binary Goppa codes for

72 Code-based cryptography

some fixed code parameters. This is a large enough set of possible codes and
they can all be decoded assuming a fixed number of errors.

In the paper by McEliece [McE78], parameters pn, k, eq “ p1024, 524, 50qwere
proposed. These parameters, however, do not attain the promised security
level in [McE78] due to advances in attacks.

4.2 ATTACKS IN CODE-BASED CRYPTOGRAPHY

We consider two types of attacks in code-based cryptography:

• Message recovery: Recovery of the message from a ciphertext is best
done (if no structure can be exploited) by information-set decoding al-
gorithms (see Chapter 3), by finding a minimum-weight codeword in
the coset c ` C. As we mentioned in Section 2.5, this can be accom-
plished by constructing an extended code with the generator matrix

G1 “
ˆ

G
c

˙

.

Then, an information-set decoding algorithm may be applied to find a
minimum-weight codeword.

• Key recovery: The purpose of a key recovery (structural attack) is to re-
cover the private key from the public key. Many codes used in informa-
tion transmission have a structure that allows for a very efficient decod-
ing procedure. In that context, having a structured code does not pose
a problem. However, in code-based cryptography such as McEliece, the
security of the cryptosystem relies on the assumption that the public-
key generator matrix is indistinguishable from a random one. So, when
structured codes are used, the security will suffer because of the un-
avoidable structure of the public key. One such example of applied and
subsequently broken codes is the family of Reed-Solomon codes, which
is a family of algebraic codes that have a very well-defined structure.
This was first noted in [SS92].

4.3 NEW VARIANTS OF MCELIECE CRYPTOSYSTEM

A problem with the original McEliece construction is the size of the keys.
McEliece proposed to use the generator matrix of a linear code as public key.
The public key for the originally proposed parameters is roughly 500 Kbits
and roughly 300 Kbits for the private key. Although this is very small in
perspective to today’s storage capacities, it has motivated various attempts to

4.3. New Variants of McEliece Cryptosystem 73

decrease key size. For instance, it is in many ways tempting to adopt LDPC
codes [MRS09], where the parity-check matrix is very sparse. In terms of
error correction, this property is desirable because it allows a very efficient
decoding and small keys. However, the low-weight parities can be easily
found using standard techniques, exposing the cryptosystem to total break
attacks. To resolve this problem, [BCGM07] proposed to replace the permu-
tation matrix P by an invertible transformation matrix Q. As a consequence,
the weights of the parity checks in G are increased, making the problem of
finding low-weight parities much harder.

4.3.1 MCELIECE BASED ON CONVOLUTIONAL CODES

This section presents a new version of the McEliece PKC that uses convolu-
tional codes, originally proposed in [LJ12]. The motivation for this work was
a project given to the author in which we should investigate the possibility of
using convolutional codes in constructing a McEliece cryptosystem or similar.

The first construction is based on tail-biting time-varying convolutional
codes. The second construction uses a block code to set the starting state
for the convolutional code. A large part of the code is constructed by ran-
domly generating parity checks for a systematic convolutional code. The new
proposal allows for flexible parameters and efficient decoding. The drawback
is that we have a non-zero probability of not being successful in decoding,
in which case we need to ask for a retransmission. In opposite to the choice
of Goppa codes, the first proposed construction uses large parts of randomly
generated parity checks, and presumably, this makes structured attacks more
difficult. This is the main contribution of the construction. All parity checks
are randomly generated and of low weight, but not too low. Algebraic attacks
applied to our system are unlikely to be successful, as well as attacks using
Sendrier’s support splitting algorithm [Sen00].

THE NEW CONSTRUCTION

Our basic idea is that we would like to replace the Goppa code used in
McEliece by a convolutional code that can be efficiently decoded. However,
this basic approach suffers from two problems that we need to deal with.

• A usual convolutional code as used for error correcting purposes has
a somewhat limited memory. This is necessary if we would like to
have optimal (maximum-likelihood) decoding through, e.g., the Viterbi
algorithm (see e.g. [JZ99]). As an example, a rate R “ 1

2 convolutional
code with a memory of 20 would mean that we will have parity checks
of low weight. This would be a security problem, as one can try to

74 Code-based cryptography

recover the low-weight parity checks and through this also recover the
structure of the secret code.

The solution we propose here is to use convolutional codes with large
memory, but to use a sequential decoding procedure instead of Viterbi
decoding. Using, e.g., the stack algorithm we can use codes with much
larger memory. This will remove the very low-weight parities in the
code. Still leaving low-weight parity checks, but if the weight is not
very small, the complexity of finding them will be too large.

• A convolutional code usually starts in the all-zero state. This means
that the first code symbols that are produced will again allow very low-
weight parity checks, giving security problems. As we cannot allow the
identification of low-weight parity checks, we need to modify this. A
similar problem may occur when we terminate the code.

The solution that we propose is to use tail-biting to terminate the code,
giving tail-biting trellises in decoding. This would work quite straight-
forward if we had a small trellis size and were using Viterbi decoding.
But for a large memory size and sequential decoding it is not immedi-
ate how tail-biting could be used, as one has to go through all possible
states at some starting point in the circular trellis. Another approach to
solve this problem is to use a block code to set the starting state. We
have also examined this approach.

THE MCELIECE PKC BASED ON A TAIL-BITING CONVOLUTIONAL CODE

The scheme works as usual McEliece, with a different way of generating the
secret matrix G as well as a different decoding procedure for the decryption
process. The secret generator matrix will have the characteristics of the one
appearing in (2.25), i.e., it has a cyclic diagonal structure with m matrices Gi,j
in each column and row. We also set the generator matrix G to be system-
atic, see Algorithm 6 for a detailed description. We have illustrated the code
structure in Figure 4.1.

Assuming that we receive a word c with e errors, how do we correct them,
knowing G? A problem when decoding this structure is that we have to
guess a starting state at some time instance and then perform the sequential
decoding. With many possible starting states this increases the complexity of
decoding. We assume that we use the stack algorithm as decoding algorithm
and put a number of possible starting states on the stack in the beginning.
An advantage is that this part of the decoding can be easily parallelized by
starting decoding at different time instances.

We now describe a basic approach for decoding. Compute ĉ “ cP´1. Start
the decoding at any time t. On the stack we then put a set V of possible

4.3. New Variants of McEliece Cryptosystem 75

Algorithm 6 (KeyGen)

Input: Algorithm parameters n, m, b, c, l P N.

Output: Public-key matrix Ĝ P F
pnb{cqˆn
2 .

Write up a generator matrix as (2.25) in systematic form, i.e., choose1

Gi,1 “
`

I Ji,1
˘

and Gi,j “
`

0 Ji,j
˘

, for 2 ď j ď m, where Ji,1 is chosen to
give the code spanned by Gi,1 maximal minimum distance and Ji,j, for
2 ď j ď m, is chosen randomly;
Run a test to verify that all parity check positions, or sums of them, have2

weight at least l. Also check that every information symbol appears in at
least l parity checks. If this is not the case, go to Step 2;
We have now created the secret matrix G. Create the public-key matrix as3

usual, i.e., randomly choose pS, Pq, P permutation and S non-singular,
and compute SGP “ Ĝ;

b

c

m ¨ b

Figure 4.1: The tail-biting construction.

states, which would be formed from the m ¨ b received information symbols
in ĉ just before time t. Since these symbols may be perturbed by the error
vector, we put all states reachable by e1 errors on the stack, where e1 is fixed
by the decoding algorithm. The expected number of errors in an interval of
m ¨ b symbols is

e
n
¨m ¨ b. (4.3)

If decoding is unsuccessful we can try a different starting point t. If the

76 Code-based cryptography

Algorithm 7 (Decoding in tail-biting construction)

Input: Ciphertext sequence ĉ P Fn
2 .

Output: Plaintext sequence u P F
pnb{cq
2 .

Write ĉ “ pc1, c2, . . . cn{cq, where ci “ pui, piq is a c bit vector and ui is1
the systematic part;
Choose a random starting point t and put put´m, ut´m`1, . . . , ut´1q2

(index modulo n
c), together with all other vectors with at most

distance e1 from it as starting states in V . Run the stack algorithm
until time t is reached again. If decoding was successful, return the
decoded sequence. Otherwise, do this item again;
If many starting points t have been tried without success, ask for3

retransmission;

correct state has been established, and decoding is successful, we will get the
correct weight of the error vector. As the weight is assumed to be known, this
is a way of knowing that decoding was successful. A description of a basic
decoding procedure is given in Algorithm 7.

Finding the correct starting state is the major complexity cost in decoding.
To be able to decode correctly, we need the correct starting state in V , but we
also do not want V to be too large as this gives a high decoding complexity.
As mentioned, we can use different starting points t, and hope that one of
them will have a set V including the correct starting state. We can even put
sets V from many different starting points on the same stack.

In order to decrease the size of V , we propose to use not only m ¨ b bits to
form the set V , but to use m ¨ b`m1 ¨ c consecutive bits from c, where we now
have pm`m1q ¨ b information bits but can also use m1 ¨ pc´ bq parity checks.
Deciding that we include all such length m ¨ b`m1 ¨ c with at most e1 errors as
possible starting states, this corresponds exactly to finding all codewords in a
rm ¨ b`m1 ¨ c, pm`m1q ¨ bs linear code with weight at most e1.

A HYBRID CONSTRUCTION

Our construction based on tail-biting convolutional codes has a simple de-
scription and a good portion of randomness, which both are desirable prop-
erties. One problem however, is the first part of the decoding, i.e., finding the
correct starting state before starting the efficient stack algorithm. For construc-
tions with security level around 280 (λ « 80), this can be done with reasonable
complexity. But the complexity of this process grows exponentially with the

4.3. New Variants of McEliece Cryptosystem 77

security level measured in bits.
In order to solve this problem we propose a modified construction, using

only polynomial complexity to get the starting state. Our second construction
uses a small block code for setting a starting state and then a larger convolu-
tional code for the remaining part of the code. The original code is generated
by the generator matrix of the form given in Figure 4.2, where GB is a gen-
erator matrix of a block code (we propose a Goppa code to be used), GC is
a generator matrix of a random time-varying systematic convolutional code
as in the first tail-biting construction with memory m “ k and white areas
represent all zeroes.

GB

nB

kB

LC r

c

b

m ¨ b

Figure 4.2: McEliece with the combined Goppa and convolutional
code construction.

The block code GB is an rnB, kB, tBs linear code with efficient decoding of
up to tB errors. We suggest it to be a classical Goppa code. Since the number
of errors in the first nB positions can be higher than the block code can correct,
we note that a decoding error might occur here. It is given by

P pmore than tB errors in block codeq “
e
ÿ

xątB

`nB
x
˘` nC

e´x
˘

`n
e
˘ . (4.4)

With suitable parameters this probability can be made very low. An impor-
tant issue is that we need to have a dimension kB of the code larger than the
number of bits in memory m ¨ b. This again comes from the fact that we cannot
allow low-weight codewords in the dual code. As the block code generally
will have more parity-check symbols per information symbol that leads to an
expected existence of codewords with weight lower than in the convolutional

78 Code-based cryptography

code. We require that no codewords of weight less than l exist in the dual
code of GB.

We then use, as before, a rate b
c convolutional code GC. Since the leftmost

kB information bits are assumed to be already known (if the block decoding
is successful), we do not need to decode these using the sequential decoding
procedure.

Finally, we note that the last r positions are needed to protect the last bits
with sufficiently many parity checks. As noted by Landais and Tillich in
[LT13b], r must be set sufficiently large to avoid low-weight codewords in the
code generated by G. The sub-code spanned by the last b rows of G has about
2b´1 codewords of weight c`r

2 or less. If r is small, a key-recovery attack can
(roughly) be mounted as follows:

1. An arbitrary ISD algorithm can be applied on G to find a codeword of
weight w ď c`r

2 .

2. With high probability, the support of a found codeword correspond to
a subset of the last c` r columns. This could be repeated to obtain all
columns.

3. Puncture out the columns obtained in previous step. Repeat the first
step with weight w ď c

2 until only the columns of the Goppa code GB
remains.

ANALYSIS AND PARAMETERS

We consider the two standard approaches to attack McEliece PKC: recovery
of the message from a received ciphertext and recovery of the key, i.e., deter-
mining structure of the secret generator matrix.

Recall that in a structural attack, we try to recover the structure of the code.
In our case the only deviation from a random code is the convolutional code
structure in terms of low-weight parity checks. In fact, in pre-computation we
specified the weight of parity checks to be no less than l. We expect that a
structural attack would need to recover parity checks of weight l, and sketch
the difficulty of this problem. It is well-known that all parity checks form
codewords of the dual code CK.

One should also observe that we have a large number of low-weight parity
checks. This decreases the complexity of finding one of them when running
Stern’s algorithm, as the probability of being successful in one iteration in-
creases with the number of existing low-weight vectors. In our case, parity
checks are created from m ¨ b bits in memory and c additional bits. For ex-
ample, there are then at least 2c´b´1 parity checks of weight 1

2 ¨ pm ¨ b` cq or
less. However, in the pre-computation creating the generator matrix G, we

4.3. New Variants of McEliece Cryptosystem 79

can keep track of how many low-weight vectors we have and make sure that
the complexity of finding any of them is high enough.

• Tail-biting λ « 80: For security level around 280, we propose the fol-
lowing set of parameters. Use parameters

pn, k, e, mq “ p1800, 1200, 45, 12q

with rate R “ 20
30 . We will have a security of 281 against decoding

attacks, measured with complexity expressions for Stern’s algorithm.
We get a security level of 278.4 with Algorithm 5. In the construction
phase, we set l “ 125, i.e., every parity check should have a weight
no less than 125. This is achievable as every parity check has 240` 30
positions where it can be non-zero. The complexity of finding a weight
125 vector in the dual code using Stern’s algorithm is roughly 287. As
this complexity is decreased by the number of low-weight vectors, we
need to keep track of the number of low-weight vectors in the code
to guarantee a complexity of about 280 for finding such a low-weight
parity check.

For the decoding, we keep m ¨ b “ 240 bits as our starting state. Fixing a
starting time t, the expected number of errors in these 240 information
symbols is 6. We include another 40 information symbols from just be-
fore time t´m and the corresponding 20 parity checks that is computed
from these 240` 40 information symbols. We also split the 240 symbols
in two halves. Our assumption is now that we have at most 1 error in
the added 60 symbols and at most 3 errors in each of the halves of the
state.

We then generate two tables of all parity check syndromes that up to 3
errors can generate, in total less than 219 entries in each table. One table
is expanded with adding to every entry the 61 syndromes that the addi-
tional 60 information symbols created, giving 225 entries. Merging the
two tables, knowing that the syndrome must be zero, gives 224 surviv-
ing states. Now, taking the next 30 information symbols and starting
sequential decoding, quickly takes the correct state to the top of the
stack. If we are unsuccessful, pick a new t.

The probability that our assumption about errors is correct is about 1
4 ,

so the expected total decoding complexity is about
ˆ

1
4

˙´1
¨ 225 “ 227.

By assuming fewer errors, the expected decoding complexity can be
further decreased.

80 Code-based cryptography

• Hybrid λ « 80: Pick as GB a Goppa code of length nB “ 1020, di-
mension kB “ 660 and with capability of correcting 36 errors. Let the
convolutional code have rate R “ 20

30 and run 25 information blocks.
In [LT13b], it was suggested to use at least r “ 140 (it might be neces-
sary to increase it even more for 80-bit security). We should add that
m must be very large to avoid low-weight codewords in the dual code
due to the increased r. This gives rise to a full code (at least) of length
n “ 1020` 25 ¨ 30` 140 “ 1910 and dimension k “ 660` 25 ¨ 20 “ 1160.

The decoding step first decodes the Goppa code. For a nB “ 1020
code we expect that algorithms with complexity Opn2q are still the best
choice. There are algorithms with better asymptotic performance, but
they are useful only for excessively large nB. So, we expect (say) 220

steps for this part. Decoding the convolutional code is then done in
much less time than 220 steps. Overall, this gives a faster decoding than
standard McEliece, requiring close to 222 steps. With 53 inserted er-
rors, the probability that we get a decoding error can be found to be
around 2´6.6, see (4.4), which might be problematic in practical applica-
tions. We may conclude that the hybrid construction is hard to repair,
as we were unable to find parameters that at the same time attain good
security, acceptable efficiency and small key-size.

4.3.2 MCELIECE BASED ON MDPC CODES

Quite recently, a promising McEliece variant was proposed by Misoczki et
al. in [MTSB13], based on MDPC codes. The MDPC-McEliece construction
deviates slightly from the original proposal in the sense that the column per-
mutation of G is omitted. In other words, KeyGen differs from the what was
described earlier.

1. Select an [n, r] linear code C in the QC-MDPC family, which has a
parity-check matrix H P Frˆn

2 , n “ n0 ¨ r, such that

H “
`

H0 H1 ¨ ¨ ¨ Hn0´1
˘

, (4.5)

where each Hi is a circulant r ˆ r matrix with weight wi in each row
and with total row weight w “

ř

wi.

2. Generate the public key G P F
pn´rqˆn
2 from H in the following way,

G “
`

I P
˘

, (4.6)

4.4. The TCHo cipher 81

where

P “

¨

˚

˚

˚

˝

P0
P1
...

Pn0´2

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

´

H´1
n0´1H0

¯T

´

H´1
n0´1H1

¯T

...
´

H´1
n0´1Hn0´2

¯T

˛

‹

‹

‹

‹

‹

‹

‚

. (4.7)

Note: The parity-check matrix P here should not be confused with the per-
mutation matrix in the original McEliece construction. The QC-MDPC con-
struction has no need for a permutation matrix.

• Encryption: Let m P F
pn´rq
2 be the plaintext. Multiply m with the public

key G and add noise within the correction radius t of the code, i.e., c “
mG` e, where wH peq ď t. Here t is determined by the error-correction
capability of the decoding algorithm for the MDPC code [MTSB13].

• Decryption: Let c P Fn
2 be the ciphertext. Given the secret low-weight

parity check matrix H, a low-complexity decoding procedure is used to
obtain the plaintext m.

The decoding procedure of MDPC codes is a variant of Gallager’s bit-
flipping algorithm. The latter, an iterative decoding algorithm com-
monly used with LDPC codes. LDPC codes are efficient because of
the low parity-check weights – error-correction capability decreases lin-
early with the weight of the parity checks. Since MDPC codes have
slightly higher parity-check weights than LDPC codes, one should ex-
pect to have worse error-correction capability. This is not a big problem,
because error-correcting capability is not »very« important in a crypto-
graphic context. We will leave out the details here, a more thorough
description can be found in [MTSB13].

PROPOSED PARAMETERS

The authors of [MTSB13] initially proposed the parameters found in Table
4.1 for a McEliece PKC QC-MDPC scheme with 80-bit, 128-bit and 256-bit
security level.

An actual implementation for the QC-MDPC scheme was recently pub-
lished in [HvMG13]. They demonstrated excellent efficiency in terms of com-
putational complexity and key sizes for encryption and decryption on an
FPGA using a key size of r “ 4800. In [MTSB13], the designers of the MDPC
scheme subsequently changed all circulant block sizes r to be odd, which
currently avoids the attack described in this thesis.

82 Code-based cryptography

Parameters

n r w t n0 Key-size Security

9600 4800 90 84 2 4800 80
27200 6800 340 68 4 20400 128
65536 32768 274 264 2 32768 256

Table 4.1: A subset of the proposed QC-MDPC instances with corre-
sponding security and key-size.

4.4 THE TCHO CIPHER

We have seen that in public-key cryptography there are several different cryp-
tosystems based on different hard problems such as integer factorization, dis-
crete logarithm, MDD and CSD problems. In a similar direction, Finiasz and
Vaudenay proposed a public-key cryptosystem called TCHo1 [FV06], based
on the problem of finding low-weight multiples of a given binary polyno-
mial. The original proposal was later refined by Aumasson, Finiasz, Meier
and Vaudenay in [FV07]. Herrmann and Leander demonstrated in [HL09] a
chosen-ciphertext attack on the basic form of TCHo, implying that the use of
TCHo with a hybrid encryption framework as originally proposed in [FV06]
is the way to use TCHo.

TCHo is a public-key cryptosystem based on the problem of finding a low-
weight polynomial multiple, see 6 for more details. The operation of all vari-
ants of the public-key cryptosystem TCHo is non-deterministic and can be
thought of as transmitting data over a noisy channel, very much like in the
McEliece public-key cryptosystem. A high level description is as follows. A
linear code encodes the message into a codeword, while an LFSR with a ran-
dom starting state produces a bitstream that together with a low-weight error
vector constitutes the noise on the channel. The connection polynomial of the
LFSR is the only component of the public key.

The trapdoor of the cipher works in the following way: the secret low-
weight polynomial of fixed degree, which is the only component of the secret
key, is divisible by the characteristic polynomial used by the LFSR. Therefore,
by »multiplying« the ciphertext with the secret polynomial, the contribution
from the LFSR sequence diminishes, leaving only a low-weight error vector
as noise. This sequence can then be decoded using conventional decoding
algorithms. One implementation of TCHo is as follows.

1Acronym for Trapdoor Cipher, Hardware Oriented. The word tchô is also a French
slang word originating from Tchô, monde cruel, created by the Swiss cartoonist
Philippe ’Zep’ Chappuis in 1997.

4.4. The TCHo cipher 83

• Encryption: Let Grep be a generator matrix of a repetition code of length
l. The message m P F128

2 is repeated and the result is truncated to fit
a length l. These two steps can be represented by multiplication with
Grep. In encoding, let r “

`

r0 r1 ¨ ¨ ¨ rl´1
˘

be a random string of l
independent bits with bias

P pri “ 0q “
1
2
¨ p1` γq. (4.8)

Here, every element of r is chosen according to Berγ, such that r is
highly biased and has a lot more zeroes than ones. Using an LFSR with
characteristic polynomial Ppxq and a randomly chosen starting state, the
LFSR sequence p is generated and truncated to l bits. The encryption is
done by adding the three vectors to form the ciphertext c P Fl

2, so

c “ mGrep ` r` p. (4.9)

A block representation of the encryption mechanism in TCHo is given
in Figure 4.3.

m Repetition

LFSR Ppxq

BSCγ

Encpmq
p

r

Figure 4.3: Encryption in the TCHo cryptosystem.

• Decryption: Given the secret low-weight polynomial Kpxq of fixed de-
gree, we can construct the matrix

M “

¨

˚

˚

˚

˝

k0 k1 ¨ ¨ ¨ kd
k0 k1 ¨ ¨ ¨ kd

.
k0 k1 ¨ ¨ ¨ kd

˛

‹

‹

‹

‚

. (4.10)

For the decoding step, consider the product t “ cMT. From the encryp-
tion step we have that

t “pmGrep ` r` pqMT

“mGrepMT ` rMT ` pMT

“mGrepMT ` rMT.

(4.11)

84 Code-based cryptography

Since Ppxq divides Kpxq, we have that pMT “ 0. Recall that each bit
element in r was γ-biased. Kpxq has weight w and consequently, each
element in r will be a sum of w variables that each has bias γ. Therefore,
each element in rMT will be γw-biased (by Lemma 1.3). Here, majority-
decision decoding can be used to decode

t “ m
`

GrepMT
˘

` rMT, (4.12)

i.e., to find a solution m such that the residual rMT is minimized.

4.4.1 PROPOSED PARAMETERS

The authors of [FV07] suggested the parameters in Table 4.2 for 80-bit security
against key-recovery attacks.

d dP w γ

25820 7000 45 0.981
24730 12470 67 0.981
44677 4433 25 1´ 3

64
24500 8000 51 0.98
17600 8795 81 1´ 3

128
31500 13200 65 1´ 1

64

Table 4.2: Parameters for 80-bit security.

4.5 SUMMARY

In this chapter, we have introduced different coding-based cryptosystems.
First, we have given an overview of the original McEliece construction. Sec-
ondly, we have proposed a new variant of McEliece based on tail-biting con-
volutional codes and a hybrid using Goppa codes and convolutional codes in
conjunction, and given parameters for 80-bit security. Although it is possible
to design such McEliece cryptosystems, we found that the proposed construc-
tions might not be the best choices. However, the idea is still interesting and
further investigation might provide more useful constructions. Finally, we
have given descriptions of an MDPC-variant of McEliece and the public-key
cryptosystem TCHo.

5
A Squaring Attack on

QC-MDPC-based McEliece

When in doubt, use brute force.
– Ken Thompson

In this chapter, we present an attack on the quasi-cyclic MDPC variant of the
McEliece public-key cryptosystem described in Section 4.3.2. The attack
was originally proposed in [LJS`15].

To this date, several variants of McEliece based on LDPC codes have been
proposed – [BCGM07] [BBC08] [BBC13] to cite a few. In these constructions,
the permutation matrix P used in the original McEliece construction (see Def-
inition 4.1) is replaced by a non-singular matrix Q that »scales up« the weight
of the low-weight parity checks in the LDPC code to avoid ISD-based attacks.

Taking a different course, the authors of [MTSB13] proposed to deal with
the problem of low-weight codewords by moderately increasing the parity-
check weight of G used in the LDPC construction, yielding what we described
before as the MDPC-code construction (see Subsection 2.6.4). As a result, it
is possible to avoid the use of the Q matrix. Unfortunately, the increased
parity-check weight causes a degradation of error-correction performance and
therefore the weight of the error vector must be chosen smaller than that of
the LDPC-based variants. In [MTSB13], the authors show that the constrained
error weight remains sufficient to prevent standard message-recovery attacks.
The QC-MDPC proposal is yet unbroken and it is particularly interesting be-
cause of its beautiful simplicity. In [HvMG13], the authors implemented QC-
MDPC McEliece PKC in FPGA hardware using the same parameters as the
presented attack targets.

As a final note, we stress the universality of the attack we present – it
can be applied to all quasi-cyclic codes having circulant sub-matrices of even
dimension, e.g., the McEliece PKC variants using QC-LDPC codes.

85

86 A Squaring Attack on QC-MDPC-based McEliece

5.1 A KEY-RECOVERY ATTACK

We will now describe our new attack, which we mount as a key-recovery
attack and later on extend to message recovery as well.

Recall the key-recovery attack on a McEliece cryptosystem, targeting to
find the secret generator matrix. In the context of using QC-MDPC codes,
we aim to find any matrix Hi given only the public-key matrix P. From Hi,
the remaining part of H can easily be recovered using basic linear algebra.
Without loss of generality, we assume that the rate of the code is R “ 1

2 , and
thus, n0 “ 2. In fact, R “ 1

2 constitues the worst case as we shall see later on.

Problem 5.1 (QC-MDPC Key Recovery) Given the public-key matrix

G “
`

I P
˘

P F
pn´rqˆn
2 , (5.1)

recover the secret-key parity-check matrices H0, H1, ..., Hn0´1. We denote the
problem QC-MDPC.

A natural strategy to solve QC-MDPC apart from exhaustive search is to
approach the problem as an instance of MDP by applying an information-set
decoding algorithm on the instance pG, wq. The code generated by G includes
quasi-cyclic shifts of, what we can assume to be, the only weight w codeword
`

h1 h0
˘

. Here,
`

h1 h0
˘

is any row of
`

H1 H0
˘

. Undoubtedly, an oracle
for MDP with the instance (G, w) as input can solve QC-MDPC with only
polynomial overhead.

The attack we present exploits the quasi-cyclic structure by employing a
novel squaring technique, making the attack significantly more efficient than
solving MDP using standard techniques. From the construction given in
[MTSB13], we have that

P0 “
´

H´1
1 H0

¯T
ðñ H1PT

0 “ H0. (5.2)

Since the matrices H0, H1 and P0 are all circulant, the problem is equivalent
to solving an equation over the polynomial ring F2rxs{px

r ` 1q. More specif-
ically, there is a map between the circulant matrices and F2rxs{px

r ` 1q, as
summarized in the following proposition.

Proposition 5.2 Let Cr be the set of all rˆ r circulant matrices over F2. Then,
there exists an isomorphism between the rings pCr,`, ¨q and pF2rxs{px

r `

1q,`, ¨q.

For notational convenience, let h1pxq represent H1 and h0pxq represent H0.
From (5.2), with PT

0 represented with Ppxq, the following equation can be
formed,

h1pxqPpxq ” h0pxq mod pxr ` 1q. (5.3)

5.1. A Key-Recovery Attack 87

The key idea in our new attack to be described is a squaring technique
applied on the polynomials in (5.3). Squaring both sides gives

rh1pxqPpxqs
2
” h0pxq2 mod pxr ` 1q. (5.4)

If the dimension r is even, then the degree of each non-zero term of h1pxq2

and h0pxq2 is a multiple of 2. More generally, when squared d times, the de-
gree of any non-zero term will be a multiple of 2d if and only if 2d|r. If so, we
can omit all positions that are not a multiple of 2d, and thus, the dimension
decreases by a factor 2d. As a consequence of the dimension reduction, colli-
sions between non-zero elements can occur and, if so, the weight of the sought
codeword will be lowered. The weight reduction is the key to our attack.

Before we delve into the deeper concepts of the attack, we need to establish
some terminology and develop a basic theoretical foundation. We begin by
developing the concept of polynomial square roots and how to compute them
efficiently. Once established, we proceed by giving a detailed description of
the attack. Lastly, we unravel the analogy between key recovery and message
recovery.

5.1.1 POLYNOMIAL SQUARE ROOTS

In this section, we will focus on the problem of finding polynomial square
roots. That is, given a polynomial denoted apxq2 P F2rxs{px

r ` 1q, determine
possible values for the polynomial apxq.

Naturally, there are a lot of square roots of apxq2, but only one or a few will
satisfy the constraints, i.e., the low-weight requirement on the polynomial.
The polynomials in our setting will come in linearly dependent pairs apxq and
bpxq, where the weight of both polynomials is constrained by some integer w.
More formally, we state our problem as follows.

Problem 5.3 (Bounded-Weight Polynomial Square Root) Given the poly-
nomials apxq2, bpxq2, Ppxq P F2rxs{px

r ` 1q fulfilling bpxq2 “ apxq2Ppxq2, find
apxq, bpxq such that

"

wH papxqq ď w,
wH pbpxqq “ wH papxqPpxqq ď w.

(5.5)

We denote the problem BWPSR.

Clearly, the problem is trivial when r is odd, because then no collisions can
occur. We therefore can assume that r is even. First, we focus on enumerating
the possible solutions to the square root problem. Assume that we have a
given polynomial written as apxq2, and we would like to enumerate the 2r{2

different square roots apxq P F2rxs{px
r ` 1q.

88 A Squaring Attack on QC-MDPC-based McEliece

The two terms xi and xi`r{2 will result in the same term when squared.
Define Γ to be the set of all such pairs of terms, i.e.,

Γ def
“

!

pxi, xi`r{2q : 0 ď i ă
r
2

)

. (5.6)

We introduce the following definition:

Definition 5.1 LetRapxq be the set of pairs in Γ giving rise to a term present in
the expression of apxq2. Furthermore, let Qapxq be the set of pairs in Γ giving
rise to a term not present in the expression of apxq2.

The set Rapxq is called the root set and their elements are called root pairs.
Similarly, the set Qapxq is called the collision set and the elements are called
collision pairs.

apxq2

apxq

xi1

txj1 , xr{2`j1u

xi2

txj2 , xr{2`j2u

¨ ¨ ¨ 0

txjr{2 , xr{2`jr{2u

“

“

` ` `

` ` ¨ ¨ ¨ ` ¨ ¨ ¨ `

,//////////////////.//////////////////- ,//////////.//////////-

Root set Rapxq Collision set Qapxq

The notation above essentially means that for pairs of terms in the root set,
exactly one of the two terms is present in apxq. For pairs from the collision set,
either none or both of the terms in a pair are present in apxq. This is illustrated
above and in the following example.

Example 5.1 The polynomial square root
?

x2 ` 1 mod px6 ` 1q has several solu-
tions. Among these we find x ` 1 and x5 ` x2 ` x ` 1, since they both are equal
to x2 ` 1 when squared. In the latter polynomial, x5 and x2 has collided into
a zero element because px5 ` x2q2 ” 0 mod px6 ` 1q. The pair px5, x2q belongs
to the collision set and the pairs px, x4q and p1, x3q belong to the root set because
pxq2 ” px4q2 mod px6 ` 1q and p1q2 ” px3q2 mod px6 ` 1q, repectively.

Let us return to Problem 5.3. Our problem can be formulated using linear
algebra. By Proposition 5.2, we can express the polynomials apxq2, bpxq2 and
Ppxq2 in a circulant matrix form, i.e., A2P2 “ B2. It is sufficient to represent
the circulant matrices A2 and B2 as vectors denoted a2 and b2, repectively. So,
if a2 and b2 are taken from the first row in A2 and B2, then

apxq2Ppxq2 “ bpxq2 ðñ a2P2 “ b2. (5.7)

5.1. A Key-Recovery Attack 89

Note that a2 and b2 each have at most r
2 non-zero entries (the odd ones are

zero due to squaring).
The entries of a square root a “

`

a0 a1 . . . ar´1
˘

will fulfill the linear
equation

ar{2`i ` ai “ 1, 0 ď i ă
r
2

, (5.8)

if and only if pxi, xr{2`iq P Rapxq. Analogously, the entries will fulfill the linear
equation

ar{2`i ` ai “ 0, 0 ď i ă
r
2

, (5.9)

if and only if pxi, xr{2`iq P Qapxq. Naturally, the same properties apply to b.
Now we can describe a very efficient reconstruction procedure for our prob-

lem. First we identify all collisions as follows. From (5.7) we use that the
polynomial pair apxq and bpxq is mapped to a low-weight codeword u in the
code C generated by G “

`

I P
˘

. The weight of u is wH papxqq ` wH pbpxqq.
Similarly, the polynomial pair apxq2 and bpxq2 is a codeword u2 in the code C2

generated by G` “
`

I P2˘, and the weight of u2 is wH
`

apxq2
˘

`wH
`

bpxq2
˘

.
The collisions are now found using the following results.

Lemma 5.4 Let C and C2 be the codes as described above. If u “ pa}b q P C
has weight w1 and u2 “ pa2

›

›b2 q P C2 has weight w2, then there exists a map

σ : C ÝÑ C 1

P P

u ÞÝÑ u1,
(5.10)

such that C 1 is a (non-cyclic) r2r´ 2w2, rs linear code containing the codeword
u1 of weight w1 ´w2.

Proof. By puncturing the codeword symbols corresponding to the root sets
Rapxq and Rbpxq, we remove all the non-zero contributions from u2. In total,
we remove 2w2 symbols and decrease the weight by w2. The only remaining
non-zero contributions are those from collisions. So the punctured codeword
will have weight w1 ´w2. �

The weight w1 ´ w2 is typically very small and one can compute the solu-
tion using an ISD algorithm very efficiently. We can even improve this result
by slightly altering the mapping σ. For example, from the linear relations (5.8)
the dimension of the code C 1 can be lowered.

After having established all collisions as above, we have established the
coefficient value for all terms in the collision sets. The second and remaining
step is to recover the coefficient value for all terms in the root sets. Given

90 A Squaring Attack on QC-MDPC-based McEliece

Algorithm 8 (Polynomial square root)

Input: Polynomials apxq2, bpxq2, Ppxq P F2rxs{px
r ` 1q and algorithm parame-

ter w P N.

Output: Polynomials apxq, bpxq P F2rxs{px
r ` 1q.

Using apxq2 and bpxq2, determine their root sets Rapxq and Rbpxq, and1
collision sets Qapxq and Qbpxq;
Construct the matrix

`

I P
˘

from Ppxq;2

Construct the mapping σ and apply it to the code generated by
`

I P
˘

to3

obtain the punctured code with generator matrix G1;
δ Ð w´wH

`

apxq2
˘

´wH
`

bpxq2
˘

;4

u Ð ISDpG1, δq;5

Solve aP “ b to obtain the remaining unknowns;6

the linear equations (5.8), the system of linear equations aP “ b and the
knowledge of the collisions, we solve for the remaining unknowns.

Based on our arguments, we formulate an algorithm to solve BWPSR for
an arbitrary instance papxq2, bpxq2, Ppxq, wq with a constrained weight w in Al-
gorithm 8.

In conclusion, we have observed that the polynomial reconstruction can be
very efficiently done, by first using a puncturing step and then solve linear
equations for the remaining unknowns.

5.1.2 THE ATTACK

In this subsection, we will present the squaring attack on quasi-cyclic codes
of even dimension, based on the techniques outlined. Let us recall that when
squaring a polynomial in a polynomial ring F2rxs{px

r ` 1q, the dimension
decreases if and only if r is even.

As noted, the attack is very general, but for illustrative purposes we choose
to apply it on the even-dimension instances of QC-MDPC McEliece, i.e., when
2d|r holds for the dimension r for some positive integer d. We divide the attack
into three separate parts.

SQUARING

First, we choose an integer q such that 0 ă q ď d. By repeatedly squaring Ppxq
for q times, we can obtain the polynomial Ppxq2

q
with the relation from (5.3),

rh1pxqPpxqs2
q
” h0pxq2

q
mod pxr ` 1q, (5.11)

5.1. A Key-Recovery Attack 91

where each involved polynomial has dimension r{2q. Moreover, the weights
of h0pxq2

q
and h1pxq2

q
will have decreased with some non-zero probability

depending on the parameter q. As an example, Figure 5.1 shows the simulated
polynomial weight distribution of apxq2

q
, when apxq is chosen uniformly over

all polynomials of weight w “ 45 in F2rxs{px
4800 ` 1q.

5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

w

q “ 1
q “ 2
q “ 3
q “ 4
q “ 5
q “ 6

Figure 5.1: The simulated polynomial weight distribution
P
`

wH
`

apxq2
q˘˘

with initial polynomial weight w “ 45.

FINDING A LOW-WEIGHT POLYNOMIAL

The second step consists in finding a low-weight polynomial in the smaller
code. By Proposition 5.2, there is no difference in finding the low-weight
polynomial apxq and finding a low-weight vector a such that aP2q

also has low
weight. Therefore, the problem can be transformed into an instance of MDP
in which we try to find a codeword of weight at most 2wq in the r2r{2q, r{2qs

linear code generated by
`

I P2q˘
, for some selected parameter wq; for this

problem, we can use an arbitrary ISD algorithm, such as Algorithm 4.
It is necessary to point out that with a non-zero probability, there exists a

random polynomial a1pxq P F2rxs{px
r` 1q, which is not a circular shift of h0pxq

and still satisfies
$

&

%

wH

´

pa1pxqq2
q
¯

“ wq,

wH

´

pa1pxqPpxqq2
q
¯

“ wq.
(5.12)

In order to make any reasonable claims about the complexity of reconstruc-
tion, we first need to determine the expected number of such false positives.

92 A Squaring Attack on QC-MDPC-based McEliece

In Section 5.3, we give an expression stating the expected number of false
positives (Lemma 5.6).

RECONSTRUCTING THE POLYNOMIALS

Once a solution h0pxq2
q

and h1pxq2
q

has been found, we execute Algorithm
8 to reconstruct its square roots. We consider two main approaches to the
attack. They are outlined as follows.

• Immediate reconstruction: We reconstruct the final solutions h0pxq and
h1pxq immediately from h0pxq2

q
and h1pxq2

q
. The following mapping

Fr
2

Squaring q times
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ F

r{2q

2
Ó ISD

Fr
2

Polynomial reconstruction
ÐÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝ F

r{2q

2

illustrates the attack procedure and how the problem dimension will
vary. Every non-zero symbol in F

r{2q

2 will give rise to 2q possible root-
set symbols in Fr

2. From the mapping point of view, this yields that for
each non-zero symbol, 2q symbols are punctured (according to Lemma
5.4). Thus, to reconstruct, we recover a codeword of weight w´w2 in a
r2r´ 2qw2, rs linear code.

• Russian-doll reconstruction: If there are a lot of possible square root
solutions to consider (mainly when q is large), it may be beneficial to
recover the solutions in a stepwise manner. The mapping

Fr
2 ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ F

r{2q

2
Ó

Fr
2 Ð F

r{2
2 Ð ¨ ¨ ¨ Ð F

r{2q´1

2 Ð F
r{2q

2

gives an idea how the problem dimension will vary in the different
steps. By using a stepwise square root reconstruction, we will recon-
struct different collided elements in different steps. For an arbitrary

step F
r{2i

2 Ð F
r{2i`1

2 , where 0 ď i ă q, we find a low-weight code-
word in a r2r{qi ´ 2wi, r{qis linear code, according to Lemma 5.4. The
(even) integer wi is a reconstruction parameter, where wi{2 will be the
maximum number of collisions that we can reconstruct in a particular
step. It is not known how many collisions have occurred in the squaring

F
r{2i

2 Ñ F
r{2i`1

2 . So, the best strategy is to successively increase wi; first
we assume no collisions, then one collision and so on and so forth.

5.2. A Message-Recovery Attack 93

Algorithm 9 (Key recovery)

Input: Public-key matrix P P Frˆ2r
2 and algorithm parameters q, w1,

w2, ...wq P N, where 0 ă q ď d.

Output: Matrices A, B P Frˆr
2 .

Calculate Ppxq, Ppxq2, ..., Ppxq2
q

from P;1

From Ppxq2
q
, construct the code C2q

with generator matrix G1;2

u Ð ISDpG1, w1q;3

Construct h0pxq2
q

and h1pxq2
q

from u;4

apxq Ð h1pxq2
q
, bpxq Ð h0pxq2

q
;5

for i “ q to 1 do6

apxq, bpxq Ð Polynomial square rootpapxq, bpxq, P2i´1
pxq, wiq;7

Create secret key parity-check matrices A and B by cyclically shifting a8

and b, respectively;

Once the dimension has reached r in the reconstruction process, the private-
key polynomials h0pxq and h1pxq, or its corresponding matrices H0 and H1
have been found. The described attack can be summarized as in Algorithm 9.

5.2 A MESSAGE-RECOVERY ATTACK

In this section, we will present a message-recovery attack under the ciphertext-
only attack (COA) model, i.e., recovering one out of many intercepted mes-
sages, knowing only the public key G and received ciphertexts. The message-
recovery problem can be stated as follows.

Problem 5.5 (Message recovery) Given the public-key matrix G P F
pn´rqˆn
2

and ciphertexts from the oracle ΠG
McEliece, find a secret message m.

A fundamental difference from a key-recovery attack is that we can allow
a significantly lower success probability when mounting a message-recovery
attack, since in this setting we assume that we have access to an abundance of
intercepted messages to work with.

Definition 5.2 (McEliece oracle) A McEliece oracle ΠG
McEliece returns binary

vectors of the form c Ð mG` e, where m, e $
Ð t0, 1uk and with wH peq ď t.

Describing the circumstances of message recovery in other words – if we fail
for a certain message, we may query the oracle ΠG

McEliece for new messages

94 A Squaring Attack on QC-MDPC-based McEliece

until we find one that satisfies the constraints required to succeed with the
attack. Apart from this difference, the attack settings in key- and message
recovery are essentially the same.

A ciphertext c is always within a distance t from at least one codeword in
C generated by G. A standard method used in message-recovery of McEliece-
type cryptosystems consists in slightly altering the generator matrix by ap-
pending the intercepted message as an additional row in G. The resulting
code is C 1 “ C Y tC ` cu “ C Y tC ` eu. Hence, C 1 is also generated by

G1 “
ˆ

I P
e0 e1

˙

P F
pr`1qˆ2r
2 , (5.13)

where e “
`

e0 e1
˘

. The code C 1 has a minimum distance at most t. Thus, if
we can find the minimum-weight codeword e, then we can easily determine
the secret message by computing m “ pc` eqG´1.

We will now show that the techniques for recovering the key can be used
for recovering a message, with only a few modifications. We query the oracle
ΠG

McEliece for an encrypted message c, i.e., a message m encrypted with the
public-key matrix G. Expressing the encryption as a function over a polyno-
mial field, we have that

cpxq “ mpxqGpxq ` epxq mod pxr ` 1q. (5.14)

By squaring the ciphertext polynomial cpxq for q times, we get

cpxq2
q
“ rmpxqGpxqs2

q
` epxq2

q
mod pxr ` 1q, (5.15)

where epxq2
q

is likely to reduce in weight if q is sufficiently high. We map the
squared polynomials back to their vectorial form Ppxq2

q
ÞÑ P2q

and epxq2
q
ÞÑ

`

e2q

0 e2q

1

˘

and put them into the context of (5.13). By doing so, a new such
relation emerges from the generator matrix

G2 “
ˆ

I P2q

e2q

0 e2q

1

˙

. (5.16)

If the weight of epxq2
q

has decreased according to our assumptions, finding a
low-weight codeword in G2 from (5.16) should be considerably easier than in
G1.

Unfortunately, the extended code construction G2 (and G1) used in message
recovery suffers from a drawback. There exists only one shift of the codeword
`

e2q

0 e2q

1

˘

in the code, as opposed to key recovery where r{2q cyclic shifts of
the low-weight vector are present. On the whole, the absence of codeword
multiples results in a complexity increase that is roughly a factor O pr{2qq

compared to the key-recovery attack.

5.3. Analysis 95

As the next step in the attack, we should perform reconstruction of the
polynomial square roots. The ciphertext c can be expressed as

`

c0 c1
˘

“ mG` e “
`

m` e0 mP` e1
˘

. (5.17)

We define a vector z as

z def
“ c1 ` c0P “ e1 ` e0P, (5.18)

which gives a relation that is similar to (5.3). Suppose that we are given
e2

1` z2 “ e2
0P2, where e2

0 and e2
1 are of low weight, and we want to reconstruct

the polynomial roots e0 and e1. Since c0, c1 are known, we can compute the
vector z. We then construct a code generated by

G̃ “

ˆ

I P
0 z

˙

. (5.19)

Using the vectorial representations e2
0 and e2

1, we can determine the root-set
symbols and create a map σ and apply to the code generated by G̃, according
to Lemma 5.4. By finding the low-weight codeword in the resulting code C 1,
the value of each collision-set symbol of epxq can be computed, which in turn
provides us with epxq.

5.3 ANALYSIS

In this section, we give an analysis of the complexity of the key-recovery and
message-recovery attacks presented in Section 5.1 and 5.2. We measure all
complexities in binary operations. For the notation, we assume that w is the
weight of the codeword given by h0pxq and h1pxq, and where the weight of
each polynomial is w1 “ w{2.

The codewords in our r2r{2q, r{2qs linear code that are not a shift of the
desired codeword

`

h2q

0 h2q

1

˘

, but still have low weight 2wq are what we call
false positives. They all need to be tested through a reconstruction step before
they can be discarded. The number of false positives we will find, grows as
the dimension decreases (or q increases). To get an estimate on how many
false positives we can expect to find, we formulate the following lemma.

Lemma 5.6 The expected number of false positives of weight s in dimension
rn, ks “ r2r{2q, r{2qs in step 3 of Algorithm 9 is

µ˚pr, q, sq def
“ 2´r{2q`1 ¨

ˆ

r{2q

s{2

˙2
, (5.20)

assuming that Ppxq is uniformly random.

96 A Squaring Attack on QC-MDPC-based McEliece

Proof. Let X be an integer-valued and discrete random variable for the num-
ber of positives. For a randomly chosen polynomial apxq2

q
, we have that

P
´

wH

´

papxqPpxqq2
q
¯

“ s{2
¯

“ 2´r{2q`1 ¨

ˆ

r{2q

s{2

˙

, (5.21)

since the total number polynomials having weight that has the same parity
as s{2 is 2r{2q

{2 and the number of polynomials having weight s{2 is
`r{2q

s{2

˘

.

Moreover, the number of possible choices for apxq2
q

is
`r{2q

s{2

˘

. By assuming
independent events, the expected number of codewords having s{2` s{2 non-
zero elements is

E pXq “
ÿ

apxqPA
P
´

wH

´

papxqPpxqq2
q
¯

“ s{2
¯

“ 2´r{2q`1 ¨

ˆ

r{2q

s{2

˙2
,

(5.22)

where A def
“

!

apxq P F2rxs{px
r ` 1q : wH

´

apxq2
q
¯

“ s{2
)

. �

To determine the number of instances required to find one that satisfies
the weight constraints when squared q times, we determine the probability of
success for a randomly drawn instance.

Proposition 5.7 Let apxq P F2rxs{px
r´1q be arbitrary and wH papxqq “ s. Then,

the probability of m collisions when squaring apxq once is

ψpr, s, mq def
“ 2s´2m ¨

ˆ

r{2
s´ 2m

˙ˆ

r{2´ s` 2m
m

˙ˆ

r
s

˙´1
. (5.23)

Proof. We use a combinatorial counting argument. There are
` r{2

s´2m

˘

ways to
choose a2pxq (and thus the root set) and 2s´2m ways to pick a polynomial
root apxq satisfying a particular root set. The remaining r{2´ s` 2m positions
must be in the collision set, which gives

`r{2´s`2m
m

˘

possibilities. The total
number of possible ways to pick the polynomial apxq such that it has weight
s is

`r
s
˘

. �

The result of Proposition 5.7 only applies to when a polynomial is squared
once, i.e., q “ 1. For q being an arbitrary number of squarings, the expression
becomes a bit more complicated.

5.3. Analysis 97

Lemma 5.8 The probability of m collisions in q squarings of a polynomial of
weight s is given by

Ψpr, s, m, qq def
“

ÿ

i1,i2,...,iqě0
i1`i2`¨¨¨`iq“m

f pr, s, q, i1, . . . , iqq, (5.24)

where f pr, s, q, i1, . . . , iqq is defined as

ψpr, s, i1q ¨ ψpr{2, s´ 2i1, i2q ¨ ¨ ¨ψpr{2q´1, s´ 2pi1 ` ¨ ¨ ¨ ` iq´1q, iqq. (5.25)

Proof. Let the integers i1, i2, . . . , iq denote the number of collisions occurring in
each squaring; we have i1 collisions in the first squaring, i2 collisions in the sec-
ond and so forth. If the integers are chosen such that i1` i2`¨ ¨ ¨` iq “ m, then
that path gives rise to m collisions. The probability of a particular path is given
by f pr, s, q, i1, . . . , iqq. In order to calculate the total probability Ψpr, s, m, qq of
all paths leading to exactly m collisions, we enumerate all the possible paths
to m collisions. Since all the paths (events) are mutually exclusive, we can
perform summation over all probabilities to obtain Ψpr, s, m, qq. �

We can now give an estimate on the expected number of binary operations
required for the attack to be successful. It assumes we have a number of
instances to attack and success in attacking one of them is enough.

Lemma 5.9 (Attack complexity) The complexity of the attack described, de-
noted C˚pr, wq, is bounded by

min
q,m

"

1
Ψpr, w, m, qq2

´

CISDp2r{2q, r{2q, w´ 4mq

`CISDp2r´ 2qpw´ 4mq, r, 4mq ¨ pΨpr, w, m, qq2 ` µ˚pr, q, 2mqq
¯

*

.
(5.26)

Proof. In the expression, q corresponds to the number of squarings and m cor-
responds to an assumed number of collisions in each of the two polynomials.
The expected number of instances that we have to exhaust until we find a pair
of polynomials that forms a codeword which has weight w´ 4m is

˜

ÿ

k`l“2m

Ψpr, w, k, qq ¨Ψpr, w, l, qq

¸´1

ď pΨpr, w, m, qqq´2 . (5.27)

Whenever an instance is attacked, we spend CISDp2r{2q, r{2q, w´ 4mqq bit op-
erations on recovering a codeword of weight w´ 4m.

Assuming that the algorithm succeeds to recover one or several codewords
of weight w´ 4m, we expect to perform µ˚pr, q, w´ 4mq such reconstructions

98 A Squaring Attack on QC-MDPC-based McEliece

to full (or a higher) dimension. Reconstruction of a single candidate costs
CISDp2r ´ 2qpw´ 4mq, r, 4mq bit operations, with an additional but negligible
cost for solving the linear system of equations. By putting it all together, we
obtain the complexity result stated in the theorem. �

5.4 RESULTS

In this section, we give a detailed complexity analysis for the proposed pa-
rameters found in Table 4.1. The complexity for finding a codeword corre-
sponding to squared the squared polynomials h0pxq2

q
and h1pxq2

q
is denoted

C1, while C2 denotes the reconstruction complexity. When calculating the
complexity of the given attack, we use simulated values Ψsim that verify the
success probability Ψ.

Instance Complexity (log2)

r w λ q m Ψ2
sim µ˚ C1 C2 C˚

6 2´8.108 0.01 72.58 51.87 80.69
4 7 2´11.32 2´18.77 68.10 55.51 79.42

4800 90 80 8 2´15.30 2´31.36 63.72 59.18 79.02

5 13 2´25.41 2´8.57 45.96 69.63 72.75:

9856 142 128 4 8 2´11.87 2´88.51 115.8 61.83 127.7

32768 274 256 5 13 2´11.43 2´18.38 236.6 51.87 248.0

Table 5.1: Attack complexity in bit operations targeting a QC-MDPC
McEliece scheme. The complexity marked with : refers to
message-recovery.

• Security level λ “ 80: A standard attack using Stern’s algorithm re-
quires 294.35 bit operations in complexity, using parameters p “ 4 and
j “ 49. In Table 5.1, we have listed some possible choices of param-
eters when q “ 4. With m “ 6 (probability distribution given in Fig-
ure 5.2), the attack has a relatively low complexity (see Figure 5.3),
while retaining the expected number of public keys required to a few
(28.108 « 276), making it suitable for a key-recovery attack. The com-
plexity C1 “ 272.58 is that of Stern’s algorithm, with parameters p “ 4
and j “ 28. Since the expected number bit operations spent on recon-
structing false candidates are negligible (µ˚ ¨ C2 ! C1), the total com-

5.4. Results 99

m “ 6

Ψsim

24 26 28 30 32 34 36 38 40 42 44
0

0.1

0.2

w

P
´

w
H

´

ap
xq

2q
¯
¯

Figure 5.2: The simulated polynomial weight distribution with initial
polynomial weight w “ 45, q “ 4 and m ě 6.

plexity C˚ is Ψ2
sim ¨ C1 “ 280.69 bit operations, which is an improve-

ment by a factor 213.66 over the standard approach. With the algorithm
in [BJMM12] we found that C1 is 269.79 with parameters p “ 8, l “ 33
and δ “ 0, which gives an overall attack complexity of 277.90, thus break-
ing the 80-bit security.

Moreover, we have chosen a set of parameters to target a message-
recovery attack, i.e., we want to have as low complexity as possible,
with no constraints on the number of intercepted ciphertexts required.
To achieve low complexity, we set the weight constraints very low in a
small dimension, with m “ 13 and q “ 5, making the first step compu-
tationally cheap. Here, Ψ2

sim “ 2´25.41. With ISD parameters p “ 2 and
j “ 11, we get a complexity of C1 “ 245.96 bit operations. Since µ˚ is
as low as 2´8.57, we expect that any found codeword of weight 2 ¨ 16 is
the correct one. Instead of going directly up to full dimension (which
would be too computationally costly), we choose to reconstruct to di-
mension 600ˆ 1200. By doing so, we obtain a r1072, 600s linear code in
which we recover a codeword of weight 48. With parameters p “ 4 and
j “ 34, the complexity of this step is C2 “ 269.63. In order to succeed, we
require that

wH

´

apxq2
3
¯

`wH

´

papxqPpxqq2
3
¯

ď 80,

which holds with probability ě 1
2 . In total, we have in complexity

p 1
2 q
´1 ¨ p225.41 ¨ 245.96 ` 269.63q « 272.75. The standard (message-recovery)

attack with Stern’s algorithm on a r9600, 4800s linear code recovering a

100 A Squaring Attack on QC-MDPC-based McEliece

µ˚ ă 1

µ˚ ă 1

µ˚ ă 1

2 4 6 8 10 12 14

80

100

m

lo
g 2p

Ψ
´

2
si

m
¨
C

1q

q “ 3
q “ 4
q “ 5

Figure 5.3: The complexity of the key-recovery attack targeting a QC-
MDPC McEliece scheme with 80-bit security parameters
r “ 4800 and w “ 90, using various attack parameters.

weight t “ 84 codeword is 2101.3, with p “ 4 and j “ 49. Our attack
gives an impressive improvement factor of 228.55, requiring only 225.41

intercepted ciphertexts.

• Security level λ “ 128: For the parameters r “ 9856 and w “ 142,
targeting 128-bit security, we achieve a attack complexity of 2127.7 with
q “ 4. First, we try recovering a codeword of weight 110 in a r1232, 616s
linear code. To obtain such an instance, we need on average 211.87 public
keys. Moreover, we spend C1 “ 2115.8 operations on each instance, with
parameters p “ 4 and j “ 34. Reconstruction consists of recovering
a weight 32 codeword in a r17952, 9856s linear code, which costs 261.83

with parameters p “ 2 and j “ 30. The improvement over the standard
attack is about 219.25.

• Security level λ “ 256: In the 256-bit security case, we have r “ 32768
and w “ 274. We begin by squaring q “ 5 times, and then try to recover
a weight 218 codeword in the r2048, 1024s linear code, which costs 2236.6

with parameters p “ 6 and j “ 49, and requires around 211.43 public
keys. Finally, we recover a weight 52 codeword in the r29216, 16384s
linear code. Altogether, we gain an improvement factor of 231.37 over
the standard attack.

Note: With a large number of intercepted ciphertexts, an attack targeting
multiple instances that are encrypted with the same key, will potentially yield

5.5. Summary 101

further improvement [Sen11], both in the standard attack and in the new
attack. In the complexity results above, we did not take such approaches into
consideration, but we could potentially gain a factor

?
N, with N being the

number of intercepted ciphertexts.

5.5 SUMMARY

In this chapter, we have presented a new cryptanalytic method that exploits
the property that the length of the public-key matrix in the QC-MDPC variant
of McEliece PKC is divisible by a factor of 2. As shown, this allows for a
reduction of the problem, which gives a lower attack complexity than claimed
in [MTSB13]. The presented attack is very general and can be applied to
any quasi-cyclic code having circulant sub-matrices of even dimension. We
conclude that using an odd dimension is probably a better choice, as it avoids
the squaring attack.

6
Searching for Low-Weight

Polynomial Multiples

Opportunities multiply, as they are seized.
– Sun Tzu

This chapter introduces the problem of finding a low-weight polynomial
multiple, which is tightly related to the minimum-distance problem.
We present two different algorithms for solving the low-weight poly-

nomial multiple problem under different circumstances. The results were
originally proposed in [JL13] [LJ14]. We haven chosen to restrict our analy-
sis to the binary case, but the presented algorithms can be used to solve the
problem over any field Fq.

Finding a low-weight multiple Kpxq of a binary polynomial Ppxq is believed
to be a computationally hard problem. As of today, no known polynomial-
time algorithm exists. Although it is not known how hard the problem is, one
can quite easily show that it is no harder than finding a low-weight codeword
in a random code (MDP), as there is a simple reduction to this problem. For
the latter problem, any ISD algorithm, e.g., Stern’s algorithm, can be used (see
Chapter 3).

The problem of finding a low-weight multiple is of great importance in gen-
eral in the field of cryptography. Some other applications are distinguishing
attacks and correlation attacks on stream ciphers [MS89] [CT00]. Another area
is finite field arithmetics. The results we present in this chapter apply equally
well to these areas and improve state-of-art also here, even though we do not
explicitly give the details.

• The first algorithm applies to the general low-weight polynomial mul-
tiple problem. Our algorithm has lower complexity than existing ap-
proaches for solving this problem. In analysis, we focus on the actual

103

104 Searching for Low-Weight Polynomial Multiples

computational complexity of the algorithm and not the asymptotics,
similar to previous work in this area [MMT11] [JL11] [BJMM12]. We use
coding-theoretic methods; the given polynomial can be used to define
a code which has a cyclic structure. A main step in the proposed algo-
rithm is to construct a new code with slightly higher dimension, having
a larger number of low-weight codewords. Now finding a single one
of them leads to the recovery of the low-weight polynomial multiple.
The new algorithm also includes some additional processing that re-
duces the minimum distance of the code. Applying an algorithm for
finding low-weight codewords on the constructed code yields a lower
complexity for finding low-weight polynomial multiples compared to
previous approaches. As an application, the algorithm is used to attack
the public-key cryptosystem TCHo [FV07]. A consequence of the new
algorithm is that the gap between claimed security level and actual al-
gorithmic complexity of a key-recovery attack on TCHo is narrowed in
all suggested instances. For some parameters, the complexity might be
interpreted as below the security level.

• As a second main result in this chapter, we consider the problem of
finding a polynomial multiple of weight 4, which is a very relevant
problem in correlation attacks on stream ciphers. If a stream cipher
uses a linear feedback shift register (LFSR) with feedback polynomial
Ppxq, we are often interested in finding one or many multiples of Ppxq
of very low weight, typically 3, 4, or 5.

Using similar ideas as described above, we present a new probabilistic
algorithm for finding a multiple of weight 4, which is faster than all pre-
vious approaches. This will improve efficiency in the pre-computation
phase in correlation attacks using weight 4. The algorithm works for
larger even weights as well, but the asymptotic gain is less.

6.1 THE LOW-WEIGHT POLYNOMIAL MULTIPLE PROBLEM

Let us start by introducing the problem of finding all low-weight polynomial
multiples as follows:

Problem 6.1 Given polynomial Ppxq P F2rxs of degree dP and two integers w
and d, find all multiples Kpxq “ PpxqQpxq of weight at most w and degree at
most d.

A related but different problem emerges when it is sufficient to find one
single solution among possibly several solutions is as follows.

6.1. The Low-Weight Polynomial Multiple Problem 105

Problem 6.2 Given a polynomial Ppxq P F2rxs of degree dP and integers w
and d, find a (if it exists) multiple Kpxq “ PpxqQpxq of weight at most w and
degree at most d.

A major difference between these two problems lies in the fact that gen-
eralized birthday arguments [Wag02] sometimes can be used in Problem 2
whereas it is usually not applicable to Problem 1, as this technique does not
necessarily find all possible solutions. It is also a question of the nature of
the underlying problem giving rise to the low-weight polynomial multiple
problem. In some cases a single multiple is enough and in other cases one
is interested in finding many. We can also imagine a problem formulation
where we output T multiples instead of all.

Another deviating point is the expected number of multiples. A rough
estimation gives the expected number of low-weight multiples to be around

dw´1

pw´ 1q! ¨ 2dP
. (6.1)

We may then have a set of instances where the expected number of low-weight
multiples is very low, but we know from construction that such a multiple
does exist. The second scenario is when the expected number of multiples is
larger and the problem instance perhaps is a random instance (Ppxq P F2rxs
of degree dP is randomly chosen among all such polynomials).

Looking at known algorithms for solving the low-weight polynomial multi-
ple problem, the techniques differ depending on whether we are considering a
fixed very small weight w, typically w “ 3, 4, 5, or whether we are considering
larger values of the weight w.

Undoubtedly, there are many flavors of this problem. We consider first the
case relevant to TCHo. Thus, we give another modified problem formulation
that fits the TCHo case.

Problem 6.3 (Low-Weight Polynomial Multiple) Given a polynomial Ppxq P
F2rxs of degree dP and two integers w and d, find a (if it exists) multiple
Kpxq “ PpxqQpxq of weight exactly w and degree exactly d. We denote the
problem LWPM.

Let us give a very brief overview of previous algorithms for these problems.
Several algorithms have a large initial cost. Thus, for some parameters an
exhaustive search will have the best complexity.

6.1.1 TIME–MEMORY TRADE-OFF APPROACH

There exists a plethora of variations and improvements of this method. Among
these, we find for instance the approach by Golić [Gol96], which we refer to

106 Searching for Low-Weight Polynomial Multiples

as the standard approach. Let d be the highest degree allowed. The algo-
rithm formulated by Golić searches for polynomials of weights w “ 2j (and
w “ 2j ´ 1). The initial step consists of creating a list that contains the

`d
j
˘

residues of the form xi1 ` xi2 ` ¨ ¨ ¨ ` xij mod Ppxq, for 0 ď i1 ă i2 ă ¨ ¨ ¨ ă

ij ă d. These residues can be efficiently represented as integers, on which it
is straightforward to apply a sort-and-match procedure. Any collision gives
rise to a polynomial of weight w “ 2j being a multiple of Ppxq. The algorithm
requires time and memory in the order of

`d
j
˘

, which is roughly dw{2 for w
even.

Canteaut and Trabbia [CT00] introduced a memory-efficient method for
finding multiples of weight w ` 1. They first compute the residues qipxq “
xi mod Ppxq for 0 ă i ă d and store the exponent i in a table indexed by
qipxq. After this, all sums of w´ 1 elements in the table are computed forming
A “ 1` qi1pxq` ¨ ¨ ¨` qiw´1pxq. The last element xj is accessed in the table from
position A, and thus, 1` qi1pxq ` ¨ ¨ ¨ ` qiw´1pxq ` xj is a multiple of Ppxq. The

time complexity is approximately
`d´1

w´1

˘

and requires only linear memory.
Another approach is the match-and-sort approach by Chose, Joux and Mit-

ton [CJM02]. Using a divide-and-conquer technique, the task of finding colli-
sions in a search space of size nw, is divided into smaller tasks. This is done
by searching for collisions in smaller subsets with less restrictions. The solu-
tions to the smaller subproblems are then sorted and put together to solve the
whole problem. This approach has time complexity of about drw{2s ¨ log d and
requires drpw´1q{4s of space.

In [DLC07], Didier and Laigle-Chapuy consider using discrete logarithms
instead of the direct representation of the involved polynomials to improve
performance. The complexity for their approach is Opdq logarithm computa-
tions over F2rxs{Ppxq and approximately the same amount of memory.

The LWPM problem can also be viewed as a subset-sum (or knapsack) prob-
lem. Therefore all generic algorithms for solving the subset-sum problem can
be used to solve LWPM (e.g. all birthday-type algorithms given in [Jou09]).

When the degree of the multiple can be large and there are many low-
weight multiples, but it is sufficient to find only one, Wagner’s generalized
birthday approach [Wag02] becomes efficient. To expect to find a multiple
using Wagner’s algorithm, it is required that d « 2n{ptlog wu`1q. The time
needed to perform such a search is approximately w ¨ 2n{ptlog wu`1q.

6.1.2 FINDING MINIMUM-WEIGHT CODEWORDS IN A LINEAR CODE

The low-weight polynomial multiple problem can be reduced to the function
problem version of MDP, for which we can use information-set decoding al-

6.2. A New Algorithm Solving LWPM 107

gorithms. A common reduction is as follows. Let

Ppxq “ p0 ` p1x` ¨ ¨ ¨ ` pdP xdP (6.2)

be the given polynomial and let

u “
`

u0 u1 ¨ ¨ ¨ ud´dP

˘

(6.3)

be a length d´ dP` 1 binary vector. One can formulate the problem of finding
a weight w polynomial Kpxq of degree ď d, being a multiple of Ppxq, as finding
a binary vector u such that uGpxq has exactly w non-zero coefficients, where

Gpxq “

¨

˚

˚

˚

˝

Ppxq
xPpxq

...
xd´dP Ppxq

˛

‹

‹

‹

‚

. (6.4)

Writing also the polynomials as length d vectors, the problem reduces to find-
ing a weight w codeword in the binary linear code generated by the Toeplitz
generator matrix

G “

¨

˚

˚

˚

˝

p0 p1 ¨ ¨ ¨ pdP
p0 p1 ¨ ¨ ¨ pdP

.
p0 p1 ¨ ¨ ¨ pdP

˛

‹

‹

‹

‚

, (6.5)

having dimension pd´ dP ` 1q ˆ pd` 1q, where the empty spaces correspond
to zero elements. As the problem is reduced to finding a weight w codeword
in the linear code generated by G, conventional information-set decoding al-
gorithms that find minimum weight codewords of the code can be used.

6.2 A NEW ALGORITHM SOLVING LWPM

Let us describe the main ingredients in the new algorithm. We use the es-
tablished technique from coding theory described in Subsection 6.1.2, but we
introduce some new modifications.

Recall that Kpxq represents the low-weight polynomial multiple we are
looking for. Having the generator matrix G described in (6.5) in mind, our
initial observation is that one can increase success probability in each itera-
tion of the information-set decoding part by a factor y` 1 by allowing y shifts
of the polynomial Kpxq, i.e., including the polynomial multiples

xKpxq, x2Kpxq, . . . , xyKpxq

108 Searching for Low-Weight Polynomial Multiples

along with Kpxq in the solution space (this will be proved in Section 6.2.1). The
trade-off is that the dimension of the generator matrix grows to pd´ dP ` 1`
yq ˆ pd` 1` yq. The new generator matrix will have the following structure:

Gy “

p0 p1 ¨ ¨ ¨ pdP
p0 p1 ¨ ¨ ¨ pdP

.
p0 p1 ¨ ¨ ¨ pdP

p0 p1 ¨ ¨ ¨ pdP
.

p0 p1 ¨ ¨ ¨ pdP

.

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(6.6)

The marked rectangle represents G and everything outside represents the
expansion. Let the expanded matrix in (6.6) be denoted Gy and the code it
generates be denoted Cy.

Recall that the unknown low-weight polynomial is written in the form

Kpxq “ 1` k1x` ¨ ¨ ¨ ` kd´1xd´1 ` xd, (6.7)

i.e. the polynomial Kpxq has degree d. We will now show how to exploit the
form of the polynomial.

Theorem 6.4 For any polynomial Ppxq, there exists a linear map Γ that trans-
forms the code Cy into a new code given by GyΓ, such that all weight w
codewords corresponding to shifts of Kpxq will have weight w´ 2 in the new
code1.

Proof. Given that Kpxq has degree d, its constant term and the coefficient of xd

are non-zero. Combining the corresponding columns in Gy, i.e., adding the
pd` 1qth column to the first column of Gy and then removing the pd` 1qth
column from Gy, will cause the codeword corresponding to Kpxq to decrease
by two in weight (see Figure 6.1). The new codeword stemming from Kpxq
will have weight w´ 2.

Note that the symbols in the other weight w codewords will be permuted,
but the weight of these codewords stays the same. We can repeat this for
the second column, by adding the pd` 2qth column and so on up to the yth
and pd` yqth column. The consequence of the approach just outlined is that
all codewords that correspond to shifts of Kpxq will have weight w´ 2. It is
easy to see that the operations described above can be expressed as a right
multiplication by a matrix Γ, giving the new generator matrix GyΓ.

�
1This operation is equivalent to transforming Kpxq into Kpxq mod p1` xdq.

6.2. A New Algorithm Solving LWPM 109

p0 p1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ pdP
p0 p1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ pdP

.
p0 p1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ pdP

p0 p1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ pdP
.

p0 p1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ pdP

1 k1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ kdP ¨ ¨ ¨ ¨ ¨ ¨ 1
1 k1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ kdP ¨ ¨ ¨ ¨ ¨ ¨ 1

.
1 k1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ kdP ¨ ¨ ¨ ¨ ¨ ¨ 1

+
+

Γ
ÝÑ

p0 p1 ¨ ¨ ¨ pdP

p0
...

. . .
. . .

... pdP
pdP p0 ¨ ¨ ¨ pdP´1

...
.

...
p0 ¨ ¨ ¨ pdP p0
0 k1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ kd´1

kd´1 0 k1 ¨ ¨ ¨ ¨ ¨ ¨ kd´2
...

.
...

kd´y ¨ ¨ ¨ kd´1 0 k1 k2

Figure 6.1: The upper part of the figure illustrates how the columns
in Gy are added to form GyΓ and how weight-w code-
words are transformed into weight w´ 2 codewords. The
lower part of the figure shows the resulting generator ma-
trix.

The matrix product GyΓ forms a new generator matrix of dimension pd´
dP ` 1` yq ˆ pd ` 1q, as illustrated in Figure 6.1. The final step is to apply
information-set decoding on the code formed by GyΓ, looking for codewords

110 Searching for Low-Weight Polynomial Multiples

Algorithm 10 (Solve-LWPM)

Input: Polynomial Ppxq P F2rxs and algorithm parameters w, y P N.

Output: A polynomial multiple Kpxq of weight w P N.

From Ppxq, create the corresponding generator matrix G according to1

(6.5);
Expand G by y extra rows and y extra columns, yielding in total y` 12

codewords that represent Kpxq, all of weight w. Let the expansion be Gy;
Transform the codewords that represent Kpxq to weight w´ 2, by forming3

the generator matrix GyΓ, in agreement with Theorem 6.4;
Input GyΓ into Algorithm 5, using optimum parameters with respect to4

(6.8), to find one codeword u among the y` 1 weight w codewords that
represent Kpxq;
From u, construct Kpxq by exhaustive search over at most y` 15

polynomials and output Kpxq;

of weight w ´ 2. For the information-set decoding step, we use Algorithm
5. The explicit complexity expressions are given in (3.33). The algorithm for
solving Problem 6.3 can be summarized as given in Algorithm 10.

6.2.1 COMPLEXITY ANALYSIS

In order to estimate the complexity of the algorithm solving LWPM, we use
previously established results given in Chapter 3. Let CISD denote the ex-
pected number of binary operations performed by Algorithm 5 to find a
codeword of weight w in an pn, kq-code C, assuming that exactly one such
codeword exists.

For an expanded pn, kq code Cy (according to (6.6)) with weight reduction
by Γ, we have pn, kq “ pd` 1, d´ dP ` 1` yq. Running Algorithm 10 on GyΓ

will require complexity according to the following theorem.

Theorem 6.5 Algorithm 10 has an expected complexity given by

C˚ “ min
yě0

CISDpd` 1, d´ dP ` 1` y, w´ 2q
y` 1

, (6.8)

when the success probability of one iteration of Algorithm 5 is small.

Proof. Since the codewords are shifts of each other, we cannot conclude that
they are independent. Therefore, it is not possible to apply Lemma 3.3. In-
stead, we need to analyze the behavior of the ISD algorithm to show finding

6.2. A New Algorithm Solving LWPM 111

one codeword is independent of finding another one. Although the analysis
apply to most ISD algorithms, we consider Algorithm 5 in our analysis.

The complexity function CISDpn, k, wq refers to the expected complexity of
running Algorithm 5 with an instance where we have one single solution,
i.e., only one codeword of weight w exists in the code, whereas in the case
of LWPM, there will exist several weight w codewords. Having y` 1 possible
solutions instead of one suggests that finding at least one is roughly y ` 1
times more likely. However, for this to be true, the probability of finding one
single codeword in one iteration, denoted ξ, must be small. In particular, we
require that y ¨ ξ ! 1. Secondly, we require the events of finding the shifted
low-weight codewords to be independent of each other.

Let the set of solutions, i.e., the set of shifts of Kpxq represented as vectors,
be the rows of the matrix

K “

¨

˚

˚

˚

˝

1 k1 k2 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ kd´1 1
1 k1 k2 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ kd´1 1

.
1 k1 k2 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ kd´1 1

˛

‹

‹

‹

‚

. (6.9)

The weight reduction of the expanded generator matrix Gy will result in a
new codeword matrix, which we write as

KΓ “

¨

˚

˚

˚

˝

0 k1 k2 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ kd´1
kd´1 0 k1 k2 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ kd´2

...
.

...
kd´y ¨ ¨ ¨ kd´1 0 k1 k2 ¨ ¨ ¨ kd´y´1

˛

‹

‹

‹

‚

. (6.10)

The column permutation π acting on GyΓ (used in Algorithm 5) permutes
all codewords accordingly, thus permuting the columns of K. Let r “ d ´
dP. For a set of arbitrary indices ti1, i2, ..., iru Ă t0, 1, ..., d ´ 1u, the resulting
permutation of KΓ is

πpKΓq “

¨

˚

˚

˚

˝

ki1 ki2 ¨ ¨ ¨ kir
ki1´1 ki2´1 ¨ ¨ ¨ kir´1

...
...

...
ki1´y ki2´y ¨ ¨ ¨ kir´y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨ ¨ ¨

˛

‹

‹

‹

‚

. (6.11)

Now, assume that the two vectors

k “
`

ki1 ki2 ¨ ¨ ¨ kir
˘

and k1 “
`

ki1´j ki2´j ¨ ¨ ¨ kir´j
˘

(6.12)

112 Searching for Low-Weight Polynomial Multiples

constitute two rows of the first r columns of πpKΓq for some j such that 1 ď
j ď y and where each ki is an i.i.d. random variable. Note that the indices are
taken modulo d. For a codeword k to be considered as a possible solution in
one iteration of Algorithm 5, a necessary but not sufficient condition is that
k can have at most 2p non-zero elements in the first r columns. We want
to show that these two events are »approximately independent«. We provide
some informal argument. A more formal derivation would require quite some
space, which we avoid.

The set of indices ti1, i2, ..., iru are chosen uniformly in the permutation. As
a consequence, there is a non-zero probability that ti1, i2, ..., iru X ti1 ´ j, i2 ´
j, ..., ir ´ ju ‰ H, meaning that one or several random variables in k and k1 are
identical. More specifically, we have

µ
def
“ E p|ti1, i2, ..., iru X ti1 ´ j, i2, ..., ir ´ ju|q (6.13)

common indices in ti1, i2, ..., iru and ti1 ´ l, i2 ´ j, ..., ir ´ ju on average.
The probability of having i overlapping variables describes the probability

function of a hypergeometric distribution, i.e.,

P pj overlapping variablesq “

`r
j
˘`d´r

r´j
˘

`d
j
˘

(6.14)

and thus,

µ “
r2

d
. (6.15)

Let A0 denote the sum of random variables in positions i1, i2, ..., ir and A1
the sum of random variables in positions i1 ´ j, i2 ´ j, ..., ir ´ j respectively.
Moreover, let B denote the sum of the intersecting variables in positions
ti1, i2, ..., iru X ti1 ´ j, i2 ´ j, ..., ir ´ ju.

The expected intersection is µ, so B is a sum of µ random variables. By
assuming the worst-case A0 “ 2p, we obtain the following

E pA1 | A0 “ 2pq “ E pB | A0 “ 2pq `E pA1 ´ B | A0 “ 2pq

“2p ¨
µ

r
` pw´ 2pq ¨

r´ µ

d´ r
“ 2p ¨

r
d
` pw´ 2pq ¨

r´ r2

d
d´ r

“2p ¨

»

–

r ¨ pd´ rq ´ d ¨
´

r´ r2

d

¯

d ¨ pd´ rq

fi

fl`w ¨
r ¨

`

1´ r
d
˘

d ¨
`

1´ r
d
˘ “ w ¨

r
d

“w ¨
ˆ

1´
dP
d

˙

.

(6.16)

6.2. A New Algorithm Solving LWPM 113

Hence, if w ¨ p1´ dP
d q " 2p then the expected value is significantly larger

than 2p. If so, A1 is very unlikely to take a value below or equal to 2p and,
thus, we argue that the events of finding the shifted codewords are approxi-
mately independent.

Under the two conditions y ¨ ξ ! 1 and w ¨ p1 ´ dP
d q " 2p, we can con-

clude that the probability of finding at least one out of y ` 1 codewords is
1´ p1´ ξqy`1 « py` 1q ¨ ξ, since all codewords are equally likely to be found.
Moreover, the complexity CISDp, n, k, wq is Opξ´1q and therefore Algorithm 10
has complexity

O
´

py` 1q´1 ¨ ξ´1
¯

. (6.17)

This concludes the proof of Theorem 6.5.
�

6.2.2 SIMULATION RESULTS

To check the correctness of the algorithm and the complexity analysis, we have
conducted some simulations. We consider a toy example of LWPM, running
Algorithm 10 on an instance with a polynomial

Ppxq “ 1` x1 ` x3 ` x6 ` x7 ` x8 ` x10 ` x11 ` x16 ` x20`

x25 ` x28 ` x29 ` x32 ` x33 ` x34 ` x37 ` x38 ` x39.

We are seeking a weight w “ 8 multiple of Ppxq of degree 62. The solution is

Kpxq “ 1` x` x2 ` x4 ` x11 ` x36 ` x37 ` x62.

In Figure 6.2, we are plotting the simulated success rate of each iteration
of Algorithm 5 as a function of codeword multiplicity y ` 1. The solid line
shows the theoretical success probability function, according to (6.8). The
triangle-shaped points show the simulated success probability. The square-
shaped points show the simulated success probability of a single iteration
when using the weight-reduction technique described in Theorem 6.4. Look-
ing at Figure 6.2, we note that the probability increases by the factor y` 1. We
also note that initially the lines are almost linear, but bent as the probability
converges to 1.

In Figure 6.3, we are plotting the simulated number of operations in one
iteration of Algorithm 5 (squared-shaped points). We note that the simulated
operation count follows the same curve as the theoretical expected operation
count (solid line).

114 Searching for Low-Weight Polynomial Multiples

100 100.2 100.4 100.6 100.8 101 101.2 101.4
10´1

100

y` 1

P
ps

uc
ce

ss
q

Theoretical
Simulated

Weight reduction

Figure 6.2: The probability of success in each iteration as a function
of codeword multiplicity.

100 100.2 100.4 100.6 100.8 101

102.6

102.8

y` 1

#
O

pe
ra

ti
on

s
/

it
er

at
io

n Theoretical
Simulated

Figure 6.3: Operation count in each iteration as a function of code-
word multiplicity.

6.2.3 THE ATTACK

The security of TCHo relies on the hardness of finding the secret polynomial
multiple Kpxq, given only the public polynomial Ppxq. It is clear that solving
LWPM for the instance Ppxq would result in a key-recovery attack. In [FV07]
and [AvzG07], some methods are proposed to solve the LWPM problem. These
methods are, however, unable to break TCHo.

By running Algorithm 10 on the instances proposed in [FV07], we get the

6.3. A New Algorithm for Finding a Weight-4 Multiple 115

complexities presented in Table 6.1. According to [FV07], these instances are
designed for a security level of 280. Note that the other algorithms mentioned
in Section 6.1 have much higher complexity.

Instance Complexity (log2) Opt.

d dP w Stern Algorithm 5 Algorithm 10 yopt

25820 7000 45 100.69 100.08 90.61 200
24730 12470 67 85.56 85.75 77.65 230
44677 4433 25 97.48 96.47 84.15 250
24500 8000 51 98.91 98.45 89.48 200
17600 8795 81 97.43 96.51 89.21 110
31500 13200 65 99.84 99.80 91.13 250

Table 6.1: The first complexity column gives the complexity of using
Stern’s algorithm applied on (6.5), the second column for
using Algorithm 5 applied on (6.5), i.e. y “ 0, and the
third using Algorithm 10. The optimum column gives the
optimal choice of y in Algorithm 10.

From a more technical perspective, one can consider the complexity in word
operations instead of single bit operations. This would decrease all the com-
plexities above by approximately a factor 26 and would give a rough estimate
of the required number of clock cycles. In implementation, we managed to
perform on average 23.3 bit operations per clock cycle.

Example 6.1 Consider the case d “ 44677, dP “ 4433 and w “ 25 from Table 4.2.
By minimization of (6.8) over y, p, l and z, we obtain the values yopt “ 250, popt “ 4,
lopt “ 51 and zopt “ 18. The generator matrix GyΓ has dimension 40495ˆ 44678
and 251 codewords of weight 23. Using Algorithm 10, we get a complexity of about
284 bit operations.

6.3 A NEW ALGORITHM FOR FINDING A WEIGHT-4 MULTIPLE

Inspired by the ideas contained in the previous sections, we turn our atten-
tion to a different problem. We already mentioned in the introduction that an
important cryptographic application for algorithms finding low-weight mul-
tiples of binary polynomials is the area of correlation attacks. In particular,
given a feedback polynomial Ppxq for a linear feedback shift register used in
some stream cipher, one is interested in finding low-weight multiples of Ppxq
as this can often be used in a correlation attack. The success of the correlation

116 Searching for Low-Weight Polynomial Multiples

attack (its complexity) is related to the weight of the multiple and typically
grows exponentially with the weight. Hence, we are almost only considering
such low weights as 3, 4, 5, or slightly larger.

If we find a low-weight multiple of a certain degree, this means in the cor-
relation attack that we need to obtain an output sequence from the stream
cipher of length at least the same as the degree of the multiple. So clearly,
we are interested in finding the weight w multiples of lowest degree. These
circumstances motivate the problem instance Problem 2 if we choose the max-
imum degree d for the multiple to some suitable value.

From a practical point of view, in a correlation attack, we do not need the al-
gorithm to succeed every time, nor do we need to deliver exactly all multiples
in our answer. With this as a background, we look at the following specific
problem instance which is clearly very relevant for a correlation attack.

Problem 6.6 (Weight-4 Polynomial Multiple) Given a polynomial Ppxq P
F2rxs of degree dP, find the weight-4 multiple Kpxq “ PpxqQpxq of lowest
degree. We denote the problem W4PM.

We observe that the generalized birthday approach is not applicable here,
as it is then very likely that we will not find the weight 4 multiple with lowest
degree. The algorithms we know to solve this problem include the time-
memory trade-off by Golić from Section 6.1.1.

We first note that for a randomly selected polynomial Ppxq of degree dP, the
expected degree of the desired weight-4 multiple of Ppxq is around d “ 2dP{3.

In the time-memory approach, we would then compute all residues of the
form 1` xi1 mod Ppxq, for 0 ď i1 ă 2dP{3, and store them all in a table sorted
according to the value of the residue.

Then we would compute all residues of the form xi1 ` xi2 mod Ppxq, for
0 ď i1 ă i2 ă 2dP{3 and for each residue we compute we check if it is already
in the table. When such an event occurs, we have found a weight-4 multiple.
If we find many, we output the one with lowest degree. If we do not find any
weight-4 multiple, we run again with a slightly larger d.

Clearly, the computational complexity of this approach is around 22dP{3 and
the storage is around 2dP{3. As an example, if the Ppxq polynomial has degree
dP “ 90, the computational complexity would be around 260. For algorithms
doing simple operations there is no better approach known. There is however
another approach using a special kind of discrete log problem [DLC07] that
can reduce the computational complexity for solving the W4PM problem to
solving 2dP{3 discrete log instances. Still, each discrete log instance requires
quite a lot of computations to be solved.

We now present a new algorithm for solving the defined problem with
computational complexity of only around 2dP{3 and similar storage. The algo-

6.3. A New Algorithm for Finding a Weight-4 Multiple 117

Algorithm 11 (Weight-4-multiple)

Input: Polynomial Ppxq P F2rxs of degree dP and algorithm parameter α P N.

Output: A polynomial multiple Kpxq P F2rxs of weight 4.

repeat1

Select a random subset Q Ă t1, 2, . . . , dPu such that |Q| “ dP{3;2

From Ppxq, create all residues xi1 mod Ppxq, for 0 ď i1 ă 2dP{3`α and3

put pxi1 mod Ppxq, i1q in a list L1;
Create all residues xi1 ` xi2 mod Ppxq such that4

φQpxi1 ` xi2 mod Ppxqq “ 0, for 0 ď i1 ă i2 ă 2dP{3`α and put in a list
L2. This is done by merging the sorted list L1 by itself and keeping
only residues φQpxi1 ` xi2 mod Ppxqq “ 0. The list L2 is sorted
according to the residue value;
In the final step we merge the sorted list L2 with itself to create a list5

L, keeping only residues xi1 ` xi2 ` xi3 ` xi4 “ 0 mod Ppxq;
until |L| ą 06

return L7

rithm uses the idea of duplicating the desired multiple to many instances and
then finding one of them with very large probability.

6.3.1 COMPLEXITY ANALYSIS

Let us analyze the algorithm using the theory we described in Section 1.7.
Assume that Kpxq is the weight 4 multiple of lowest degree and assume that
its degree is around dP{3 as expected. The algorithm considers and creates all
weight 4 multiples up to degree 2dP{3`α, but will only find those that include
two monomials xi1 and xi2 such that φQpxi1 ` xi2 mod Ppxqq “ 0.

As Kpxq is of weight 4, any polynomial xi1 Kpxq is also of weight 4 and
since we consider all weight-4 multiples up to degree 2dP{3`α we will consider
2dP{3`α ´ 2dP{3 such weight 4 polynomials, i.e. about 2dP{3p2α ´ 1q duplicates
of Kpxq. As the probability for a single weight 4 polynomial to have the con-
dition φQpxi1 ` xi2 mod Ppxqq “ 0 can be approximated to be around 2´dP{3,
there will be a large probability that at least one duplicate xi1 Kpxq will survive
in Step 2 in the above algorithm and will be included in the output.

Regarding complexity, we note that the tables are all of size 2dP{3. Creation
of L1 costs roughly 2dP{3 and creation of L2 costs about the same as we are
only accessing entries in L1 with the same dP{3 bits given by Q. For a ran-
domly chosen Q and for a sufficiently large α, one iteration of Algorithm 11

118 Searching for Low-Weight Polynomial Multiples

(inner loop) succeds with high probability. Of course, the average number
of iterations and the work performed inside the loop constitutes a trade-off,
determined by the parameter α.

6.3.2 SIMULATION RESULTS

We have simulated Algorithm 11 over random polynomials of a fixed de-
gree. First, we used a brute-force algorithm to determine the minimum-degree
polynomial multiple of weight 4 after which we experimented with different
values on parameter α to see how it affects the probability of finding the
minimum-degree multiple of weight 4.

0 1 2 3

0.2

0.4

0.6

0.8

α

P
pm

in
.d

eg
fo

un
dq

Degree 20
Degree 40

Figure 6.4: The probability of finding the minimum-degree polyno-
mial multiple as a function of algorithm parameter α.

Figure 6.4 shows the simulated probability of finding the minimum-degree
polynomial multiple taken over the ensemble of all degree-20 polynomials
(line marked with triangles) and all degree-40 polynomials (line marked with
squares) respectively.

Example 6.2 For dP “ 90 the complexity of the classical approach is 260. Running
Algorithm 11 with parameter α “ 3 yields a complexity of only 233 with very low
probability of not finding the lowest degree polynomial multiple.

6.4 ATTACKS ON QC-MDPC MCELIECE IN RELATION TO LWPM

In this section, we provide a proof sketch of that the key-recovery problem
we faced in Chapter 5 is no harder than the LWPM problem, up to polynomial
factors.

6.4. Attacks on QC-MDPC McEliece in relation to LWPM 119

Proposition 6.7 QC-MDPC polynomial-time reduces to LWPM.

Proof. Recall from Definition 1.10 that QC-MDPC is reducible to LWPM if a
sub-routine or an oracle for LWPM also can be used to solve QC-MDPC effi-
ciently, making at most polynomially many queries.

Suppose that we are given an instance of QC-MDPC, i.e., we are given the
polynomial Ppxq that is defined by

Ppxq “ h´1
1 pxqh0pxq P F2rxs{px

r ` 1q. (6.18)

The task is to find the desired low-weight polynomial h1pxq, for which it holds
"

wH ph1pxq mod pxr ` 1qq “ w,
wH ph1pxqPpxq mod pxr ` 1qq “ w.

(6.19)

We have split the proof into three parts. They are as follows.

1. First, we claim that, without loss of generality, it suffices to show the
case n0 “ 2. We provide a supporting argument for this claim later on.
We write (6.18) as

h1pxqPpxq “ h0pxq ` spxqpxr ` 1q, (6.20)

with deg spxq ă r. Now, we define a polynomial

Qpxq def
“Ppxq ` xrPpxq ` ¨ ¨ ¨ ` xrpr`1qPpxq

`xrpr`2q ` xrpr`3q ` ¨ ¨ ¨ ` x2rpr`3q,
(6.21)

and then show that

h1pxqQpxq “h1pxqPpxq ` xrh1pxqPpxq ` ¨ ¨ ¨ ` xrpr`1qh1pxqPpxq

`xrpr`2qh1pxq ` xrpr`3qh1pxq ` ¨ ¨ ¨ ` x2rpr`3qh1pxq
(6.22)

is a minimal solution. By (6.20), we can write (6.22) as

h0pxq ` spxqpxr ` 1q ` ¨ ¨ ¨ ` xrpr`1q rh0pxq ` spxqpxr ` 1qs

` xrpr`2qh1pxq ` ¨ ¨ ¨ ` x2rpr`3qh1pxq.
(6.23)

The sum involving spxq is a telescopic sum, so (6.22) simplifies to

spxq ` h0pxq `

r`1 terms
hkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj

xrh0pxq ¨ ¨ ¨ ` xrpr`1qh0pxq

` xrpr`2qspxq ` xrpr`2qh1pxq ` xrpr`3qh1pxq ¨ ¨ ¨ ` x2rpr`3qh1pxq
looooooooooooooooooomooooooooooooooooooon

r`1 terms

.
(6.24)

120 Searching for Low-Weight Polynomial Multiples

Here, wHpspxq ` h0pxqq ď r and wHpspxq ` h1pxqq ď r. Therefore

wH ph1pxqQpxqq ď 2r` 2pr` 1qw (6.25)

We claim that this solution is minimal. To prove it, we make an argu-
ment by contradiction.

2. Assume that another polynomial tpxq yields a minimal-weight solution,
i.e., tpxqQpxq is minimal. We write tpxqPpxq “ t1pxq` s1pxqpxr`1q. Then,
we have

s1pxq ` t1pxq `

r`1 terms
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

xrt1pxq ¨ ¨ ¨ ` xrpr`1qt1pxq

` xrpr`2qs1pxq ` xrpr`2qtpxq ` xrpr`3qtpxq ¨ ¨ ¨ ` x2rpr`3qtpxq
looooooooooooooooomooooooooooooooooon

r`1 terms

.
(6.26)

By definition wHptpxqq ě w` 1 and wHpt1pxqq ě w` 1 and, thus,

wH ptpxqQpxqq ě 2pr` 1q ¨ pw` 1q “ 2pr` 1q ` 2pr` 1qw. (6.27)

The assumption of minimality implies that the weight of wHptpxqQpxqq
should be less than (6.25), but that claim does not hold. So we have a
contradiction and may therefore conclude that Qpxq provides the mini-
mal solution.

We now (informally) sketch the proof for that the argument holds for
any n0 ą 2. We have that

Pipxq “ h´1
n0´1pxqhipxq P F2rxs{px

r ` 1q. (6.28)

for 0 ď i ă n0 ´ 1. Construct the polynomial

Q1pxq def
“P0pxq ` xrP0pxq ` ¨ ¨ ¨ ` xrpr`1qP0pxq

`xrpr`2qP1pxq ` xrpr`3qP1pxq ` ¨ ¨ ¨ ` x2rpr`3qP1pxq
...

`xpn0´1qrpr`n0q ` xpn0´1qrpr`n0q`r ` ¨ ¨ ¨ ` xn0rpr`n0`1q.

(6.29)

As for the case n0 “ 2, we can write

hn0´1pxqPipxq “ hipxq ` sipxqpxr ` 1q, (6.30)

and for 0 ď i ă n0 ´ 1, the sum involving sipxq will be a telescopic
sum and, thus, collapse. For each term involving hipxq, the correct solu-
tion hn0´1pxq will yield a minimal weight. Therefore, we may conclude
minimal-weight solution for QC-MDPC will be obtained for the LWPM
instance Q1pxq for some minimal weight.

6.5. Summary 121

3. We construct an instance LWPM with the polynomial Qpxq (or Q1pxq),
degree d “ r and weight n0 ¨ r ` n0 ¨ w. We then ask the oracle for a
solution. If the oracle fails to find a solution, we decrease the weight
until it succeeds to provide an answer. That answer must be a solution
to QC-MDPC.

Finally, we conclude that it is a polynomial-time reduction and the
length of the input size grows by a polynomial factor Opn0 ¨ rq.

�

We stress that the reduction does not allow us to mount more efficient
attacks than the squaring attack we presented in Chapter 5 using the new
algorithm for solving LWPM. It is mainly interesting if the LWPM problem
is shown to have a sub-exponential algorithm, as that would have negative
ramifications for the security assumptions of QC-MDPC McEliece.

6.5 SUMMARY

In this chapter, we have presented two new algorithms for finding low-weight
polynomial multiples and shown that they have a better computation com-
plexity than previously known algorithms, breaking at least one instances of
TCHo that were proposed for 80-bit security.

Additionally, we have provided a computational hardness relation between
LWPM and QC-MDPC.

7
Learning Parity With Noise

If you optimize everything, you will always be unhappy.
– Donald Ervin Knuth

In recent years of modern cryptography, much effort has been devoted to
finding efficient and secure low-cost cryptographic primitives targeting
applications in very constrained hardware environments (such as RFID

tags and low-power devices). Many proposals rely on the hardness assump-
tion of Learning Parity with Noise (LPN), a fundamental problem in machine
learning theory, which recently also has gained a lot of attention within the
cryptographic society. The LPN problem is well-studied and it is intimately
related to the problem of decoding random linear codes, which is one of the
most important problems in coding theory. Being a supposedly hard problem,
LPN is a good candidate for post-quantum cryptography, where other hard
number-theoretic problems such as factoring and the discrete log problem fall
short. The inherent properties of LPN also makes it ideal for light-weight
cryptography.

The first cryptographic construction to employ the LPN problem was the
Hopper-Blum (HB) identification protocol [HB01]. HB is a minimalistic pro-
tocol that is secure in a passive attack model. Aiming to secure the HB scheme
also in an active attack model, Juels and Weis [JW05], and Katz and Shin [KS06]
proposed a modified scheme. The modified scheme, which was given the
name HB`, extends HB with one extra round. It was later shown by Gilbert
et al. [GRS05] that the HB` protocol is vulnerable to active attacks, i.e., man-
in-the-middle attacks, where the adversary is allowed to intercept and attack
an ongoing authentication session to learn the secret. Gilbert et al. [GRS08a]
subsequently proposed a variant of the Hopper-Blum protocol called HB#.

123

124 Learning Parity With Noise

Apart from repairing the protocol, the constructors of HB# introduced a more
efficient key representation using a variant of LPN called Toeplitz-LPN.

In [GRS08b], Gilbert et al. proposed a way to use LPN in encryption of
messages, which resulted in the cryptosystem LPN-C. Kiltz et al. [KPC`11]
and Dodis et al. [DKPW12] showed how to construct message authentication
codes (MACs) using LPN. The most recent contribution to LPN-based con-
structions is a two-round identification protocol called Lapin, proposed by
Heyse et al. [HKL`12], and an LPN-based encryption scheme called Helen,
proposed by Duc and Vaudenay [DV13]. The Lapin protocol is based on an
LPN variant called Ring-LPN, where the samples are elements of a polynomial
ring.

Two major threats against LPN-based cryptographic constructions are generic
information-set decoding algorithms that decode random linear codes and
variants of the BKW algorithm, originally proposed by Blum, Kalai and Wasser-
man [BKW03]. Being the asymptotically most efficient1 approach, the BKW
algorithm employs an iterated collision procedure on the queries. In each it-
eration, colliding entries sum together to produce a new entry with smaller
dependency on the information bits but with an increased noise level. Once
the dependency from sufficiently many information bits are removed, the re-
maining are exhausted to find the secret. Although the collision procedure is
the main reason for the efficiency of the BKW algorithm, it leads to a require-
ment of an immense amount of queries compared to ISD. Notably, for some
cases, e.g., when the noise level is very low, ISD algorithms yield the most
efficient attack.

Levieil and Fouque [LF06] proposed to use fast Walsh-Hadamard trans-
form in the BKW algorithm when searching for the secret. In an unpublished
paper, Kirchner [Kir11] suggested to transform the problem into systematic
form, where each information (key) bit then appears as an observed sym-
bol, perturbed by noise. This requires the adversary only to exhaust the
biased noise variables rather than the key bits. When the error rate is low,
the noise variable search space is very small and this technique decreases the
attack complexity. Building on the work by Kirchner [Kir11], Bernstein and
Lange [BL13] showed that the ring structure of Ring-LPN can be exploited in
matrix inversion, further reducing the complexity of attacks on for example
Lapin. None of the known algorithms manage to break the 80-bit security
of Lapin. Nor do they break the parameters proposed in [LF06], which were
suggested as design parameters of LPN-C [GRS08b] for 80-bit security.

In this chapter we present a new algorithm for solving the LPN problem, as
proposed in [GJL14]. We employ a new technique that we call subspace distin-
guishing, which exploits coding theory (or rate-distortion theory) to decrease

1For a fixed error rate.

7.1. The LPN Problem 125

the dimension of the secret. The trade-off is a small increase in the sample
noise. The new algorithm performs favorably in comparison to »state-of-the-
art« algorithms and we manage to break previously unbroken parameters of
HB variants and LPN-C, and provide a new upper bound on the security of
Lapin (irreducible case). As an example, we attack the common LPNp512, 1

8 q-
instance and break its 80-bit security barrier. A comparison of complexity of
different algorithms2 is shown in Table 7.1.

Algorithm Complexity (log2)

Queries Time Memory

Levieil-Fouque [LF06] 75.7 87.5 84.8
Bernstein-Lange [BL13] 68.6 85.7 77.6

New algorithm (LF1) 65.0 80.7 74.0
New algorithm (LF2) 63.6 79.7 72.6

Table 7.1: Comparison of different algorithms for solving LPN with
parameters p512, 1

8 q.

7.1 THE LPN PROBLEM

We will now give a more thorough description of the LPN problem. Let k be
a security parameter and let x be a binary vector of length k.

Definition 7.1 (LPN oracle) An LPN oracle Πη
LPN for an unknown vector x P

t0, 1uk with η P p0, 1
2 q returns pairs of the form

´

g $
Ð t0, 1uk, xx, gy ` e

¯

, (7.1)

where e Ð Berη .

We receive a number n of noisy versions of scalar products of x from the
oracle Πη

LPN, and our task is to recover x.

2The Bernstein-Lange algorithm is originally proposed for Ring-LPN, and by a slight
modification [BL13], one can apply it to the LPN instances as well. It shares the
beginning steps (i.e., the steps of Gaussian elimination and the collision procedure)
with the new algorithm, so for a fair comparison, we use the same implementation
of these steps when computing their complexity.

126 Learning Parity With Noise

Problem 7.1 (Learning Parity with Noise) Given an LPN oracle Πη
LPN, the

LPNpk, ηq (search) problem consists of finding the vector x. An algorithmALPN
is said to pt, n, θq-solve an instance pk, ηq if it runs in time at most t, makes at
most n oracle queries and solves pk, ηq with probability

P
´

ALPNpΠ
η
LPNq “ x | x $

Ð t0, 1uk
¯

ě θ. (7.2)

Let y be a vector of length n and let yi “ xx, giy. For known random
vectors g1, g2, . . . , gn, we can easily reconstruct an unknown x from y using
linear algebra. In LPN, however, we receive instead noisy versions of yi, i “
1, 2, . . . , n. Writing the noise in position i as ei, i “ 1, 2, . . . , n we obtain

zi “ yi ` ei “ xx, giy ` ei. (7.3)

In matrix form, the same is written as z “ xG` e, where

z “
`

z1 z2 ¨ ¨ ¨ zn
˘

, (7.4)

and the matrix G is formed as

G “
`

gT
1 gT

2 ¨ ¨ ¨ gT
n
˘

. (7.5)

This shows that the LPN problem is simply a decoding problem, where G
is a random k ˆ n generator matrix, x is the information vector and z is the
received vector after transmission of a codeword on the binary symmetric
channel with error probability η.

7.2 THE BKW ALGORITHM

The BKW algorithm, as proposed by Blum, Kalai and Wasserman in [BKW03],
is an algorithm that solves the LPN problem in sub-exponential time, requiring
2Opk{ log kq queries and time. To achieve this, the algorithm uses an iterative
sort-and-match procedure (see Section 1.7 for more details) on the columns of
the query matrix G, which iteratively reduces the dimension of G.

1. Reduction phase: Recall the k-COL problem. If the queries, represented
by the columns of G, constitute the elements of the set S , then the
BKW algorithm takes a parameter t and as a first step solves the 2t-COL
problem (but leaves a residue of weight 1).

The operation ˛ is realized in the following way. Initially, one searches
for all combinations of two columns in G that add to zero in the last b
entries. Let

M def
“ tk´ b` 1, k´ b` 2, . . . , ku (7.6)

7.2. The BKW Algorithm 127

and define a filtering function φM : Fk
2 Ñ Fb

2. Assume that one finds
two columns gT

i1
, gT

i2
such that

gi1 ` gi2 “ p˚ ˚ ¨ ¨ ¨ ˚ 0 0 ¨ ¨ ¨ 0
loooooomoooooon

b symbols

q, (7.7)

where ˚ means any value, i.e., they belong to the same partition (or
equivalence class) and fulfill φMpgi1q “ φMpgi2q. Then, a new vector

gp2q1 “ gi1 ` gi2 (7.8)

is computed. An observed symbol is also formed, corresponding to this
new column by forming

zp2q1 “ zi1 ` zi2 “ yp2q1 ` ep2q1 “ xx, gp2q1 y ` ep2q1 , (7.9)

where now ep2q1 “ ei1 ` ei2 . It can be verified that Ppep2q1 “ 0q “ 1
2 ¨ p1`

ε2q. The algorithm proceeds by adding the same element, say gi1 , to the
other elements in the partition forming

zp2q2 “ zi1 ` zi3 “ yp2q2 ` ep2q2 “ xx, gp2q2 y ` ep2q2 , (7.10)

and so forth. The resulting columns are stored in a matrix G2,

G2 “
´

pgp2q1 qT pgp2q2 qT . . . pgp2qn´2bq
T
¯

. (7.11)

If n is the number of columns in G, then the number of columns in G2
will be n´ 2b. Note that the last b entries of every column in G2 are all
zero. In connection to this matrix, the vector of observed symbols is

z2 “
´

zp2q1 zp2q2 ¨ ¨ ¨ zp2qn´2b

¯

, (7.12)

where P
´

zp2qi “ yp2qi

¯

“ 1
2 ¨ p1` ε2q, for 1 ď i ď n´ 2b.

We now iterate the same (with a new φ function), picking one column
and then adding it to another suitable column in Gi giving a sum with
an additional b entries being zero, forming the columns of Gi`1. Re-
peating the same procedure an additional t ´ 2 times will reduce the
number of unknown variables to k´ b ¨ t in the remaining problem.

For each iteration the noise level is squared. By the piling-up lemma
(Lemma 1.3) we have that

P

¨

˝

2t
ÿ

j“1

ei “ 0

˛

‚“
1
2
¨

´

1` ε2t
¯

. (7.13)

128 Learning Parity With Noise

Algorithm 12 (BKW)

Input: Algorithm parameters b, t, n P N.

Output: First bit x1 P F2 of secret vector x P Fk
2.

repeat1

(Reduction phase) Query the oracle for n queries of the form pg, zq2

Create a query matrix G “
`

gT
1 gT

2 ¨ ¨ ¨ gT
n
˘

and observed vector3

z “
`

z1 z2 ¨ ¨ ¨ zn
˘

for i P t1, 2, . . . , nu do4

S Ð S Y pgi, ziq5

for i P t1, 2, . . . , tu do6

Partition S according to b ¨ i last bits;7

for each partition P P S do8

Pick a random pg1, z1q P P and remove it from P ;9

Replace all remaining elements pg, zq P P with pg` g1, z` z1q;10

(Solving phase) Find a column vector g1i in G1 such that only the first11

bit g1 is non-zero and the remaining positions are all-zero. Then, the
observed value zi is also an observation of x1;

until sufficiently many observations have been obtained12

Determine the secret bit x1 by majority decision;13

return x114

Hence, the bias decreases quickly to low levels as t increases. Therefore,
we want to keep t as low as possible.

2. Solving phase: In the final step, the BKW algorithm looks for a column
vector in Gt´1 such that only the first bit of the vector is non-zero. If the
algorithm finds such a vector, then that sample constitutes a very noisy
observation the first bit x1 of x. The algorithm stores the observation
and repeats the reduction-phase procedure with new samples from the
oracle, until sufficiently many observations of the secret bit x1 have been
obtained. Then, it uses a majority decision to determine x1. The whole
procedure is given in Algorithm 12.

7.2.1 LF1 AND LF2 VARIANTS

The BKW algorithm is a powerful theoretic construction and because the al-
gorithm operates solely on independent samples, it is possible to provide rig-

7.2. The BKW Algorithm 129

orous analysis using probabilistic arguments without heuristic assumptions.
However, the provability comes at a quite high expense – the algorithm dis-
cards a lot of samples that could be used in solving the problem. This was
first pointed out by Levieil and Fouque in [LF06]. The authors of [LF06] sug-
gested that all samples should be kept after the reduction and not only the
ones having weight 1. Instead of determining the secret bit by bit using ma-
jority decision, the whole k´ t ¨ b bit secret may be determined using Walsh
transformation. The authors suggested two methods: LF1 and LF2 – the meth-
ods are essentially the same, but differ in how the columns to be merged are
chosen.

• LF1 picks a column in each partition, and then adds it to the remaining
samples in the same partition (entries having the same last b entries).
This is identical to how BKW operates in its merging steps.

The number of samples is reduced by 2b after each merge operation.
Hence, after a series of t merges, the number of samples is about

rptq “ n´ t ¨ 2b. (7.14)

The algorithm uses fast Walsh-Hadamard transform to determine the
remaining secret of dimension k´ t ¨ b. Thus, no samples are discarded
and the algorithm does, in contrast BKW, not query the oracle a mul-
tiple number of times. Therefore, a factor 2b is lost in terms of query
complexity.

The LF1 method was subsequently adopted by Bernstein and Lange
in [BL13].

• The other method, LF2, computes all pairs within the same partition.
It produces more samples at the cost of increased dependency, thereby
gaining more efficiency in practice.

Given that there are on average n
2b samples in one partition, we expect

around

2b
ˆ

n{2b

2

˙

(7.15)

samples at the end of one merge step in LF2, or more generally

r1ptq “ 2b ¨

ˆ

r1pt´ 1q{2b

2

˙

, (7.16)

after t merging steps.

Like LF1, a fast Walsh-Hadamard transform is used to determine the
secret. Combined with a more conservative use of samples, LF2 is ex-
pected to be at least as efficient as LF1 in practice. In particular, LF2 has
great advantage when the attacker has restricted access to the oracle.

130 Learning Parity With Noise

We have illustrated the different methods in Figure 7.1.

G

Merge step 0
rp0q “ n

b

k´ b

r1p0q “ n

G2

0

Merge step 1
rp1q “ n´ 2b

b

b

k´ 2b

r1p1q “ 2b ¨
`n{2b

2

˘

Gt

0

Merge step t
rptq “ n´ t ¨ 2b

t ¨ b

k´ t ¨ b

r1ptq “ 2b ¨
`r1pt´1q{2b

2

˘

Solving step

Gt

Gt

Gt

rptq “ n´ t ¨ 2b

Maj.

FWHT

FWHT

LF1

LF1

LF2

r1ptq “ 2b ¨
`r1pt´1q{2b

2

˘

Figure 7.1: In the above, we illustrate t merging steps and sample
count at each t with respect to BKW/LF1, rptq and LF2,
r1ptq.

7.3 A NEW ALGORITHM

In this section we aim to give a very basic description of the idea used to give
a new and more efficient algorithm for solving the LPN problem. A more
detailed analysis will be provided in later sections.

Assume that we have an initial LPN problem described by

G “
`

gT
1 gT

2 ¨ ¨ ¨ gT
n
˘

(7.17)

7.3. A New Algorithm 131

and z “ xG` e, where z “
`

z1 z2 ¨ ¨ ¨ zn
˘

and

zi “ yi ` ei “ xx, giy ` ei. (7.18)

As previously shown in [Kir11] and [BL13], we may through Gaussian elim-
ination transform G into systematic form. Assume that the first k columns are
linearly independent and forms the matrix D. With a change of variables
x̂ “ xD´1 we get an equivalent problem description with

Gsys “
`

I ĝT
k`1 ĝT

k`2 ¨ ¨ ¨ ĝT
n
˘

. (7.19)

We compute

ẑ “ z`
`

z1 z2 . . . zk
˘

Gsys “
`

0 ẑk`1 ẑk`2 . . . ẑn
˘

. (7.20)

In this situation, one may start performing a number of merging steps on
columns k ` 1 to n, reducing the dimension k of the problem to something
smaller. This will result in a new problem instance where noise in each po-
sition is larger, except for the first systematic positions. We may write the
problem after performing t merging steps in the form

G1 “
`

I g11
T g12

T
¨ ¨ ¨ g1m

T˘ (7.21)

and
z1 “

`

0 z11 z12 . . . z1m
˘

, (7.22)

where now G1 has dimension k1ˆm with k1 “ k´ t ¨ b and m is the number of
columns remaining after the merge step. These steps are illustrated in Figure
7.2. We have z1 “ x1G1 ` ẽ,

P
`

x1i “ 0
˘

“
1
2
¨ p1` εq (7.23)

and
P
`

xx1, g1iy “ zi
˘

“
1
2
¨ p1` ε2t

q. (7.24)

Now, we will explain the basics of the new idea we propose. In a problem
instance as above, we may look at the random variables y1i “ xx

1, g1iy. The bits
in x1 are mostly zero but a few are set to one (there are around k1 ¨ η non-zero
elements).

The first step in the solving phase is to introduce a covering code with
covering radius dC. Vectors g1i are of length k1, so we initially consider a code
of length k1 and some dimension l, having generator matrix F. For each vector
g1i, we now find the codeword in the code spanned by F that is closest in terms

132 Learning Parity With Noise

G

Gaussian elimination
rp0q “ n´ k1k1

b
k
´

b

r1p0q “ n´ k1

Gsys

I

0

0

Merge step 0
rp0q “ n´ k1k1

b
k
´

b

r1p0q “ n´ k1

G1I

0 0

Merge step t
rptq “ n´ k1 ´ t ¨ bk1

t
¨b

k
´

t
¨b

r1ptq “ 2b ¨
`r1pt´1q{2b

2

˘

G1I

0 0

Solving phase
rptq “ n´ k1k1

t
¨b

k
1

r1ptq “ 2b ¨
`r1pt´1q{2b

2

˘

Figure 7.2: Here, we illustrate the different steps of the new algo-
rithm, using the LF1 and the LF2 merging approaches. In
the figure, we only show the upper systematic part used
in hypothesis testing.

of Hamming distance to g1i. Assume that this codeword is denoted ci. Then,
we can write

g1i “ ci ` e1i, (7.25)

where e1i is a biased vector, having weight at most dC. It remains to exam-
ine exactly how biased the bits in e1i will be. Going back to our previous
expressions we can write

y1i “
@

x1, g1i
D

“ xx1, ci ` e1iy “ xx
1, ciy ` xx1, e1iy (7.26)

and since ci “ uiF for some ui, we can write (this is shown in the proof of
Lemma 7.3)

y1i “ xx
1FT, uiy ` xx1, e1iy. (7.27)

7.3. A New Algorithm 133

We may introduce x2 def
“ x1FT as a length l vector of unknown bits (linear

combinations of bits from x1) and write

y1i “ xx
2, uiy ` xx1, e1iy. (7.28)

As we established before, the term xx1, e1iy is clearly biased, but we did not
give any explicit formulas. Having introduced the necessary details, we now
formulate the following proposition.

Proposition 7.2 (Bias from covering code [BV15]) If the covering code F has
optimal radius covering, then the probability P

`

xx1, e1iy “ 1 | wH
`

x1
˘

“ c
˘

is
given by

|B2pk2, dCq|
´1 ¨

minpc,dCq
ÿ

i odd

ˆ

c
i

˙

¨ |B2pk2 ´ c, dC ´ iq| def
“ ϕpcq, (7.29)

where k2 is the dimension of x1 and dC is the covering distance.

Proof. Let the c non-zero positions of x1 represent a set of bins and the k2 ´ c
zero positions another set of bins.

\ \ ¨ ¨ ¨ \
loooooomoooooon

c

ˇ

ˇ

ˇ

ˇ

ˇ

\ \ \ \ ¨ ¨ ¨ \
loooooooooomoooooooooon

k2´c

If there is an odd number of balls in the c bins, then xx1, e1iy “ 1. Suppose
that there are i balls. Then, there are

`c
i
˘

ways to arrange the balls within

those bins. In total, we may place up to j def
“ minpc, dCq balls, so there remains

up to j´ i balls to be placed in the other set of k2 ´ c bins, which counts to
|B2pk2 ´ c, dC ´ iq| possibilities. The summation includes all odd i. �

We now put the analysis together, taking both the error introduced by the
LPN oracle and the merging steps, and the error introduced by the covering
code into consideration. Since we have

P
`

y1i “ z1i
˘

“
1
2
¨ p1` ε2t

q, (7.30)

we get

P
`

xx2, uiy “ z1i
˘

“
1
2
¨ p1` ε2t

¨ ε1q, (7.31)

where ε1 is the bias determined by the distance between g1i and the closest
codeword in the code we are using, From (7.29), we can determine bias ε1

from the covering code as ε1 “ 1´ 2ϕpcq, where c is the number of positions
in x1 set to one.

134 Learning Parity With Noise

The last step in the new algorithm now selects, in accordance with (1.40),
about

m “ 2 ln 2 ¨
´l ¨ log2 θ
`

ε2t
¨ ε1

˘2 (7.32)

samples z11, z12, . . . , z1m and for each guess of the 2l possible values of x2, we
compute how many times xx2, uiy “ z1i when i “ 1, 2, . . . , m. As this step
is similar to a correlation attack scenario, we know that it can be efficiently
computed using fast Walsh-Hadamard transform. After recovering x2, it is an
easy task to recover remaining unknown bits of x1. The whole procedure is
summarized in Algorithm 13.

7.3.1 A TOY EXAMPLE

In order to illustrate the ideas and convince the reader that the proposed
algorithm can be more efficient than previously known methods, we consider
an example. We assume an LPN instance of dimension k “ 160, where we
allow at most 224 received samples and we allow at most around 224 vectors
of length 160 to be stored in memory. Furthermore, the error probability is
η “ 0.1.

For this particular case, we propose the following algorithm.

1. The first step is to compute the systematic form,

Gsys “
`

I ĝT
k`1 ĝT

k`2 ¨ ¨ ¨ ĝT
n
˘

and

ẑ “ z`
`

z1 z2 . . . zk
˘

Gsys “
`

0 ẑk`1 ẑk`2 . . . ẑn
˘

.

Here Gsys has dimension 160 and ẑ has length at most 224.

2. In the second step we perform t “ 4 merging steps (using the BKW/LF1
approach), the first step removing 22 bits and the remaining three each
removing 21 bits. This results in G1 “

`

I g11
T g12

T
¨ ¨ ¨ g1m

T˘ and
z1 “

`

0 z11 z12 . . . z1m
˘

, where now G1 has dimension 75ˆm and m
is about 3 ¨ 221. We have z1 “ x1G1,

P
`

x1i “ 0
˘

“
1
2
¨ p1` εq,

where ε “ 0.8 and

P
`

xx1, g1iy “ zi
˘

“
1
2
¨ p1` ε16q.

Hence, the resulting problem has dimension 75 and the bias is ε2t
“

p0.8q16.

7.3. A New Algorithm 135

Algorithm 13 (New algoritm)

Input: Query matrix G P Fkˆn
2 , query vector z P Fn

2 and algorithm parame-
ters a, b, c, t, k2, l, p P N.

Output: Secret vector x.

Query the oracle for n queries of the form pg, zq and create a query1

matrix G “
`

gT
1 gT

2 ¨ ¨ ¨ gT
n
˘

and observed vector z “
`

z1 z2 ¨ ¨ ¨ zn
˘

;
Pick a rk2, ls linear code C with good covering property;2

repeat3

(Reduction phase) Pick random column permutation π;4

Perform Gaussian elimination on πpGq resulting in G0 “ pI|L0q;5

for i P t1, 2, . . . , nu do6

S Ð S Y pgi, ziq7

for i P t1, 2, . . . , tu do8

Partition S according to b ¨ i last bits9

for each partition P P S do10

Pick a random pg1, z1q P P and remove it from P ;11

Replace all remaining elements pg, zq P P with pg` g1, z` z1q;12

(Solving phase) Partition the columns of Lt by the non-all-zero k213

bits and group them by their nearest codewords;
k1 Ð k´ a ¨ b´ k2;14

for x12 P B2pk1, pq do15

Update the observed samples in accordance with x12;16

for y P t0, 1ul do17

Use fast Walsh-Hadamard transform to compute the numbers18

of 1:s and 0:s observed respectively;
Perform hypothesis testing whose threshold is defined as a19

function of c;

until acceptable hypothesis is found20

3. In the third step we then select a suitable code of length 75. In this
example we choose a block code which is a direct sum of 25 r3, 1, 3s
repetition codes3, i.e., the dimension is 25. We map every vector g1i to

3In the sequel, we denote this code construction as concatenated repetition code. For
this r75, 25, 3s linear code, the covering radius is 25, but we could see from this
example that what matters is the average weight of the error vector, which is much
smaller than 25.

136 Learning Parity With Noise

the nearest codeword by simply selecting chunks of three consecutive
bits and replace them by either 000 or 111. With probability 3

4 we will
change one position and with probability 1

4 we will not have to change
any position. In total we expect to change p 3

4 ¨ 1`
1
4 ¨ 0q ¨ 25 positions.

The expected weight of the length 75 vector e1i is 1
4 ¨ 75, so the expected

bias is ε1 “ 1
2 . As P

`

x1i “ 1
˘

“ 0.1, the expected number of non-zero
positions in x1 is 7.5. Assuming we have only c “ 6 non-zero positions,
we get

P
`

xx2, uiy “ z1i
˘

“
1
2
¨

˜

1` 0.816 ¨

ˆ

1
2

˙6
¸

“
1
2
¨ p1` 2´11.15q.

For the repetition code, there are »bad events« that make the distin-
guishing to fail. When two of the errors in x2 fall into the same con-
catenation, then the bias is zero. If there are three errors in the same
concatenation, the the bias is negative. The probability for none of these
events to happen is

ˆ

25
6

˙

¨

ˆ

3
1

˙6
¨

ˆ

75
6

˙´1
« 0.64.

4. In the last step we then run through 225 values of x2 and for each of
them we compute how often x2 ¨ uT

i “ z1i for i “ 1, . . . , 3 ¨ 221. Again
since we use fast Walsh-Hadamard transform, the cost of this step is
not much more than 225 operations. The probability of having no more
than 6 ones in x1 is about 0.37. All bad events considered, we need to
repeat the whole process a few times.

In comparison with other algorithms, the best approach we can find is
the Kirchner [Kir11] and the Bernstein and Lange [BL13] approaches, where
one can do up to 5 merging steps. Removing 21 bits in each step leaves 55
remaining bits. Using fast Walsh-Hadamard transform with 0.8´64 “ 220.6

samples, we can include another 21 bits in this step, but there are still 34
remaining variables that needs to be guessed.

Overall, the simple algorithm sketched above is outperforming the best
previous algorithm using optimal parameter values4.

4Adopting the same method to implement their overlapping steps, for the p160, 1
10 q

LPN instance, the Bernstein-Lange algorithm and the new algorithm cost 235.70 and
233.83 bit operations, respectively. Thus, the latter offers an improvement with a
factor roughly 4 to solve this small-scale instance.

7.4. Algorithm Description 137

We verified in simulation that the proposed algorithm works in practice,
both in the LF1 and the LF2 setting using a rate R “ 1

3 concatenated repetition
code.

7.4 ALGORITHM DESCRIPTION

Having introduced the key idea in a simplistic manner, we now formalize it
by stating a new five-step LPN solving algorithm (see Algorithm 13) in detail.
Its first three steps combine several well-known techniques on this problem,
i.e., changing the distribution of secret vector [Kir11], sorting and merging
to make the length of samples shorter [BKW03], and partial secret guess-
ing [BL13], together. The efficiency improvement comes from a novel idea in-
troduced in the last two subsections—if we employ a linear covering code and
rearrange samples according to their nearest codewords, then the columns in
the matrix subtracting their corresponding codewords lead to sparse vectors
desired in the distinguishing process. We later propose a new distinguishing
technique—subspace hypothesis testing, to remove the influence of the code-
word part using fast Walsh-Hadamard transform. The algorithm consists of
five steps, each described in separate subsections.

7.4.1 GAUSSIAN ELIMINATION

Recall that our LPN problem is given by z “ xG ` e, where z and G are
known. We can apply an arbitrary column permutation π without changing
the problem (but we change the error locations). A transformed problem
is πpzq “ xπpGq ` πpeq. This means that we can repeat the algorithm many
times using different permutations, which very much resembles the operation
of information-set decoding algorithms.

Continuing, we multiply by a suitable kˆ k matrix D to bring the matrix G
to a systematic form, Gsys “ DG. The problem remains the same, except that
the unknowns are now given by the vector x̃ “ xD´1. This is just a change of
variables. As a second step, we also add the codeword

`

z1 z2 ¨ ¨ ¨ zk
˘

Ĝ to
our known vector z, resulting in a received vector starting with k zero entries.
Altogether, this corresponds to the change x̂ “ xD´1 `

`

z1 z2 ¨ ¨ ¨ zk
˘

.
Our initial problem has been transformed and the problem is now written

as
ẑ “

`

0 ẑk`1 ẑk`2 ¨ ¨ ¨ ẑn
˘

“ x̂Gsys ` e, (7.33)

where now Gsys is in systematic form. Note that these transformations do
not affect the noise level. We still have a single noise variable added in every
position.

138 Learning Parity With Noise

TIME–MEMORY TRADE-OFF

Schoolbook implementation of the above Gaussian elimination procedure re-
quires about 1

2 ¨ n ¨ k
2 bit operations; we propose however to reduce its com-

plexity by using a more sophisticated time–memory trade-off technique. We
store intermediate results in tables, and then derive the final result by adding
several items in the tables together. The detailed description is as follows.

For a fixed s, divide the matrix D in a “ r k
s s parts, i.e.,

D “
`

D1 D2 . . . Da
˘

, (7.34)

where Di is a sub-matrix with s columns (except possibly the last matrix Da).
Then store all possible values of DixT for x P Fs

2 in tables indexed by i, where
1 ď i ď a. For a vector g “

`

g1 g2 . . . ga
˘

, the transformed vector is

DgT “ D1gT
1 `D2gT

2 ` . . .`DagT
a, (7.35)

where DigT
i can be read directly from the table.

The cost of constructing the tables is about O p2sq, which can be negligible if
memory in the later merge step is much larger. Furthermore, for each column,
the transformation costs no more than k ¨ a bit operations; so, this step requires

C1 “ pn´ kq ¨ k ¨ a ă n ¨ k ¨ a

bit operations in total if 2s is much smaller than n.

7.4.2 MERGING COLUMNS

This next step consists of merging columns. The input to this step is ẑ and
Gsys. We write Gsys “

`

I L0
˘

and process only the matrix L0. As the length
of L0 is typically much larger than the systematic part of Gsys, this is roughly
no restriction at all. We then use the a sort-and-match technique as in the BKW
algorithm, operating on the matrix L0. This process will give us a sequence of
matrices denoted L0, L1, L2, . . . , Lt.

Let us denote the number of columns of Li by rpiq, with rp0q “ r1p0q “
n ´ k1. Adopting the LF1 type technique, every step operating on columns
will reduce the number of samples by 2b, yielding that

m “ rptq “ rp0q ´ t ¨ 2b ðñ n´ k1 “ m` t ¨ 2b (7.36)

Using the setting of LF2, the number of samples is

m “ r1ptq “ 2b ¨

ˆ

r1pt´ 1q{2b

2

˙

ùñ n´ k1 « 2t`1
c

2pb`1qp2t`1´1q ¨m.
(7.37)

7.4. Algorithm Description 139

The expression for r1ptq does not appear in [LF06], but it can be found in
[BV15].

Apart from the process of creating the Li matrices, we need to update the
received vector in a similar fashion. A simple way is to put ẑ as a first row
in the representation of Gsys. This procedure will end with a matrix

`

I Lt
˘

,
where Lt will have all t ¨ b last entries in each column all zero. By discarding
the last t ¨ b rows we have a given matrix of dimension k ´ t ¨ b that can be
written as G1 “

`

I Lt
˘

, and we have a corresponding received vector z1 “
`

0 z11 z12 ¨ ¨ ¨ z1m
˘

. The first k1 “ k´ t ¨ b positions are only affected by a
single noise variable, so we can write

z1 “ x1Gsys `
`

e1 e2 ¨ ¨ ¨ ek ẽ1 ẽ2 ¨ ¨ ¨ ẽm
˘

, (7.38)

for some unknown x1 vector, where

ẽi “
ÿ

ijPTi , |Ti|ď2t

eij (7.39)

and Ti contains the positions that have been added up to form the pk1 ` iqth
column of G1. By the piling-up lemma, the bias for ẽi increases to ε2t

. We
denote the complexity of this step C2, where

C2 “

t
ÿ

i“1

pk` 1´ i ¨ bq ¨ pn´ i ¨ 2bq « pk` 1q ¨ t ¨ n. (7.40)

7.4.3 PARTIAL SECRET GUESSING

The previous procedure outputs G1 with dimension k1 “ k ´ t ¨ b and m “

n´ k´ t ¨ 2b columns. We removed the bottom t ¨ b bits of x̂ to form the length
k1 vector x1, with z1 “ x1G1 ` ẽ. We now divide x1 into two parts:

x1 “
`

x11 x12
˘

, (7.41)

where x11 is of length k2. In this step, we simply guess all vectors x2 P

B2pk1 ´ k2, pq for some p and update the observed vector z1 accordingly. This
transforms the problem to that of attacking a new smaller LPN problem of di-
mension k2 with the same number of samples. Firstly, note that this will only
work if wH

`

x12
˘

ď p, and we denote this probability by Ppp, k1´ k2q. Secondly,
we need to be able to distinguish a correct guess from incorrect ones and this
is the task of the remaining steps. The complexity of this step is

C3 “ m ¨
p
ÿ

i“0

ˆ

k1 ´ k2

i

˙

i. (7.42)

140 Learning Parity With Noise

7.4.4 COVERING-CODING METHOD

In this step, we use a rk2, ls linear code C with covering radius dC to group the
columns. That is, we rewrite

g1i “ ci ` e1i, (7.43)

where ci is the nearest codeword in C, and wH
`

e1i
˘

ď dC. The employed linear
code is characterized by a systematic generator matrix

F “
`

I A
˘

P Flˆk2
2 , (7.44)

that has the corresponding parity-check matrix

H “
`

AT I
˘

P F
pk2´lqˆk2
2 . (7.45)

There are several ways to select a code. An efficient way of realizing the
above grouping idea is by a table-based syndrome-decoding technique. The
procedure is as follows:

1. We construct a constant-time query table containing 2k2´l items, in each
of which stores the syndrome and its corresponding minimum-weight
error vector.

2. If the syndrome Hg1i
T is computed, we then find its corresponding er-

ror vector e1i by checking in the table; adding them together yields the
nearest codeword ci.

The remaining task is to calculate the syndrome efficiently. We sort the
vectors g1i according to the first l bits, where 0 ď i ď m, and group them into
2l partitions denoted by Pj for 1 ď j ď 2l . Starting from the partition P1 whose
first l bits are all zero, we can derive the syndrome by reading its last k2 ´ l
bits without any additional computational cost. If we know one syndrome
in Pj, we then can compute another syndrome in the same partition within
2pk2 ´ lq bit operations, and another in a different partition whose first l-bit
vector has Hamming distance 1 from that of Pj within 3pk2´ lq bit operations.
Therefore, the complexity of this step is

C4 “ pk2 ´ lq ¨ p2m` 2lq. (7.46)

Notice that the selected linear code determines the syndrome table, which
can be pre-computed within complexity Opk2 ¨ 2k2´lq. The optimal param-
eter suggests that this cost is acceptable compared with the total attacking
complexity.

7.4. Algorithm Description 141

The bias ε1 in e1i is determined by (7.29). This plays an important role in the
later hypothesis testing step: if we rearrange the columns e1i as a matrix, then
it is sparse; therefore, we can view the ith value in one column as a random
variable Xi „ Berϕpcq, where d is the expected distance. Naturally, we can
bound it by the covering radius5. Moreover, if the bias is large enough, then it
is reasonable to consider Xi, for 1 ď i ď i1, as independent variables. We have
given an illustration of the query matrix at this step in Figure 7.3.

G1I

00

Partial guess (x12)

Covering code (x11)

mk1

t ¨ b

k2

k1 ´ k2

Figure 7.3: After the columns have been merged t times, we have a
matrix as shown above. In the upper part, we perform
the partial secret guessing. The remaining part will be
projected (with distortion) into a smaller space of dimen-
sion l using a covering code.

For some instances, optimal parameters does not allow for building the full
syndrome table, i.e., when k2 ¨ 2k2´l becomes too large. We may then split
the search space into two (or several) separate spaces by using a concatenated
code construction. As an example, let C 1 be a concatenation of two rk2{2, l{2s
linear codes. Then, the syndrome tables can be built in Opk2 ¨ 2k2{2´l{2q time
and memory. Assuming that the two codes are identical and their sphere-
covering bound is d1, then the expected weight of e1i is 2d1.

7.4.5 SUBSPACE HYPOTHESIS TESTING

In the subspace hypothesis testing step, we group the (processed) samples
pg1i, z1iq in sets Lpciq according to their nearest codewords and define the func-
tion fLpciq as

fLpciq “
ÿ

pg1i ,z
1
iqPLpciq

p´1qz
1
i . (7.47)

5In the sequel, we replace the covering radius by the sphere-covering bound to esti-
mate the expected distance d, i.e., d is the smallest integer, s.t.

řd
i“0

`k2

i
˘

ą 2k2´l .
We give more explanation in Section 7.7.

142 Learning Parity With Noise

The employed systematic linear code C describes a bijection between the
linear space Fl

2 and the set of all codewords in Fk2
2 , and moreover, due to its

systematic feature, the corresponding information vector appears explicitly in
their first l bits. We can thus define a new function

gpuq “ fLpciq, (7.48)

such that u represents the first l bits of ci and exhausts all points in Fl
2.

The Walsh transform of g is defined as

Gpvq “
ÿ

uPFl
2

gpuqp´1qxv,uy. (7.49)

Here we exhaust all candidates of v P Fl
2 by computing the Walsh transform.

The following lemma illustrates the reason why we can perform hypothesis
testing on the subspace Fl

2.

Lemma 7.3 There exits a unique vector v P Fl
2 s.t.,

xv, uy “
@

x1, ci
D

. (7.50)

Proof. As ci “ uF, we obtain

@

x1, ci
D

“ x1puFqT “ x1FTuT “
@

x1FT, u
D

. (7.51)

Thus, we construct the vector v “ x1FT that fulfills the requirement. On the
other hand, the uniqueness is obvious. �

Before we continue to go deeper into the details of the attack, we will now
try illustrate how the subspace hypothesis test is performed. Consider the
following.

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚

...
˚

y1i
˚

...

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

x1
...

xk2

0
...

˛

‹

‹

‹

‹

‹

‹

‚

T

loooomoooon

Secret x1

¨

˚

˚

˚

˚

˚

˚

˝

˚ g1 ˚

...
...

...
˚ gk2 ˚

0
...

˛

‹

‹

‹

‹

‹

‹

‚

looooooooomooooooooon

Query matrix

“

¨

˚

˚

˚

˚

˚

˚

˝

x1
...

xk2

0
...

˛

‹

‹

‹

‹

‹

‹

‚

T ¨

˚

˚

˚

˚

˚

˚

˝

˚ pu1F` e1iq1 ˚

...
...

...
˚ pu1F` e1iqk2 ˚

0
...

˛

‹

‹

‹

‹

‹

‹

‚

.

Rewrite g1i as codeword ci “ u1F and discrepancy e1i

7.4. Algorithm Description 143

As a next step, we can separate the discrepancy e1i from u1F, which yields

¨

˚

˚

˚

˚

˚

˚

˝

x1
...

xk2

0
...

˛

‹

‹

‹

‹

‹

‹

‚

T ¨

˚

˚

˚

˚

˚

˚

˝

˚ ˚ pu1Fq1 ˚

...
...

...
...

˚ ˚ pu1Fqk2 ˚

0
...

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚

...
˚

y1i `
@

x, e1i
D

˚

...

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

We now see that the dimension of the problem has been reduced, i.e, x11FT P

Fl
2, where l ă k2. A simple transformation yields

¨

˚

˚

˚

˚

˚

˚

˝

px11FTq1
...

px11FTql
0
...

˛

‹

‹

‹

‹

‹

‹

‚

T ¨

˚

˚

˚

˚

˚

˚

˝

˚ ˚ u11 ˚

...
...

...
...

˚ ˚ u1l ˚

0
...

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚

...
˚

y1i `
@

x11, e1i
D

˚

...

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Since wH
`

e1i
˘

ď w and wH
`

x1i
˘

« η ¨ k2 , the contribution from
@

x11, e1i
D

is very
small. Note that e1i is the error from the above procedure, and that we did not
include the error from the oracle and the merging procedure. Recall that the
sequence received from oracle is zi “ yi ` ei, that after merging the columns
of G becomes z1i “ y1i ` ẽi. All things considered (all sources of error piled on
the sequence), we have

z1i `
@

x1, ei
D

“ yi ` ẽi `
@

x11, e1i
D

. (7.52)

Given the candidate v, Gpvq is the difference between the number of pre-
dicted 0:s and the number of predicted 1:s for the bit z1i `

@

x1, ei
D

. If v is the
correct guess, then it is Bernouilli distributed according to

1
2
¨

´

1` ε2t
¨ p1´ 2ϕpcqq

¯

“
1
2
¨

´

1` ε2t
¨ ε1

¯

, (7.53)

where c is the weight of x1; otherwise, it is considered random. Thus, the best
candidate vopt is the one that maximizes the absolute value of Gpvq, i.e.,

vopt “ arg max
vPFl

2

|Gpvq|, (7.54)

and we need approximately

2 ln 2 ¨
´l ¨ log2 θ

pε2t
¨ ε1q2

(7.55)

144 Learning Parity With Noise

samples to distinguish these two cases, where ε1 “ 1´ 2ϕpcq. Here, we set
θ “ 1

4 and obtain
4 ln 2 ¨ l
pε2t

¨ ε1q2
. (7.56)

Using this setting, the probability of error (i.e., both α and β) is actually less
than 2´10 for the p512, 1

8 q instance [Sel08].
Since the weight w is unknown, we assume that w ď c and then query for

samples. If the assumption is valid, we can distinguish the two distributions
correctly; otherwise, we obtain a false positive which can be recognized with-
out much cost, and then choose another permutation to run the algorithm
again. The procedure will continue until we find the secret vector x.

We use the fast Walsh-Hadamard transform technique to accelerate the dis-
tinguishing step. As the hypothesis testing runs for every guess of x12, the
overall complexity of this step is

C5
def
“ l ¨ 2l ¨

p
ÿ

i“0

ˆ

k1 ´ k2

i

˙

. (7.57)

7.5 ANALYSIS

In the previous section we already indicated the complexity of each step. We
now put it together in a single complexity estimate. We first formulate the
formula for the possibility of having at most w errors in j positions Ppw, jq,
which follows a binomial distribution, i.e.,

Ppw, jq def
“

w
ÿ

i“0

ˆ

j
i

˙

p1´ ηqj´i ¨ ηi. (7.58)

The complexity consists of three parts:

• Inner complexity: The complexity of each step in the algorithm, i.e.,

C “ C1 ` C2 ` C3 ` C4 ` C5. (7.59)

These steps will be performed every iteration.

• Guessing: The probability of making a correct guess on the weight of
x12, i.e.,

Pguess
def
“ P

`

wH
`

x12 ď p
˘˘

“ Ppp, k1 ´ k2q. (7.60)

7.5. Analysis 145

• Testing: The probability that the subspace hypothesis test succeeds for
all different information patterns. In an ideal (non-concatenated) con-
struction, this probability is given by

Ptest
def
“ P

`

wH
`

x11 ď c
˘˘

“ Ppc, k2q. (7.61)

The success probability in one iteration is Ppp, k1´ k2q ¨ Ppc, k2q. The presented
algorithm is of the Las Vegas type, and in each iteration, the complexity ac-
cumulates step by step. Hence, by Proposition 1.11, the following theorem is
revealed.

Theorem 7.4 (The complexity of Algorithm 13) Let n be the number of sam-
ples required and a, b, c, t, k2, l, p be algorithm parameters. For the LPN in-
stance with parameter pk, ηq, the number of bit operations required for a suc-
cessful run of the new attack, denoted C˚pa, b, c, t, k2, l, pq, is equal to

P´1
guess ¨ P

´1
test ¨

#

CGausspn, kq ` pk` 1q ¨ t ¨ n

`

p
ÿ

i“0

ˆ

k1 ´ k2

i

˙

pm ¨ i` l ¨ 2lq ` pk2 ´ lq ¨ p2m` 2lq

+

,

(7.62)

under the condition that
m ě

4 ln 2 ¨ l
pε2t

¨ ε1q2
. (7.63)

Proof. The complexity of one iteration is given by C1 ` C2 ` C3 ` C4 ` C5,
with C1 “ CGausspn, kq. The expected number of iterations is the inverse of
Pguess ¨ Ptest “ Ppp, k1 ´ k2q ¨ Ppc, k2q (see Proposition 1.11), hence

C˚ “
CGausspn, kq ` C2 ` C3 ` C4 ` C5

Ppp, k1 ´ k2q ¨ Ppc, k2q
(7.64)

Substituting the formulas into the above will complete the proof. The con-
dition (7.67) ensures that we have enough samples to determine the correct
guess with high probability. �

Until now, we have only considered to use a single code for the cover-
ing code part. In some cases, performing syndrome decoding may be too
expensive for optimal parameters and to overcome this, we need to use a
concatenated code construction.

In the previous analysis, we assumed that the number of errors in the secret
was less than c, in order to bound the bias ε1 “ 1´ 2ϕpcq. When a concate-
nated construction is used, we have seen that some problems may arise. Recall

146 Learning Parity With Noise

the r3, 1, 3s repetition code. When the number of errors of the secret exceeded
1 in one concatenation the samples will be zero or negative biased and there-
fore, distinguishing will definitely fail. Taking such bad events into account,
we get an additional factor piled on the complexity. This factor depends com-
pletely on the code construction.

We may set an explicit lower-bound on the bias ε1 ě γ from the covering
code part, which is attained by only a certain set Eγ of (good) error patterns
in the secret. For a concatenation of two codes, we have divided the vector
into two parts

x11 “
`

x̂1 x̂2
˘

(7.65)

and hence, we may write the success probability Ptest
def
“ P

`

x11 P Eγ

˘

as

ÿ

px̂1 x̂2qPEγ

ηk2{2´wHpx̂2qp1´ ηqwHpx̂1q ¨ ηk2{2´wHpx̂2qp1´ ηqwHpx̂1q. (7.66)

As a result, the complexity expression for a concatenated construction changes
in the probability Pt.

The complexity C4 remains the same, but the pre-computation of the syn-
drome tables has a lowered complexity since the codes are smaller and can
be treated separately. Since the pre-computation complexity Opk2 ¨ 2k2{2´l{2q

must be less or match the total attacking complexity, the lowered time com-
plexity allows for looser constraints on the algorithm parameters. In the con-
catenated construction, the number of required samples changes as it is de-
termined by the lower bound γ, i.e.,

m ě
4 ln 2 ¨ l
pε2t

¨ γq2
. (7.67)

Apart from these differences, the complexity expression is the same as for the
non-concatenated construction.

7.6 RESULTS

We now present numerical results of the new algorithm attacking three key
LPN instances, as shown in Table 7.2. All aiming for achieving 80-bit security,
the first one is with parameter (512, 1

8), widely accepted in various LPN-based
cryptosystems (e.g., HB` [JW05], HB# [GRS08a], LPN-C [GRS08b]) after the
suggestion from Levieil and Fouque [LF06]; the second one is with increased
length (532, 1

8), adopted as the parameter of the irreducible Ring-LPN instance
employed in Lapin [HKL`12]; and the last one is a new design parameter we
recommend to use in the future. The attacking details on different protocols

7.6. Results 147

will be given later. We note that the new algorithm has significance not only
for the above applications but also for some LPN-based cryptosystems without
explicit parameter settings (e.g., [DKPW12] [KPC`11]).

Instance Parameters log2 C˚

t a b l k2 p c log2 n

(512, 1
8) 5 9 62 60 180 2 19 65.31 79.72

(532, 1
8) 5 9 65 63 189 2 19 66.45 82.66

(592, 1
8) 5 10 70 76 210 1 23 74.49 89.88

Table 7.2: The complexity for solving different LPN instances with
the new algorithm when using LF2 merging heuristic.

In [LF06], Levieil and Fouque proposed an active attack on HB` by choos-
ing the random vector a from the reader to be 0. To achieve 80-bit security,
they suggested to adjust the lengths of secret keys to 80 and 512, respectively,
instead of being both 224. Its security is based on the assumption that the LPN
instance with parameter p512, 1

8 q can resist attacks in 280 bit operations. But
we break it in 279.72 bit operations, thereby yielding an active attack on 80-bit
security of HB` authentication protocol straightforwardly.

Using similar structures, Gilbert et al. proposed two different cryptosys-
tems, one for authentication (HB#) and the other for encryption (LPN-C). By
setting the random vector from the reader and the message vector to be both
0, we obtain an active attack on HB# authentication protocol and a chosen-
plaintext-attack on LPN-C, respectively. As their protocols consist of both se-
cure version (random-HB# and LPN-C) and efficient version (HB# and Toeplitz
LPN-C), we need to analyze separately.

Toeplitz matrix is a matrix in which each ascending diagonal from left to
right is a constant. Thus, when employing a Toeplitz matrix as the secret, if
we attack its first column successively, then only one bit in its second column
is unknown. So the problem is transformed to that of solving a new LPN
instance with parameter p1, 1

8 q. We then deduce the third column, the fourth
column, and so forth. The typical parameter settings of the number of the
columns (denoted by m) are 441 for HB#, and 80 (or 160) for Toeplitz LPN-C.
In either case, the cost for determining the vectors except for the first column
is bounded by 240, negligible compared with that of attacking one p512, 1

8 q LPN
instance. Therefore, we break the 80-bit security of these »efficient« versions
that use Toeplitz matrices.

If the secret matrix is chosen totally at random, then there is no simple
connection between different columns to exploit. One strategy is to attack

148 Learning Parity With Noise

column by column, thereby deriving an algorithm whose complexity is that
of attacking a p512, 1

8 q LPN instance multiplied by the number of the columns.
That is, if m “ 441, then the overall complexity is about 279.72 ¨ 441 « 288.50.
We may slightly improve the attack by exploiting that the different columns
share the same random vector in each round.

7.6.1 LAPIN WITH AN IRREDUCIBLE POLYNOMIAL

In [HKL`12], Heyse et al. use a p532, 1
8 q Ring-LPN instance with an irreducible

polynomial to achieve 80-bit security. We show here that this parameter set-
ting is not secure enough for Lapin to thwart attacks on the level of 280. Al-
though the new attack on a p532, 1

8 q LPN instance requires 282.66 bit operations,
larger than 280, there are two key issues to consider:

• Ring-LPN is believed to be no harder than the standard LPN problem.
For the instance in Lapin using a quotient ring modulo the irreducible
polynomial x532 ` x ` 1, it is possible to optimize the procedure for
inverting a ring element, thereby resulting in a more efficient attack
than the generic one.

• We describe the merging steps using setting of LF1 in the new algo-
rithm, but we obtain a more efficient attack in practice when adopting
the LF2 heuristic, whose effectiveness has been stated and proven in the
implementation part of [LF06]. We suggest to increase the size of the
employed irreducible polynomial in Lapin for 80-bit security.

7.7 MORE ON THE COVERING-CODING METHOD

In this section, we describe some more aspects of the covering-coding tech-
nique, thus emphasizing the most novel and essential step in the new algo-
rithm.

SPHERE-COVERING BOUND

We use sphere-covering bound (Theorem 2.1) – for two reasons – to estimate
the bias ε1 contributed by the new technique.

• Firstly, there is a well-known conjecture [CHL97] in coding theory, i.e.,
the covering density approaches 1 asymptotically if the code length goes
to infinity. Thus, it is sensible to assume for a »good« code, when the
code length k2 is relatively large.

• Secondly, we could see from the previous example that the key feature
desired is a linear code with low average error weights, which is smaller

7.8. Summary 149

than its covering radius. From this perspective, the sphere-covering
bound brings us a good estimation.

By concatenating five r23, 12s Golay codes, we construct a r115, 60s linear
code with covering radius 15. Its expected weight of error vector is quite close
to the sphere-covering bound for this parameter (with gap only 1). We believe
in the existence of linear codes with length around 125, rate approximately 1

2
and average error weight that reaches the sphere-covering bound.

ATTACKING PUBLIC-KEY CRYPTOGRAPHY

We know various decodable covering codes that could be employed in the
new algorithm, e.g., rate about 1

2 linear codes that are table-based syndrome
decodable, concatenated codes built on Hamming codes, Golay codes and rep-
etition codes, etc.. For the cryptographic schemes targeted by the proposed
attack, i.e., HB variants, LPN-C, and Lapin with an irreducible polynomial,
the first three are efficient; but in the realm of public-key cryptography (e.g.,
schemes proposed by Alekhnovich [Ale03], Damgård and Park [DP12], Duc
and Vaudenay [DV13]), the situation alters. For these systems, their security
is based on LPN instances with huge secret length (tens of thousands) and
extremely low error probability (less than half a percent), so due to the com-
petitive average weight of the error vector shown by the previous example
in Section 7.3.1, the concatenation of repetition codes with much lower rate
seems more applicable—by low-rate codes, we remove more bits when using
the covering-coding method.

ALTERNATIVE MERGING PROCEDURE

Although the covering-coding method is employed only once in the new al-
gorithm, we could derive numerous variants, and among them, one may find
a more efficient attack. For example, we could replace one or two steps in the
later stage of the merging procedure by adding two vectors decoded to the
same codeword together. This alternative technique is similar to that invented
by Lamberger et al. in [LMRS12] [LT13a] for finding near-collisions of hash
function. By this procedure, we could eliminate more bits in one step at the
cost of increasing the error rate; this is a trade-off, and the concrete parameter
setting should be analyzed more thoroughly later.

7.8 SUMMARY

We have described a new algorithm for solving the LPN problem that employs
an approximation technique using covering codes together with a subspace

150 Learning Parity With Noise

hypothesis testing technique to determine the value of linear combinations of
the secret bits. Complexity estimates show that the algorithm beats all the
previous approaches, and in particular, we can present academic attacks on
instances of LPN that has been suggested in different cryptographic primi-
tives.

The new technique has only been described in a rather simplistic manner,
due to space limitations. There are a few obvious improvements, one being
the use of soft decoding techniques and another one being the use of more
powerful constructions of good codes. There are also various modified ver-
sions that need to be further investigated. One such idea is to use the new
technique inside a merge step, thereby removing more bits in each step at the
expense of introducing another contribution to the bias. An interesting open
problem is whether these ideas can improve the asymptotic behavior of the
BKW algorithm.

8
LPN over a Polynomial Ring

“Hallo, Rabbit”, he [Pooh] said, “is that you?”
“Let’s pretend it isn’t”, said Rabbit, “and see what happens.”
– A. A. Milne, Winnie-the-Pooh

In the previous chapter, we investigated the general LPN problem and how
to solve it using various techniques. In this chapter, we will focus on a
special case of LPN called Ring-LPN, which is restricted to elements over

a polynomial ring.
Ring-LPN is an interesting building block when constructing cryptographic

primitives. For instance, the two-round identification protocol called Lapin
proposed by Heyse et al. [HKL`12]1 is based on Ring-LPN. Using the inherent
properties of rings, the proposed protocol becomes very efficient and well-
suited for use in constrained environments. Briefly, in Ring-LPN, the oracle
returns instead elements v, v “ s ¨ r` e, from a polynomial ring F2rxs{p f q, i.e.,
v, s, r, e P F2rxs{p f q. The problem can use either an irreducible polynomial f ,
of a reducible one. The choice of a reducible polynomial can make use of the
Chinese Remainder Theorem2 (CRT) to provide a very efficient implementation
of the cryptographic primitive.

We propose a new algorithm to solve the reducible case of Ring-LPN. By in-
vestigating more on the properties of the ring structure and the reducibility of
the polynomial, we demonstrate that if the minimum weight of the linear code
defined by the CRT transform is low, then the problem is effortless to solve,
hence providing a design criteria for cryptosystems based on the hardness of
Ring-LPN with a reducible polynomial.

1Clarification to the non-French-speaking reader: Lapin deciphers to rabbit.
2Readers unfamiliar with CRT may refer to virtually any textbook on number theory.

151

152 LPN over a Polynomial Ring

We then specify the attack for Lapin [HKL`12] and obtain a complexity
gain that makes it possible to break the claimed 80-bit security. In Table 8.2,
we compare the complexity of our algorithm with the best known algorithms3

designed to solve LPN and Ring-LPN. The time complexity is measured in bit
operations and memory complexity is measured in bits.

ATTACKS ON RING-LPN

As the Ring-LPN instances are standard LPN instances, the attacking algorithm
for the latter one is applicable to its ring instance. The pioneering researchers
(e.g., Lapin – see Section 8.3) used the hardness level of the LPN problem
obtained from [LF06] to measure the security of their authentication protocol
based on the Ring-LPN problem. Almost at the same time, Bernstein and
Lange [BL13] realized that simply ignoring the ring structure is a bad idea
since this special algebraic property may reveal information about the secret,
and subsequently derived an improved attack taking advantage of both the
ring structure and Kirchner’s technique. Their attack is generic since it applies
to Ring-LPN implemented with both reducible and irreducible polynomials,
and is advantageous in the sense of memory costs as well as query complexity.
However, even for the time-optimized case4, with around 281 bits of memory,
it requires quite a large number of bit operations, i.e., about 288, far away from
breaking the 80-bit security of Lapin protocol.

8.1 THE RING-LPN PROBLEM

Consider a polynomial f pxq over F2 (simply denoted f). The degree of f is
denoted by deg f . For any two polynomials f , g in the quotient ring F2rxs,
long division of polynomials tells us that there are unique polynomials q, r
such that g “ q f ` r. The unique polynomial r P F2rxs with deg r ă deg f is
the representative of g in the quotient ring F2rxs{p f q and is denoted g mod f .
We define R to be the quotient ring F2rxs{p f q. So R consists of all polynomials
in F2rxs of degree less than deg f and arithmetics are done modulo f .

If the polynomial f factors such that every factor is of degree strictly less
than f , then the polynomial f is said to be reducible; otherwise, it is said to
be irreducible. When a reducible polynomial factors as f “ f1 f2 ¨ ¨ ¨ fm, where
fi is relatively prime to f j for 1 ď i, j ď m and i ‰ j, there exists a unique
representation for every r P R according to the Chinese Remainder Theorem,

3We choose parameters to optimize their time complexity.
4We found that with parameters q “ 258.59, a “ 6, b “ 65, l “ 53 and W “ 4, the
complexity is 285.9. The time complexity is slightly lower than stated in [BL13].

8.1. The Ring-LPN Problem 153

i.e.,
r ÞÑ pr mod f1, r mod f2, . . . , r mod fmq. (8.1)

8.1.1 FORMAL DEFINITION

Being a subclass of LPN, the Ring-LPN problem is defined similarly. Fix an
unknown value s P R, where s $

Ð R. We can request samples depending on s
through an oracle, which we define as follows.

Definition 8.1 (Ring-LPN oracle) A Ring-LPN oracle Πε
Ring-LPN for an unknown

polynomial s P R with η P p0, 1
2 q returns pairs of the form

pr, r ¨ s` eq , (8.2)

where r $
Ð R and e $

Ð BerR
η is a low-weight ring element chosen with Bernoulli

distribution over F2. An extreme case is, when η is exactly 1
2 , that the oracle

Π0
Ring-LPN outputs a random sample distributed uniformly on Rˆ R.

The problem is now to recover the unknown value s after a number q of
queries to the oracle. We define the search problem version of Ring-LPN in the
following way.

Problem 8.1 (Ring-LPN) The search problem of Ring-LPN is said to be pt, q, θq-
solvable if there exists an algorithm ApΠε

Ring-LPNq that can find the unknown
polynomial s P R in time at most t and using at most q oracle queries such
that

P
´

ApΠε
Ring-LPNq “ s

¯

ě θ. (8.3)

The decisional Ring-LPN assumption, states that it is hard to distinguish
between uniformly random samples and samples from the oracle Πε

Ring-LPN.
We can express the decision problem as follows.

Problem 8.2 (Decisional Ring-LPN) The decision problem of Ring-LPN is said
to be pt, q, θq-solvable if there exists an algorithm A1 such that

ˇ

ˇ

ˇ
P
´

A1pΠε
Ring-LPNq “ yes

¯

´P
´

A1pΠ0
Ring-LPNq “ yes

¯
ˇ

ˇ

ˇ
ě θ, (8.4)

and A1 is running in time t and making q queries.

The hardness of Ring-LPN is unknown, but the LPN problem has been
shown to be NP-hard in the worst case. The assumption is that Ring-LPN
is also hard.

In the paper by Heyse et al. [HKL`12], it was proposed to use Ring-LPN as
the underlying hard problem to build an authentication protocol. The security
relies on the assumption that Ring-LPN is as hard as LPN. However, this is a
conjecture as there is only a reduction from Ring-LPN to LPN, but not the
converse. In the following, we show how to reduce Ring-LPN to LPN.

154 LPN over a Polynomial Ring

TRANSFORMING RING-LPN TO LPN

Given the polynomial r with deg r ď t, we denote r as its coefficient vector,
i.e., if r equals

řt
i“0 rixi, then r “

`

r0 r1 ¨ ¨ ¨ rt
˘

. With this notation, we can
define a mapping from one Ring-LPN instance to d standard LPN instances
represented in the following matrix form:

τ : Rˆ R ÝÑ Ftˆt
2 ˆFt

2

P P

pr, r ¨ s` eq ÞÝÑ pA, As` eq,
(8.5)

where the ith column of the matrix A is the transposed coefficient vector of
r ¨ xi mod f .

RING-LPN WITH A REDUCIBLE POLYNOMIAL

We consider the Ring-LPN problem with the ring R “ F2rxs{p f q, where the
polynomial f factors into distinct irreducible factors over F2. That is, the
polynomial f is written as f “ f1 f2 ¨ ¨ ¨ fm, where each fi is irreducible. One
of the specified instances of Lapin [HKL`12] uses a product of five different
irreducible polynomials. This instance is the main target for cryptanalysis.

8.2 A NEW ALGORITHM FOR RING-LPN WITH REDUCIBLE POLYNOMIAL

We aim to provide a description of a new algorithm (Algorithm 14) for the
Ring-LPN problem with a reducible polynomial, originally proposed in [GJL15].
First, we reduce the problem into a smaller one, while keeping the error at
a reasonable level. Then, we further reduce the unknown variables using
well-established collision techniques. The last step consists of exhausting the
remaining unknown variables in an efficient way.

8.2.1 A LOW-WEIGHT CODE FROM THE CRT MAP

Let f “ f1 f2 ¨ ¨ ¨ fm be a reducible polynomial. In the following, the underlying
irreducible polynomial fi in the quotient ring F2rxs{p fiq is fixed. Therefore,
without loss of generality, we denote it as f1 for notational simplicity. Let
deg f “ t and deg f1 “ l.

Proposition 8.3 There exists a (surjective) linear map from ψ : R Ñ F2rxs{p f1q

determined by the CRT transform. The linear map can be described as a
rt, ls linear code with generator matrix Gψ, in which the ith column is the
transposed coefficient vector of the polynomial xi´1 mod f1.

8.2. A New Algorithm for Ring-LPN with Reducible Polynomial 155

More specifically, a received sample pr, r ¨ s ` eq from the Ring-LPN oracle
Πε

Ring-LPN can be transformed into a considerably smaller instance

ψ : pr, r ¨ s` eq ÞÑ pr mod f1, pr mod f1q ¨ ps mod f1q ` e mod f1q. (8.6)

For simplicity, we write r̂ “ r mod f1, ŝ “ s mod f1 and ê “ e mod f1. As
before, we may write r̂ “

řl´1
i“0 r̂ixi, etc.

The new instance has a smaller dimension, as deg f1 ă deg f . However, the
distribution of the errors is also changed. The error distribution in the larger
ring is Ber 1

2 p1´εq, but in the smaller ring each noise variable pê “ e mod f1q is
a sum of several entries from e. The number of noise variables that constitutes
a new error position pê “ e mod f1q depends entirely on the relation between
f and f1.

The following example f1 to be one of the irreducible polynomials em-
ployed in [HKL`12].

Example 8.1 Let deg f “ 621, let f1 “ x127 ` x8 ` x7 ` x3 ` 1 and assume f1| f .
If we consider êi to be the ith entity of the coefficient vector of ê “ e mod f1, then we
express ê0 as a sum of bits from e as follows,

ê0 “ e0` e127 ` e246 ` e247 ` e251 ` e254 ` e365`

e367 ` e375 ` e381 ` e484 ` e485 ` e486`

e487 ` e489 ` e491 ` e492 ` e495 ` e499`

e500 ` e501 ` e502 ` e505 ` e508 ` e603 ` e607.

In particular, we are interested in linear relations that have as few noise variables
from e involved as possible. We use the piling-up lemma (Lemma 1.3) to determine
the new bias in ê after summing up a number of error bits. For instance, the above
linear relation has weight 26. Hence, by the Piling-up lemma, the bias of ê in that
particular position (position 0) is ε26, i.e.,

P pê0 “ 1q “
1
2
¨ p1´ ε26q.

Throughout this chapter we assume that f1 is an irreducible polynomial.
However, this condition is not a necessity, as the essential feature of the new
attack is a CRT map. Actually, it is sufficient if the two polynomials f1 and
f { f1 are co-prime; for example, we could set the polynomial with small degree
to be the product of several irreducible polynomials and obtain a solution as
well.

8.2.2 USING LOW-WEIGHT RELATIONS TO BUILD A DISTINGUISHER

We will now show how to build a distinguisher for Ring-LPN with a reducible
polynomial using the CRT transformation described in the previous section.

156 LPN over a Polynomial Ring

In Example 8.1, we give a linear relation expressing an error variable ê0 in
the smaller ring as a sum of relatively few error variables in the larger ring.
In our example, the polynomial f1 »behaves well«; it is very sparse and yields
a low-weight relation expressing a single noise variable ê0. However, this will
generally not be the case: it may be very difficult to find a desired linear
relation with few error variables.

We observe an interesting connection between this problem and searching
for codewords with minimum distance in a linear code. The CRT transforma-
tion can be viewed as

¨

˚

˚

˚

˝

1 mod f1
x mod f1

...
xt´1 mod f1

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

g0
g1
...

gl´1
gl

gl`1
...

gt´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

looomooon

“GT
ψ

¨

˚

˚

˚

˝

1
x
...

xl´1

˛

‹

‹

‹

‚

, (8.7)

where the top part of GT
ψ is an identity matrix and each row gi, for 0 ď i ď

t´ 1, is the coefficient vector of the polynomial xi mod f1.
Thereby, expressing the error polynomial in the smaller ring

e mod f1 “
`

e0 e1 ¨ ¨ ¨ et´1
˘

loooooooooomoooooooooon

def
“eT

GT
ψ

¨

˚

˚

˚

˝

1
x
...

xl´1

˛

‹

‹

‹

‚

“
`

ê0 ê1 ¨ ¨ ¨ êl´1
˘

loooooooooomoooooooooon

def
“ êT

¨

˚

˚

˚

˝

1
x
...

xl´1

˛

‹

‹

‹

‚

,

(8.8)

we obtain
eTGT

ψ “ êT ñ ê “ Gψe. (8.9)

Let dψ be the minimum distance of the linear code generated by Gψ. Then
by definition, there exists at least one vector m such that the product mGψ

has Hamming weight exactly dψ. More specifically,

xê, my “
@

e, mGψ

D

, (8.10)

8.2. A New Algorithm for Ring-LPN with Reducible Polynomial 157

where
@

e, mGψ

D

is a sum of dψ noise variables. Thus, according to the Piling-
up lemma we obtain the following proposition.

Proposition 8.4 (Lower bound on new bias) If the minimum distance of the
linear code Gψ is dψ, then the largest bias of some linear combination of noise
variables in the smaller ring is no less than εdψ .

Consequently, in order to determine the security related to a certain poly-
nomial, we need to determine the minimum distance of the code generated
by Gψ. By applying an information-set decoding algorithm, we can find the
minimum distance.

In the example of Lapin, applying ISD algorithms is not necessary since the
polynomials fi, 1 ď i ď 5 are very sparse and admit a very low row-weight
of the generator matrix, well below the Gilbert-Varshamov bound (which is
around 154).

8.2.3 RECOVERING THE SECRET POLYNOMIAL

After determining the strongest bias (xê, my), we move to the recovery part.
We divide this part into three different steps

1. Transforming to LPN: Recall that deg f1 “ l. We ask the oracle Πε
Ring-LPN

for N samples pr̂piq, ŝ ¨ r̂piq ` êpiqq and then convert each of them to l
standard LPN samples by the mapping τ defined in Section 8.1.1. Write
these samples in the matrix form pÂi, Âi ŝ` êiq. Then, by multiplication
with the vector m, we construct a new LPN sample,

pmÂi, mÂi ŝ` xêi, myq, (8.11)

from each Ring-LPN sample. According to Proposition 8.4, the created
samples are with large bias, i.e., no less than εdψ .

The overall computational complexity of this step is bounded by,

C1 “ l2 ¨ N ` pl ` 1q ¨ l ¨ N “ l ¨ N ¨ p2l ` 1q. (8.12)

2. Merging samples: Put the new samples in a list L indexed by its last k
entries of the vector mÂi. Merging the list L by itself yields a list L1 “
L ˛L with elements mÂi and mÂj (denoted ˆ̂ri and ˆ̂rj, respectively),

pˆ̂ri, xˆ̂ri, ŝy ` xêi, myq ` pˆ̂rj, xˆ̂rj, ŝy ` xêj, myq “ pr̂1, xr̂1, ŝy ` ê1q, (8.13)

yields a vector r̂1 that has at most l ´ k non-zero positions. The number
of such samples is approximately M “ N2{2k. The new samples, such

158 LPN over a Polynomial Ring

as pr̂1, v̂1q, depend only on l´ k coefficients of the secret ŝ and has a bias
that is

ε1 “ ε2dψ . (8.14)

Calculating the relative entropy between the distribution of error in
pr̂1, v̂1q and the uniform distribution, we find from (1.40) that the number
of samples required is

M ě 2 ln 2 ¨
´pl ´ kq ¨ log θ

ε4dψ
, (8.15)

for some error probability θ. For instance, we may set θ “ 1
4 , then we

obtain

M ě
4 ln 2 ¨ pl ´ kq

ε4dψ
. (8.16)

Storing the N LPN samples uses l ¨N bit operations, and performing the
birthday procedure requires

l ¨
N2

2k (8.17)

bit operations. Thus, the total complexity of this step is,

C2 “ l ¨ N ¨
ˆ

1`
N
2k

˙

. (8.18)

Thus, at this point, we have generated M vector samples pr̂1i, v̂iq. All r̂1i
vectors have dimension no more than l´ k as we cancelled out k bits of
r̂1i. Hence, it is enough to consider only l ´ k bits of ŝ, i.e., we assume
that ŝ is of dimension l ´ k. We are then prepared for the final step.

3. Distinguishing the best candidate: Group the samples pr̂1i, v̂iq in sets
Lpr̂1iq according to r̂1i and then define the function fLpr̂1iq as

fLpr̂1iq “
ÿ

pr̂1i ,v̂iqPLpr̂1iq

p´1qv̂i . (8.19)

The Walsh transform of fL is defined as

Fpŝq “
ÿ

r̂1i

fLpr̂1iqp´1qxŝ,r̂1iy. (8.20)

Here we exhaust all the 2l´k candidates of s by computing the Walsh
transform.

8.2. A New Algorithm for Ring-LPN with Reducible Polynomial 159

Algorithm 14 (Partial recovery of Ring-LPN)

Input: Algorithm parameter N P N.

Output: Secret vector ŝopt.

(Pre-processing) Determine the minimum weight dψ of the linear code1

generated by the CRT transformation and find its corresponding linear
relation m;
Ask the oracle Πε

Ring-LPN for N samples, and then transform each of them2

to a standard LPN sample with the largest bias, which is no less than εdψ ;
Use the birthday technique to reduce the secret length at the cost of3

decreasing the bias;
Perform fast Walsh-Hadamard transform on the remaining l ´ k bits of ŝ;4

Output the ŝopt that maximizes the absolute value of the transform;5

Given the candidate ŝ, Fpŝq is the difference between the number of
predicted 0:s and the number of predicted 1:s for the bit v̂1i `

@

ŝ, r̂1i
D

. If
ŝ is the correct guess, then it is distributed according to Ber 1

2 p1´ε
2dψ q

;

otherwise, it is considered random. Thus, the best candidate ŝopt is the
one that maximizes the absolute value of Fpŝq, i.e.,

ŝopt “ arg max
ŝPFl´k

2

|Fpŝq|, (8.21)

and we need approximately ε4dψ samples to distinguish these two cases.
Note that false positives are quickly detected in an additional step and
this does not significantly increase complexity.

We employ fast Walsh-Hadamard transform technique to accelerate the
distinguishing step. For well-chosen parameters, the complexity is ap-
proximately,

C3 “ pl ´ kq ¨ 2l´k. (8.22)

From the new algorithm, there are some important consequences to con-
sider when choosing parameters to thwart our attack. We give some very
brief comments, assuming that every smaller ring is of approximately the
same size:

• Choosing a large number of factors in f seems a bit dangerous, as the
dimension of the code Gψ becomes small. In our attack we used a
birthday argument to reduce the dimension of ŝ, but this might not be

160 LPN over a Polynomial Ring

Protocol 1 (Lapin Authentication)

Tag Reader
c $
Ð t0, 1uλ;

c
ÐÝÝÝÝ

r $
Ð R˚; e $

Ð BerR
η ;

z Ð r ¨ ps ¨ πpcq ` s1q ` e;
pr, zq
ÝÝÝÝÝÑ

if r R R˚ then reject;
e1 Ð z´ r ¨ ps ¨ πpcq ` s1q;
if wH

`

e1
˘

ą n ¨ η1 then reject
else accept;

necessary if the dimension is already very low. Instead we may search
for special r̂ (e.g., many r̂ “ 1) values that allow quick recovery of ŝ.

• One should use irreducible polynomials fi with degree around n
m for

1 ď i ď m such that for every fi the corresponding linear code Gψ has
minimum distance as large as possible. From the Gilbert-Varshamov
bound, we roughly know what to expect. However, the GV bound may
not be asymptotically true for codes generated by the CRT transform.

• Following this line, a necessary but probably insufficient condition on ε
is that

4 ln 2 ¨ n
m ¨ ε4dψ

ě 2b (8.23)

for b-bit security5.

8.3 LAPIN AUTHENTICATION PROTOCOL

In this section, we describe the Lapin two-round authentication protocol. Pro-
tocol 1 describes the procedure used by Lapin, in which information is ex-
changed between the tag and the reader.

Let R “ F2rxs{p f q be a ring and R˚ the set of units in R. The protocol
is defined over the ring R. Let π be a mapping, chosen such that for all
c, c1 P t0, 1uλ, πpcq ´ πpc1q P RzR˚ if and only if c “ c1. Furthermore, let

5This is just one concern as there may be many other aspects to be taken into consid-
eration that will make the problem solvable. For instance, if dψ and ε are very large
the constraint can be satisfied while the problem in a larger ring remains easy.

8.4. The Improved Version for the Proposed Instance of Lapin 161

η P p0, 1
2 q be a Bernoulli distribution parameter and η1 P pη, 1

2 q a threshold
parameter. The elements R, π : t0, 1uλ Ñ R, η and η1 are public parameters.
The ring elements s, s1 P R constitute the secret key. Suppose that we have a
key-generation oracle; it will give us the key consisting of two ring elements
s, s1 $

Ð R. The secret key is shared among the tag and the reader.

8.4 THE IMPROVED VERSION FOR THE PROPOSED INSTANCE OF LAPIN

In [HKL`12], Heyse et al. employ the following reducible polynomial,

f “
´

x127 ` x8 ` x7 ` x3 ` 1
¯

looooooooooooooomooooooooooooooon

f1

¨

´

x126 ` x9 ` x6 ` x5 ` 1
¯

looooooooooooooomooooooooooooooon

f2

¨

´

x125 ` x9 ` x7 ` x4 ` 1
¯

looooooooooooooomooooooooooooooon

f3

¨

´

x122 ` x7 ` x4 ` x3 ` 1
¯

looooooooooooooomooooooooooooooon

f4

¨

´

x121 ` x8 ` x5 ` x1 ` 1
¯

looooooooooooooomooooooooooooooon

f5

,

(8.24)

as the underlying structure of the quotient ring R. This parameter setting
is then adopted by Gaspar et al. in a more recent paper [GLS14], to show
that the original protocol and its hardware variant, Mask-Lapin, have much
gain, compared with the implementation from block ciphers (e.g., AES), in
the sense of resisting power analysis attacks by masking.

However, in the sense of thwarting the new attack we present, it is not a
good selection. We give two reasons as follows.

• As previously stated, for any polynomial fi (1 ď i ď 5), the genera-
tor matrix Gψ of the corresponding code is sparse, hence yielding that
we could roughly adopt one row vector in Gψ as its minimum-weight
codeword. Then, the vector m is of Hamming weight 1 and we could
save the computational cost for linearly combining several samples to
form a new one with the largest bias.

• Secondly, for the Lapin instance, the largest bias always holds at the last
row of the generator matrix Gψ, when modulo operation is taken over
each irreducible factor. Furthermore, for Ring-LPN samples pr̂piq, ŝ ¨ r̂piq`
êpiqq, if we find collisions on the last k positions of r̂piq (k is larger than
10), then the last row vector in the matrix form of the merged sample
pr̂1, r̂1 ¨ ŝ` ê1q is of the form

`

0 ¨ ¨ ¨ 0 r̂1l´k´1 r̂1l´k´2 ¨ ¨ ¨ r̂10
˘

. (8.25)

162 LPN over a Polynomial Ring

Algorithm 15 (Improved partial key recovery for Lapin)

Input: Algorithm parameters N, k, w P N.

Output: Secret vector ŝopt.

(Pre-processing) Find the weight w of the pl ´ 1qth row in the generator1

matrix of the CRT transformation;
Ask the oracle Πε

Ring-LPN for N samples, index them by the last k2
coefficients of r̂, and then search for all collisions

pr̂1, r̂1 ¨ ŝ` ê1 ` ê2q “ pr̂1, ŝ ¨ r̂1 ` ê1q ` pr̂2, ŝ ¨ r̂2 ` ê2q,

where the last k coefficients of r̂1 and r̂2 are the same;
Generate standard LPN samples from the Ring-LPN samples, and then3

perform fast Walsh-Hadamard transform on l ´ k bits of ŝ;
Output the ŝopt that maximizes the absolute value of the transform;4

This vector can be read from the polynomial r̂1 directly, without any
computation cost.

Therefore, we could present a specific algorithm for solving the Lapin in-
stance, see Algorithm 15, which is more efficient than the generic one. After
determining the weight w of the last row vector in the generator matrix Gψ,
we ask the oracle Πε

Ring-LPN for N samples pr̂piq, ŝ ¨ r̂piq ` êpiqq and search for
collisions by the last k coefficients of r̂ directly. Then, for each collision rep-
resented by a merged Ring-LPN sample pr̂1, v̂1q, we construct a new standard
LPN sample, where the vector is generated by (8.25), and the observed value
is the coefficient of xl´1 in the polynomial v̂1. These samples are with the
largest bias. The distinguishing step is the same as that in the generic algo-
rithm and we present the detailed complexity analysis and numerical results
in the consecutive sections.

8.5 COMPLEXITY ANALYSIS

Having introduced the two versions in detail, we now estimate their com-
plexity. It is straightforward that the generic algorithm (Algorithm 14) costs

C “ C1 ` C2 ` C3 (8.26)

bit operations. However, the best complexity is obtained when using Algo-
rithm 15 (which is tailored for the proposed instance in Lapin). We state its

8.7. Summary 163

complexity in the following theorem.

Theorem 8.5 (The complexity of Algorithm 15) Let w be the weight of the last
row in the CRT transformation matrix Gψ. Then, the complexity of Algorithm,
denoted C˚, is given by

C˚ “ l ¨
ˆ

N `
N2

2k

˙

` pl ´ kq ¨ 2l´k, (8.27)

under the condition that

N2

2k ě
4 ln 2 ¨ pl ´ kq

ε4w . (8.28)

Proof. We analyze step by step:

1. First, we store the samples received from N oracle calls into a table
using l ¨ N bit operations.

2. Clearing k bits in a collision procedure yields N2{2k samples and can
be performed in l ¨ N2{2k bit operations. As the required standard LPN
instance can be read directly from the Ring-LPN instance, the transfor-
mation has no computational cost.

3. Afterwards, we perform a fast Walsh-Hadamard transform. If the num-
ber of unknown bits l ´ k is at least log2pN

2{2kq, then the complexity is
pl ´ kq ¨ 2l´k. This is the final step.

Summarizing the individual steps yields C˚ which finalizes the proof. �

8.6 RESULTS

We now present numerical results of the improved partial key recovery attack
on the authentication protocol Lapin. The attack we describe concerns the
instance of Lapin using the degree 621 polynomial f and with the parameter
η “ 1

6 . As claimed in [HKL`12], this given instance is designed to resist the
best known attack on Ring-LPN within the complexity 280. However, we have
shown that it is possible to greatly improve the attack complexity. To compute
the complexity, we set the number of samples to

N “

d

4 ln 2 ¨ pl ´ kq ¨ 2k

ε4w (8.29)

and minimize (8.27) over l. The improvements can be seen in Table 8.1.
For the distinguishing attack, the complexity is only 275.02. For actual re-

covery of the secret polynomial, we need all five coordinates in the CRT rep-
resentation, which gives an upper bound on the security that is roughly 277.66.
A comparison with previous algorithms is given in Table 8.2.

164 LPN over a Polynomial Ring

Polynomial fi Parameters Complexity (log2)

k w log2 N

x127 ` x8 ` x7 ` x3 ` 1 62 26 65.16 75.53
x126 ` x9 ` x6 ` x5 ` 1 61 26 64.66 75.48
x125 ` x9 ` x7 ` x4 ` 1 61 26 64.65 75.41
x122 ` x7 ` x4 ` x3 ` 1 63 27 65.59 75.02
x121 ` x8 ` x5 ` x1 ` 1 58 29 64.11 75.24

Table 8.1: The complexity for attacking each modulus of the pro-
posed instance using a reducible polynomial f .

Algorithm Complexity (log2)

Queries Time Memory

Levieil-Fouque [LF06] 82.0 103.4 100.6
Bernstein-Lange [BL13] 79.3 102.9 97.92

Our attack (search) 63 77.66 74.24
Our attack (decision) 62 75.02 72.59

Table 8.2: Comparison of different algorithms for attacking Lapin
with reducible polynomial.

8.7 SUMMARY

In this chapter, we have proposed a new generic algorithm to solve the re-
ducible case of Ring-LPN. By exploiting the ring structure further, our new
algorithm is much more efficient than previous algorithms, enough to break
the claimed 80-bit security for one of the two proposed instances of Lapin.

We have shown that a linear code arising from the CRT transform char-
acterizes the performance of this attack through its minimum distance. This
is combined with some standard techniques of using birthday or possibly
generalized birthday arguments and efficient recovery through fast Walsh-
Hadamard transform.

The low-weight property of the polynomials in the Lapin case makes the
problem considerably easier than otherwise and thus makes Lapin susceptible
to our attack. Using really low-weight irreducible polynomials such as x127 `

x ` 1 can give rise to linear relations with weight as low as 10 or even less.
We have not seen that such polynomials have been pointed out as very weak

8.7. Summary 165

before.
The description of the new algorithm was influenced by the Lapin case.

There are more improvements that can be described in the general case. One
such improvement is the use of a generalized birthday technique [Wag02].
This will allow us to consider larger dimensions at the cost of increasing the
noise level. We have also noted that the simple bit-oriented samples can be
replaced by more complicated vectorial samples, which will give a stronger
bias.

9
Concluding Remarks

In this dissertation, some new techniques for cryptanalysis were proposed.
The proposed information-set decoding algorithm, based on Stern’s algo-
rithm, was shown to improve complexity over previous approaches by gen-
eralized birthday techniques, which also enabled us to provide new security
bounds for coding-based cryptographic schemes.

We presented a new variant of the McEliece public-key cryptosystem based
on convolutional codes to deal with the lack of entropy in the Goppa code
construction, by introducing large amounts of parity checks. We presented
parameters for (around) 80-bit security. Although we found that the pro-
posed constructions are probably not best choices for McEliece-type public-
key cryptography, the idea of using convolutional codes is still attractive and
it would be interesting to further investigate similar constructions. A more
concrete open problem is to improve decryption complexity in the tail-biting
construction, as it currently does not scale well with the security parameter λ.

Furthermore, we introduced a new cryptanalytic technique based on squar-
ing and described two attacks on the QC-MDPC McEliece proposal, which
exploit that each block in the underlying code can be written as a polynomial
ring of even dimension. Moreover, we provided new recommendations on
how to choose the code, so that the squaring attack can be avoided. As noted,
the attack applies to the tightly related QC-LDPC proposals [BBC13], so simi-
lar recommendations should be issued here as well. Investigating if the attack
impacts other areas of cryptanalysis is an interesting research direction.

We presented two algorithms for solving the general case (any weight w)
of LWPM and the special case W4PM (weight w “ 4). Our results for the first
algorithm show that we can break 80-bit security barrier of at least one in-
stance used by the TCHo cryptosystem. We also showed that it is possible to
successfully use the generalized birthday technique for finding polynomials

167

168 Concluding Remarks

of smaller weight (3,4,5) by using a similar multiplicity technique. In addi-
tion, we provided some hardness results for the attacks against QC-MDPC
McEliece in relation to LWPM.

Finally, we treated the LPN problem and its ring variant Ring-LPN, for which
two algorithms were proposed. The first algorithm, which is applicable to any
instance of LPN, gives an improvement over previously known algorithms
and breaks the 80-bit security of the common p512, 1

8 q instance. The p512, 1
8 q

instance is used in many cryptographic constructions for 80-bit security, and
therefore should be replaced. It left as an open problem whether this tech-
nique can be used to improve the asymptotic complexity of LPN-solving al-
gorithms and information-set decoding. Other algorithms in this thesis could
also benefit from using similar techniques, in particular the algorithms pro-
posed in Chapter 6 – here be dragons. The second presented algorithm for
Ring-LPN gives an improvement over conjectured security of certain instances
of Lapin; in particular, it renders the reducible 80-bit security instance inse-
cure. We suggested necessary (to avoid our attack) but possibly insufficient
constraints for reducible polynomials intended for use in Ring-LPN.

At the end of the day, we have made small steps towards exploring the
uncharted lands of code-based cryptography. Practical quantum computing
still remains in its cradle, but we have certainly an eventful future ahead of
us.

References

[AFS05] D. Augot, M. Finiasz, and N. Sendrier, »A Family of Fast Syn-
drome Based Cryptographic Hash Functions,« in Proceedings of
Mycrypt, ser. Lecture Notes in Computer Science. Springer-Verlag,
2005, pp. 64–83.

[Ale03] M. Alekhnovich, »More on average case vs approximation com-
plexity,« in FOCS. IEEE Computer Society, 2003, pp. 298–307.

[ASE91] N. Alon, J. H. Spencer, and P. Erdős, The Probabilistic Method.
Wiley, 1991.

[AvzG07] L. E. Aimani and J. von zur Gathen, »Finding low weight poly-
nomial multiples using lattices,« in Cryptology ePrint Archive, Re-
port 2007/423, 2007, http://eprint.iacr.org/.

[Bar94] S. Barg, »Some new NP-complete coding problems,« in Probl.
Peredachi Inf., vol. 30, 1994, pp. 23–28.

[BBC08] M. Baldi, M. Bodrato, and F. Chiaraluce, »A new analysis of
the McEliece cryptosystem based on QC-LDPC codes,« in In Secu-
rity and Cryptography for Networks – SCN’2008, ser. Lecture Notes
in Computer Science, vol. 5229. Springer-Verlag, 2008, pp. 246–
262.

[BBC13] M. Baldi, M. Bianchi, and F. Chiaraluce, »Optimization of
the parity-check matrix density in QC-LDPC code-based McEliece
cryptosystems,« in IEEE International Conference on Communica-
tions Workshops, June 2013, pp. 707–711.

169

http://eprint.iacr.org/

170 References

[BCGM07] M. Baldi, F. Chiaraluce, R. Garello, and F. Mininni, »Quasi-
Cyclic Low-Density Parity-Check Codes in the McEliece Cryp-
tosystem,« in ICC ’07. IEEE International Conference on Communi-
cations, June 2007, pp. 951–956.

[Ber05] D. J. Bernstein, »Understanding brute force,« in Workshop Record
of ECRYPT STVL Workshop on Symmetric Key Encryption eSTEAM
2005/036, 2005.

[Ber09] D. J. Bernstein, »Introduction to post-quantum cryptography,« in
Post-Quantum Cryptography, D. J. Bernstein, J. Buchmann, and

E. Dahmen, Eds. Springer-Verlag, 2009, pp. 1–14.

[BJMM12] A. Becker, A. Joux, A. May, and A. Meurer, »Decoding Random
Binary Linear Codes in 2n{20: How 1` 1 “ 0 Improves Informa-
tion Set Decoding,« pp. 520–536, 2012.

[BKW00] A. Blum, A. Kalai, and H. Wasserman, »Noise-Tolerant Learn-
ing, the Parity Problem, and the Statistical Query Model,« Proceed-
ings of STOC 2000, pp. 435–440, May 2000.

[BKW03] A. Blum, A. Kalai, and H. Wasserman, »Noise-Tolerant Learn-
ing, the Parity Problem, and the Statistical Query Model,« Journal
of the ACM, vol. 50, no. 4, pp. 506–519, July 2003.

[BL13] D. J. Bernstein and T. Lange, »Never Trust a Bunny,« in Cryp-
tographic Primitives Based on Hard Learning Problems, ser. Lecture
Notes in Computer Science. Springer-Verlag, 2013, pp. 137–148.

[BLP11] D. J. Bernstein, T. Lange, and C. Peters, »Smaller decoding
exponents: Ball collision decoding,« in Advances in Cryptology—
CRYPTO 2011, ser. Lecture Notes in Computer Science, P. Rogway,
Ed., vol. 6841. Springer-Verlag, 2011, pp. 743–760.

[BV15] S. Bogos and S. Vaudenay, »On Solving LPN using BKW Vari-
ants,« 2015.

[CC98] A. Canteaut and F. Chabaud, »A new algorithm for finding
minimum-weight words in a linear code: application to McEliece’s
cryptosystem and to narrow-sense BCH codes of length 511,«
IEEE Transactions on Information Theory, vol. 44, pp. 367–378, 1998.

171

[CFS01] N. Courtois, M. Finiasz, and N. Sendrier, »How to achieve
a McEliece-based digital signature scheme,« in Advances in
Cryptology—ASIACRYPT 2001, ser. Lecture Notes in Computer
Science, G. Goos, J. Hartmanis, and J. van Leeuwen, Eds., vol.
2248. Springer-Verlag, 2001, pp. 157–174.

[CHL97] G. Cohen, I. Honkala, and S. Litsyn, Covering codes, ser. North-
Holland mathematical library. Amsterdam, Lausanne, New York:
Elsevier, 1997.

[CJM02] P. Chose, A. Joux, and M. Mitton, »Fast correlation attacks: An
algorithmic point of view,« Lecture Notes in Computer Science, vol.
2332, pp. 209–221, 2002.

[CT91] T. Cover and J. A. Thomas, Elements of Information Theory, ser.
Wiley series in Telecommunication. Wiley, 1991.

[CT00] A. Canteaut and M. Trabbia, »Improved fast correlation attacks
using parity-check equations of weight 4 and 5,« in Advances in
Cryptology—EUROCRYPT 2000, ser. Lecture Notes in Computer
Science, B. Preneel, Ed., vol. 1807. Springer-Verlag, 2000, pp. 573–
588.

[Del78] P. Delsarte, »Bilinear forms over a finite field,« in Journal of Com-
binatorial Theory, vol. 25, 1978, pp. 226–241.

[DH76] W. Diffie and M. E. Hellman, »New directions in cryptogra-
phy,« IEEE Transactions on Information Theory, vol. 22, pp. 644–654,
1976.

[DKPW12] Y. Dodis, E. Kiltz, K. Pietrzak, and D. Wichs, »Message Au-
thentication, Revisited,« in Advances in Cryptology—EUROCRYPT
2012, ser. Lecture Notes in Computer Science, D. Pointcheval

and T. Johansson, Eds., vol. 7237. Springer-Verlag, 2012, pp. 355–
374.

[DLC07] F. Didier and Y. Laigle-Chapuy, »Finding low-weight poly-
nomial multiples using discrete logarithm,« in International
Symposium on Information Theory—ISIT 2007, A. Goldsmith,
A. Shokrollahi, M. Medard, and R. Zamir, Eds., 2007.

[DP12] I. Damgård and S. Park, »Is Public-Key Encryption Based on
LPN Practical?« in Cryptology ePrint Archive, Report 2012/699, 2012,
http://eprint.iacr.org/.

http://eprint.iacr.org/

172 References

[Dum91] I. Dumer, »The use of information sets in decoding of linear
codes,« In Proceedings of 5th Joint Soviet-Swedish International Work-
shop on Information Theory, pp. 50 – 52, 1991.

[DV13] A. Duc and S. Vaudenay, »HELEN: A Public-Key Cryptosystem
Based on the LPN and the Decisional Minimal Distance Prob-
lems,« in In proceedings of AFRICACRYPT 2013, 2013, pp. 107–126.

[EBvT78] R. J. M. E. Berlekamp and H. C. van Tilborg, »On the inherent
intractability of certain coding problems,« in IEEE Transactions on
Information Theory, vol. 24, 1978.

[EOS07] D. Engelbert, R. Overbeck, and A. Schmidt, »A summary of
McEliece-type cryptosystems and their security,« 2007.

[Fey82] R. Feynman, »Simulating physics with computers,« International
Journal of Theoretical Physics, vol. 21, pp. 467 – 488, 1982.

[FOPT10] J. C. Faugére, A. Otmani, L. Perret, and J.-P. Tillich, »Alge-
braic cryptanalysis of McEliece variants with compact keys,« in
Advances in Cryptology—EUROCRYPT 2010, ser. Lecture Notes in
Computer Science. Springer-Verlag, 2010, pp. 279–298.

[FS09] M. Finiasz and N. Sendrier, »Security Bounds for the De-
sign of Code-Based Cryptosystems,« in Advances in Cryptology—
ASIACRYPT 2009, ser. Lecture Notes in Computer Science,
M. Matsui, Ed., vol. 4586. Springer-Verlag, 2009, pp. 88–105.

[FV06] M. Finiasz and S. Vaudenay, »When stream cipher analysis
meets public-key cryptography,« in Selected Areas in Cryptogra-
phy, ser. Lecture Notes in Computer Science, E. Biham and A. M.
Youssef, Eds., vol. 4356. Springer-Verlag, 2006, pp. 266–284.

[FV07] M. Finiasz and S. Vaudenay, »TCHo : A hardware-oriented trap-
door cipher,« in ACISP, ser. Lecture Notes in Computer Sci-
ence, J. Pieprzyk, H. Ghodosi, and E. Dawson, Eds., vol. 4586.
Springer-Verlag, 2007, pp. 184–199.

[GI01] V. Guruswami and P. Indyk, »Expander-based constructions of
efficiently decodable codes,« in Foundations of Computer Science,
2001. Proceedings. 42nd IEEE Symposium on, October 2001, pp. 658–
667.

173

[GJL14] Q. Guo, T. Johansson, and C. Löndahl, »Solving LPN Using
Covering Codes,« in Advances in Cryptology—ASIACRYPT 2014,
ser. Lecture Notes in Computer Science, P. Sarkar and T. Iwata,
Eds., vol. 62. Springer-Verlag, 2014, pp. 1–20.

[GJL15] Q. Guo, T. Johansson, and C. Löndahl, »A New Algorithm for
Solving Ring-LPN with a Reducible Polynomial,« 2015, (Submit-
ted).

[GLS14] L. Gaspar, G. Leurent, and F. X. Standaert, »Hardware Imple-
mentation and Side-Channel Analysis of Lapin,« in CT-RSA 2014,
2014.

[Gol96] J. D. Golić, »Computation of low-weight parity-check polynomi-
als,« Electronic Letters, vol. 32, no. 21, pp. 1981–1982, October 1996.

[Gol07] O. Goldreich, Foundations of Cryptography. Cambridge University
Press, 2007.

[Gri04] R. P. Grimaldi, Discrete and Combinatorial Mathematics. Pearson,
2004.

[GRS05] H. Gilbert, M. J. B. Robshaw, and Y. Seurin, »An active attack
against hb`—a provably secure lightweight authentication pro-
tocol,« in Cryptology ePrint Archive, Report 2005/237, 2005, http:
//eprint.iacr.org/.

[GRS08a] H. Gilbert, M. J. B. Robshaw, and Y. Seurin, »HB#: Increas-
ing the Security and the Efficiency of HB`,« in Advances in
Cryptology—EUROCRYPT 2008, ser. Lecture Notes in Computer
Science, N. P. Smart, Ed., vol. 4965. Springer-Verlag, 2008, pp.
361–378.

[GRS08b] H. Gilbert, M. J. B. Robshaw, and Y. Seurin, »How to en-
crypt with the lpn problem,« in In proceedings of ICALP, ser.
Lecture Notes in Computer Science, L. Aceto, I. Damgård,
L. A. Goldberg, M. M. Halldorsson, A. Ingolfsdottir, and

I. Walukiewicz, Eds., vol. 5126. Springer-Verlag, 2008, pp. 679–
690.

[HB01] N. J. Hopper and M. Blum, »Secure human identification proto-
cols,« in Advances in Cryptology—ASIACRYPT 2001, ser. Lecture
Notes in Computer Science, C. Boyd, Ed., vol. 2248. Springer-
Verlag, 2001, pp. 52–66.

http://eprint.iacr.org/
http://eprint.iacr.org/

174 References

[Hel80] M. Hellman, »A cryptanalytic time-memory trade-off,« IEEE
Transactions on Information Theory, vol. IT-26, no. 4, pp. 401–406,
July 1980.

[HKL`12] S. Heyse, E. Kiltz, V. Lyubashevsky, C. Paar, and K. Pietrzak,
»An Efficient Authentication Protocol Based on Ring-LPN,« in Fast
Software Encryption 2012, ser. Lecture Notes in Computer Science,
vol. 4965. Springer-Verlag, 2012, pp. 346–365.

[HL09] M. Herrmann and G. Leander, »A practical key recovery attack
on basic TCHo,« in Public Key Cryptography – PKC 2009, ser. Lec-
ture Notes in Computer Science, S. Jarecki and G. Tsudik, Eds.,
vol. 5443. Springer-Verlag, 2009, pp. 411–424.

[HS13] Y. Hamdaoui and N. Sendrier, »A Non Asymptotic Analysis
of Information Set Decoding,« in Cryptology ePrint Archive, Report
2013/162, 2013, http://eprint.iacr.org/.

[HvMG13] S. Heyse, I. von Maurich, and T. Güneysu, »Smaller Keys
for Code-Based Cryptography: QC-MDPC McEliece Implemen-
tations on Embedded Devices,« in Cryptographic Hardware and
Embedded Systems—CHES 2013, ser. Lecture Notes in Computer
Science, G. Bertoni and J. S. Coron, Eds., vol. 8086. Springer-
Verlag, 2013, pp. 273–292.

[JL11] T. Johansson and C. Löndahl, »An improvement to Stern’s
algorithm,« 2011. [Online]. Available: http://lup.lub.lu.se/
record/2204753

[JL13] T. Johansson and C. Löndahl, »A new algorithm for finding
low-weight polynomial multiples and its application to tcho,« in
Workshop on Coding and Cryptography, L. Budaghyan, T. Helle-
seth, and M. G. Parker, Eds., 2013.

[Jou09] A. Joux, Algorithmic Cryptanalysis. Chapman & Hall/CRC, 2009.

[JW05] A. Juels and S. A. Weis, »Authenticating pervasive devices with
human protocols,« in Advances in Cryptology—CRYPTO 2005, ser.
Lecture Notes in Computer Science, V. Shoup, Ed., vol. 3621.
Springer-Verlag, 2005, pp. 293–308.

[JZ99] R. Johannesson and K. Zigangirov, Fundamentals of Convolu-
tional Coding, ser. IEEE Series on Digital and Mobile Communica-
tion. IEEE Press, 1999.

http://eprint.iacr.org/
http://lup.lub.lu.se/record/2204753
http://lup.lub.lu.se/record/2204753

175

[Kir11] P. Kirchner, »Improved Generalized Birthday Attack,« in Cryptol-
ogy ePrint Archive, Report 2011/337, 2011, http://eprint.iacr.org/.

[Knu98] D. E. Knuth, The art of computer programming, 3rd ed. Reading,
Mass.: Addison-Wesley, 1998, vol. 2: Seminumerical algorithms.

[KPC`11] E. Kiltz, K. Pietrzak, D. Cash, A. Jain, and D. Venturi, »Effi-
cient Authentication from Hard Learning Problems,« in Advances
in Cryptology—EUROCRYPT 2012, ser. Lecture Notes in Computer
Science, K. G. Patterson, Ed., vol. 6632. Springer-Verlag, 2011,
pp. 7–26.

[KS06] J. Katz and J. S. Shin, »Parallel and concurrent security of the
hb and hb` protocols,« in Advances in Cryptology—EUROCRYPT
2006, ser. Lecture Notes in Computer Science, S. Vaudenay, Ed.,
vol. 4004. Springer-Verlag, 2006, pp. 73–87.

[LB88] P. J. Lee and E. F. Brickell, »An observation on the security of
McEliece’s public-key cryptosystem.« in Advances in Cryptology—
EUROCRYPT’89, ser. Lecture Notes in Computer Science, C. G.
Günther, Ed., vol. 330. Springer-Verlag, 1988, pp. 275–280.

[LC04] S. Lin and D. J. Costello, Error Control Coding, Second Edition.
Prentice-Hall, Inc., 2004.

[LF06] E. Levieil and P.-A. Fouque, »An Improved LPN Algorithm,« in
In Proceedings of Security and Cryptography for Networks, ser. Lecture
Notes in Computer Science, M. Prisco and M. Yung, Eds., vol.
4116. Springer-Verlag, 2006, pp. 348–359.

[LJ12] C. Löndahl and T. Johansson, »A new version of McEliece PKC
based on convolutional codes,« in Information and Communications
Security, T. W. Chim and T. H. Yuen, Eds., vol. 7618, no. 2, 2012,
pp. 625–640.

[LJ14] C. Löndahl and T. Johansson, »Improved Algorithms for Find-
ing Low-Weight Polynomial Multiples in F2rxs and Some Crypto-
graphic Applications,« in Designs, Codes, and Cryptography, vol. 73,
no. 2, 2014, pp. 625–640.

[LJS`15] C. Löndahl, T. Johansson, M. K. Shooshtari, M. Ahmadian-
Attari, and M. R. Aref, »Squaring Attacks on McEliece Public-
Key Cryptosystems Using Quasi-Cyclic Codes of Even Dimen-
sion,« 2015, (Submitted).

http://eprint.iacr.org/

176 References

[LMRS12] M. Lamberger, F. Mendel, V. Rijmen, and K. Simoens, »Mem-
oryless near-collisions via coding theory,« in Designs, Codes, and
Cryptography, vol. 62, 2012, pp. 1–18.

[LT13a] M. Lamberger and E. Teufl, »Memoryless near-collisions, revis-
ited,« in Information Processing Letters, vol. 113, 2013, pp. 60–66.

[LT13b] G. Landais and J.-P. Tillich, »An Efficient Attack of a McEliece
Cryptosystem Variant Based on Convolutional Codes,« in Post-
Quantum Cryptography, ser. Lecture Notes in Computer Science,
P. Gaborit, Ed., vol. 7932. Springer-Verlag, 2013, pp. 102–117.

[Man80] Y. Manin, »Vychislimoe i nevychislimoe (computable and non-
computable) (in russian),« Sov. Radio, pp. 13 – 15, 1980.

[McE78] R. J. McEliece, »A public-key cryptosystem based on algebraic
coding theory,« DSN Progress Report 42–44, pp. 114–116, 1978.

[Meu12] A. Meurer, »A Coding-Theoretic Approach to Cryptanalysis,«
Ph.D. dissertation, Ruhr-Universität Bochum, Faculty of Mathe-
matics, Horst Görtz Institute for IT-Security, 2012.

[MH78] R. Merkle and M. E. Hellman, »Hiding information and signa-
tures in trapdoor knapsacks,« Information Theory, IEEE Transactions
on, vol. 24, no. 5, pp. 525–530, Sep 1978.

[MMT11] A. May, A. Meurer, and E. Thomae, »Decoding Random Linear
Codes in õp20.054nq,« in Advances in Cryptology—ASIACRYPT 2011,
ser. Lecture Notes in Computer Science. Springer-Verlag, 2011.

[Mor98] B. Moret, The Theory of Computation. Addison-Wesley, 1998.

[MRS09] C. Monico, J. Rosenthal, and A. Shokrollahi, »Using low den-
sity parity check codes in the McEliece cryptosystem,« in Interna-
tional Symposium on Information Theory—ISIT 2000, 2009, p. 215.

[MS78] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-
Correcting Codes, 2nd ed. North-holland Publishing Company,
1978.

[MS89] W. Meier and O. Staffelbach, »Fast correlation attacks on cer-
tain stream ciphers,« Journal of Cryptology, vol. 1, no. 3, pp. 159–
176, 1989.

177

[MTSB13] R. Misoczki, J.-P. Tillich, N. Sendrier, and P. S. L. M. Barreto,
»MDPC-McEliece: New McEliece variants from Moderate Density
Parity-Check codes,« in Information Theory Proceedings (ISIT), 2013
IEEE International Symposium on, July 2013, pp. 2069–2073.

[Nie86] H. Niederreiter, »Knapsack-type crytosystems and algebraic
coding theory,« Problems of Control and Information Theory, vol. 15,
no. 2, pp. 157–166, 1986.

[Pea88] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1988.

[Pet11] C. Peters, »Curves, codes, and cryptography,« Ph.D. dissertation,
Technische Universitet, Eindhoven, 2011.

[Pra57] E. Prange, »Cyclic Error-Correcting Codes in Two Symbols,«
AFCRC-TN-57-103, September 1957.

[Pra62] E. Prange, »The use of information sets in decoding cyclic codes,«
in IRE Transactions on Information Theory IT, 1962, pp. 5–9.

[RSA78] R. Rivest, A. Shamir, and L. Adleman, »A method for obtaining
digital signatures and public-key cryptosystems,« Communications
of the ACM, vol. 21, pp. 120–126, 1978.

[Sel08] A. A. Selçuk, »On Probability of Success in Linear and Differen-
tial Cryptanalysis,« Journal of Cryptology, vol. 21, no. 1, pp. 131–
147, 2008.

[Sen00] N. Sendrier, »Finding the permutation between equivalent linear
codes: the support splitting algorithm,« vol. 46, no. 4, Jul 2000, pp.
1193–1203.

[Sen11] N. Sendrier, »Decoding One Out of Many,« in Post-Quantum
Cryptography, ser. Lecture Notes in Computer Science, B. Y. Yang,
Ed., vol. 7071. Springer-Verlag, 2011, pp. 51–67.

[Sha48] C. Shannon, »A mathematical theory of communication,« Bell
System Technical Journal, vol. 27, pp. 623–656, 1948.

[Sha98] R. L. Shackleford, Introduction to Computing and Algorithms.
Addison-Wesley, 1998.

178 References

[Sho94] P. W. Shor, »Algorithms for quantum computation: Discrete loga-
rithms and factoring,« in 35th Annual Symposium on Foundations of
Computer Science, 20-22 November 1994, Santa Fe, New Mexico, USA.
IEEE Press, 1994, pp. 124–134.

[Sma03] N. Smart, Cryptography: An Introduction. McGraw-Hill Education,
2003.

[Spi96] D. A. Spielman, »Linear-time encodable and decodable error-
correcting codes,« IEEE Transactions on Information Theory, vol. 42,
no. 6, pp. 1723–1731, November 1996.

[SS92] V. M. Sidelnikov and S. O. Shestakov, »On the insecurity of
cryptosystems based on generalized Reed-Solomon codes,« Dis-
crete Mathematics and Applications 2 (4), pp. 439–444, 1992.

[SS13] N. Sendrier and D. E. Simos, »How easy is code equivalence
over Fq?« WCC 2013 - International Workshop on Coding and Cryp-
tography, April 2013.

[Ste89] J. Stern, »A method for finding codewords of small weight,« in
Coding theory and applications, ser. Lecture Notes in Computer Sci-
ence, J. W. G. D. Cohen, Ed. Springer-Verlag, 1989, pp. 106–113.

[Sun98] H. M. Sun, »Improving the security of the McEliece public-key
cryptosystem,« in Advances in Cryptology—ASIACRYPT’98, ser.
Lecture Notes in Computer Science, vol. 1514, 1998, pp. 200–213.

[Vit67] A. J. Viterbi, »Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm,« IEEE Transactions
on Information Theory, vol. 13, no. 2, pp. 260–269, April 1967.

[Wag02] D. Wagner, »A generalized birthday problem,« in Advances in
Cryptology—CRYPTO 2002, ser. Lecture Notes in Computer Sci-
ence, M. Yung, Ed., vol. 2442. Springer-Verlag, 2002, pp. 288–303.

	Contents
	Preface
	Acknowledgments
	Introduction
	Outline
	Notation
	Probability Theory and Combinatorics
	Information Theory
	Hypothesis Testing
	The Walsh Transform

	Algorithms and Complexity Theory
	The Birthday Paradox and Collision Search
	Searching for collisions in vectorspaces

	Cryptography and Cryptanalysis
	One-Way Functions
	Symmetric Cryptography
	Public-Key Cryptography
	Attack Models and Settings
	Distinguishing Attacks

	Summary

	Linear Codes
	General
	Channel Error Models
	Types of Decoding
	Random-Coding Bounds and Covering Codes
	Computational Problems in Coding
	Efficiently Decodable Families
	Convolutional codes
	Cyclic codes
	Hamming Codes
	LDPC and MDPC Codes

	Summary

	Information-Set Decoding
	Plain ISD and Lee-Brickell's Algorithm
	Stern's Algorithm
	A New Algorithm
	Explaining the Ideas Behind the Algorithm
	Complexity Analysis
	Parameters and Security

	Summary

	Code-based cryptography
	McEliece Cryptosystem
	The Original McEliece Construction

	Attacks in Code-Based Cryptography
	New Variants of McEliece Cryptosystem
	McEliece Based on Convolutional Codes
	McEliece Based on MDPC codes

	The TCHo cipher
	Proposed parameters

	Summary

	A Squaring Attack on QC-MDPC-based McEliece
	A Key-Recovery Attack
	Polynomial Square Roots
	The Attack

	A Message-Recovery Attack
	Analysis
	Results
	Summary

	Searching for Low-Weight Polynomial Multiples
	The Low-Weight Polynomial Multiple Problem
	Time–Memory Trade-off Approach
	Finding Minimum-Weight Codewords in a Linear Code

	A New Algorithm Solving LWPM
	Complexity Analysis
	Simulation Results
	The Attack

	A New Algorithm for Finding a Weight-4 Multiple
	Complexity analysis
	Simulation results

	Attacks on QC-MDPC McEliece in relation to LWPM
	Summary

	Learning Parity With Noise
	The LPN Problem
	The BKW Algorithm
	LF1 and LF2 variants

	A New Algorithm
	A Toy Example

	Algorithm Description
	Gaussian Elimination
	Merging columns
	Partial Secret Guessing
	Covering-Coding Method
	Subspace Hypothesis Testing

	Analysis
	Results
	Lapin with an Irreducible Polynomial

	More on the Covering-Coding Method
	Summary

	LPN over a Polynomial Ring
	The Ring-LPN Problem
	Formal Definition

	A New Algorithm for Ring-LPN with Reducible Polynomial
	A Low-Weight Code from the CRT Map
	Using Low-Weight Relations to Build a Distinguisher
	Recovering the Secret Polynomial

	Lapin Authentication Protocol
	The Improved Version for the Proposed Instance of Lapin
	Complexity Analysis
	Results
	Summary

	Concluding Remarks
	References

