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Abstract

Several fault attacks against pairing-based cryptography have been described theoretically in recent years.
Interestingly, none of these has been practically evaluated. We accomplish this task and prove that fault at-
tacks against pairing-based cryptography are indeed possible and even practical — thus posing a serious threat.
Moreover, we successfully conduct a second-order fault attack against an open source implementation of the eta
pairing on an AVR XMEGA A1. We inject the first fault into the computation of the Miller Algorithm and apply
the second fault to completely skip the final exponentiation. We introduce a low-cost setup that allows us to
generate multiple independent faults in one computation. The setup implements these faults by clock glitches
which induce instruction skips. With this setup we conducted the first practical fault attack against a complete
pairing computation.

Keywords

Pairing-Based Cryptography, Fault Attacks, eta Pairing.

I. INTRODUCTION

Public-key cryptography is based on mathematical problems which are assumed to be hard. The secret informa-
tion is protected by an attacker’s inability to solve these problems. However, by inducing hardware or software
faults into the computation of an algorithm and by analyzing the faulty result, an attacker might reveal that
secret information without the need to solve the mathematical problem. Since fault attacks were first described
in 1997 [1], they have been applied against various cryptographic algorithms [2] and became a standard tool to
facilitate cryptanalysis. Nowadays, many techniques exist to induce faults, e.g., clock glitching, power glitching,
and laser beams [3]. To thwart countermeasures against fault attacks, even two faults within one computation
have been performed [4]. These attacks are often called second-order attacks [5].

We conducted the first practical fault attack against a real-world pairing implementation. Pairings are bilinear
maps defined over groups on elliptic curves. Originally, they have been used for cryptanalytic techniques [6].
In 2001, however, they gained the research communities attention when they were used to realize identity-based
encryption [7], [8]. Today, a wide range of different pairings is used [9] and several cryptographic protocols
are based on pairings, e.g., attribute-based encryption [10], identity-based signatures [11], and key agreement
protocols [12]. Moreover, pairings help to secure useful technologies such as wireless sensor networks [13], [14].

When we argue about attacks on pairings, we need to understand that most pairings are computed with the
so-called Miller Algorithm, followed by a final exponentiation. In some cases like [15], the final exponentiation
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can be efficiently inverted but in general, both steps are considered hard to invert [16], [17]. This is different
from other cryptographic primitives such as elliptic curve cryptography (ECC) with only one computational step.
Here, a single fault is sufficient to reveal the secret [18]. Furthermore, in ECC the secret key is a scalar [19],
while in pairing-based cryptography (PBC) it is an elliptic curve point [7]. Hence, attacks on ECC [18] can not
simply be applied to PBC.

Previous results on fault attacks against pairing computations have two drawbacks. None of the proposed
attacks against PBC have been practically evaluated on a real pairing implementation to date. Furthermore, the
existing theoretical approaches use only a single fault to target either the Miller Algorithm, e.g. [20], [21], or the
final exponentiation [22]. It is not clear how the two steps can be combined to break the complete pairing with
a single fault. In [16], it was even argued that inverting pairings in one combined step does not seem feasible.
Therefore, it is very natural to inject two faults in one pairing computation to facilitate the inversion of pairings.

Our contribution: We conducted the first practical fault attack against a real-world pairing implementation. We
successfully realized a second-order fault attack against an open source implementation [23] of the eta pairing [24].
We skipped two instructions in the pairing computation. With the first fault we attacked the Miller Algorithm and
with the second fault we completely skipped the final exponentiation. We show a general mathematical analysis
for this type of attack and apply it to the concrete fault attack we conducted. Together with an automation of
the analysis, this easily leads to the secret key: for the most cases we were able to reveal the secret key in a
few minutes. This proves the claim that fault attacks on pairings are a serious threat. Moreover, we show that
our mechanism of skipping instructions can be used to practically realize previous attacks. In order to perform
general second-order attacks, we built a setup which precisely generates multiple clock glitches to skip specific
instructions of the code.

Remark on the eta pairing: The eta pairing is no longer recommended for security applications [25]–[27]. It
was important for us not to attack a self-made and tweaked implementation. For our target device, an XMEGA
A1 from the Atmel AVR family, the eta pairing was the only publicly available implementation with acceptable
performance. We emphasize that our attack is not at all restricted to this pairing and can be directly applied to
other pairings.

Organization: The rest of this work is structured as follows: in Section II we present mathematical background
information on pairings. In Section III, we discuss related work on fault attacks against pairings and categorize
existing attacks into two distinct categories. In Section IV, we describe the low-cost setup that we used for the
fault induction. In Section V, we describe how we used this setup to conduct a second-order fault attack against
an open source pairing implementation. We resume the description of the second-order fault attack in Section VI
by explaining how the faulty pairing computations can be analyzed to reveal the secret input point. Finally, we
conclude in Section VII.

II. BACKGROUND ON PAIRINGS

Let E denote an elliptic curve that is defined over a finite field Fq, where q = pm for some prime p and
m ≥ 1. Based on the chord and tangent law [19], we define an additive group (E,⊕). With [a]U we denote
scalar multiplication of U with a ∈ Z. For U, V ∈ E, let lU,V denote a normalized equation of the line through
U and V . With gU we denote a normalized equation of the tangent line through U at E. Hence, lU,V and gU
represent the lines that occur while computing U ⊕ V and [2]U , respectively.

A pairing is an efficiently computable, non-degenerate bilinear map e : G1 × G2 → GT , where G1 and G2

are rth order subgroups of an elliptic curve E. In this work, we always assume r to be prime. The group GT ,
which is a subgroup of F∗qk , is also of order r. Here, k is the so-called embedding degree, which is defined as
the smallest integer k such that r divides (qk − 1). Most pairings e(P,Q) on elliptic curves are computed by
first computing the Miller function fn,P (Q) [28] followed by a final exponentiation to the power z = (qk−1)/r.
For example with P ∈ E(Fq), the reduced tate pairing can be computed as e(P,Q) = fn,P (Q)z [29]. Since the
Miller function can be efficiently evaluated with the Miller Algorithm, cf. Algorithm 1, these two steps are often
called Miller loop and final exponentiation [30].



Algorithm 1 Miller Algorithm and final exponentiation

Require: n =
∑t−1

j=0 nj2
j with nj ∈ {0, 1} and nt−1 = 1, P,Q ∈ E

Ensure: fn,P (Q)

1: T ← P , f ← 1
2: for j = t− 2 .. 0 do
3: f ← f2 · gT (Q)/l[2]T,−[2]T (Q)
4: T ← [2]T
5: if nj = 1 then
6: f ← f · lT,P (Q)/lT⊕P,−(T⊕P )(Q)
7: T ← T ⊕ P
8: end if
9: end for

10: f ← fz . final exponentiation
11: return f

For a detailed background on the arithmetic of elliptic curves and cryptographic pairings we refer to [19], [31].
In this work, we invert a pairing with the help of faults. We induce faults in the computation of e(P,Q) and

reveal the secret input point Q. Thus, the faults facilitate the mathematical cryptanalysis and the so-called first
argument pairing inversion problem (FAPI-1): given a point P ∈ G1 and a value γ ∈ GT , both chosen at random,
find Q ∈ G2 such that e(P,Q) = γ [16]. (FAPI-2 is the problem with P unknown and Q ∈ G2 chosen at random.)
In the literature, FAPI-1 is usually split into two parts: the exponentiation inversion problem is, given (P, z, γ), to
compute the field element β ∈ F ∗qk such that βz = γ and β = fn,P (Q), where Q ∈ G2 is the solution of FAPI-1
for (P, γ) [32]. The other part of FAPI-1 is the Miller inversion problem: given (n, β, P ) with n ∈ N, β ∈ F ∗qk
and P ∈ G1 chosen at random, compute the point Q ∈ G2 such that fn,P (Q) = β, where fn,P (Q) is the output
of the Miller loop for input (n, P,Q).

III. EXISTING WORK ON FAULT ATTACKS

AGAINST PAIRINGS

In recent years, several fault attacks against pairings have been proposed [15], [20]–[22], [33]–[35]. Most of
them focus on the Miller Algorithm, while lately also an attack against the final exponentiation was published [22].

Some works contain categorizations of fault attacks, which help to structure this field and to classify known
and new attacks. In [2], fault attacks were classified following the main components of a processor, regarding the
precision of a fault an adversary is able to induce, and regarding the particular abstraction level on which a fault
is exploited. Fault attacks have also been categorized as having three main effects on an algorithm: knock out a
step in the computation, cause a loop to either end prematurely or run over, and to cause the data being operated
on to be corrupted in some way [21]. In the same work, the authors also considered the locations that a data
corruption fault can target in the Miller loop. Regarding fault attacks on pairing computations, faults were also
described as corrupting precomputed values or parameters, inputs to the pairing, and intermediate values [33]. All
these criteria are helpful to describe fault attacks on a high level, but they are not unambiguous: A fault which
knocks out a step in the computation so that the loop runs over cannot be uniquely categorized in accordance
with [21]. A fault in a program flow which alters the public input P after some iterations of the loop and thus,
also alters the intermediate values, cannot be uniquely categorized in accordance with [33].



Algebraic Categorization of Faults against the
Miller Algorithm

For the analysis of faulty computations, the physical realization of the fault attack is not relevant. Moreover,
different physical faults or fault injection techniques may lead to the same effect on the algorithm. In our
opinion, when talking about the effects a single fault can have on the Miller Algorithm, there are only two
distinct categories. A fault can either be modeled as having modified the Miller bound n, or it can be modeled
as having modified the Miller variable f .

Modification of n: In this category we classify all faults that can be modeled by a modification of the Miller
bound n to n′, cf. [15], [20], [33]–[35]. This includes the following interesting attacks:
• Modification of n while loading the loop counter.
• Modification of n to n′ directly in memory [20].
• Early termination of the Miller loop.
• Skipping of conditional if branches [34].
• Corruption of pointer to the Miller variable.
Modification of f : This category includes all faults which result in a modification of the Miller variable f ,

cf. [21], [33]. The Miller variable is updated during all iterations of the Miller loop. Thus, it can be modified during
any iteration of the loop. Note that the actual fault does not have to alter f directly, but, e.g., the intermediate
point T , cf. Algorithm 1. However, this will result in a modified computation of f . This category includes the
following interesting attacks:
• Disturb loading of P or Q during line computations.
• Skip update of point during line computations.
• Corrupt a field element directly in memory [21].
• Sign change fault attack [21].
All attacks from both categories can be realized with our setup from Section IV. We will present one practical

example in Section V-B.

IV. LOW-COST PLATFORM FOR MULTIPLE INSTRUCTION GLITCHES

In this section, we explain the fundamental setup that we used for our second-order fault attack. For this attack,
we use instruction skip faults, i.e., transient faults which skip parts of the executed code. We generate these faults
by means of clock glitching. In Section IV-A, we introduce our universal low-cost platform that generates clock
glitches, and Section IV-B shows how clock glitches can be used to skip instructions.

A. Low-Cost Glitching Platform

In this section, we detail our general setup for implementing CPU clock glitching. This is the mechanism of
altering the code execution by clocking the CPU outside its specification for a short period of time. Our setup
is similar to the setup of [36]. It is not specialized to attacks on pairings and can be used in other scenarios. It
consists of three main components: the glitcher, the host system, and the target. A block diagram of the setup
is shown in Figure 1, and Figure 2 shows a picture of our setup. The glitcher is used to generate the external
clock for the target device. It is also used to generate the glitches on the clock signal. The host system is used
to configure the glitcher and to acquire the output of the device under attack. The target executes the attacked
program. We now describe the three components individually.

Clock Glitcher: For the hardware of the glitcher we use the DDK [38]. This is a security-focused low-cost
open source development platform which consists of a field programmable gate array (FPGA) and an ARM CPU.
The FPGA is used to perform the timing critical parts such as generation of the target’s clock signal. The ARM
CPU is mainly used to interface the FPGA with the host system. It implements a serial terminal that provides
external control of the FPGA and an easy automation of the setup.
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Figure 1. Simplified block diagram of our setup. The host configures the glitcher, which generates the glitches on the external clock of
the target device. The target executes the program under attack.

The glitcher uses two internal clocks: a low frequency clock at fl = 33 MHz and a high frequency clock at
fh = 99 MHz. The FPGA implements a 32-bit timer that manages the timing of different events. The clock source
of the timer is fl. The glitcher provides a trigger input gl_trig to synchronize it with the target. Internally,
this input is basically used to reset the timer. The main functionality of the glitcher is to generate a clock signal

Figure 2. Practical Setup. The DDK (glitcher), located on the right, provides the clock (blue) and reset signal (red) to the XMEGA A1
(target), located in the center. The target also provides back to the DDK the trigger (green) indicating the beginning of the computation.
Finally, the ODROID-U2 board [37] (host), which configures and monitors the other devices, can be seen on the left, to which both the
target’s serial IO (yellow) and the DDK’s console (not shown) are connected to.
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Figure 3. The figure shows the output gl_clk of the glitcher with two glitches. The first glitch is introduced with a delay of t1 = 3
cycles of the 33 MHz clock, measured relatively to the trigger gl_trig. Its duration is d1 = 2. With p1 = 1, the 99 MHz clock is
directly used to generate the glitch pattern. The second glitch is introduced with a delay of t2 = 2 cycles of the 33 MHz clock, measured
relatively to the first glitch. Its duration is d2 = 1. With p2 = 2, the 99 MHz clock is gated in the second half of the 33 MHz clock
cycle. During a glitch, the delay between two consecutive positive clock edges is ∆ = 1/fh.

gl_clk for the target. This output can be switched between fl and fh. A glitch is defined by three parameters,
a timestamp t, a duration d, and a pattern p. When the timer reaches t, a glitch is generated by a synchronized
switch from fl to fh for d periods of fl, i.e., 3 · d periods of fh. We implemented two glitch patterns. For p = 1,
the high frequency clock fh is directly used to generate the glitch. For p = 2, the clock is gated during the
second half of the fl clock period.

It is crucial for our second-order attack to perform two synchronized glitches. Therefore, the glitcher implements
a glitch queue. This queue can be filled with up to 256 triples (t1, d1, p1), . . . , (t256, d256, p256). Then, for every
element in the queue, the corresponding glitch is generated. For second-order attacks only two glitches need to
be scheduled in the glitch queue. For more details on how the glitcher works, see [39]. To fill the queue, the
glitcher’s internal ARM CPU listens to the serial input at gl_cfg.

Figure 3 shows two glitches. The first glitch is introduced with a delay of t1 = 3 cycles of the 33 MHz clock,
measured relatively to the trigger gl_trig. Its duration is d1 = 2. With p1 = 1, the 99 MHz clock is directly
used to generate the glitch pattern. The second glitch is introduced with a delay of t2 = 2 cycles of the 33 MHz
clock, measured relatively to the first glitch. Its duration is d2 = 1. With p2 = 2, the 99 MHz clock is gated in
the second half of the 33 MHz clock cycle. During a glitch, the delay between two consecutive positive clock
edges is ∆ = 1/fh.

Host System: The host is a Linux-based system that configures the glitcher and automates the setup. It provides
two serial IO lines. One is used to configure the glitcher while the other is used to receive the output from the
target. The host system includes a Python [40] library to interface with the glitcher. For example, this allows
an in-place analysis and logging of the target’s output, followed by a direct reconfiguration for the next attacks.
Another functionality provided by the host is to periodically execute a self-test routine for testing the integrity
of the setup.

Target: For an automated reset of the target the glitcher controls the target’s reset pin. Furthermore, the CPU
of the target device is clocked with an external clock tgt_clk. We control the CPU clock by connecting
tgt_clk to the glitcher output gl_clk.

For the concrete attack of this paper, we assume that the target generates a trigger on output tgt_trig before
the computation of the target program is started. This signal is used to synchronize the target with the glitcher
via gl_trig. Generating the trigger on the target is used to simplify the setup. In a real attack, it has to be
generated by other means. For example, it could be derived from sniffing the targets IO to locate the command



that initiates the attacked computation.
Finally, the IO of the target is connected to the host for initiating the attacked computation and for analysis

of the computation’s results.

B. Instruction Skips

Clock glitches can generate instruction skip faults, instruction replacement faults, and data corruption faults
on an AVR CPU [36], which is our target in the concrete attack described in Section V. Introducing faults by
clock glitching is done by systematically overclocking the target device at defined instructions. Figure 3 shows
a waveform of the target CPU clock. A glitch is introduced at t1 = 3. If the difference ∆ of two consecutive
edges is outside of the functional range of the CPU circuit, there is a fair chance that the CPU computation gets
disturbed. For example, the opcode of the current instruction may be altered to a non-existing opcode. An AVR
CPU ignores invalid opcodes during program execution [36]. This results in instruction skips. Instruction skips
by faults can be used to provoke very different effects on the execution of a concrete algorithm. In Section V
and Section VI we will show how instruction skips can be used to attack a concrete pairing implementation.

V. SECOND-ORDER FAULT ATTACK AGAINST THE ETA PAIRING

This section describes our concrete second-order fault attack against an open source pairing implementation. To
conduct the attack, we use the setup that we explained in the previous section. This setup generates the required
clock glitches which induce instruction skips.

In Section V-A, we first give an overview how we perform second-order attacks with the setup. We will split
the attack into two phases, a profiling phase and a target phase. The profiling phase is only required once. We
use it to learn relevant characteristics of the target implementation. Then, in the target phase, the attack can be
performed against similar victim devices that store different secrets.

In Section V-B, we introduce our target device and explain our concrete attack on the pairing. Furthermore,
we will explain how we were able to break the target implementation in a few minutes for most of the cases.

A. Realization of Second-Order Fault Attacks against a Pairing Computation

We use the setup described in Section IV-A. This setup allows us to apply the instruction skip mechanism
and log the output of the computation. We place the first fault during the execution of Algorithm 1 such that the
cryptanalysis of the Miller inversion will be facilitated. The second fault will be introduced at line 10 to skip the
procedure call to the final exponentiation.

To configure the glitcher from Section IV-A, the timing t, the duration d, and the pattern p of the glitches
are required. The timing depends on the secret argument of the pairing. Hence, the timing is a priori unknown
to us, which makes it challenging to determine t1 and t2. Thus, we execute a profiling phase to find reasonable
configurations (t1, d1, p1) and (t2, d2, p2) for the two glitches. We emphasize that once the profiling is completed,
we do not need to repeat it when we attack new secrets on similar devices. Without loss of generality, we now
assume that the second argument Q ∈ G2 is the secret point.

1) Profiling Phase: The profiling relies on two assumptions:
• The assembly code of the target pairing implementation is known to us.
• We are able to execute arbitrary profiling code on a profiling device similar to the target device.

Based on these assumptions, we first execute a modified pairing implementation on the profiling device. We
modify the implementation in one or more of the following ways:
• We are able to compute the pairing for different values of Q that are chosen by us.
• We implement triggers T1 and T2 on two external IO pins. Here, T1 is raised immediately before the first

target instruction and T2 is raised immediately before the second target instruction.
• We implement an emulation mode that branches over the first target instruction from the assembly. This

emulates successfully skipping the first target instruction.



These modifications allow us to determine t1 and t2, the timings of the two target instructions, in every
computation of the modified pairing. Note that t2 is measured relatively to t1. To measure t2 we use the emulation
mode because we are interested in the delay for the case were the first fault has been successful. We execute the
modified implementation for different secrets Q chosen uniformly at random from G2. As a result, we obtain
distributions for t1 and t2. Since these distributions are obtained over the random choices of Q, we will choose
the parameter triples in the target phase according to them.

These steps of the profiling can be done either by an oscilloscope or by programming a special profiling mode
into the FPGA of the glitcher. The profiling mode counts the number of clock cycles between tgt_trig and
T1, and between T1 and T2.

In the next step of the profiling, we determine useful combinations of the remaining glitching parameters d1,
d2, p1, and p2. We do this by performing a large number of experiments where we use the glitcher to introduce
glitches at T1 and T2 that are close to the target instructions. We use the fact that we know the values of Q in
the profiling phase. Hence, we can predict the output of the algorithm when successfully glitching either one or
both of the target instructions. This allows us to identify successful tests and their respective parameters.

2) Target Phase: In the subsequent target phase, the actual target device with the unmodified code and the
unknown secret is attacked. Therefore, we perform a sequence of experiments with different combinations
of (t1, d1, p1) and (t2, d2, p2) until we are successful in skipping the two target instructions. We select the
combinations and their order based on the results of the profiling phase.

B. Realization of our Concrete Second-Order
Fault Attack against the eta Pairing

For the concrete pairing implementation we used the RELIC toolkit [23]. It includes C implementations of finite
field arithmetic, ECC, and PBC for different hardware platforms like Atmel’s AVR family. The RELIC toolkit has
also been used in TinyPBC for the implementation of PBC in wireless sensor networks [13]. To the best of our
knowledge it is the only freely available implementation of PBC for AVR CPUs. In our concrete second-order
fault attack, we targeted an AVR XMEGA A1 [41]. AVR controllers are also used in modern smart cards, while
our version is freely programmable. A microcontroller from the AVR family was also analyzed in [36]. For our
attack, we use RELIC version 0.3.5 without modifications of the source code. We compile the library with the
avr-gcc-4.8.2 toolchain and optimization level -O11. The RELIC AVR default configuration defines the eta
pairing [24] (function pb_map_etats()) as the standard pairing.

In our experiments both arguments P and Q are loaded from the internal memory. Loading the public argument
from memory and not via the serial line helps to simplify the setup, but is not essential for the attack. Then
e(P,Q) is computed on the target device and the output is returned on the serial IO tgt_io.

We placed the first fault at line 9 of Algorithm 1 such that the for loop is terminated after the first iteration.
The second fault was introduced at line 10 of Algorithm 1 to skip the procedure call to the final exponentiation.
A successful attack gave us a faulty computation where the for loop was executed exactly once and the final
exponentiation was not executed at all. In Section VI, we will show how this attack can be analyzed to obtain
the secret argument of the pairing. To understand how we attack the end of the for loop, we refer to Table I.
It shows how the compiler generates the end of the for loop. An instruction skip fault that removes the rjmp
instruction in line 11 causes the loop to terminate immediately. Hence, it realizes our attack that modifies the
Miller bound n.

1) Profiling Phase: In the first step, we estimated t1, the clock cycle of the rjmp instruction. Therefore, we
executed approximately 32,000 experiments with random choices of Q and measured t1 for each experiment.
The distribution of t1 is given in Table II. Then we determined t2, the number of clock cycles from the rjmp to
the call of the final exponentiation. We used the emulation mode of the profiling code. It allowed us to skip

1If the RELIC library is compiled with optimization level -O2, the compiler replaces the function call to the final exponentiation by
inline code. We currently work on an attack for -O2. Here, we will facilitate the exponentiation inversion by a fault during the computation
of the final exponentiation and by an improved mathematical analysis.



Table I
ASSEMBLY OF END OF FOR LOOP GENERATED WITH AVR-GCC .

3 call fb4_mul_dxs
4 .LVL43:
5 /*decrement loop counter LSB, MSB */
6 subi r16,1
7 sbc r17,__zero_reg__
8 .loc 1 247 0 discriminator 2
9 breq .+2

10 /*jump to loop begin */
11 rjmp .L2
12 .LBE2:
13 .loc 1 486 0
14 /* clean stack*/
15 subi r28,36
16 sbci r29,-2
17 out __SP_L__,r28
18 out __SP_H__,r29
19 pop r29

Table II
DISTRIBUTION OF THE EXECUTION TIME t1 OF THE RJMP INSTRUCTION IN TABLE I, DEPENDING ON THE INPUT Q OF ALGORITHM 1.

t1 in instruction cycles occurrence in %
422,780 1 < 0.01
424,515 1 < 0.01
424,941 1 < 0.01
427,731 1 < 0.01
431,069 1 < 0.01
581,804 3 0.01
581,903 28 0.08
582,001 7 0.02
582,002 590 1.66
582,100 30 0.08
582,101 1,763 4.95
582,111 1 < 0.01
582,199 297 0.83
582,200 32,890 92.35

the rjmp instruction at t1. We obtained a constant value of t2 = 28. Here, t2 is constant because if the first
glitch was successful in leaving the for loop, the code executed between t1 and t2 is independent of the secret.

To select combinations of d1, d2, p1 and p2 for the target phase we injected approximately 40,000 faults in less
than 72 hours. Since we knew Q during profiling, and hence also the values of t1 and t2, we were always able to
introduce the faults at the correct instructions. Regarding the two patterns p1 and p2 depicted in Figure 3, both
produced good results. To be safe, we propose to use both in the target phase. For the duration of the glitches,
we found d1 = 3 or d1 = 5 and d2 ≤ 5 as reasonable settings to use in the target phase.

2) Target Phase: Based on our results from the profiling shown in Table II we scheduled t1 as 582,200− i · 99
for i ∈ {0, . . . ,5}.2 If we did not succeed with one of these values, we fell back to a brute force search with
t1 = 582,200−i for i = 1,2,3, . . . until we were successful. We combined each value of t1 with each combination
of d1, d2, p1, and p2 that we determined in the profiling phase. For t2 we added a small safety margin such that t2 ∈

2We blame the occurrences at 582,199 as inaccurate and account them for the delay 582,200.



{26, . . . , 30}. Furthermore, we repeated each combination for 10 times because even with the correct parameters,
glitching is not always successful. Hence, for each value of t1 we performed 2 · 5 · 2 · 2 · (30 − 25) · 10 = 2,000
experiments. For our setup, one test requires 7.5 seconds on average. This includes configuration of the glitcher,
communication from target to host, and self-tests. Hence, we are able to perform more than 10,000 experiments
per day.

We will show in Section VI-B that we are able to efficiently determine from the target’s output whether both
instruction skips were successful or not. Furthermore, we will show that for a successful attack, we are able
to efficiently compute the secret Q. Hence, once we detected the first successful experiment, we discarded all
remaining experiments to start the next attack.

We repeated the attack for five different secrets, drawn uniformly at random from G2. We were always
successful in skipping both instructions. The analysis of the experiments showed that for all secrets it occurred
that t1 was either 582,200 or 582,101. This is in line with the distribution in Table II. Hence, for each attack we
required at most 2 · 2,000 experiments, whereas in the cases with t1 = 582,200, much fewer experiments were
required and it took us only minutes to be successful.

VI. ANALYSIS OF FAULTY COMPUTATIONS

We now resume the description of the second-order fault attack by explaining the mathematical analysis which
leads from the faulty computation to the secret key. We will first provide mathematical details of the attacked
implementation and then give two examples, one for each category from Section III. With our setup from
Section IV, we can realize any fault from both categories, i.e., all theoretical faults that have been presented so
far. However, we concentrate on two examples to illustrate both categories.

The first example is the concrete attack from Section V. It illustrates the modification of the Miller loop bound
n. The second example illustrates the modification of the Miller variable f . Both these analyses have already
been described similarly, cf. [15], [20], [21], [33]. In both examples, we assume to know P = (xP , yP ), while
Q = (xQ, yQ) is secret. We induce the first fault during the computation of the Miller Algorithm and use the
second fault to skip the function call to the final exponentiation. Thus, we do not have to solve the exponentiation
inversion, but only a facilitated Miller inversion.

A. Mathematical Details of the Attacked Implementation

We attacked an implementation of the eta pairing in characteristic 2 on supersingular elliptic curves. We decided
to attack the eta pairing [24] despite current research results which indicate that it should no longer be used for
security applications, cf. [25], [26]. This was due to the fact that the eta pairing is the default for AVR devices
in the attacked RELIC library [23]. However, the attack can be easily applied to other pairings. The concrete
implementation is very similar to the implementation proposed in [24, Section 6] and is presented in Algorithm 2.

The elliptic curve E : y2 + y = x3 + x is defined over the finite field Fq with q = 2m and m = 271 in
our implementation. For our case, i.e., m = 7 mod 8, it holds that #E(Fq) = 2m + 2(m+1)/2 + 1. We define
the extension field Fq4 = Fq(s, t) of degree 4, with s2 = s + 1 and t2 = t + s. Let z = (q4 − 1)/#E(Fq) =
(22m−1) · (2m−2(m+1)/2 + 1), n = 2(m+1)/2 + 1, and ψ(x,y) = (x+ 1 + 1, y+sx+ t). For input P,Q ∈ E(Fq)
the eta pairing η is then defined as

η(P,Q) = fn,−P (ψ(Q))z.

Because of the simple binary form of n, the main loop of Algorithm 1 mainly reduces to point doubling and
squaring of field elements in Fq4 , followed by one multiplication with l[2(m+1)/2](−P ),−P (ψ(Q)) for the least
significant bit of n. As in [24, Algorithm 3], the eta implementation computes the loop in reversed order in
the RELIC library [23]. Therefore, P ′ =

[
2(m−1)/2)

]
(−P ) needs to be defined. Furthermore, the first loop is



unrolled:
fn,−P (ψ(Q)) = l[2]P ′,−P (ψ(Q)) · gP ′(ψ(Q)) ·

(m−1)/2∏
j=1

g[2−j ]P ′(ψ(Q))2
j

.
(1)

Algorithm 2 Implementation of η(P,Q) on E(F2m) for m = 7 mod 8 and E : y2 + y = x3 + x.

Require: P = (xP , yP ), Q = (xQ, yQ) ∈ E
Ensure: η(P,Q)

1: u← xP , v ← xQ
2: g ← u · v + yP + yQ + 1 + (u+ xQ)s+ t
3: u← x2P
4: l← g + v + u+ s
5: f ← g · l
6: for i = 1 .. (m− 1)/2 do
7: xQ ← xQ

2, yQ ← yQ
2

8: xP ←
√
xP , yP ←

√
yP

9: u← xP , v ← xQ
10: g ← u · v + yP + yQ + 1 + (u+ xQ)s+ t
11: f ← f · g
12: end for
13: f ← fz

14: return f

Algorithm 2 shows how the computation of (1) is implemented in the RELIC library.

B. Example: Analysis after Modification of n

Now, we analyze the output of our second-order attack from Section V. For the concrete RELIC implementation,
the two instruction skip faults target the first execution of line 12 and the execution of line 13 of Algorithm 2.
Hence, Table I shows the generated assembly for line 12 of Algorithm 2.

In an execution were both fault injections are successful, the for loop is executed exactly once and the final
exponentiation is completely skipped. Since one loop is unrolled, this corresponds to an execution with two
iterations of the loop in Algorithm 1, and a modification of n from 2(m+1)/2 +1 to 22 +1. We see that our attack
is in the category of faults that modify n. Let α be the output of the faulty computation f ′n,P (ψ(Q)). With (1)
we obtain

α = f ′n,−P (ψ(Q)) = l[2]P ′,−P (ψ(Q)) · gP ′(ψ(Q)) ·

g[2−1]P ′(ψ(Q))2.
(2)

The following steps describe how we recover the secret input Q of Algorithm 2 from α.
1) Algebraic Model of the Secret: First, we define variables x and y representing the x-coordinate and the

y-coordinate of the secret Q. Now we describe Q as the root of a rational function. With (2) we define

fP (x,y) := f ′n,−P (ψ(x,y))− α. (3)

Since f ′n,−P (ψ(x,y)) is a product of four lines, fP (x,y) is of degree at most 4 in x and y. In our case the
secret is already defined over the strict subfield Fq of Fq4 . We model this by considering Fq4 as an k = 4

dimensional vector space over Fq. Then (3) can be re-written as four individual polynomials f (1)P , . . . ,f
(4)
P

over Fq. This will reduce the computational complexity of the analysis in the next step.



2) Computation of Candidates: At this point, we define the variety VQ = V
(
f
(1)
P , . . . , f

(4)
P

)
∩ E by a

(possibly overdetermined) system of nonlinear multivariate equations. Since Q ∈ VQ, we now compute all
elements of VQ in this step. The complexity of this step mainly depends on the degrees of f (1)P , . . . , f

(4)
P

and is reduced by using more equations than variables.
3) Testing Candidates: In the final step, we identify the secret from all elements in VQ. To do this, we compute

η(P,Q′) for the elements Q′ ∈ VQ. Each result is compared with η(P,Q) that has been obtained from an
error-free execution to identify the unique point Q.

Note that the case where P is the secret can be handled analogously. The major difference is that we replace
fP (x,y) from step 1 by a polynomial where x and y represent

√
xP and

√
yP . From Algorithm 2 we see that

the degree of fP (x,y) will now become at most d = 7. Due to the higher degree, the analysis will become more
expensive.

Note that restricting to subfields as in step 1 can often be exploited. For example, it has been used in [21] and
[32]. Indeed, the most common optimization for the implementation of pairings is to choose the first argument
P in G1 ⊆ E(Fq). Furthermore, for Type 1 pairings the second argument Q is also Fq-rational. For Type 3
pairings, Q is defined in G2 ⊆ E′(Fqk′ ) where E′ is a degree k′ twist of E and k′ divides k. For details on the
selection of pairing-friendly curves we refer to [42].

As explained in Section V, many experiments fail in delivering the intended faults, i.e., in simultaneously
skipping both target instructions. For a failed experiment, no candidate Q′ will pass step 3. Hence, in practice it
is crucial to automate step 2 and step 3 for identifying the first successful experiment. We automated the analysis
based on Sage [43], a free computer algebra system. Therefore, we re-implemented the eta pairing from the
RELIC library in Sage. This implementation allows us to compute the pairing on arbitrary inputs P , Q, and n.
Based on this implementation, we are able to automatically construct the multivariate polynomial (3) from step 1
for any value α. Step 2 is an invocation of the variety() function on the ideal generated by f

(1)
P , . . . ,f

(4)
P

and y2 + y = x3 + x. This computation is based on Gröbner basis techniques. Hence, using five equations for
only two variables accelerates this step. Finally, in step 3 we use the implementation of the pairing again, but
evaluate it at the candidate points Q′ to identify Q.

Our non-optimized implementation requires less than one second for processing one faulty output α. This is
less time than the target device requires to compute the pairing. Hence, the mathematical computation is not
critical for the performance of our attack.

C. Example: Analysis after Modification of f .

For this example, we attack two computations of η(P,Q). In both computations, the same input has to be
used. During the first computation, we only use one fault and skip the final exponentiation. We denote the output
with α1, i.e., α1 = fn,−P (ψ(Q)). In the second computation, we also skip the final exponentiation. Prior to this
fault, we induce another fault to skip an instruction which is involved in the update of the Miller variable f . In
the general description of the Miller Algorithm, this corresponds to the lines 3, 4, 6 or 7 of Algorithm 1. In our
concrete implementation, cf. Algorithm 2, also several instructions can be skipped to achieve a modification of
f . For this example, we choose to illustrate the modification of f by skipping the update of u once. Thus, either
line 3 or line 9 in any round of the for loop in Algorithm 2 can be skipped. We choose to skip line 3. We
denote the second faulty output with α2, i.e., α2 = f ′n,−P (ψ(Q)). Since α1 and α2 are known, we also know
α = α1/α2 ∈ Fq4 .

1) Algebraic Model of the Secret: The two values α1 and α2 have the same first factor g, which is computed
in line 2, but differ in their factor l, which depends on u. Since u depends on xP afterwards, which is not
attacked itself in this scenario, all further factors of α1 and α2 which are computed during the for loop



are equal. Thus, since all but the respective factors l of α1 and α2 are equal, we receive the equation

xP ·xQ + yP + yQ + 1

+ (xP + xQ) · s+ t+ xQ + x2P + s

= α · [xP ·xQ + yP + yQ + 1

+ (xP + xQ) · s+ t+ xQ + xP + s],

(4)

with all values except xQ and yQ known.
2) Computation of Candidates: The elliptic curve is defined by E : y2 + y = x3 + x. It gives us a second

equation with root Q. By writing both E and (4) as univariate polynomials in y and using the theory of
resultants, we get a univariate polynomial in x which has degree at most 3.

Res(α · f ′n,−P (ψ(x, y))− fn,−P (ψ(x, y)), E)

= (α− 1)2 · (−x3 − x)

+
[
(α− 1)(xP ·x+ xP + x+ yP + 1

+ (xP + x+ 1) · s+ t)− x2P + xP

]2
−
[
(α− 1)(xP ·x+ xP + x+ yP + 1

+ (xP + x+ 1) · s+ t)− x2P + xP

]
· (α− 1)

(5)

All roots of this polynomial are candidates for xQ. For each of these candidates we evaluate E and thereby
get two candidates for the secret point Q.

3) Testing Candidates: Since we know the concrete implementation, we now compute η(P,Q′) for all candi-
dates Q′ and compare the results with η(P,Q), which has been obtained from an error-free execution. Since
Equation 5 has degree at most 3 and E has degree 2 in y, we have to test at most six candidates to identify
the unique point Q.

Note that again, the roles of xQ and yQ can be switched. The resulting univariate polynomial in y has at most
degree 4, and we will then get three candidates for the secret point for each root. Thus, we have to test at most
twelve candidates.

VII. CONCLUSION

Several fault attacks against pairing-based cryptography have been published in the past. Interestingly, none of
these have been practically evaluated. We accomplished this task and proved that fault attacks against pairing-
based cryptography are indeed possible and are even practical — thus posing a serious threat. Moreover, we
successfully conducted a practical second-order fault attack against an open source implementation of the eta
pairing on an AVR XMEGA A1. We used this freely programmable chip to validate our attacks on a real-world
smart card platform. On the basis of a new two-part categorization of all conceivable fault attacks against the
underlying Miller Algorithm, we were able to reveal the secret point of a pairing in both categories.

For many pairing-based protocols, the output of the pairing can not directly be accessed by the attacker [44].
Hence, another direction of further research is how attacks on pairings can be applied to these protocols. However,
as the first practical realization of fault against pairing-based cryptography, our results prove the requirement
for further strong and efficient countermeasures. While generic countermeasures like checksums and redundant
computations might also prevent fault attacks, they might be too expensive or not effective against all types
of faults in the pairing-based context, as this turns out to be more complex than traditional cryptography. Our
successful attacks highlight the demand for further research on how to protect against the complete skipping of
the final exponentiation. Besides that, particularly the first and the last rounds of the Miller Algorithm have to
be secured against fault attacks. Given that even RSA in CRT mode is still struggling with the Bellcore attack



— after almost 20 years of intensive research — it is natural that the young field of pairing-based cryptography
requires more research after our successful attack.
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