323 research outputs found

    Cryptanalysis of PRINCE with Minimal Data

    Get PDF
    We investigate two attacks on the PRINCE block cipher in the most realistic scenario, when the attacker only has a minimal amount of known plaintext available. The first attack is called Accelerated Exhaustive Search, and is able to recover the key for up to the full 12-round PRINCE with a complexity slightly lower than the security claim given by the designers. The second attack is a meet-in-the-middle attack, where we show how to successfully attack 8- and 10-round PRINCE with only two known plaintext/ciphertext pairs. Both attacks take advantage of the fact that the two middle rounds in PRINCE are unkeyed, so guessing the state before the first middle round gives the state after the second round practically for free. These attacks are the fastest until now in the known plaintext scenario for the 8 and 10 reduced-round versions and the full 12-round of PRINCE

    Mind the Gap - A Closer Look at the Security of Block Ciphers against Differential Cryptanalysis

    Get PDF
    Resistance against differential cryptanalysis is an important design criteria for any modern block cipher and most designs rely on finding some upper bound on probability of single differential characteristics. However, already at EUROCRYPT'91, Lai et al. comprehended that differential cryptanalysis rather uses differentials instead of single characteristics. In this paper, we consider exactly the gap between these two approaches and investigate this gap in the context of recent lightweight cryptographic primitives. This shows that for many recent designs like Midori, Skinny or Sparx one has to be careful as bounds from counting the number of active S-boxes only give an inaccurate evaluation of the best differential distinguishers. For several designs we found new differential distinguishers and show how this gap evolves. We found an 8-round differential distinguisher for Skinny-64 with a probability of 2−56.932−56.93, while the best single characteristic only suggests a probability of 2−722−72. Our approach is integrated into publicly available tools and can easily be used when developing new cryptographic primitives. Moreover, as differential cryptanalysis is critically dependent on the distribution over the keys for the probability of differentials, we provide experiments for some of these new differentials found, in order to confirm that our estimates for the probability are correct. While for Skinny-64 the distribution over the keys follows a Poisson distribution, as one would expect, we noticed that Speck-64 follows a bimodal distribution, and the distribution of Midori-64 suggests a large class of weak keys

    Selected Topics in Cryptanalysis of Symmetric Ciphers

    Get PDF
    It is well established that a symmetric cipher may be described as a system of Boolean polynomials, and that the security of the cipher cannot be better than the difficulty of solving said system. Compressed Right-Hand Side (CRHS) Equations is but one way of describing a symmetric cipher in terms of Boolean polynomials. The first paper of this thesis provides a comprehensive treatment firstly of the relationship between Boolean functions in algebraic normal form, Binary Decision Diagrams and CRHS equations. Secondly, of how CRHS equations may be used to describe certain kinds of symmetric ciphers and how this model may be used to attempt a key-recovery attack. This technique is not left as a theoretical exercise, as the process have been implemented as an open-source project named CryptaPath. To ensure accessibility for researchers unfamiliar with algebraic cryptanalysis, CryptaPath can convert a reference implementation of the target cipher, as specified by a Rust trait, into the CRHS equations model automatically. CRHS equations are not limited to key-recovery attacks, and Paper II explores one such avenue of CRHS equations flexibility. Linear and differential cryptanalysis have long since established their position as two of the most important cryptanalytical attacks, and every new design since must show resistance to both. For some ciphers, like the AES, this resistance can be mathematically proven, but many others are left to heuristic arguments and computer aided proofs. This work is tedious, and most of the tools require good background knowledge of a tool/technique to transform a design to the right input format, with a notable exception in CryptaGraph. CryptaGraph is written in Rust and transforms a reference implementation into CryptaGraphs underlying data structure automatically. Paper II introduces a new way to use CRHS equations to model a symmetric cipher, this time in such a way that linear and differential trail searches are possible. In addition, a new set of operations allowing us to count the number of active S-boxes in a path is presented. Due to CRHS equations effective initial data compression, all possible trails are captured in the initial system description. As is the case with CRHS equations, the crux is the memory consumption. However, this approach also enables the graph of a CRHS equation to be pruned, allowing the memory consumption to be kept at manageable levels. Unfortunately, pruning nodes also means that we will lose valid, incomplete paths, meaning that the hulls found are probably incomplete. On the flip side, all paths, and their corresponding probabilities, found by the tool are guaranteed to be valid trails for the cipher. This theory is also implemented in an extension of CryptaPath, and the name is PathFinder. PathFinder is also able to automatically turn a reference implementation of a cipher into its CRHS equations-based model. As an additional bonus, PathFinder supports the reference implementation specifications specified by CryptaGraph, meaning that the same reference implementation can be used for both CryptaGraph and PathFinder. Paper III shifts focus onto symmetric ciphers designed to be used in conjunction with FHE schemes. Symmetric ciphers designed for this purpose are relatively new and have naturally had a strong focus on reducing the number of multiplications performed. A multiplication is considered expensive on the noise budget of the FHE scheme, while linear operations are viewed as cheap. These ciphers are all assuming that it is possible to find parameters in the various FHE schemes which allow these ciphers to work well in symbiosis with the FHE scheme. Unfortunately, this is not always possible, with the consequence that the decryption process becomes more costly than necessary. Paper III therefore proposes Fasta, a stream cipher which has its parameters and linear layer especially chosen to allow efficient implementation over the BGV scheme, particularly as implemented in the HElib library. The linear layers are drawn from a family of rotation-based linear transformations, as cyclic rotations are cheap to do in FHE schemes that allow packing of multiple plaintext elements in one FHE ciphertext. Fasta follows the same design philosophy as Rasta, and will never use the same linear layer twice under the same key. The result is a stream cipher tailor-made for fast evaluation in HElib. Fasta shows an improvement in throughput of a factor more than 7 when compared to the most efficient implementation of Rasta.Doktorgradsavhandlin

    Two Kinds of Biclique Attacks on Lightweight Block Cipher PRINCE

    Get PDF
    Inspired by the paper [10], using better differential characteristics in the biclique construction, we give another balanced biclique attack on full rounds PRINCE with the lower complexity in this paper. Our balanced biclique attack has 2^62.67 computational complexity and 2^32 data complexity. Furthermore, we first illustrate a star-based biclique attack on full rounds PRINCE cipher in this paper. Our star-based biclique attack has computational complexity 2^63.02 and the required data can be reduced to only a single plaintext-ciphertext pair, this is the optimal data complexity among the existing results of full round attack on PRINCE

    Secure Block Ciphers - Cryptanalysis and Design

    Get PDF

    The QARMA Block Cipher Family. Almost MDS Matrices Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour Constructions With Non-Involutory Central Rounds, and Search Heuristics for Low-Latency S-Boxes

    Get PDF
    This paper introduces QARMA, a new family of lightweight tweakable block ciphers targeted at applications such as memory encryption, the generation of very short tags for hardware-assisted prevention of software exploitation, and the construction of keyed hash functions. QARMA is inspired by reflection ciphers such as PRINCE, to which it adds a tweaking input, and MANTIS. However, QARMA differs from previous reflector constructions in that it is a three-round Even-Mansour scheme instead of a FX-construction, and its middle permutation is non-involutory and keyed. We introduce and analyse a family of Almost MDS matrices defined over a ring with zero divisors that allows us to encode rotations in its operation while maintaining the minimal latency associated to {0, 1}-matrices. The purpose of all these design choices is to harden the cipher against various classes of attacks. We also describe new S-Box search heuristics aimed at minimising the critical path. QARMA exists in 64- and 128-bit block sizes, where block and tweak size are equal, and keys are twice as long as the blocks. We argue that QARMA provides sufficient security margins within the constraints determined by the mentioned applications, while still achieving best-in-class latency. Implementation results on a state-of-the art manufacturing process are reported. Finally, we propose a technique to extend the length of the tweak by using, for instance, a universal hash function, which can also be used to strengthen the security of QARMA
    corecore