

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Secure Block Ciphers - Cryptanalysis and Design

Tiessen, Tyge; Rechberger, Christian; Knudsen, Lars Ramkilde

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Tiessen, T., Rechberger, C., & Knudsen, L. R. (2017). Secure Block Ciphers - Cryptanalysis and Design. Kgs.
Lyngby: Technical University of Denmark (DTU). (DTU Compute PHD-2016; No. 412).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/83998721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/secure-block-ciphers--cryptanalysis-and-design(1e4f24fc-d874-4404-b2e7-e2b87071b969).html

Secure Block Ciphers
Cryptanalysis and Design

Tyge Tiessen

Ph.D. Thesis

April 2016

Document compiled on April 25, 2016.

Supervisor: Christian Rechberger
Co-supervisor: Lars R. Knudsen

Technical University of Denmark
Department of Applied Mathematics and Computer Science

ISSN: 0909-3192
Serial no.: PHD-2016-412

Abstract
The rapid evolution of computational devices and the widespread adoption of digital
communication have deeply transformed the way we conduct both business and
everyday life and they continue to do so. The ability to ensure confidentiality and
integrity of information sent over digital channels is fundamental to this development
and is absolutely essential for all private and corporate communication, ranging from
bank transactions, digital citizen services, and remote computer access, to cell phone
calls and instant messaging. The vast majority of secured data sent over all types of
networks is encrypted using so-called symmetric ciphers. The security of our digital
infrastructure thus rests at its very base on their security.

The central topic of this thesis is the security of block ciphers – the most prominent
form of symmetric ciphers. This thesis is separated in two parts. The first part is
an introduction to block ciphers and their cryptanalysis, the second part contains
publications written and published during the PhD studies. The first publication
evaluates the security of a modification of the AES in which the choice of S-box is
unknown to the attacker. We find that some of the attacks that can be applied to the
AES can be transferred to this block cipher, albeit with a higher attack complexity.
The second publication introduces a new block cipher family which is targeted for
new applications in fully homomorphic encryption and multi-party computation.
We demonstrate the soundness of the design and its superior performance in these
applications. The third publication treats the cryptanalysis of Simon, a cipher
proposed by the NSA. In particular we discuss how the methods of differential
and linear cryptanalysis can correctly be applied to ciphers of this type. The
fourth publication introduces a cryptanalytic framework which generalizes differential
cryptanalysis. We demonstrate that attacks based on impossible transitions in this
framework can competitively break round-reduced block ciphers in the low-data
setting.

i

Resumé
Den hurtige og fortsatte udvikling af beregningsenheder og den udbredte overgang til
digital kommunikation har fundamentalt ændret den måde, hvorpå vi gør forretning
og begår os i hverdagen. Evnen til at sikre fortrolighed og integritet af den information,
vi sender via digitale kommunikationskanaler, er fundamental for denne udvikling og
er absolut essentiel for al privat og forretningsmæssig kommunikation, spændende
over alt fra bankoverførsler, digitale offentlige tjenester og fjernadgang til computere,
til mobiltelefonsamtaler og chatbeskeder. Langt størstedelen af sikret data, der bliver
sendt over alle typer netværk, er krypteret med såkaldte symmetriske ciphers. Vores
digitale infrastrukturs sikkerhed hviler således grundlæggende på sikkerheden af disse.
Hovedemnet for denne afhandling er sikkerheden af block ciphers – den mest

anvendte type af symmetriske ciphers. Afhandlingen består af to dele. Den første del er
en introduktion til block ciphers og kryptoanalyse af disse, mens den anden del består
af publikationer skrevet og udgivet under Ph.d.-studierne. Den første publikation
undersøger sikkerheden af en modificeret udgave af AES, hvor valget af S-box ikke
er kendt af angriberen. Vi konkluderer, at nogle angreb på AES kan overføres til
denne block cipher, dog med en forhøjet angrebskompleksitet. Den anden publikation
introducerer en ny type block cipher, som er målrettet nye anvendelser inden for
fuldstændigt homomorfisk kryptering og multi-party beregninger. Vi demonstrerer
designets korrekthed og overlegne ydeevne i disse anvendelser. Den tredje publikation
omhandler kryptoanalyse af Simon, en block cipher udviklet af NSA. Navnligt
diskuterer vi, hvordan differential og linear kryptoanalyse korrekt kan anvendes
på denne type cipher. Den fjerde publikation introducerer en type kryptoanalyse
som generaliserer differential kryptoanalyse. Vi viser, at angreb baseret på umulige
overgange i denne type kryptoanalyse kan bruges til vellykket at angribe block ciphers.

iii

Zusammenfassung
Rasante Fortschritte in der Computerentwicklung und die umfassende Ausbreitung
digigitaler Kommunikationsmittel haben tiefgreifende Veränderungen sowohl im
Wirtschafts- als auch im Alltagsleben nach sich gezogen, die unvermindert andauern.
In dieser Entwicklung spielt die Fähigkeit, die Vertraulichkeit und Unversehrtheit von
Information, die über digitale Kanäle gesendet wird, zu gewährleisten, eine Schlüs-
selrolle. Sie ist grundlegend für jegliche private und kommerzielle Kommunikation,
sei es Onlinebanking, Fernwartung, Handytelefonante oder Chatprogramme. Die
große Mehrheit der gesicherten Daten, die über alle Arten von Netzwerken geschickt
werden, wird verschlüsselt mithilfe von sogenannten symmetrischen Chiffren. Somit
bildet die Sicherheit dieser Chiffren das Fundament der Sicherheit unserer digitalen
Infrastruktur.

Den zentralen Gegenstand dieser Dissertation bildet die Sicherheit von Blockchif-
fren – die bedeutendste Art von symmetrischen Chiffren. Diese Arbeit ist in zwei
Teile aufgeteilt. Den ersten Teil bildet eine kurze Einführung zu Blockchiffren und
ihrer Kryptanalyse. Der zweite Teil enthält Veröffentlichungen, die im Rahmen der
Promotion entstanden und veröffentlich wurden. Die erste Veröffentlichung unter-
sucht die Sicherheit einer Abwandlung des AES, in dem die Spezifierung der S-Box
dem Angreifer unbekannt ist. Wie sich zeigt, lassen sich einige der Angriffe auf
AES auch auf diese Variante übertragen, allerdings zulasten des Zeitaufwandes des
Angriffs. Die zweite Veröffentlichung führt eine neue Familie von Blockchiffren ein,
die speziell für den Einsatz in Protokollen, die sicheres verteiltes Rechnen oder voll-
ständig homomorphe Verschlüsselung benutzen, entwickelt wurde. Wir zeigen, dass
diese Chiffrenfamilie Sicherheit bei gleichzeitig höherer Leistungsfähigkeit in diesen
Protokollen möglich macht. Die dritte Veröffentlichung behandelt die Kryptanalyse
der NSA-Chiffre Simon. Insbesondere wird diskutiert, wie die Methoden der differen-
tiellen und linearen Kryptanalyse auf Chiffren dieser Art korrekt angewandt werden
können. Die vierte Veröffentlichung führt einen neuen Typus von Kryptanalyse ein,
der eine Verallgemeinerung der differentiellen Kryptanalyse darstellt. Es wird ge-
zeigt, dass Attacken, die auf unmöglichen Übergängen in dieser erweiterten Struktur
fußen, beim Brechen rundenreduzierter Blockchiffren mit geringem Datenaufwand
konkurrenzfähig sind.

v

Acknowledgements
I truly enjoyed my time as a Ph.D. student. I am aware that this is to the smallest
part my own accomplishment and I would like to take this opportunity to express
my gratitude to those who made this such a pleasant experience.
First of all, I would like to thank my supervisor, Christian Rechberger who was

always available for guidance and support while leaving me freedom to pursue research
ideas of my own. Thank you for your encouragement and patience. I would also like
to thank Lars Ramkilde Knudsen, my co-supervisor, for managing a great research
group and even more so for being a source of inspiration, having an open door, and
putting things into perspective.

This gratitude naturally extends to all current and former members of our research
section: Mohamed Ahmed Abdelraheem, Martin R. Albrecht, Hoda A. Alkhzaimi,
Subhadeep Banik, Andrey Bogdanov, Christina Boura, Christian D. Jensen, Stefan
Kölbl, Martin M. Lauridsen, Christiane Peters, Arnab Roy, Elmar Tischhauser, and
Philip Vejre. All of you helped to make this a wonderful and inspiring research
group to be in. I particularly would like to thank Martin and Stefan for their humor,
endless discussions, distractions, enthusiasm, coffee, and beers.

I also thank Joan Daemen and Vincent Rijmen for joining the defense committee
and Christian D. Jensen for chairing it.

I would like to thank Gregor Leander for his hospitality and advice and Thorsten
Kranz and Christoph Beierle for collaboration and workshop co-organization. My
thanks also go to Kaisa Nyberg and Céline Blondeau for a great month at Aalto
University. I would furthermore like to thank all of my collaborators, coauthors and
the many great people in the crypto community who I had the pleasure to meet in
the past years.
My thanks also go to Martin Merker and Thomas Perrett for never failing to

distract me with graph theory problems over a good cup of coffee. To my friends in
Germany, thank you for your support, advice, tolerance, and affection.

My deep gratitude goes to my parents for their guidance and encouragement and
to my brother and my sister. Finally and most of all, I would like to thank my wife,
Imke, for her enduring patience, support, and love.

vii

Contents
Abstract i

Resumé iii

Zusammenfassung v

Acknowledgements vii

Contents ix

0 Introduction 1
0.1 Overview of the thesis . 2

I Introduction to block ciphers and their security 5

1 Block Ciphers 7
1.1 Notations and conventions . 7
1.2 Basic definitions . 7
1.3 Notions of security . 8

1.3.1 The adversary . 8
1.3.2 Attack goals . 10

1.4 General block cipher design considerations 12
1.5 Substitution-permutation networks 13
1.6 Feistel ciphers . 15

2 Cryptanalysis 17
2.1 Overview of attack types and attack constructions 17

2.1.1 Attack elements . 17
2.1.2 Combining attack elements 18

2.2 Differential cryptanalysis . 20
2.2.1 Basic differential cryptanalysis 20
2.2.2 Truncated differentials . 23
2.2.3 Impossible differentials . 24

2.3 Linear cryptanalysis . 24
2.4 Higher order-derivatives and integral cryptanalysis 27

2.4.1 Higher-order derivatives . 27
2.4.2 Integral cryptanalysis . 29

ix

Contents

Bibliography 31

II Publications 35

Security of the AES with a Secret S-box 37
1 Introduction . 39
2 AES Specification . 41

2.1 SubBytes . 42
2.2 ShiftRows . 42
2.3 MixColumns . 42
2.4 AddRoundKey . 43

3 Cryptanalysis of the AES with a Secret S-box 43
3.1 Differential and Linear Cryptanalysis 43
3.2 Integral Cryptanalysis on Four Rounds 43
3.3 Integral Cryptanalysis on Five Rounds 49
3.4 Integral Cryptanalysis on Six Rounds 50
3.5 A Note on Chosen Ciphertext vs. Chosen Plaintext 51

4 Conclusion . 52
A The AES Key Schedule . 53
B Lemma . 54

Ciphers for MPC and FHE 55
1 Introduction . 57
2 Schemes . 60

2.1 Multi-Party Computation (MPC) 60
2.2 Fully homomorphic encryption (FHE) 61
2.3 Zero-Knowledge proof of knowledge (ZK) 61

3 Description of LowMC . 61
3.1 Pseudocode . 62
3.2 Parameters . 63
3.3 Instantiation of LowMC . 63

4 Comparison with other ciphers . 64
5 Resistance against cryptanalytic attacks 65

5.1 Differential characteristics . 66
5.2 Linear characteristics . 68
5.3 Boomerang attacks . 69
5.4 Higher order attacks . 69
5.5 Experimental Cryptanalysis 69
5.6 Fixing the number of rounds 71

6 Comparison of Implementations . 71
6.1 MPC Setting . 72
6.2 FHE Setting . 74

7 Conclusions, lessons learned, and open problems 75

x

Contents

Observations on the SIMON block cipher family 83
1 Introduction . 85
2 Preliminaries . 88

2.1 Notation . 88
2.2 Description of SIMON . 89
2.3 Affine equivalence of Boolean Functions 89
2.4 Structural Equivalence Classes in AND-RX Constructions . . 90

3 Differential Probabilities of SIMON-like round functions 91
3.1 A closed expression for the differential probability 92
3.2 The full formula for differentials. 94

4 Linear Correlations of SIMON-like round functions 95
5 Finding Optimal Differential and Linear Characteristics 97

5.1 Model for Differential Cryptanalysis of SIMON 98
5.2 Finding Optimal Characteristics 98
5.3 Computing the Probability of a Differential 100

6 Analysis of the Parameter Choices 102
6.1 Diffusion . 102
6.2 Differential and Linear . 103
6.3 Interesting Alternative Parameter Sets 103

7 Conclusion and Future Work . 104
A Short tutorial on calculating probabilites in SIMON 106

A.1 Differential probabilities . 107
A.2 Square correlations . 109

B Python code to calculate probabilties in SIMON 113
C Additional Differential Bounds . 115
D Optimal parameters for differential characteristics 115

Polytopic Cryptanalysis 121
1 Introduction . 123
2 Polytopes and polytopic transitions 126
3 Impossible polytopic cryptanalysis 132
4 Impossible polytopic attacks on DES and AES 135

4.1 Attacks on the DES . 136
4.2 Attacks on the AES . 141

5 Conclusion . 143
A Markov model in polytopic cryptanalysis 146
B Truncated polytopic transitions and higher-order differentials 149

xi

0 Introduction
The development and rapid evolution of digital computers is without doubt the
technological advancement that most deeply changed modern life. The exponential
growth in computing power together with the reduction of size and power consumption
of computational devices has led us from room filling machines to computers that
easily fit in our pocket while providing computing power unparalleled by the former
machines. While this could certainly have been a major source of change by itself,
it was the pervasion of communication networks and advances in communication
technology that allowed computers to have the impact that we see today – most
importantly the creation of the Internet and mobile telephone networks.

It is no coincidence that this development was accompanied by the foundation and
growth of modern cryptology. The central goal of cryptology is to provide methods
that enable secure communication over insecure channels. Incidentally, the channels
of modern communication are often inherently insecure both due to the nature of the
transportation medium, such as radio waves, and the disparate ownership structure
of these networks. It is thus that cryptology came to be a cornerstone of today’s
communication infrastructure making services such as electronic bank transactions,
remote access, and private messaging possible.

Classically there are three characteristics of secure communication: confidentiality,
integrity, and authenticity. Confidentiality refers to the inability of an eavesdropper
to infer any information contained in the communication. Integrity describes the as-
surance that the information has not been modified during transmission. Authenticity
is the ability to prove the source of a certain information.
A method or algorithm that provides confidentiality of information is called a

cipher. Using a cipher, a sender can encrypt information and send the encrypted
information to a recipient. The recipient can then again use the cipher to decrypt and
receive the original information. To avoid an eavesdropper decrypting the message,
the exact method used to encrypt the information must be secret. This is commonly
achieved be initializing the cipher with a secret key. A cipher thus more accurately
corresponds to a family of encryption and decryption methods.
Generally speaking, there are two types of ciphers. The first and older kind are

the symmetric ciphers. With these, the same key is used for both encryption and
decryption. The second type are the asymmetric ciphers — also called public-key
ciphers. With these, decryption requires a different key than encryption. Importantly,
they are constructed such that knowledge of one key does not grant knowledge of the
other key. While asymmetric ciphers generally have more powerful applications and
enable solutions in situations where symmetric ciphers fail, symmetric ciphers tend
to have considerably faster implementations. In practice, one often combines both

1

0 Introduction

types to benefit as well from the speed of symmetric ciphers as from the versatility
of asymmetric ones.
Both symmetric and asymmetric ciphers can be used to achieve the two other

characteristics of secure communication: integrity and authenticity. Symmetric
ciphers are used here in a construction called message authentication code (MAC).
The corresponding construction for asymmetric ciphers is called a digital signature
scheme.

In recent decades, the scope of cryptology has been broadened to encompass more
diverse applications that center generally around the problem of retaining control
over some information while at the same time allowing other parties limited access to
this information. A good example for this is Yao’s millionaires’ problem: a group of
millionaires wants to determine the richest among them without revealing their exact
wealth to each other. This and related problems can be solved with a cryptographic
techniques called secure multi-party computation (MPC). Other examples of such
techniques include fully homomorphic encryption (FHE) which allows an external
party to do meaningful computation on encrypted data without gaining knowledge
of either the data or the unencrypted result of the computation, and verifiable
computation where a party can prove to another party that it indeed accurately
performed some desired computation.
We will concentrate here on the oldest branch of cryptology: symmetric ciphers.

There are two types of symmetric ciphers: stream ciphers and block ciphers. While
stream ciphers encrypt messages as a whole, block ciphers only encrypt one fixed-size
piece of information at a time. Block ciphers hence require a message to be separated
into pieces of this size. To avoid security problems which can arise when every piece
of information is encrypted independently of the others — in particular when the
same piece of information is always encrypted to the same encrypted piece — block
ciphers should always be executed in a so-called mode of operation. This is an
embedding structure which connects the encryptions of the single message pieces to
create dependencies between these. These modes also allow block ciphers to act like
stream ciphers. Here we will only concern ourselves with block ciphers.

0.1 Overview of the thesis
This is a thesis by publication which consists of two parts. In the first part, we
give a concise introduction to block ciphers and their cryptanalysis. Topics covered
include different notions of block cipher security, some general design strategies, and
important cryptanalytic techniques such as differential and linear cryptanalysis. For
more details and background references, [21] is a good source.
The second part of the thesis contains a collection of publications which treat

various aspects of block cipher security. In the first publication, a variant of the
Advanced Encryption Standard is considered in which an integral building block —
the S-box — is considered to be unknown to the attacker. It is demonstrated that
integral cryptanalysis can still be used to attack up to six rounds of this cipher,

2

0.1 Overview of the thesis

recovering both the key and the secret S-box.
In the second publication, a new family of ciphers is introduced which is optimized

for deployment in fully homomorphic encryption or multi-party computation schemes.
In such schemes, the non-linear operations of a cipher pose the largest bottleneck.
This new cipher family is thus designed from ground up with the goal of minimizing
its non-linearity. The publication includes a cryptanalytic evaluation of the scheme as
well as an implementation comparison with existing schemes. It should be mentioned
that there exist attacks which can break some members of the cipher family with less
time complexity than exhaustive search [12]. An updated version of this publication
will soon be publicly available.

The third publication analyzes the type of round functions used in the block cipher
Simon, published by the NSA. In particular, exact and efficient methods to determine
the linear and differential round transition probabilities are derived. Those are then
used to find optimal differential and linear trails using a computer-aided approach.
Further building up on this, the parameter space of Simon is explored with regard
to security against these attack vectors.
The fourth publication introduces a framework which generalizes the methods of

differential cryptanalysis. It is shown that impossible transitions in this framework
can be used to successfully attack round-reduced versions of the Advanced Encryption
Standard and the Data Encryption Standard with low data complexity. Furthermore
it is shown that higher-order differentials correspond to the generalized form of
truncated differentials in this framework.

3

Part I

Introduction to block ciphers
and their security

5

1 Block Ciphers
In this chapter, we will introduce the concept of a block cipher, discuss the different
notions of block cipher security, and take a look at some basic design strategies.

1.1 Notations and conventions
We will denote the finite field with n elements as Fn or as Fpm where p is a prime
number and the characteristic of the field. We will denote the logarithm to the base
2 as log. Random variables will be written with bold capital letters, e.g., X. When a
probability distribution is not explicitly mentioned, a uniform distribution is assumed.
The size (or cardinality) of a set A is denoted as |A|. Let A ⊆ X. When the superset
X is clear from the context we will denote the complement X \A of A in B as A.

1.2 Basic definitions
Conceptually a block cipher is some method that allows us to encode a fixed-size
piece of information — such as a word of fixed length in some alphabet — using a
secret piece of information, a key. The hope for any well-designed block cipher is
that it should not be possible to extract the original information from the encoded
word without knowledge of the secret key. We start be defining the basic concepts of
block ciphers.
A block cipher is a family of bijective functions Enck parametrized by a key

k ∈ K, |K| < ∞ that map a finite set of messages M to a finite set of encrypted
messages C:

Enck :M→ C.

The input to a block cipher is called the plaintext, the output is called the ciphertext.
These are usually denoted as m and c. AccordinglyM and C are called the plaintext
space (or message space) and the ciphertext space. K is called the key space. The
function Enck is called the encryption function, its inverse Deck := Enc−1

k is called
the decryption function.
Usually M, C, and K will have a group structure e.g., Fnp or Fpn . The most

common choices are the binary representations Fn2 and Fm2q . The elements of these
can nicely be associated with bit-strings of length n or qm respectively and are thus
very amenable for implementation in computers. Due to this, we define the block
size n of a cipher as n := dlog |M|e and likewise the key size l as l := dlog |K|e. In
this thesis we will only be concerned with bit-based ciphers.

7

1 Block Ciphers

1.3 Notions of security
We expect from a secure cipher that it is not possible for an adversary to infer the
plaintext from the ciphertext without knowledge of the secret key. Let us assume an
attacker has collected some amount of ciphertext. Usually the attack will have some
a priori knowledge about the plaintext. This could for example be the language or
some format that the plaintext will be in. The attacker could then always try out all
possible keys until one of the keys returns a plausible message.
Such an attack, in which the adversary simply tries out all keys, is called an

exhaustive search or a brute-force attack. Unless the adversary has absolutely no
knowledge about the plaintext or is given only a very limited amount of ciphertext,
such an attack is always possible. Brute-force attacks thus pose a natural reference
for the quality of any attack.
Of course to apply an exhaustive search, the attacker must know the cipher and

the possible keys. To thwart this type of attack one could simply try to keep the
block cipher itself a secret. While this has been done in the past, and sometimes
continues to be done, Auguste Kerckhoffs famously formulated in 1883 [17] what is
nowadays a generally accepted principle:

Kerkhoffs’ principle. The security of a cipher should solely rely on the secrecy of
the key and never on the secrecy of the encryption method.

Adhering to this principle will ensure that even an adversary with full knowledge
of the encryption method, will not be able to break the cipher. Today this principle
is often even taken a step further: it is considered best practice to make the design
of a block cipher public. While this removes any secrecy of the method, it enables
the large community of academic, industrial, governmental, and leisure cryptanalysts
to scrutinize the design. This either leads to broken designs, which should not be
used in the first place, or to an increased level of trust in the security of the cipher.

We will now start to take a closer look at the components that together define the
different notions of block ciphers security.

1.3.1 The adversary
When we want to define what a secure block cipher is, the first question that we
have to answer is “Secure against whom?”. What are the abilities that we need to
assume an adversary can potentially have and use to break an encryption scheme?

For being able to attack the cipher, the adversary needs access to some data. The
extent to which the adversary is granted access defines four different main types of
attack scenarios.

Definition 1.1 (Ciphertext-only attacks). The adversary is only given access to a
number of ciphertexts.

Definition 1.2 (Known-plaintext attacks). The adversary is given access to a
number of corresponding plaintext-ciphertext pairs.

8

1.3 Notions of security

Definition 1.3 (Chosen-plaintext attacks). The adversary can choose one set of
plaintexts for which she will be given the corresponding ciphertexts.

Definition 1.4 (Adaptively chosen-plaintext attacks). The adversary has access to
the encryption of any plaintext of her choice during the whole attack.

Clearly each attack type gives the adversary more power then the previous attack
types. While especially the chosen-plaintexts attacks might seem to be giving the
adversary unrealistically much access, there are practical scenarios in which attacks
of this type are possible. Furthermore, as security against chosen-plaintext attacks is
a stronger security notion, we might want our ciphers to be secure against even such
an adversary.

For the last two types of attacks, there exist the corresponding ciphertext versions:
chosen-ciphertext and adaptively chosen-ciphertext attacks. These types of attacks
can also be combined to give the strongest types of access: chosen-plaintext chosen-
ciphertext attacks and the corresponding adaptive versions.

Block ciphers are finite objects and as such they can always be attacked just given
enough time and data. As mentioned above, it is for example always possible to find
the key by exhaustive search. To make meaningful statements about the security of
a block cipher, it is hence necessary to state what the maximally allowed time and
the maximally allowed amount of data are. The natural upper bound for the allowed
time — the so-called time complexity — is the time needed to exhaustively try out
the whole key space. The natural upper bound for the maximally allowed knowledge
of data — the so-called data complexity — is the whole codebook, i.e., all possible
plaintext-ciphertext pairs.

The data complexity can directly be measured in allowed plaintext-ciphertext pairs.
For the time complexity it is not so straightforward. The usually taken and arguably
most objective method of determining the time complexity of some attack is stating it
in relation to the time that the encryption of one plaintext would take. Unfortunately
this relation depends on the concrete computing machine (computing model) and
the complexity of an attack in relation to the complexity of an encryption can vary
depending on this.1 One can argue though that while the concrete machine used for
an attack can make a difference of a small factor the general order of magnitude of
an attack’s time complexity should not deviate too much.
A third resource that an attacker needs and whose amount is often not stated in

concrete attacks is the allowed memory capacity. Whereas a high time complexity
can often be handled by parallelizing the attack and distributing it to a large number
of computers, a high memory complexity cannot so easily be dealt with and can pose
the bottleneck in practical attack scenarios. High memory complexity can also have
a large effect on the time complexity as the access time increases considerably when
moving from cache to RAM to disk storage.

1A good example are modern CPUs that have dedicated processor instructions for encryptions
with the block cipher AES, making encryptions relatively cheaper in comparison to older CPUs
where AES encryptions could not utilize these instructions.

9

1 Block Ciphers

1.3.2 Attack goals
To define the security of a cipher, we need to both define the power and limitations
and the goal that the attacker tries to achieve. We will now introduce a number of
different possible attack goals in decreasing order of difficulty for the attacker.

Definition 1.5 (Key-recovery attack). In a key-recovery attack, the attacker’s goal
is to retrieve the key.

As said before it is (almost)2 always possible to find the key by exhaustive search.
A key-recovery attack would thus only be considered a break of the cipher’s security if
it has a time complexity below that of a brute-force attack. Of course it is principally
possible for the designers of a cipher to explicitly state lower security claims.

Definition 1.6 (Global deduction attack). In a global deduction attack, the goal of
the attacker is to find an efficient method for decrypting arbitrary ciphertexts.

While this is a weaker attack goal, as we do not require the attacker to recover
the key itself, a method that can decrypt arbitrary ciphertexts is usually equally
devastating for the security of a cipher. For a well-designed cipher we would hope
that this should not be possible for any ciphertexts which gives rise to the third
possible attack goal.

Definition 1.7 (Local deduction attack). In a local deduction attack, the goal of
the attacker is to find a correct plaintext-ciphertext pair different from those that
she has been given directly.

While it is intuitively clear that we would want a good cipher to be resistant
against the above mentioned attack goals, for the next goal it is not initially clear
why susceptibility to it can pose a security risk.

Definition 1.8 (Distinguishing attack). In a distinguishing attack, the attacker
is given access to both the cipher with a uniformly randomly chosen key and to a
function that has been chosen uniformly at random from all invertible mappings
from the plaintext space to the ciphertext space. The goal of the attacker is then to
determine which of the two is the cipher and which is the random function.

Intuitively it is a desirable property of a cipher to look like a random function.
After all this is what we would expect from the ciphertexts: they should look random.
Although this type of attack looks like it is mostly of theoretical interest, we will
later see that ciphers which fail to be indistinguishable from random permutations
are often also vulnerable to the other attack goals (see Section 2.1).
The counterpart to the last type of attack goal, the distinguishing attack, is an

idealized block cipher:
2Exceptions are scenarios in which the attacker simply lacks enough information to deduce the

key, for example due to a lack of data, a lack of knowledge about the plaintext distribution in a
ciphertext-only attack, or the existence of equivalent keys.

10

1.3 Notions of security

Definition 1.9 (Ideal cipher). An ideal cipher for a message spaceM, a ciphertext
space C and a key space K is a family of functions indexed by k ∈ K where each
function is chosen independently and uniformly at random from all bijectiveM to C.

An ideal cipher tries to capture the intuitive notion of what we would like a cipher
to behave like. It is important to note that the ideal cipher is not a block cipher
according to our definition. It corresponds rather to the set of all possible block
ciphers (for givenM, C, and K) endowed with the uniform probability distribution.
It thus inherently lives in a probability space — no concrete instantiation can ever
be an ideal cipher. The best we can hope for is thus that a good concrete design
is indistinguishable from an ideal cipher, i.e., an adversary trying to achieve a
distinguishing attack will only succeed with a probability very close to one half.3

We now have a range of different types of adversaries and attack goals that together
create different security notions. Combining the strongest type of adversary, the
adversary with adaptive chosen-ciphertext chosen-plaintext access, with the weakest
type of attack, the distinguishing attack, creates the strongest notion of security for
a block cipher (among the notions discussed here). Today we expect a good cipher
to be secure in any of the notions that one can construct with the adversaries and
goals described here.

We should also mention that there exists a range of other types of adversaries and
attack goals that give rise to other interesting security notions. It is for example
possible to give the adversary different computational restrictions for the offline
phase, the phase where she does not yet have access to the cipher, than for the online
phase. This distinction is essential for example in the classical time-memory trade-off
(see Hellman [15]). It is also possible to give the adversary access to two versions of
the cipher with different keys where the adversary can choose the difference between
the keys, allowing for so-called related-key attacks (see for example Biham [2] or
Knudsen [18]). An attacker that can restrict the cipher to only choosing its key from
a subset of all keys, creates the notion of weak-key attacks (see for example [26]). An
interesting variation of the attack goal are multi-target attacks where the adversary
has access to a collection of block ciphers and the goal is to break one of them.

Shannon’s confusion and diffusion
Shannon described in his fundamental work [32] two properties that ciphers
should have to help frustrate attacks: confusion and diffusion. By diffusion,
Shannon referred to the ability of the cipher to make any statistic which is
simple to detect in the plaintexts difficult to detect in the ciphertexts and vice
versa. Today we might rephrase this as that a good cipher should behave like a

3As it is often the case in symmetric cryptography, it is not possible to define “very close to one half”
precisely without making an arbitrary choice of constant. In theoretical cryptography, idealized
constructs usually have a size parameter that can tend to infinity allowing limit definitions as
common in complexity theory. As concrete block ciphers are always finite, this is unfortunately
not possible here.

11

1 Block Ciphers

random permutation. By confusion, Shannon referred to the feature of a cipher
that key recovery remains difficult, even when the adversary is given a large
number of known plaintext-ciphertext pairs. Today we might say that a cipher
should be secure against key recovery attacks under known-plaintext attacks.
While this is an integral requirement for ciphers nowadays, before Shannon the
security of many encryption schemes would break down under known-plaintext
attacks.

1.4 General block cipher design considerations
From the general notions of block cipher security, let us now move to considerations
for practical block cipher constructions. Let us start the discussion with a quote
from Claude Shannon from the article that is often credited with founding modern
cryptography in which he describes what a good cipher design should ideally achieve:

It is not enough merely to be sure none of the standard methods of
cryptanalysis work — we must be sure that no method whatever will
break the system easily. This, in fact, has been the weakness of many
systems; designed to resist all the known methods of solution, they later
gave rise to new cryptanalytic techniques which rendered them vulnerable
to analysis. (Claude E. Shannon, 1949 [32, p. 704])

Despite the fact that almost 70 years have passed since Shannon’s work and despite
the many considerable advances that have been made in symmetric cryptology, the
described situation has not changed: in lack of any method to ensure that an efficient
cipher design is secure against all possible attacks our best option of determining a
cipher’s security is still to ensure that the cipher is secure against all known attack
vectors.

Before we discuss such attack techniques on block ciphers just yet, let us review
some general design decisions that have proven themselves as good starting points
for cipher design. A first property that is certainly desirable is that a cipher should
make any simple relationship between plaintexts too complicated to be detected in
the ciphertexts. Intuitively we would like the cipher to thoroughly mix the possible
messages to conceal such relations.4
Without discussing the role of the keys yet, how can we build a function that

achieves such a mixing property? Certainly if we randomly picked a permutation,
it would be a good mixing function. But any such function would be impossible to
describe, let alone to implement. We thus need some method to build such mixing
function that is viable. Shannon [32] suggested to take the composition (product) of
many simple functions to create a complex one. Intuitively this makes sense: just

4While we seem to have some intuitive idea of what such a well-mixing (pseudo-random) function is,
it seems extremely difficult to give a sensible, formal definition. As not uncommon in cryptology
we will let our intuition guide us.

12

1.5 Substitution-permutation networks

as with shuffling cards, repeating a large number of mildly random operations, we
expect to get quite thoroughly random results.
How then do we get the key into play? To achieve security against known- or

chosen-plaintext attacks, we would like the relationship between the key, plaintext and
ciphertext to be as complex as possible while maintaining an efficient construction.
We can utilize the same approach that we already use to achieve a good mixing:
By blending the key with the message during or between application of the simple
functions, the key will be intermingled with the message in a complex way. The
repeated application of these simple functions can thus not only be used to hide the
relationship between the plaintext and the ciphertext but also to hide the relationship
between the plaintext, the ciphertext, and the key.
All modern block ciphers follow this concept which gives rise to the following

definition: a product cipher is a block cipher that consists of the repeated composition
of functions:

Enck = frkr ◦ · · · ◦ f
1
k1
, r > 1,

where the keys for the smaller functions are derived from the general key k via
a mapping called key schedule, ki = KeySchedulek(i), 1 ≤ i ≤ r. The functions
f ik, 1 ≤ i ≤ r are called round functions and the respective keys ki are called round
keys. If the functions f i are identical (or almost identical), such a cipher is also
referred to as an iterated block cipher. The intermediate results between rounds are
either called intermediate messages or states. As we will only be concerned with
product ciphers, we will implicitly assume for the rest of this thesis that block ciphers
are of this kind.

The difficulty of designing good product ciphers lies then in determining suitable
round functions, a good method of blending the key into the message, and the number
of rounds needed to achieve a sufficiently complex relationship between plaintext,
ciphertext, and key. In the following, we will introduce the two most prominent
design classes.

1.5 Substitution-permutation networks
One possibility of constructing good round functions is this: to avoid the expensive
implementation cost of good mixing operations on the whole message, we chop the
message into smaller parts, apply good mixing operations on each part, and then
use a cheap mixing operation to mingle all parts again. This corresponds to two
different mixing layers called substitution layer and permutation layer. A cipher
which is constructed as a sequence of substitution and permutation layers is called a
substitution-permutation network (abbreviated as SPN).

In the substitution layer, the state is separated into smaller segments — usually all
of the same size. Each of the segments is then substituted independently of the other
segments according to some rule. Usually this is done via a so-called S-box (“S” as
in substitution) which is simply a look-up table. Depending on the design, the same
S-box might be used for all segments, or different S-boxes can be employed. Choosing

13

1 Block Ciphers

S S S S S S
P

round key

S S S S S S
P

round key

S S S S S S
P

round key

Figure 1.1: A schematic of a substitution-permutation network. S-boxes are denoted
by S, the permutation layers are denoted by P.

good S-boxes is a large field of research in itself but as they are often the only source
of non-linearity in the cipher, good non-linear properties are usually desirable.

The permutation layer operates on the entire state. As such it is desirable to keep
the complexity of this layer low to achieve an efficient implementation. In hardware
the cheapest implementation for the permutation layer would be a mere reordering
of the state bits which corresponds to a rewiring – hence the name permutation
layer. In modern ciphers, especially those designed for software implementation, the
permutation layer is often more generally a linear or affine transformation.

To mix a round key into the state, many options such as key-dependent S-boxes are
available. The most common technique is though to add a key of the same length as
the state to the state using either modular or exclusive-or addition This can be done
either before both layers, between them, or after them. See Fig. 1.1 for a schematic
of a substitution-permutation network.
By far the most important block cipher based on a substitution-permutation

network is the Advanced Encryption Standard (abbreviated AES). Originally named
Rijndael, it was standardized by the U.S. National Institute of Standard and Tech-
nology (NIST) in 2001 [1] after being selected as finalist among fifteen submissions
in a two-round standardization process. Due to the importance of the AES and its
influence on many other cipher designs we will shortly describe its general structure.
For more details on the specification as well as a good background cipher design
decision, on the AES by its designers Daemen and Rijmen [9] is a good source.

The AES encrypts messages of sixteen bytes, or 128 bits. It has either ten, twelve,
or fourteen rounds, depending on whether the key size 128, 192, or 256 was chosen.
Each round consists of a substitution layer and a permutation layer followed by the
exclusive-or addition of a round key to the state. In the substitution layer, each byte
is substituted according to an S-box — the same S-box for all bytes and rounds.

14

1.6 Feistel ciphers

F

k

F

k

F

k

Figure 1.2: A schematic of a Feistel network.

The permutation layer is itself subdivided into two linear layers. To best describe
these transformation, we imagine the state of sixteen bytes arranged in a four by
four matrix. The first layer simply rotates the rows of the matrix, each row by a
different value. The second layer applies a linear transformation to each column of
the matrix separately. This linear transformation has been chosen to provide an
excellent mixing of the byte values in each column. Together both layers ensure that
a very strong mixing is achieved after few rounds of the cipher.

1.6 Feistel ciphers
The basic idea underlying Feistel ciphers, also called Feistel networks, is similar to
that of substitution-permutation networks. Namely the idea is to split the state
into segments, apply the complex and hence expensive transformations only to
segments and use a linear and cheap transformation to mix the segments. In contrast
to substitution-permutation networks, Feistel ciphers do not apply the complex
transformations to all segments in parallel but apply the transformation only to a
subset of segments each round. Furthermore, Feistel ciphers allow non-invertible
transformations for the segments.

In the classical Feistel construction, the state is split into two equally sized segments.
The first segment is sent through some transformation, usually confusingly also called
the (Feistel) round function, and the mixed with the second segment via an exclusive-
or addition. Both the result of this addition and the original value of the first segment
are kept and used as the two input segments to the next round — only with reversed
roles. The key is usually introduced by being added to either the input or the output
of the transformation. See Fig. 1.2 for a schematic of a Feistel network.

15

1 Block Ciphers

Some advantages of a Feistel network with respect to a substitution-permutation
network are the following: the possibility to use non-invertible round functions giving
the designer more freedom of choice, the potentially smaller implementations in
hardware both due to the fact that an expensive non-linear function is only applied
to a part of the state, and the fact that the same network can be used for decryption,
only with an inverted sequence of round keys. But then, as only a part of the state
undergoes a non-linear transformation each round, generally more rounds are needed
to achieve security than in comparable SPN constructions.

There exist many generalizations of the classical Feistel constructions and Feistel
networks can differ in a number of ways. Instead of using same-sized segments,
segments of different size may be used. Instead of splitting the state into two
segments, more segments can be used. In constructions where more than two
segments are used, the number of Feistel round functions used per round of the cipher
can differ as well as how these are used to mingle the segments.

The original Feistel cipher

The most influential Feistel cipher is the Data Encryption Standard (abbreviated
DES). It is the predecessor of the AES and was standardized in 1977 [10]. The
underlying original design was developed by Horst Feistel at IBM [14] from
whom the name stems. This first version of the Feistel cipher differed in two
ways from the DES and most of todays schemes. Firstly, the switching of
segments at the end of each round functions was key-dependent in each bit. So
each bit was switched or not switched independently of the other bits depending
on the round key. Secondly, the round function, which was build as one round
of an SPN, contained a key-dependent choice of S-boxes.

16

2 Cryptanalysis
In this chapter, we will first give an overview of different types of attack elements
and how they can be combined to form more complex attacks. We will then move on
to discuss some of the cryptanalytic techniques used in the publications of this thesis.

2.1 Overview of attack types and attack constructions
The simplest and most straight-forward attack which is always available given one or a
few pairs of known plaintext and ciphertext is the exhaustive key search or brute-force
attack. To determine the correct key the available ciphertexts are decrypted under
all possible keys and any key for which this does not result in the correct plaintexts
is discarded. To identify the correct key with high probability, at least around the
order of 2k trial decryptions are needed where k is the size of the key. Because this
attack is (almost) always possible, it is used as the reference frame for most other
attacks.
To construct an attack which can be executed faster than a brute-force attack,

some weakness in the cipher design needs to be used. Central for such cryptanalytic
attempts is the fact that block ciphers are round-based. As elaborated in Section 1.4,
the whole idea behind using round-based designs is to reach security through the
repeated application of round functions that by themselves are not cryptographically
secure. Any cryptanalytic attempt will thus start by analyzing the round function
and its weaknesses. The difficult part is to determine those weaknesses that create
persisting vulnerabilities also in the repeated composition of the round functions.

2.1.1 Attack elements
Successful attacks are often a combination of different attack elements that together
can be used to recover the key or distinguish the cipher. We will now briefly describe
the major types of such attack elements.

Partial key guessing The importance of a thorough mixing of the whole key with
the state is manifested in the partial key guessing technique. Suppose that after
some number of rounds there is some part of the output state that, when written as
a function of the input bits and the key bits, does not depend on all key bits. We can
then determine the value of these key bits by using exhaustive search only on them.

If this technique can successfully be applied, it lends itself to a divide-and-conquer
approach to key recovery, strongly reducing the time complexity to determine the full

17

2 Cryptanalysis

key. This technique is rarely though applicable to all rounds of a decently designed
cipher. Its importance lies much rather in how it can be combined with many other
attack elements to construct key recovery attacks.

Deterministic distinguisher A deterministic distinguisher is a property of the
cipher that holds for any key and would be highly improbable to hold for a random
permutation. It is important that such property can be evaluated efficiently to be
useful as a distinguisher. Typically such distinguisher could take the form of a linear
equation in the ciphertext and plaintext bits. Examples of such distinguishers which
we will discuss later are integral properties and truncated differentials.

To every property that always holds, there is the complementary property that
never holds. Clearly both are equally good at distinguishing the cipher from a random
permutation. It can at times be conceptually easier to work with the impossible
property. This is notable for example in impossible differential attacks.

Statistical distinguishers A statistical distinguisher is a property that is key-
dependent but will for most keys be improbable to hold for a random permutation.
A statistical distinguisher can usually be regarded as a random variable over the
probability space that results from picking the cipher key uniformly at random.
Again it is important that whether or not this property holds must be efficiently
determinable.
The important characteristic of a statistical distinguisher is the probability with

which it holds. As an exact determination is often infeasible, it is common to make
some independence assumptions that allow an easier deduction of this probability. Im-
portant examples of statistical distinguishers are differentials, linear approximations,
and boomerangs.

2.1.2 Combining attack elements
Powerful attacks are almost always the result of a combination of different attack
elements to construct attacks that can cover more rounds or to turn a distinguishing
attack into a key recovery attack. We will discuss now some typical combinations of
attack elements.

Partial key guessing + a distinguisher To turn a distinguishing attack into a key
recovery attack, we can combine a distinguisher with partial key recovery. Let us
assume that the distinguishing property is determined from some of the input bits to
round 1 and some of the output bits of round r of the cipher. Let us further assume
that those output bits of round r can be calculated from the output bits of round
r + s and some but not all of the key bits.

An attacker given access to the output bits of round r + s and the corresponding
input bits but not the intermediate bits, can now try all key bit combinations needed
to determine the intermediate state bits. By discarding all those key bit combinations

18

2.1 Overview of attack types and attack constructions

that do not give intermediate state bits for which the distinguishing property holds,
the attacker can reduce the possible key space, potentially to the point of determining
the key exactly.

There are two potential pitfalls in this combination. The first one is, it needs to be
made sure that the property is unlikely to hold if the output of round r+s is partially
decrypted with a wrong key bit guess. This is commonly known as the wrong-key
randomization hypothesis. It usually requires that the quality of the distinguishing
property does not hold equally well over all rounds but is specific to round r.

The second pitfall is that the constructed attack might not be actually better than
an exhaustive key search. Two factors need to be taken into account when determining
the time complexity of this combined attack: the time needed to determine the validity
of the distinguishing property and the quality of the distinguishing property. The
latter determines the probability with which wrong key guesses can be weeded out.
To improve the quality of the attack, the distinguisher can at times be combined

with partial key guessing both at the beginning and at the end of the distinguisher,
not only at the end.

Partial key guessing + partial key guessing Assume that some part of the state
after r rounds only depends on the input bits and some, but not all key bits. Let
us furthermore assume that the same partial intermediate state when written as a
function of the output bits of round r + s and the key bits, also does not depend on
all key bits.

An attacker can now, given access to a number of input texts to round 1 and the
corresponding output texts of round r + s, mount the following attack. First she
creates a list of all possible intermediate states and the corresponding key bit values,
determined from the input texts of round 1. Then she creates the corresponding list
of intermediate states and key bit values, now determined from the output bits of
round r + s. To determine potential key candidates, she can look for intermediate
states that appear in both lists. To further reduce the number of key candidates, she
can test whether the key bits from the first list and the second list are compatible
for states that appear in both lists.
This type of attack is called a meet-in-the-middle attack and was first applied

to 2DES, a concatenation of two DES ciphers using different keys [11]. The time
complexity of such an attack is essentially determined by the more expensive one
of the two partial key guesses. The downside is that it requires memory to store at
least one of the two lists (the other one can be generated and discarded entry by
entry). It is often possible though to drastically reduce the memory requirements
with a slighty higher time complexity using Floyd’s cycle finding method (see for
example Morita, Ohta, and Miyaguchi [28]).

Distinguisher + distinguisher At times it is possible to combine two distinguishers
to create a longer distinguishing property on a block cipher. For example, if we
have two deterministic distinguishers, one on the first r rounds, and another on the

19

2 Cryptanalysis

second s rounds, that are contradicting each other in the intermediate states, we can
construct an impossible property. This is for example done to construct impossible
differentials using two probability-one truncated differentials in the miss-in-the-middle
technique.

It is also possible to combine statistical distinguishers. This is for example done in
differential-linear attacks [25] or in boomerang attacks [36]. To be able to determine
the success probability of these attacks, it is necessary to make additional assumption
about independences which are not always satisfied (see for example [29]).

2.2 Differential cryptanalysis
One of the most important cryptanalytic techniques available today is differential
cryptanalysis. Here we will give a concise introduction to the basic principles and
some important extensions.

2.2.1 Basic differential cryptanalysis
In differential cryptanalysis, the cryptanalyst tries to find a correlation between the
difference of two plaintexts and the difference of two ciphertexts. If the correlation is
sufficiently stronger than the expected correlation for a random permutation, it may
be used in a cryptanalytic attack.

The core idea behind differential cryptanalysis is to choose the difference such that
it is unaffected by the way the round keys are introduced into the state. Usually
round keys are either added as vectors over F2 or as elements of Zn for some n ∈ N.
More generally we can say that the round key is most often introduced via some
group operation.
For the sake of simplicity, we restrict ourselves here to the case where the group

operation is addition of vectors over F2. Most (if not all) definitions can equally be
made for a general group addition. This restriction also implies that the texts or
states, at which we are looking, lie in Fn2 for some n ∈ N.
Definition 2.1 (Differential). A difference δ between two messages m1 and m2 is
defined with respect to the addition over Fn2 as m1 ⊕m2. A differential is a pair of
differences (α, β). These differences denote a difference in the input and a difference
in the output for some function.

We write α f−→ β to indicate a differential over a function f or just α −→ β when
the function is clear from the context. To write the event that a specific pair of texts
(x, x⊕ α) follows the differential, i.e. that f(x⊕ α)⊕ f(x) = β, we write α f−→

x
β.

Definition 2.2 (Differential probability). Let X ∈ Fn2 be a uniformly distributed
random variable. Let f : Fn2 → Fm2 . The differential probability of α f−→ β is defined
as

Pr
X

(
α

f−→
X

β
)

(2.1)

20

2.2 Differential cryptanalysis

which can also be written as

Pr
X

(f(X)⊕ f(X⊕ α) = β) . (2.2)

This probability is also denoted as DPf (α, β) or DP (α, β) when the respective
function is clear from the context.

For a random function (and similarly for a random permutation), the probability
of any given differential with non-zero input difference is very low, on average 2−n.
If we have for a function f a differential of probability significantly higher than 2−n,
we can use this differential to distinguish the function f from a random function (or
permutation).

There are two problems that we encounter when we are trying to find a differential
suitable for a distinguisher:

1. How do we determine the differential probability when exhaustively trying all
text pairs is computationally infeasible?

2. How do we determine the differential probability of functions with secret
parameters (e.g. block ciphers with secret keys)?

Let us first discuss a partial solution to the first problem for composed functions.
In a product cipher, it is natural to consider intermediate differences taken between

the single rounds. Let now f : Fn2 → Fn2 be a function generated through the
concatenation of r round functions:

f = fr ◦ · · · ◦ f2 ◦ f1. (2.3)

Definition 2.3 (Differential trail). An r+1-tuple of differences (α0, α1, . . . , αr) with
differences in Fn2 is called a differential trail (or differential characteristic).

We will write α0
f1−→ α1

f2−→ · · · fr−→ αr to indicate the differential trail, or
α0 −→ α1 −→ · · · −→ αr when the individual functions are clear from the context.

We are now interested in the probability that a pair of texts follows this trail, i.e.,
takes all the specified intermediate differences.

Definition 2.4 (Differential trail probability). For a function f : Fn2 → Fn2 , f =
fr ◦ · · · ◦ f2 ◦ f1 and an associated differential trail (α0, α1, . . . , αr), the differential
trail probability is defined as

Pr
X

(
α0

f1−→
X

α1 and α1
f2−−−−→

f1(X)
α2 and · · · and αr−1

fr−−−−−−−−−→
fr−1◦···◦f1(X)

αr

)
(2.4)

where X is a random variable, uniformly distributed over Fn2 .

We will also write DTPf (α0, α1, . . . , αr) or DTP (α0, α1, . . . , αr) to denote this
probability.

21

2 Cryptanalysis

In most attacks, we have no information about intermediate states of the cipher,
so we have no possibility of determining which intermediate differences a pair of
texts takes. Why then are we at all interested in differential trails? This is for two
reasons. Firstly, it is much easier to determine the probability of a differential trail.
Secondly, differential trails allow us to determine a lower bound on the probability of
a differential.

When we multiply the probability of a differential with the size of the input space,
we obtain the number of ordered text pairs that adhere to the differential. Likewise
when we multiply the probability of a differential trail with the size of the input
space, we obtain the number of ordered text pairs that adhere to the differential
trail. But every pair of texts has to adhere to one and only one differential trail. All
differential trails that share the same input and output difference with a differential
hence create a partition of the text pairs that adhere to the differential. This allows
us to formulate the following proposition:

Proposition 2.5 (Differential composition). The probability of a differential (α0, αr
over a function f : Fn2 → Fn2 , f = fr ◦ · · · ◦ f2 ◦ f1 is the sum of the probabilities of
all differential trails (α0, α1, . . . , αr) that it contains:

Pr (α0 −→ αr) =
∑

α1,...,αr−1∈Fn2

Pr (α0 −→ α1 −→ . . . −→ αr−1 −→ αr) . (2.5)

Summing over the probabilities of a subset of all differential trails for a given
differential, we thus obtain a lower bound for the probability of this differential.

A note on differentials, trails and characteristics

In the first paper on differential cryptanalysis, Biham and Shamir [4] used the
term “characteristic” for what we call a differential trail here. Lai and Massey
[24] introduced term differential. The term “differential characteristic” seems to
be used first by Langford and Hellman [25]. Daemen [7] introduced the term
“differential trail”. The phrasing “differential path” is also somtimes used [33].
In this text, we will mostly be using “differential trail” as the most descriptive
term.

How do we determine the probability of a single differential trail now? To do this
exactly is unfortunately infeasible in most cases. The common way of tackling the
problem is to assume that the probability of a differential trail is the product of the
single round transitions. Although the single rounds are still key dependent, the
round transition probability usually is not as a key addition leaves the difference
untouched. While the assumption of round independence is clearly not satisfied
in general, experiments suggest that this approximation holds fairly well in many
practical cases.
In block cipher cryptanalysis, the assumption of round independence is often

deduced in a two-step process. Firstly we assume a model in which the round

22

2.2 Differential cryptanalysis

independence holds, secondly we explicitly state the assumption that this model
is close to the reality. The standard model uses a cipher where the round keys
are independent, uniformly distributed random variables. In addition to this, it is
required that the cipher has a structural property that ensures that the addition
of the round keys is sufficient to make the round transition properties independent.
Such ciphers are called Markov ciphers (see [24]).
The assumption that the actual differential probabilities of a given cipher with a

secret key correspond to the probabilities derived in this model is called the stochastic
equivalence hypothesis. This hypothesis states that differential probabilities behave
under almost all keys as they behave under independent, uniformly random round
keys.
In accordance with this, we will implicitly assume here that the probability of

a differential trail corresponds to the product of the individual round transition
probabilities:

Pr
(
α0

f1−→ α1
f2−→ · · · frαr−−−→

)
=

r∏
i=1

Pr
(
αi−1

fi−→ αi

)
. (2.6)

If there now exists a differential α −→ β over r rounds of a cipher that has a
probability p which is much larger than 2−n, we can use this differential to distinguish
these rounds from a random permutation in a chosen-plaintext attack. By requesting
the encryption values of sufficiently many plaintext pairs, we can test whether the
output difference corresponds to β as often as predicted by the differential probability.
This distinguisher can then be combined with partial key guessing to construct a key
recovery attack.

2.2.2 Truncated differentials
Sometimes it can be useful to bundle many differentials together to achieve stronger
distinguishers. For example, starting with an input difference α the most probable
output difference might not be sufficiently probable to be used in an attack. But by
testing for a larger number of the most likely output differences instead of just one,
we may be able to find a strong enough distinguisher. The problem hereby is how to
efficiently determine whether a difference belongs to this set of most probable output
differences. Depending on the size of this set, it might be too difficult to determine
membership (or write down this set).
Truncated differentials are such collections of differentials that have a structure

that makes it easy to define them and determine membership: a truncated difference
is defined as an affine subspace of all differences and a truncated differential is then
defined as a pair of truncated differences. The probability of such a truncated
differential is defined as the probability that a pair of texts chosen uniformly at
random from all text pairs with a difference in the truncated input difference is
mapped to a difference in the output truncated difference.

23

2 Cryptanalysis

2.2.3 Impossible differentials
In standard differential cryptanalysis, we try to use differentials that have a sufficiently
high probability to distinguish the cipher from a random permutation. Another
possibility is to use differentials that have zero probability. Such differentials are
termed impossible differentials. Clearly it is difficult to use only one impossible
differential for distinguishing. But given a slightly larger number, we are already
able to distinguish a cipher from a random permutation.

To this end, impossible truncated differentials — truncated differentials of proba-
bility zero — form an important class of collections of impossible differentials. This is
particularly due to the fact that such impossible truncated differentials can often be
constructed using two probability-one truncated differentials in the earlier mentioned
miss-in-the-middle technique.

The development of differential cryptanalysis

Differential cryptanalysis was originally introduced at the CRYPTO ’90 confer-
ence by Biham and Shamir [4]. Lai and Massey [24] introduced the concept of
a differential as a collection of differential trails with the same input and output
difference. Truncated differentials were devised by Knudsen [20]. Impossible
differentials were independently developed by Biham, Biryukov, and Shamir [3]
and Knudsen [19].

2.3 Linear cryptanalysis
To introduce the concepts of linear cryptanalysis, we will use an inductive approach
which differs somewhat from standard introductions.

Let f : Fn2 → Fn2 be a bijective mapping on Fn2 . Let (A,A) and (B,B) be two
partitions of Fn2 such that |A| =

∣∣A∣∣ and |B| = ∣∣B∣∣, i.e., the partitions each split Fn2 in
two parts of equal size. When we choose a random element X from A, the probability
that f(X) is in B clearly is 1

2 if f is a random permutation. Thus if we choose A and
B such that this probability deviates from 1

2 , we can use this to distinguish f from a
random permutation by just determining for a sufficient number of random inputs
from A the number of their images that are in B. Note that if the probability that a
random element from A is mapped to B is p, then the probability that a random
element from A is mapped to B is also p while the respective probabilities for A to
B and A to B are both p− 1. Clearly if we know f , it is always possible to find A
and B such that this probability is 1.
But now consider the following simple cipher:

Enck0,k1(x) = f(x⊕ k0)⊕ k1.

For this simple cipher already, our approach fails due to the key additions of k0 and
k1: we can neither tell when an input to f is in A nor when an output of f is in B.

24

2.3 Linear cryptanalysis

This is unavoidable. Let us therefore try to do the next best thing: If we choose A
and B such that A + k0 is always either A or A and B + k1 is always either B or
B, then we know that an element of A is mapped to an element of B always with
probability either p or 1− p for a fixed set of keys. If p deviates from 1

2 , it is thus
again easy to distinguish Enck0,k1 from a random permutation.
As we see in the next lemma, the restriction that A+ k0 is always either A or A

determines the form of the set A to a large degree.

Lemma 2.6. Let A be a subset of Fn2 of size 2n−1 with the property that for any
k ∈ Fn2 we have either A+ k = A or A+ k = A. Then A must be an affine subspace
of dimension n− 1.

Proof. Let K ⊆ Fn2 be the set of keys k for which A + k = A. Clearly 0 is in K.
Also for any k, k′ ∈ K, k + k′ is also in K as A+ k + k′ = A+ k′ = A. The set K
thus forms a linear subspace of Fn2 . Assume without loss of generality that 0 is an
element of A (if not we can switch the roles of A and A). Then 0 + k is in A for any
k ∈ K and thus K ⊆ A. But also 0 + a ∈ A for any a ∈ A and hence A ⊆ K. Thus
A = K and A is a linear subspace of dimension n − 1. Then A also has to be an
affine subspace of dimension n− 1.

From this, we can conclude that the most sensible partition of the space into two
equally sized parts is to choose affine subspaces. We can furthermore always set A
and B to be the linear spaces (i.e., they include 0 as an element) and set A and B to
the affine halves of the space.
How can we efficiently determine whether a value lies in the space A or A? We

can use the fact that hyperplanes are uniquely described as an orthogonal set with
respect to some vector using the inner product. Let 〈a, b〉 denote the canonical inner
product of Fn2 such that

〈a, b〉 =
n⊕
i=1

aibi.

Then there exists a unique α ∈ Fn2 such that A = {a ∈ Fn2 | 〈α, a〉 = 0}. This α is
called the linear mask associated with A. Knowing α, we can determine whether x
is in A or in A by evaluating whether 〈α, x〉 is equal to 0 or 1. A partition of Fn2
into two affine subspaces of dimension n− 1 thus uniquely corresponds to a non-zero
linear mask α ∈ Fn2 and vice versa.
Let β now be the corresponding vector for the set B. To distinguish the cipher

from a random permutation, we have to count how often we have either

〈α, x〉 = 0 and 〈β,Enc(x)〉 = 0, (2.7)

corresponding to an element from A being mapped to B, or

〈α, x〉 = 1 and 〈β,Enc(x)〉 = 1, (2.8)

corresponding to an element from A being mapped to B, when taking random
elements x as input to the cipher. If the fraction of x for which this is true is close

25

2 Cryptanalysis

to p or 1− p, we are likely to have been using the cipher. If this fraction is close to
1
2 , we are likely using a random permutation instead. To ease the evaluation, we can
combine Eqs. (2.7) and (2.8) to only one equivalent equation:

〈α, x〉+ 〈β,Enc(x)〉 = 0.

We call such an equation a linear approximation of the cipher Enc. The correlation
of this approximation is defined as 2p− 1. A correlation of 1 then corresponds to all
values of A being mapped to B while a correlation of -1 indicates that all values of A
are mapped to the complement of B. Our distinguishing ability then only depends
on the absolute value of this correlation.
Let us consider a slightly more complex cipher than the previous one:

Enck0,k1,k2(x) = g(f(x⊕ k0)⊕ k1)⊕ k2.

We ignore the key additions for now, i.e., let us assume the keys are equal to 0. Let us
suppose that we have three partitions A, B, and C such that the probability from A
to B is p over f and the probability from B to C is q. We call such a trail of partitions
a linear trail. The probability that an element of A is mapped to an element of C
corresponds to the sum of the probability that an element of A is mapped first to B
and then to C and the probability that it is first mapped to B and then to C. As a
first guess, we might approximate this probability as pq+(1−p)(1−q) = 1−p−q+2pq.
This yields a correlation of 2 − 2p − 2q + 4pq − 1 = (2p − 1)(2q − 1) equal to the
product of the correlations of both transitions. Alternatively, if the middle key
had switched the transition probabilities now, we would have gotten a probability
estimate of p(1− q) + (1− p)q = p+ q − 2pq which corresponds to a correlation of
2p+2q−4pq−1 = −(2p−1)(2q−1). The absolute value of the two-round correlation
is thus not influenced by the key additions in this estimate.
Now what assumption did we implicitly make, when we approximated the prob-

ability of a particular path being taken as the product of the round transition
probabilities? We assumed that those values in B to which an element from A can be
mapped are mapped with probability q to C, the same probability that any element
from B is mapped to C. So we implicitly assumed that those images from A in B are
representative for the whole set, an assumption which seems fair if f were a random
function. But then the whole point of the distinguisher is that f is not behaving like
a random function.

Imagine we had been using a different middle partition B′ with different transition
probabilities. Clearly this would have given us a different estimate. So which one
is the correct one? As it turns out, when there are no key additions, the exact
correlation of the transition A to C is the sum of the correlations of all trails from
A to B to C where the middle partitions B can take any value. Taking now key
additions into account, the values of the single trail correlations can flip from positive
to negative and vice versa. So without knowing the keys, again we are left without
knowledge of the two-round correlation.

26

2.4 Higher order-derivatives and integral cryptanalysis

Similarly to differential cryptanalysis, we have to make an assumption of indepen-
dence that allows us to estimate the correlation of such a partition. The assumption is
that the sign of the correlation of each linear trail is chosen independently of all other
trails to be either positive or negative with probability 1

2 . While the expected value
of the correlation is then 0, the variance of the correlation scales with the sum of the
squares of the correlations of the single trails. It is also this variance that determines
the quality of the distinguisher, i.e., the number of needed ciphertext-plaintext pairs
needed to distinguish the cipher from a random permutation. As always, whether or
not the assumption holds needs to be verified by experiment.

The development of linear cryptanalysis

Linear cryptanalysis was introduced by Matsui [27]. In his attack on DES he
only considered linear trails. Nyberg [30] realized that for a correct estimate all
linear trails with the same input and output mask have to be taken into account.
There exist several extensions of linear cryptanalysis, e.g., multi-dimensional
cryptanalysis (see for example [6]). Somewhat corresponding to impossible
differentials in differential cryptanalysis is zero-correlation cryptanalysis [5] in
linear cryptanalysis.

2.4 Higher order-derivatives and integral cryptanalysis
In this section, we will discuss some techniques based on derivatives over F2 that can
be used to find deterministic distinguishers.

2.4.1 Higher-order derivatives
A function that takes a fixed number of input bits and outputs one bit is called a
Boolean function. A function that takes a fixed number of bits as input and outputs
another fixed number of bits can naturally be represented as a vector of Boolean
functions and is hence called a vectorial Boolean function. As all relevant block
ciphers are bit-based, they can naturally be thought of as vectorial Boolean functions.
One natural way to represent a Boolean function is to write it as a polynomial

function in the input bits such as f(x1, x2, x3) = 1 +x1 +x2 +x2x3 +x1x2x3. As the
operations are over F2, we have that x2 = x. So it is common to write the terms such
that each variable appears at most once as a factor. The degree of a Boolean function
is then the largest number of variables in a term that appears in the function.

The derivative ∆α of a Boolean function f : Fn2 → F2 in the direction of α ∈ Fn2 is
defined as

∆αf(x) := f(x+ α) + f(x)

where x is the input bit vector. This derivative shares many properties with the
standard derivative over the real numbers: it is linear, it satisfies (a variant of) the

27

2 Cryptanalysis

product rule and importantly it reduces the degree of the function by at least 1. It is
straightforward to extend this definition to vectorial Boolean functions.

A repeated application of the derivative in the direction α1, α2, . . . , αt is written
as ∆α1,α2,...,αtf . When the αi are linearly dependent, the derivative always evaluates
to 0. When all the αi are linearly independent, it can be evaluated as

∆α1,α2,...,αtf =
∑

β∈L(α1,α2,...,αt)

f(x+ β)

where L(α1, α2, . . . , αt) denotes the linear space spanned by the αi. To evaluate
some derivative of order n of some function at a point x, we thus need the value of
the function f at 2n different points.

The fact that the degree of the function is reduced by 1 for each derivative can be
used to construct a distinguisher: if we know that the degree of the cipher that we
want to distinguish is d while the degree for a random permutation is much likely
higher than d, we can evaluate an order-(d+ 1) derivative of the function in question
and see whether it is equal to 0.
If we write the input bits of a Boolean function f : Fn2 → F2 explicitly out as

x1, x2, and so forth, we can write the derivative taken in the direction of xi as ∆xi

which corresponds to the derivative ∆α where α is all 0s except for one 1 at the ith
position. Taking the derivative ∆xi of a Boolean polynomial, removes all terms from
the polynomial that do not contain xi and removes the variable xi from all remaining
terms. The derivative ∆x1 of the polynomial 1 +x1 +x2 +x2x3 +x1x2x3 would thus
be 1 + x2x3. We can then easily test whether a given term, say x2x5x17 is present
in a polynomial by taking the derivative for those variables ∆x2,x5,x17 and seeing
whether a constant 1 is present in the resulting Boolean polynomial. This can easily
be done by evaluating the derivative at 0.
For an actual cipher the situation is slightly more complicated. As the cipher

takes as input both a plaintext and a key, the value of an output bit is a Boolean
function in the plaintext bits and the key bits. Alternatively we could say: whether
a particular term in the plaintext bits is present is determined by the key. We could
thus write the Boolean function representing an output bit as∑

x∈Fn2

cx(k) · x

where x represents possible terms in the plaintext bits and cx(k) is the coefficient that
determines whether this term is present or not. This coefficient generally depends on
the key k and is by itself again a Boolean function. As said above, we can determine
the value of a coefficient function for a cipher with a fixed secret key by evaluating
the respective derivative for this term at 0.
For a good cipher, these coefficient functions should be relatively complex in the

key. An attack that makes use of coefficient functions that are linear in the key bits
is the AIDA [35] or cube attack [13]. If we can find sufficiently many coefficient
functions that are linear in the key bits, we can determine the values of these functions

28

2.4 Higher order-derivatives and integral cryptanalysis

for a cipher with a secret key using derivatives to create a linear system of equations
which we can solve for the secret key bits.

Higher-order differentials

Higher-order derivatives were initially developed in 1994 by Lai [23] without
a concrete application however. They were then used by Knudsen [20] in
1995 to describe higher-order differentials (which pretty much are higher-order
derivatives plus a fixed output value that we are trying to detect) and he
demonstrated that these can be used to break ciphers which are secure against
standard differential cryptanalysis. Ironically Jakobsen and Knudsen [16] used
higher-order differentials again in 1997 to break a cipher designed by Nyberg
and Knudsen [31] in 1995.

2.4.2 Integral cryptanalysis
Integral cryptanalysis was initially developed as a dedicated attack against the block
cipher Square [8] and later generalized by Knudsen and Wagner [22]. In an integral
attack one tries to find a set of input bit positions such that the encrypted values of
any set of input values for which the values are fixed in these bit positions and take
all possible combinations of values in the other bit positions sums to 0 (at least in
some bits).
For the usual case where the sum is taken to be an exclusive-or sum, we can

formulate such integral property as follows: there exists a set of input bits and
an output bit such that the Boolean function representing the output bit does not
possess any term which contains all of these input bits simultaneously. This kind
of property is particularly interesting because it will often still exist after a number
of rounds for which the degree of the cipher will already be too high for a naive
higher-order attack.

The elegance of the original Square attack and the generalized integral attack lies
in how the structure of the cipher is utilized to find such property. This approach uses
arguments about how certain properties of collections of states propagate through
the cipher. Unfortunately this approach is usually only sufficient to attack a few
rounds. Recently some progress has been made to find integral properties in cases
where the usual toolset of integral cryptanalysis fails [34]. In this new method, a
property of a collection of states termed division property is used to integrate more
structural detail of the cipher into arguing how the property propagates (namely the
degree of S-boxes or transitions in general is used).

29

Bibliography
[1] Advanced Encryption Standard. Federal Information Processing Standard

(FIPS), Publication 197, U.S. Department of Commerce, Washington D.C.
National Institute of Standards and Technology. Nov. 2001.

[2] Eli Biham. “New Types of Cryptanalytic Attacks Using Related Keys”. In:
Journal of Cryptology 7.4 (1994), pp. 229–246.

[3] Eli Biham, Alex Biryukov, and Adi Shamir. “Cryptanalysis of Skipjack Reduced
to 31 Rounds Using Impossible Differentials”. In: Journal of Cryptology 18.4
(2005), pp. 291–311.

[4] Eli Biham and Adi Shamir. “Differential Cryptanalysis of DES-like Cryptosys-
tems”. In: Advances in Cryptology - CRYPTO ’90. Ed. by Alfred Menezes and
Scott A. Vanstone. Vol. 537. Lecture Notes in Computer Science. Springer,
1991, pp. 2–21. isbn: 3-540-54508-5.

[5] Andrey Bogdanov and Vincent Rijmen. “Linear hulls with correlation zero and
linear cryptanalysis of block ciphers”. In: Designs, Codes and Cryptography
70.3 (2014), pp. 369–383.

[6] Joo Yeon Cho, Miia Hermelin, and Kaisa Nyberg. “A New Technique for
Multidimensional Linear Cryptanalysis with Applications on Reduced Round
Serpent”. In: Information Security and Cryptology - ICISC 2008. Ed. by Pil
Joong Lee and Jung Hee Cheon. Vol. 5461. Lecture Notes in Computer Science.
Springer, 2008, pp. 383–398. isbn: 978-3-642-00729-3.

[7] Joan Daemen. “Cipher and Hash Function Design. Strategies based on linear
and differential cryptanalysis”. PhD thesis. KU Leuven, Mar. 1995.

[8] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. “The Block Cipher
Square”. In: Fast Software Encryption, FSE ’97. Ed. by Eli Biham. Vol. 1267.
Lecture Notes in Computer Science. Springer, 1997, pp. 149–165. isbn: 3-540-
63247-6.

[9] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002. isbn: 978-3-540-42580-9.

[10] Data Encryption Standard (DES). Federal Information Processing Standard
(FIPS), Publication 46, U.S. Department of Commerce, Washington D.C.
National Institute of Standards and Technology. Jan. 1977.

31

Bibliography

[11] Whitfield Diffie and Martin E. Hellman. “Special Feature Exhaustive Crypt-
analysis of the NBS Data Encryption Standard”. In: IEEE Computer 10.6
(1977), pp. 74–84.

[12] Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang. “Optimized Interpo-
lation Attacks on LowMC”. In: Advances in Cryptology - ASIACRYPT 2015.
Ed. by Tetsu Iwata and Jung Hee Cheon. Vol. 9453. Lecture Notes in Computer
Science. Springer, 2015, pp. 535–560. isbn: 978-3-662-48799-0.

[13] Itai Dinur and Adi Shamir. “Cube Attacks on Tweakable Black Box Polynomi-
als”. In: Advances in Cryptology - EUROCRYPT 2009. Ed. by Antoine Joux.
Vol. 5479. Lecture Notes in Computer Science. Springer, 2009, pp. 278–299.
isbn: 978-3-642-01000-2.

[14] Horst Feistel. Cryptographic coding for data-bank privacy. Research report RC
2827. IBM Research, Mar. 1970.

[15] Martin E. Hellman. “A cryptanalytic time-memory trade-off”. In: IEEE Trans-
actions on Information Theory 26.4 (1980), pp. 401–406.

[16] Thomas Jakobsen and Lars R. Knudsen. “The Interpolation Attack on Block
Ciphers”. In: Fast Software Encryption, FSE ’97. Ed. by Eli Biham. Vol. 1267.
Lecture Notes in Computer Science. Springer, 1997, pp. 28–40. isbn: 3-540-
63247-6.

[17] Auguste Kerckhoffs. “La cryptographie militaire”. In: Journal de sciences
militaires IX (1883), pp. 5–38, 161–191.

[18] Lars R. Knudsen. “Cryptanalysis of LOKI91”. In: Advances in Cryptology -
AUSCRYPT ’92. Ed. by Jennifer Seberry and Yuliang Zheng. Vol. 718. Lecture
Notes in Computer Science. Springer, 1993, pp. 196–208. isbn: 3-540-57220-1.

[19] Lars R. Knudsen. DEAL - A 128-bit Block Cipher. Technical report 151.
Submitted as an AES candidate by Richard Outerbridge. Department of
Informatics, University of Bergen, Norway, Feb. 1998.

[20] Lars R. Knudsen. “Truncated and Higher Order Differentials”. In: Fast Software
Encryption, FSE ’94. Ed. by Bart Preneel. Vol. 1008. Lecture Notes in Computer
Science. Springer, 1995, pp. 196–211.

[21] Lars R. Knudsen and Matthew Robshaw. The Block Cipher Companion. Infor-
mation Security and Cryptography. Springer, 2011. isbn: 978-3-642-17341-7.

[22] Lars R. Knudsen and David Wagner. “Integral Cryptanalysis”. In: Fast Software
Encryption, FSE 2002. Ed. by Joan Daemen and Vincent Rijmen. Vol. 2365.
Lecture Notes in Computer Science. Springer, 2002, pp. 112–127. isbn: 3-540-
44009-7.

[23] Xuejia Lai. “Higher Order Derivatives and Differential Cryptanalysis”. In:
Communications and Cryptography, Two Sides of One Tapestry. Ed. by Richard
E. Blahut, Jr. Daniel J. Costello, Ueli Maurer, and Thomas Mittelholzer. Kluwer
Academic Publishers, 1994, pp. 227–233. isbn: 978-1-4613-6159-6.

32

Bibliography

[24] Xuejia Lai and James L. Massey. “Markov Ciphers and Differential Cryptanaly-
sis”. In: Advances in Cryptology - EUROCRYPT ’91. Ed. by Donald W. Davies.
Vol. 547. Lecture Notes in Computer Science. Springer, 1991, pp. 17–38. isbn:
3-540-54620-0.

[25] Susan K. Langford and Martin E. Hellman. “Differential-Linear Cryptanalysis”.
In: Advances in Cryptology - CRYPTO ’94. Ed. by Yvo Desmedt. Vol. 839.
Lecture Notes in Computer Science. Springer, 1994, pp. 17–25. isbn: 3-540-
58333-5.

[26] Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik
Zenner. “A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack”. In:
Advances in Cryptology - CRYPTO 2011. Ed. by Phillip Rogaway. Vol. 6841.
Lecture Notes in Computer Science. Springer, 2011, pp. 206–221. isbn: 978-3-
642-22791-2.

[27] Mitsuru Matsui. “Linear Cryptanalysis Method for DES Cipher”. In: Advances
in Cryptology - EUROCRYPT ’93. Ed. by Tor Helleseth. Vol. 765. Lecture
Notes in Computer Science. Springer, 1994, pp. 386–397. isbn: 3-540-57600-2.

[28] Hikaru Morita, Kazuo Ohta, and Shoji Miyaguchi. “A Switching Closure Test
to Analyze Cryptosystems”. In: Advances in Cryptology - CRYPTO ’91. Ed. by
Joan Feigenbaum. Vol. 576. Lecture Notes in Computer Science. Springer, 1992,
pp. 183–193. isbn: 3-540-55188-3.

[29] Sean Murphy. “The Return of the Cryptographic Boomerang”. In: IEEE
Transactions on Information Theory 57.4 (2011), pp. 2517–2521.

[30] Kaisa Nyberg. “Linear Approximation of Block Ciphers”. In: Advances in
Cryptology - EUROCRYPT ’94. Ed. by Alfredo De Santis. Vol. 950. Lecture
Notes in Computer Science. Springer, 1995, pp. 439–444. isbn: 3-540-60176-7.

[31] Kaisa Nyberg and Lars R. Knudsen. “Provable Security Against a Differential
Attack”. In: Journal of Cryptology 8.1 (1995), pp. 27–37.

[32] Claude E. Shannon. “Communication theory of secrecy systems”. In: Bell
System Technical Journal 28.4 (Oct. 1949), pp. 656–715.

[33] Taizo Shirai and Kyoji Shibutani. “Improving Immunity of Feistel Ciphers
against Differential Cryptanalysis by Using Multiple MDS Matrices”. In: Fast
Software Encryption, FSE 2004. Ed. by Bimal K. Roy and Willi Meier. Vol. 3017.
Lecture Notes in Computer Science. Springer, 2004, pp. 260–278. isbn: 3-540-
22171-9.

[34] Yosuke Todo. “Structural Evaluation by Generalized Integral Property”. In:
Advances in Cryptology - EUROCRYPT 2015. Ed. by Elisabeth Oswald and
Marc Fischlin. Vol. 9056. Lecture Notes in Computer Science. Springer, 2015,
pp. 287–314. isbn: 978-3-662-46799-2.

[35] Michael Vielhaber. “Breaking ONE.FIVIUM by AIDA an Algebraic IV Differ-
ential Attack”. In: IACR Cryptology ePrint Archive 2007 (2007), p. 413.

33

Bibliography

[36] David Wagner. “The Boomerang Attack”. In: Fast Software Encryption, FSE
’99. Ed. by Lars R. Knudsen. Vol. 1636. Lecture Notes in Computer Science.
Springer, 1999, pp. 156–170. isbn: 3-540-66226-X.

34

Part II

Publications

35

Security of the AES with a Secret
S-box

Publication Information
Tyge Tiessen, Lars R. Knudsen, Stefan Kölbl, and Martin M. Lauridsen. “Security
of the AES with a Secret S-Box”. In: Fast Software Encryption, FSE 2015. Ed. by
Gregor Leander. Vol. 9054. Lecture Notes in Computer Science. Springer, 2015,
pp. 175–189. isbn: 978-3-662-48115-8

Contribution
• Main author.

Remarks
This publication has been slightly edited to fit the format.

37

Security of the AES with a Secret S-box

Tyge Tiessen, Lars R. Knudsen, Stefan Kölbl, and Martin M. Lauridsen
{tyti,lrkn,stek,mmeh}@dtu.dk

DTU Compute, Technical University of Denmark, Denmark

Abstract. How does the security of the AES change when the S-box is
replaced by a secret S-box, about which the adversary has no knowledge?
Would it be safe to reduce the number of encryption rounds?
In this paper, we demonstrate attacks based on integral cryptanalysis
which allow to recover both the secret key and the secret S-box for
respectively four, five, and six rounds of the AES. Despite the signifi-
cantly larger amount of secret information which an adversary needs to
recover, the attacks are very efficient with time/data complexities of
217/216, 238/240 and 290/264, respectively.
Another interesting aspect of our attack is that it works both as chosen
plaintext and as chosen ciphertext attack. Surprisingly, the chosen
ciphertext variant has a significantly lower time complexity in the
attacks on four and five round, compared to the respective chosen
plaintext attacks.

Keywords: AES, integral cryptanalysis, secret S-box

1 Introduction
The Advanced Encryption Standard (AES) [10] is an iterated block cipher using 10,
12, or 14 rounds depending on the key size of 128, 192, or 256 bits. These variants
are named AES-128, AES-192, and AES-256.

In this paper we consider the cipher that is derived from the AES by replacing the
S-box with a secret 8-bit S-box while keeping everything else unchanged. If the choice
of S-box is made uniformly at random from all 8-bit S-boxes, the size of the secret
information increases from 128− 256 bits, the key size in the AES, to 1812− 1940
bits. Clearly the security level of such a cipher could be very high, thus the question
is: Could the number of rounds of this cipher be reduced to fewer than 10 rounds
(as in AES-128)?

The AES was designed in order to achieve good resistance against differential
and linear cryptanalysis, and this includes the choice of the S-box. Nonetheless a
randomly chosen S-box is very likely to be highly resistant against these attacks as
well.

39

mailto:\protect \T1\textbraceleft tyti,lrkn,stek,mmeh\protect \T1\textbraceright @dtu.dk

Security of the AES with a Secret S-box

The method that is most successful in attacking AES for up to 6 rounds is integral
cryptanalysis. Somewhat surprisingly, a variant of this attack also applies to the
AES variant with a secret S-box with up to 6 rounds, and although the complexity
of the attack is larger than for the attack on the original AES, the time complexity
is still less than exhaustive search of a 128-bit key.

Related Work.

The idea of integral cryptanalysis was conceived as a dedicated attack against the
block cipher Square [3]. This attack is able to break up to six rounds of AES-128.
Biryukov and Shamir applied integral cryptanalysis to a generalised SPN structure
denoted SASAS [1], which consists of three substitution layers separated by two affine
layers. In their paper, the attacker is assumed not to have any knowledge about
the linear layer or the S-boxes which are all allowed to be chosen independently at
random. The SASAS attack recovers an equivalent representation of this SPN and
thus allows decryption of any ciphertext. The attack allows to break the equivalent
of three rounds of AES. It does not, however, recover neither the key nor the S-box.
The case of the AES with a secret S-box, which we consider in this paper, lies in

between two cases: The original Square attack on one hand can not be directly
applied to the case with the secret S-box as it requires knowledge of the S-box to peel
off the last layer after guessing some key bits. The SASAS attack, on the other hand,
can be used to attack three rounds of this cipher. However, it is not very effective,
as the extra knowledge of the linear layer and the equality of all S-boxes remains
unused.

The security of PRESENT with a secret S-box was studied by Borghoff et al. in [2]
and allows an attack on 28 out of 31 rounds using slightly less than 264 plaintexts.
This attack was further improved by Liu et al. in [8]. As the attack depends on the
weakness of some randomly chosen 4-bit S-boxes, it seems hard to apply it to the
8-bit S-boxes used in the AES.
Furthermore there are various block cipher designs based on using a secret, key-

dependent substitutions like Khufu [9], Blowfish [14], Twofish [15] or Maya [7]. The
attack also bears some resemblance to so-called SCARE (Side-Channel Analysis for
Reverse Engineering) attacks in which side-channel information is used to recover
unknown parts of cipher implementations (see for example [13]).

Our Contributions.

We demonstrate that despite the increased size of the secret information in the cipher,
we are able to recover both the secret key and the S-box for the 4-round, 5-round and
6-round versions of AES-128 by building up on techniques from integral cryptanalysis.
Our attacks on four and five rounds are practical and achieve almost the same
complexity as previous attacks which do not need to recover a secret S-box. The
6-round attack has a complexity of 290 which is already much less than exhaustive
search of the key, let alone of the S-box.

40

2 AES Specification

Table 1: Results of integral cryptanalysis on AES-128 with a secret S-box, AES-128
and SASAS with AES-like parameters. The time complexity is given in
encryption equivalents, the data complexity is given in number of plain-
texts/ciphertexts (16 bytes), the memory complexity is given in bytes. We
assume that one round of encryption corresponds to 25 table lookups.

Complexity
Cipher Rounds Time Data Memory Reference
SASAS 3 221 216 220 [1]
AES-128 (secret S-box) 4 217 216 216 This work
AES-128 4 214 29 – [4]
AES-128 (secret S-box) 5 238 240 240 This work
AES-128 5 238 233 – [4]
AES-128 (secret S-box) 6 290 264 269 This work
AES-128 6 244 234 236 [6]

Table 1 compares the complexities for our attacks with those of previous integral
attacks on AES-128 and the SASAS attack. Interestingly, the time complexities of
the 4-round and 5-round attacks are lower by a factor of 211 and 216 respectively in
the chosen ciphertext variant as compared to the chosen plaintext variant.

Organisation.

This paper is organised as follows. In §2 the notation and a specification of the AES
is given. In §3 we analyse the security of the AES with a secret S-box with respect
to statistical and integral attacks. §4 holds the concluding remarks.

2 AES Specification
The AES [10] is an iterated block cipher that operates on 128-bit blocks and comes
in three variants: AES-128, AES-192, and AES-256, which have key sizes of 128, 192
and 256 bits, respectively. The number of rounds T is 10, 12, and 14 respectively. The
AES uses the four operations SubBytes, ShiftRows, MixColumns, and AddRoundKey
which are detailed below. We use Ri, 1 ≤ i ≤ T , to denote the round function which
takes a 128-bit block as input and provides a 128-bit block as output. The ith round
is defined as

Ri =
{

AddRoundKeyi ◦ MixColumns ◦ ShiftRows ◦ SubBytes , i < T

AddRoundKeyi ◦ ShiftRows ◦ SubBytes , i = T
.

41

Security of the AES with a Secret S-box

Before the first round, a pre-whitening key is used in a step AddRoundKey0, so the
T -round encryption with master key K is denoted as

EK = RT ◦ · · · ◦R1 ◦ AddRoundKey0.

Each of the four operations operate on a 128-bit block arranged in a 4 × 4 byte
matrix:

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 .

The bytes are regarded as elements of what is called the Rijndael finite field F256 =
F2[x]/(x8 + x4 + x3 + x+ 1). In the Rijndael finite field, an element is represented
by a single byte a = (a7a6 · · · a1a0) with ai ∈ F2, which in turn represents the field
element

a(x) = a7x
7 + a6x

6 + · · ·+ a1x+ a0.

We use hexadecimal notation in typewriter font to write byte values. As such a = 01
represents a(x) = 1, a = 02 represents a(x) = x, and so on. In the following, we
briefly describe the four operations used in AES.

2.1 SubBytes

In the SubBytes operation, each of the 16 bytes in the state matrix is replaced by
another value according to an 8-bit S-box. In the standard AES, the AES S-box is
used whose full description is available to the adversary. However, in our analysis we
will assume that the S-box is secret and thus unknown to the adversary.

2.2 ShiftRows

In the ShiftRows step, the ith row of the state, 0 ≤ i ≤ 3, is rotated to the left by i
positions. As such,

ShiftRows

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 =

s0 s4 s8 s12
s5 s9 s13 s1
s10 s14 s2 s6
s15 s3 s7 s11

 .

2.3 MixColumns

In this step, each of the four columns of the state matrix are multiplied from the
right onto an invertible matrix M over the Rijndael finite field. The matrix M and

42

3 Cryptanalysis of the AES with a Secret S-box

its inverse are

M =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 and M−1 =

0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

 .

2.4 AddRoundKey

In this step, a 128-bit round key is added to the state using the XOR operation. The
T + 1 round keys, denoted RK0, . . . , RKT are generated using the AES key schedule.
A brief description of the AES key schedule can be found in Appendix A.

3 Cryptanalysis of the AES with a Secret S-box

3.1 Differential and Linear Cryptanalysis
First, we consider the security of the AES with a secret S-box which is chosen
uniformly at random against the two most commonly used attacks vectors for block
ciphers: differential cryptanalysis and linear cryptanalysis. The original AES was
designed to resist these two attacks.
It has been shown that for mappings chosen uniformly at random from the set

of all m-bit bijective mappings, the expected value of the highest probability of a
(non-trivial) differential characteristic is at most 2m

2m [11]. In our case where m = 8,
this means that for a randomly chosen 8-bit S-box the expected maximum probability
of a differential characteristic is 16

28 = 2−4.
Since the number of active S-boxes for four rounds of the AES is at least 25 [4],

one has an upper bound of the probability for any 4-round differential characteristic
of 2−100, and thus an upper bound for any 8-round differential characteristic of 2−200.
This is sufficient to conclude that differential cryptanalysis will not pose a threat to
variants of the AES where the S-box is replaced by a randomly chosen 8-bit S-box.

It is possible to prove a similar result for linear cryptanalysis using the bounds of
linear characteristics from [12].

3.2 Integral Cryptanalysis on Four Rounds
Summary.

Before we go into the details of the attack, let us summarize it shortly. The attack
splits the task of determining the secret S-box into consecutive steps that find
increasingly better.
First we use the fact that we can create balanced sets of intermediate texts right

after the first SubBytes step in round 1 by applying the Square attack as a chosen

43

Security of the AES with a Secret S-box

ciphertext attack1. These balanced sets can be used to set up a system of linear
equations which can be used to determine the secret S-box up to affine equivalence
over F8

2 as is similarly done in the SASAS attack [1]. A representative from this
equivalence class is already sufficient to determine the whitening key up to 256
variants.

The knowledge about the whitening key and the representative of the S-box
equivalence class allow us now to determine the intermediate texts right before the
MixColumns step in round 1 up to affine equivalence over F8

2. As a result of the
Square attack, the intermediate texts after the MixColumns step should take on
each byte value in each byte position exactly once. This can be used to determine
the secret S-box up to affine equivalence over F256. Finally, the secret S-box can be
determined using knowledge of the key schedule.

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.P

P

P

P .
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.P

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.P

·

0 1 2 3 4
AK
SB
SR
MC
AK

SB
SR
MC
AK

SB
SR
MC
AK

SB
SR
AK

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

AK SB
SR
MC

AK

Figure 1: Outline of the 4-round integral attack. The following notation is used: P
takes each of the 256 values once, · is constant, B is balanced and the
values ? are unknown.

Prerequisites.

Before we start with the attack, let us clarify the notation. We assume that the last
round, the fourth in this case, does not contain a MixColumns operation, as is the
case for the last round of standard AES.
By a Λ-set, we mean a set of 256 messages that differ only in one byte but take

for this byte all possible 256 values. Just as in the standard Square [3] attack,
when we decrypt a Λ-set with 4-round AES, we get intermediate texts right after the
SubBytes step of round 1 that are balanced, i.e. the sum of all texts is equal to the
text containing only zeroes, In particular, this set of messages is balanced in every
byte.

1The reason for using a chosen ciphertext instead of a chosen plaintext attack will be explained
later.

44

3 Cryptanalysis of the AES with a Secret S-box

Finding an Affine Equivalent of the Secret S-box over F8
2.

Let pi, 0 ≤ i < 256, be the list of the first bytes of the 256 plaintexts, generated from
the Λ-set of ciphertexts. Let k0 be the first byte of the whitening key. We can now
write the fact that the intermediate texts are balanced right after the first SubBytes
step as

255⊕
i=0

S(pi ⊕ k0) = 0

where S is the secret S-box. Let zi := S(k0 ⊕ i). The above equation is then linear
in the zpi and can be written as

zp0 ⊕ zp1 ⊕ · · · ⊕ zp255 = 0. (1)

As duplicate values in the pi values will cancel out, only those pi need to be taken
into account that appear an odd number of times in the list.
Taking different Λ-sets of ciphertexts, we can now try to generate enough linear

equations to be able to determine S uniquely. Unfortunately, we encounter two
problems now. Firstly, we do not know the value of k0. We can thus only hope
to determine S(k0 ⊕ ·). Secondly, the above equations are invariant under affine
transformations: Let A be an affine transformation from F8

2 to F8
2. Then

A(zp0)⊕A(zp1)⊕ · · · ⊕A(zc255) = 0

is also true for any set of pi that fulfills equation (1) and has an even number of
summands. We can thus at best determine S(k0 ⊕ ·) up to 272 affine equivalent
variants. Using the fact that the affine mapping needs to be invertible, we can thus
at best determine the set

{A ◦ S(k0 ⊕ ·) | A : F8
2 → F8

2 is invertible}

which is of size 270.2.
As each linear equation like equation 1 gives us one byte of information and as

we can only determine the S-box up to 272 = 29·8 variants, there can at most be
256− 9 = 247 linearly independent equations like equation (1). We found that using
256 different Λ-sets suffices in most cases to generate a set of equations with rank
247.

Given such a set of equations, it is now easy to determine one representative from
the set of affine equivalents to S(k0 ⊕ ·). Let this representative be denoted as S′, i.e.
S′ = A ◦ S(k0 ⊕ ·) for some invertible affine A : F8

2 → F8
2 and unknown k0.

45

Security of the AES with a Secret S-box

Determining the Whitening Key.

Let now pi,j with 0 ≤ i < 256 and 0 ≤ j < 8 be byte j of the plaintext i in one of
the Λ-sets and let kj be byte j of the whitening key. We then have for a ∈ F8

2:

a = kj ⇒ 0 =
255⊕
i=0

S(a⊕ pi,j),

which is generally not true for a 6= kj , a fact the standard Square attack is based
on as well. For invertible affine A : F8

2 → F8
2, we also have the equivalence

0 =
255⊕
i=0

S(a⊕ pi,j) ⇔ 0 =
255⊕
i=0

A ◦ S(a⊕ pi,j).

We can thus for each byte j with 1 ≤ j < 8 find kj ⊕ k0 by trying out for which of
the 256 possible values of a we have

255⊕
i=0

S′(a⊕ pi,j) = 0

for all Λ-sets. This allows us to determine the whitening key up to 256 variants,
depending on the value of k0. Let us set k′ = (0, k1 ⊕ k0, k2 ⊕ k0, . . . , k15 ⊕ k0).
Then when using k′ as the whitening key and S′ as the S-box for encryption, the
intermediate texts after the ShiftRows step in round 1 will correspond to the correct
intermediate texts up to a fixed affine transformation on each byte.

Finding an Affine Equivalent of the Secret S-box over F256.

When we decrypt a Λ-set, the set of intermediate texts that we get after the
MixColumns step in round 1 will take all 256 possible values in each of the 16
state bytes (see Figure 1). The key idea here is to use this property to filter out
wrong candidates for the secret S-box.

For a set of 256 bytes, we say that it has the P property if it contains every possible
value exactly once. Let V be a set of 256 byte vectors. We will likewise say that V
has the P property if V has this property in every byte position.

If V is now the set of intermediate texts after the MixColumns operation in round
1, that is the result of the decryption of a Λ-set, we know from the Square attack
that V has the P property. Let now D be the corresponding set of intermediate
texts directly before the MixColumns step. We can test our candidate S′ for S, by
constructing the corresponding candidate set D′ for the intermediate texts after the
ShiftRows step in round 1 with our acquired knowledge of the whitening key, and
applying the MixColumns operation on this set D′ to see whether we obtain a set
with the P property.

For how many of the 272 candidates for S′ do we expect this to hold? Let A be the
affine transformation by which S′ deviates from S. Then the byte vectors in D′ also

46

3 Cryptanalysis of the AES with a Secret S-box

deviate by this transformation from the true set D. Clearly, if A consists only of an
addition, the P property of MD′ is preserved where M is the MixColumns matrix.
We can thus restrict A to linear transformations.

In the case, that A corresponds to an invertible linear mapping over F256, i.e. a
multiplication with some element from F∗256, the set of intermediate texts after the
MixColumns step will still have the P property as well since the linear transforma-
tion commutes with the multiplication within the MixColumns matrix M and the
application of the invertible linear transformation A on the set MD leaves the P
property untouched:

MD′ = MAD = AMD.

Opposed to this, when A does not commute with the multiplication in F256, the
P property of MD′ is in general not preserved. As is shown in Appendix B, if A
commutes with a primitive element of F256, A corresponds to multiplication with an
element of F256. As 03 is a primitive element of the Rijndael field and is an entry in
every row and column of M , the only class of affine transformations that preserve
the P property of MD′ is exactly the affine transformations over F256.

Checking whether the P property holds for MD′ allows us thus to find the correct
S up to affine transformations over F256. Nevertheless, still 272−16 = 256 candidates
need to be tested.

Complexity Reduction: Finding the Affine Equivalent Over F256.

The specific structure of the MixColumns matrix M allows us to reduce the computa-
tional complexity of finding the correct affine representative amongst the 256 possible
candidates.
Let us define that a set of 2l vectors over Fn2 has the R property if both 1 and 0

appear in every bit position exactly l times. Note that the P property implies the
R property and that the R property implies that the set of vectors is balanced but
the opposite direction of implications is in generally false. As the R property, like
the P property, is not preserved by the MixColumns layer, we still expect to find the
correct representative by testing for the R property instead of the P property2.
Let us take a closer look at the specific form of matrix M . When written as a

linear function from F 4
256 to F 4

256, it has the form

M =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 . (2)

If we associate the multiplication with 01, 02, and 03 with their respective linear

2This was indeed the case for all our test runs.

47

Security of the AES with a Secret S-box

mappings from F8
2 to F8

2, we get the following representations:

01 =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 02 =

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

 03 =

1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1

. (3)

If we now write a0, a1, . . . , a7 for the rows of A we can write the first row of the
32× 32 matrix MA over F2 as

v := (a1, a0 ⊕ a1, a0, a0) .

We see now that whether or not the first bit in the set MD′ satisfies the R property
relies solely on the rows a0 and a1 of the matrix A. As we only need to test matrices
A that are not linearly equivalent over F256, we can fix one row of A to a non-zero
constant. Let a0 be fixed. Then we only need to try out all 28 possible values for a2
to see which one gives us the R property in this bit.
After having determined a1 (and fixed a0), we can use the second row of MA to

determine a2 and continue on to determine A uniquely. In each step, we only need to
test 28 possible values. We can thus split the task of trying of out all 256 candidates
for A, to trying out row by row which reduces the complexity to 7 · 28 ≈ 211 steps.

Determining the Secret S-box.

Without assuming anything about the key schedule, we can only determine the secret
S-box up to an additive constant before and after the S-box, i.e. S′(x) ∼ a⊕S(b⊕ x)
since any additive constants can also be seen as part of the round keys. When not
assuming anything about the key schedule, one can for example require that the first
byte of the whitening key and the first round key is zero. It is straightforward then
to find the correct representative for S out of the 216 options under these constraints.
Using knowledge about the key schedule, one can also easily determine the correct
variants for the round keys and adjust the representative for the S-box accordingly.

The Complexity of the Attack.

The needed data consists of the decryption of 256 Λ-sets which corresponds to a
data complexity of 216 chosen ciphertexts. As most of these texts are only used to
generate the linear system of equations in the first plaintext byte, most plaintext
pairs can be discarded after the corresponding equation has been extracted. The
memory complexity is thus 28+8 = 216 bytes.
Let us go through the steps to see what the time complexity is. Determining S′

up to affine equivalence over F8
2 requires solving a system of linear equations in 28

variables. This requires 23·8 = 224 steps where each step is comparable to a table
lookup. Finding the whitening key requires trying out for each of the 16 key bytes all
28 possible solutions with one Λ-set of 28 values. It thus takes about 16 · 28 · 28 = 220

table lookups.

48

3 Cryptanalysis of the AES with a Secret S-box

To determining S′ up to affine equivalence over F256 using the R property, for
each of the seven rows of A that have not been fixed we have to test 28 values, each
with a Λ sets. Thus the total complexity of this step is 7 · 28 · 28 ≈ 219. A step here
has about the same complexity as a table lookup.

The complexity of the attack is dominated by solving the linear system of equations,
namely 224 steps, which corresponds to 217 encryptions when assuming a complexity
of 25 table lookups per encryption round. We ran the attack 1000 times on the single
core of an Intel Core i7-4600M CPU at 2.90GHz. It found both the correct S-box
and the correct key each time and always ran in less than a second (including reading
the input data).

3.3 Integral Cryptanalysis on Five Rounds
The attack on four rounds can be extended to five rounds using a technique by
Ferguson et al. [6] that allowed to improve the Square attack on six rounds. The
underlying idea is to create sets of ciphertexts that form a Λ-set right before the
MixColumns step of round 4. Unfortunately, even with key guessing, it is not possible
to determine such a set without knowledge of the secret S-box. However, by taking all
232 possible values for four bytes that are in the same column during the MixColumns
step of round 4 and keeping all other bytes constant, we can generate a set of
ciphertexts that will take all 232 values in that column. This set can now be viewed
as the union of 224 Λ-sets (see Figure 2).

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.P

P

P

P .
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.P

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
224 Λ-sets

MC
AK
SB
SR
AK

4-round attack

232 CT

Figure 2: The 232 ciphertexts take all possible combinations in the blue bytes but
constant values in the rest. The state before the MixColumns step in the
round before can be seen as the union of 224 Λ-sets as depicted here. It is
then possible to apply the 4-round attack again.

A set of ciphertexts that gives us a Λ-set in the MixColumns step of round 4 will
generate a balanced set right after the SubBytes step of round 1. As a sum of
balanced sets remains balanced, decrypting our 232 ciphertexts, we get a balanced set
of size 232 after the SubBytes step of round 1. This set can now be used to mount
the four round attack on five rounds as well.

Just as in the four round version, we use the fact when such a set is balanced, we
can, by using 256 of them, create a system of linear equations that can be solved to
find an S-box S′ that is an affine equivalent to S over F8

2. We can use the knowledge
of S′ again to determine the whitening key up to 256 variants. We can then again
generate the corresponding intermediate texts after the first SubBytes step that are

49

Security of the AES with a Secret S-box

affinely equivalent over F8
2 to the true texts. With these texts we can now determine

S up to affine equivalence over F256 by using the R property. Note that when using
the R property here, we expect the correct set of texts to take in each bit the values
0 and 1 each exactly 231 times as we are now working with the union of 224 Λ-sets.
Again to determine S exactly and finding the correct master key is straightforward
from this point.

How do the complexities of the attack change as compared to the 4-round variant?
As we need 256 sets of ciphertexts, each of size 232, this leaves us with a data
complexity of 240, an increase by a factor of 224 in comparison to the four round
attack. The time complexity of solving the linear system of equations does not
change (it is still a system of 256 equations in 256 variables). The complexity of
the whitening key recovery increases with the size of the balanced sets, i.e. again
by a factor of 224, leaving us with a complexity of 244 table lookups. Likewise is
the complexity of checking the R property increased by a factor of 224 to a total
complexity of 243 steps of the same complexity as a table lookup. This leaves the
total time complexity at roughly 245 steps which corresponds to 238 encryptions
when assuming a complexity of 25 table lookups per encryption round.

The data complexity of 240 chosen ciphertexts corresponds to 18 terabyte of data.
But as most of the sets of 232 plaintexts are each only used to generate one linear
equation (in the 256 variables), apart from a few (16 suffice), most can be discarded
during the generation of the linear system of equations, leaving us with at most 240

bytes that need to be stored in memory at any point in time.

3.4 Integral Cryptanalysis on Six Rounds
The standard way of extending the Square attack to six rounds (in the case of a
chosen ciphertext attack) is by guessing four bytes of the whitening key and peeling
of the first round of encryption for one byte of intermediate text, thereby increasing
the time complexity of the attack by a factor of 232. Unfortunately, this does not
extend to the AES with a secret S-box as knowledge of the S-box is required to strip
off the first round.

There is nonetheless a way to extend the five round attack to six rounds. Over one
round of the AES, the four output bytes of one column only depend on four of the
input bytes. Thus, it is possible to describe two rounds of AES with a secret S-box as
the parallel application of four Super-boxes (see also [5]) with a linear transformation
before and after. Such a Super-box consists of the parallel application of four S-boxes,
a key addition a multiplication of the four bytes with the MixColumns matrix, again
an application of four S-boxes in parallel and a final key addition.

Just as in the 5-round attack, we can generate sets of texts that are balanced right
after the SubBytes step in round 2 and we can hence use these texts to generate a
system of linear equations that lets us determine the Super-boxes, just as it allowed
us to determine the usual S-boxes in the attacks before. Unfortunately, the system
of linear equations for one Super-box involves now not 28 variables but 232 variables.
This means that both the computational complexity as well as the data complexity

50

3 Cryptanalysis of the AES with a Secret S-box

increase. For the data complexity, when using the round extension as in the five round
attack, we need now 232 sets of each 232 texts, leaving us with a data complexity
of 264 chosen ciphertexts. Just as with the attack on the normally sized S-box, the
set of equations is not of full rank and lets us determine the Super-box only up to
232·32+32 = 21056 affine equivalents – only slightly less when taking the necessary
bijectivity of the affine transform into account.
The Super-box that we obtain will thus be of the form

A ◦ SubBytes ◦ KeyAddition ◦ MixColumns ◦ SubBytes ◦ KeyAddition

where A is an unknown invertible affine mapping over F32
2 and where the other

standard AES steps are truncated to operate on four bytes only. Despite our lack of
knowledge of A, this form is already enough to extract from it the secret S-box and
the involved key bytes up to 216 variants, i.e. up to two additive constants applied
before and after the S-box. After this, it is straightforward to uniquely determine the
secret S-box and the key e.g. by guessing the two additive constants and applying
standard 6-round Square attack.
If we decrypt a Λ-set with our affinely transformed Super-box, we get a set that

is balanced right after the first SubBytes step of the Super-box as described in the
SASAS paper [1]. Note that it is necessary to assume that A distributes the 8 bits
that are being varied in the Λ-set to at least two S-Boxes, an assumption that is true
for almost all possible A. At this point we can thus simply apply again the same
techniques as we did for the four round attack to determine the secret S-box and the
involved key bytes, only that we mount the attack on the affine equivalent of the
Super-box now instead of the whole cipher.
What is the complexity of this attack? As already mentioned above, the data

complexity is 264 chosen ciphertexts. The time complexity is dominated by the first
step of solving the system of 232 linear equations over 232 variables. Using Gaussian
elimination, this step consists of 296 operations, each comparable in complexity to
a table lookup. Thus, the time complexity corresponds to 290 encryptions when
assuming a complexity of 25 table lookups per encryption round. The memory
complexity of 232 · 232 · 32 = 269 bytes is also dominated by the size of the system of
equations.

3.5 A Note on Chosen Ciphertext vs. Chosen Plaintext
Due to the symmetry of the AES regarding encryption and decryption, the attacks
described here principally work in both directions. Interestingly though, for the
attacks on four and five rounds, the chosen ciphertext variant is considerably more
effective than the chosen plaintext attack. This is because the MixColumns matrix
is sufficiently sparser than its inverse, creating a difference of 216 in the number
of steps when applying the R property. This changes the time complexities of the
4-round and 5-round attacks to 228 and 254. As the complexity of the 6-round attack
is dominated by the solving of the linear system of equations, it does not make a
difference in that attack scenario.

51

Security of the AES with a Secret S-box

4 Conclusion
In this work, we studied the impact of replacing the S-box in the AES by a secret
S-box unknown to the adversary. Despite the expected increase in difficulty of
recovering the secret information, we were able to mount efficient attacks based on
integral cryptanalysis combined with dedicated techniques.

We were able to show that AES-128 with a secret S-box, reduced to 4 and 5 rounds,
is susceptible to attacks with practical complexity that successfully recover both
the secret S-box and the key. Furthermore, we have shown an attack on a variant
with 6 rounds with a time complexity of 290, which is much less effort than the time
required to do exhaustive search of the key, let alone of the S-box.

Similarly to standard AES, it seems difficult to extend our attacks to more than 6
rounds. Also, the gap between the time complexities of integral attacks on standard
AES and the AES with a secret S-box increases dramatically for the attack on 6
rounds. It is an open question whether this complexity can be further reduced.

Acknowledgements
The work in this paper has partially been funded by the Nasjonal sikkerhetsmyndighet
(NSM).

References
[1] Alex Biryukov and Adi Shamir. “Structural Cryptanalysis of SASAS”. In:

EUROCRYPT 2001. Ed. by Birgit Pfitzmann. Vol. 2045. LNCS. 2001, pp. 394–
405.

[2] Julia Borghoff, Lars R. Knudsen, Gregor Leander, and Søren S. Thomsen.
“Cryptanalysis of PRESENT-Like Ciphers with Secret S-Boxes”. In: Fast
Software Encryption, FSE 2011. Ed. by Antoine Joux. Vol. 6733. LNCS. 2011,
pp. 270–289.

[3] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. “The Block Cipher
Square”. In: Fast Software Encryption, FSE ’97. Ed. by Eli Biham. Vol. 1267.
LNCS. Springer, 1997, pp. 149–165.

[4] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002.

[5] Joan Daemen and Vincent Rijmen. “Understanding Two-Round Differentials
in AES”. In: Security and Cryptography for Networks (SCN) 2006. Ed. by
Roberto De Prisco and Moti Yung. Vol. 4116. LNCS. 2006, pp. 78–94.

52

A The AES Key Schedule

[6] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David
Wagner, and Doug Whiting. “Improved Cryptanalysis of Rijndael”. In: Fast
Software Encryption, FSE 2000. Ed. by Bruce Schneier. Vol. 1978. LNCS. 2000,
pp. 213–230.

[7] Mahadevan Gomathisankaran and Ruby B. Lee. “Maya: A Novel Block En-
cryption Function”. In: International Workshop on Coding and Cryptography
2009. 2009.

[8] Guo-Qiang Liu, Chen-Hui Jin, and Chuan-Da Qi. “Improved Slender-set Linear
Cryptanalysis”. In: Fast Software Encryption, FSE 2014. 2014.

[9] Ralph C. Merkle. “Fast Software Encryption Functions”. In: CRYPTO ’90. Ed.
by Alfred Menezes and Scott A. Vanstone. Vol. 537. LNCS. 1991, pp. 476–501.

[10] National Institute of Standards and Technology. “Advanced Encryption Stan-
dard”. Federal Information Processing Standard (FIPS), Publication 197, U.S.
Department of Commerce, Washington D.C. Nov. 2001.

[11] Luke O’Connor. “On the Distribution of Characteristics in Bijective Mappings”.
In: EUROCRYPT ’93. Ed. by Tor Helleseth. Vol. 765. LNCS. Springer, 1994,
pp. 360–370.

[12] Luke O’Connor. “Properties of Linear Approximation Tables”. In: Fast Software
Encryption, FSE ’94. Ed. by Bart Preneel. Vol. 1008. LNCS. Springer, 1995,
pp. 131–136.

[13] Matthieu Rivain and Thomas Roche. “SCARE of Secret Ciphers with SPN
Structures”. In: Advances in Cryptology - ASIACRYPT 2013. Ed. by Kazue
Sako and Palash Sarkar. Vol. 8269. LNCS. 2013, pp. 526–544.

[14] Bruce Schneier. “Description of a New Variable-Length Key, 64-bit Block Cipher
(Blowfish)”. In: Fast Software Encryption, FSE ’93. Ed. by Ross J. Anderson.
Vol. 809. 1994, pp. 191–204.

[15] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and
Niels Ferguson. “Twofish: A 128-Bit Block Cipher”. In: ().

A The AES Key Schedule
In the AES, we think of the round keys as matrices over the Rijndael finite field,
just as the state matrix. The first pre-whitening key RK0 is the n-bit master
key itself, so RK0 = K. The key schedule varies slightly across the three AES
variants. Here, we describe it for AES-128 and refer to [4] for the other two cases. We
consider the 4 columns of the two round keys as RKi = (RK0

i ‖RK1
i ‖RK2

i ‖RK3
i) and

RKi+1 = (RK0
i+1‖RK1

i+1‖RK2
i+1‖RK3

i+1). To derive RKi+1 from RKi, 0 ≤ i < T ,
we do the following

1. Let RKj
i+1 = RKj

i for j = 0, 1, 2, 3,

53

Security of the AES with a Secret S-box

2. Rotate RK3
i+1 such that the byte in the first row is moved to the bottom,

3. Substitute each byte in RK3
i+1 by using the S-box from the SubBytes operation,

4. Update the byte in the first row of RK3
i+1 by adding 02i−1 from the Rijndael

finite field, and

5. Let RKj
i+1 = RKj

i+1 ⊕RK
j−1 mod 4
i+1 for j = 0, 1, 2, 3.

This procedure is repeated for i = 1, . . . , T to obtain the round keys RK0 to RKT .

B Lemma
Let m ∈ N∗. As F2m is an m-dimensional F2-vector space, its elements can be
represented as m-dimensional F2-vectors. But as the multiplication in F2m obeys
the distributive law, the multiplication with an element of F2m corresponds to a
linear mapping from Fm2 to Fm2 , that is an m×m matrix over F2. For an element
a ∈ F2m , let La denote the corresponding m×m matrix. For b ∈ F2m , we then have
a · b = Lab.

Lemma 1. Let a be a primitive element of F2m . Let B be an m×m matrix over
F2 which commutes with La. Then there exists b ∈ F2m such that Lb = B.

Proof. Let c be any element from F∗2m . As a is primitive, there exists k ∈ N∗ such
that c = ak and likewise Lc = Lka. As B commutes with La, by induction B also
commutes with Lc. Clearly, B also commutes with L0, so B commutes with all
elements of F2m .
Let now b ∈ F2m be the image of 1 under B, b = B1. We then have for any

c ∈ F∗2m :

Bc = L1Bc = LcLc−1Bc = LcBLc−1c = LcB1 = Lcb = c · b = b · c = Lbc.

As this is true for any c ∈ F∗2m and clearly also for 0, we have B = Lb.

54

Ciphers for MPC and FHE

Publication Information
Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and
Michael Zohner. “Ciphers for MPC and FHE”. in: Advances in Cryptology -
EUROCRYPT 2015. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056.
Lecture Notes in Computer Science. Springer, 2015, pp. 430–454. isbn: 978-3-
662-46799-2

Contribution
• All authors contributed equally.

• Main contribution is the cryptanalysis of the cipher scheme.

• Further contributions were made in design decisions and writing the specification
of the scheme.

Remarks
This publication has been slightly edited to fit the format.

55

Ciphers for MPC and FHE

Martin Albrecht1, Christian Rechberger2, Thomas Schneider3, Tyge Tiessen2, and
Michael Zohner3

1 Royal Holloway, University of London, UK
martinralbrecht@googlemail.com

2 Technical University of Denmark, Copenhagen, Denmark
{crec,tyti}@dtu.dk

3 TU Darmstadt, Darmstadt, Germany
{thomas.schneider,michael.zohner}@ec-spride.de

Abstract. Designing an efficient cipher was always a delicate balance
between linear and non-linear operations. This goes back to the design
of DES, and in fact all the way back to the seminal work of Shannon.

Here we focus, for the first time, on an extreme corner of the design
space and initiate a study of symmetric-key primitives that minimize
the multiplicative size and depth of their descriptions. This is motivated
by recent progress in practical instantiations of secure multi-party
computation (MPC), fully homomorphic encryption (FHE), and zero-
knowledge proofs (ZK) where linear computations are, compared to
non-linear operations, essentially “free”.

We focus on the case of a block cipher, and propose the family of block
ciphers “LowMC”, beating all existing proposals with respect to these
metrics by far. We sketch several applications for such ciphers and give
implementation comparisons suggesting that when encrypting larger
amounts of data the new design strategy translates into improvements
in computation and communication complexity by up to a factor of 5
compared to AES-128, which incidentally is one of the most competitive
classical designs. Furthermore, we identify cases where “free XORs” can
no longer be regarded as such but represent a bottleneck, hence refuting
this commonly held belief with a practical example.

Keywords: block cipher, multiplicative complexity, multiplicative depth, secure
multiparty computation, fully homomorphic encryption

1 Introduction
Modern cryptography developed many techniques that go well beyond solving tradi-
tional confidentiality and authenticity problems in two-party communication. Secure

57

mailto:martinralbrecht@googlemail.com
mailto:\protect \T1\textbraceleft crec,tyti\protect \T1\textbraceright @dtu.dk
mailto:\protect \T1\textbraceleft thomas.schneider,michael.zohner\protect \T1\textbraceright @ec-spride.de

Ciphers for MPC and FHE

multi-party computation (MPC), zero-knowledge proofs (ZK) and fully homomorphic
encryption (FHE) are some of the most striking examples.
In recent years, especially the area of secure multi-party computation has moved

from a science that largely concerned itself with the mere existence of solutions towards
considerations of a more practical nature, such as costs of actual implementations
for proposed protocols in terms of computational time, memory, and communication.
Despite important progress and existing proof-of-concept implementations, e.g.

[30], [40], [47], [54], [58], [59], [63], there exists a huge cost gap between employing
cryptographic primitives in a traditional way and using them in the more versatile
MPC context. As an example, consider implementations of the AES block cipher,
a global standard for the bulk encryption of data. Modern processors achieve a
single execution of the block cipher within a few hundred clock cycles (or even less
than 100 clock cycles using AES-NI). However, realizing the same cipher execution
in the context of an MPC protocol takes many billions of clock cycles and high
communication volumes between the participating parties, e.g. several hundreds of
Megabytes for two-party AES with security against malicious adversaries [21], [22],
[30], [47], [48], [58], [59], [63].

While our design approach is not specific to block ciphers but can be equally applied
to e.g. hash functions, in this work, we propose block ciphers that are specifically
designed for application in MPC and similar contexts. Traditionally, ciphers are built
from linear and non-linear building blocks. These two have roughly similar costs in
hardware and software implementations. In CMOS hardware, the smallest linear
gate (XOR) is about 2-3 times larger than the smallest non-linear gate (typically,
NAND). When implemented in an MPC protocol or a homomorphic encryption
scheme, however, the situation is radically different: linear operations come almost
for free, since they only incur local computation (resp. do not increase the noise
much), whereas the bottleneck are non-linear operations that involve symmetric
cryptographic operations and communication between parties (resp. increase the
noise considerably). Our motivation hence comes from implementations of ciphers in
the context of MPC, ZK, or FHE schemes where linear parts are much cheaper than
non-linear parts.
This cost metric suggests a new way of designing a cipher where most of the

cryptographically relevant work would be performed as linear operations and the
use of non-linear operations is minimized. This design philosophy is related to the
fundamental theoretical question of the minimal multiplicative complexity (MC) [13]
of certain tasks. Such extreme trade-offs were not studied before, as all earlier designs
– due to their target platforms – faired better with obtaining a balance between linear
and non-linear operations.

In this work we propose to start studying symmetric cryptography primitives with
low multiplicative complexity in earnest. Earlier tender steps in this direction [33],
[35], [60] were aimed at good cost and performance when implemented with side-
channel attack countermeasures, and are not extreme enough for our purpose. Our
question hence is: what is the minimum number of multiplications for building a
secure block cipher? We limit ourselves to multiplications in GF(2) and motivate

58

1 Introduction

this as follows:
• By using Boolean circuits we decouple the underlying protocol / primitive
(MPC protocol / ZK protocol / FHE scheme) from that of the cipher. Hence,
the same cipher can be used for multiple applications.

• GF(2) is a natural choice for MPC protocols based on Yao or GMW (in the
semi-honest setting, but also for their extensions to stronger adversaries), ZK
protocols, as well as for fully or somewhat homomorphic encryption schemes
(cf. Section 2 for details).

By nature of the problem, we are interested in two different metrics. One metric
refers to what is commonly called multiplicative complexity (MC), which is simply
the number of multiplications (AND gates) in a circuit, see e.g. [13]. The second
metric refers to the multiplicative depth of the circuit, which we will subsequently
call ANDdepth. We note that already in [26] it was observed that using ciphers with
low ANDdepth is of central importance for efficient evaluations within homomorphic
encryption schemes. Therefore, the authors of [26] suggest to study block cipher
designs that are optimized for low ANDdepth, a task to which we provide a first
answer. Our work is somehow orthogonal to Applebaum et. al [2], where the question
of what can in principle be achieved in cryptography with shallow circuits was
addressed.

This all motivates the following guiding hypothesis which we will test in this paper:
“When implemented in practice, a block cipher design with lower MC and lower
ANDdepth will result in lower executing times”. We note that the relatively low
execution times often reported in the literature are amortized times, i.e. averaged
over many calls of a cipher (in parallel). This, however, neglects the often important
latency. Hence, another design goal in this work is to reduce this latency.

Outline and contribution.

In Section 2 we describe several schemes with “free XORs”. Then, in Section 3,
we focus on an extreme corner of the design space of block ciphers and propose a
new block-cipher design strategy that minimizes the multiplicative size and depth
of the circuit describing it, beating all existing candidates by far with respect to
these metrics. In terms of ANDdepth, the closest competitor is PRINCE. In terms
of MC, the closest competitor turns out to be Simon. We give a high-level overview
over a larger field of competing designs in Section 4. We analyse the security of our
constructions in Section 5 and provide experimental evidence for the soundness of
our approach in Section 6. In particular, our implementations outperform previously
reported results in the literature, often by more than a factor 5 in MPC and FHE
implementation settings. They also indicate that in the design space we consider,
“free XORs” can no longer be regarded as free but significantly contribute to the
overall cost, hence refuting this commonly held belief with a practical example.
Finally, we describe our optimisation strategies for implementing our designs in the
MPC and FHE case, which might be of independent interest.

59

Ciphers for MPC and FHE

Main features and advantages of LowMC.

• Low ANDdepth, and low MC, which positively impacts the latency and through-
put of the FHE, MPC, or ZK evaluation of the cipher.

• Partial Sbox layer.

• Security arguments against large classes of statistical attacks like differential
attacks, similar to other state-of-the-art designs are given in Section 5. Zorro [33]
is the first SPN cipher in the literature that uses a non-full Sbox layer and
is related to LowMC in this respect. However, recent attacks on Zorro that
exploit this particular property [5], [36], [61], [67], highlight the need to be very
careful with this design strategy. In our analysis of LowMC in Section 5 we are
able to take these into account.

• In contrast to other constructions, it is easy to obtain tight bounds on the MC
and ANDdepth.

• The design is very flexible and allows for a unified description regardless of the
blocksize.

• We explicitly de-couple the security claim of a block cipher from the block size.

2 Schemes
In this section we list several schemesfor MPC, FHE, and ZK that benefit from
evaluating our cipher. We give a list of example applications for LowMC in the full
version of the paper.

2.1 Multi-Party Computation (MPC)
There are two classes of practically efficient secure multi-party computation (MPC)
protocols for securely evaluating Boolean circuits where XOR gates are considerably
cheaper (no communication and less computation) than AND gates.

The first class of MPC protocols has a constant number of rounds and their total
amount of communication depends on the MC of the circuit (each AND gate requires
communication). Examples are protocols based on Yao’s garbled circuits [68] with
the free XOR technique [46]. To achieve security against stronger (i.e., malicious
or covert) adversaries, garbled circuit-based protocols apply the cut-and-choose
technique where multiple garbled circuits are evaluated, e.g., [4], [28], [30], [41], [42],
[47], [49], [50], [51], [52], [53], [59], [63], [64]; also MiniLEGO [29] falls into this class.
The second class of MPC protocols has a round complexity that is linear in the

ANDdepth of the evaluated circuit (each AND gate requires interaction) and hence
the performance depends on both, the MC and ANDdepth of the circuit. Examples
are the semi-honest secure version of the GMW protocol [34] implemented in [18],
[62], and tiny-OT [58] with security against malicious adversaries.

60

3 Description of LowMC

2.2 Fully homomorphic encryption (FHE)
In all somewhat and fully homomorphic encryption schemes known so far XOR
(addition) gates are considerably cheaper than AND (multiplication) gates. Moreover,
XOR gates do not increase the noise much, whereas AND gates increase the noise
considerably (cf. [37]). Hence, as in somewhat homomorphic encryption schemes the
parameters must be chosen such that the noise of the result is low enough to permit
decryption, the overall complexity depends on the ANDdepth.

2.3 Zero-Knowledge proof of knowledge (ZK)
In several zero-knowledge proof protocols XOR relations can be proven for free and
the complexity essentially depends on the number of AND gates of the relation to be
proven. Examples for such protocols are [10], [15] and the recently proposed highly
efficient protocol of [43] that requires only one evaluation of a garbled circuit [68]
and can make use of the free XOR technique [46].

3 Description of LowMC
LowMC is a flexible block cipher based on an SPN structure where the block size
n, the key size k, the number of Sboxes m in the substitution layer and the allowed
data complexity d of attacks can independently be chosen4. The number of rounds
needed to reach the security claims is then derived from these parameters.
To reduce the MC, the number of Sboxes applied in parallel can be reduced,

leaving part of the substitution layer as the identity mapping. Despite concerns
raised regarding this strategy [67], we will show that security is viable. To reach
security in spite of a low MC, pseudorandomly generated binary matrices are used in
the linear layer to introduce a very high degree of diffusion. A method to accountably
instantiate LowMC is given in Section 3.3.
Encryption with LowMC starts with a key whitening, followed by several rounds

of encryption where the exact number of rounds depends on the chosen parameter
set. A single round is composed as follows:

LowMCRound(i) =
KeyAddition(i) ◦ ConstantAddition(i) ◦ LinearLayer(i) ◦ SboxLayer

In the following we give a detailed description of the individual steps.

SboxLayer is an m-fold parallel application of the same 3-bit Sbox on the first 3m
bits of the state. If n > 3m then for the remaining n− 3m bits, the SboxLayer is the
identity. The selection criteria for the Sbox were as follows:

• Maximum differential probability: 2−2

4The number of Sboxes is limited though by the block size as the Sboxes need to fit into a block.

61

Ciphers for MPC and FHE

. . .S S S . . . S

Affine Layer

ki

Figure 1: Depiction of one round of encryption with LowMC.

• Maximum linear probability: 2−2

• Simple circuit description involving MC = 3 AND gates, with ANDdepth=1

• Each of the 8 non-zero component functions has algebraic degree 2

The Sbox is specified in 2, and coincides with the Sbox used for PRINTcipher [45].
Other representations of the Sbox can be found in the full version of this paper.
LinearLayer(i) is the multiplication in GF(2) of the state with the binary n× n
matrix Lmatrix[i]. The matrices are chosen independently and uniformly at random
from all invertible binary n× n matrices.

ConstantAddition(i) is the addition in GF(2) of roundconstant[i] to the state.
The constants are chosen independently and uniformly at random from all binary
vectors of length n.

KeyAddition(i) is the addition in GF(2) of roundkey[i] to the state. To generate
roundkey[i], the master key key is multiplied in GF(2) with the binary n×k matrix
Kmatrix[i]. The matrices are chosen independently and uniformly at random from
all binary n× k matrices of rank min(n, k).

Decryption is done in the straightforward manner by an inversion of these steps.

S(a, b, c) = (a⊕ bc, a⊕ b⊕ ac, a⊕ b⊕ c⊕ ab)

Figure 2: Specification of the 3-bit Sbox.

3.1 Pseudocode
plaintext and state are n-bit quantities. key is a k-bit quantity, which can both
be larger or smaller than n. r is the number of rounds.

62

3 Description of LowMC

blocksize sboxes keysize data rounds ANDdepth ANDs
n m k d r per bit

256 49 80 64 11 11 6.3
256 63 128 128 12 12 8.86

Table 1: Parameter sets of LowMC instantiations. One first set has PRESENT-like
security parameters, the second set has AES-like security parameters.

ciphertext = encrypt (plaintext,key)
//initial whitening
state = plaintext + MultiplyWithGF2Matrix(KMatrix(0),key)

for (i = 1 to r)
//m computations of 3-bit sbox,
//remaining n-3m bits remain the same
state = Sboxlayer (state)

//affine layer
state = MultiplyWithGF2Matrix(LMatrix(i),state)
state = state + Constants(i)

//generate round key and add to the state
state = state + MultiplyWithGF2Matrix(KMatrix(i),state)

end
ciphertext = state

3.2 Parameters
Our security analysis against differential, linear, higher-order, meet-in-the-middle,
algebraic, and slide attacks suggests that, except with negligible probability, any
uniformly randomly chosen set of matrices leads to a secure construction for the
parameters given in Table 1. For a larger selection of parameters bundled with
security bounds, see the full version of this paper.

3.3 Instantiation of LowMC
To maximize the amount of diffusion done by the linear layer, we rely on randomly
generated, invertible binary matrices. As there exist no binary matrices of size larger
than 1×1 that are MDS, and as it is generally an NP-complete problem to determine
the branching number of a binary matrix [7], there is no obviously better method to
reach this goal. The problem in the instantiation of LowMC is to find an accountable
way of constructing the random matrices and vectors that leaves no room for the
designer to plant backdoors.

63

Ciphers for MPC and FHE

Our recommended instantiation is a compromise between randomness, accountabil-
ity and ease of implementation. It uses the Grain LSFR as a self-shrinking generator
(see [39] and [56]) as a source of random bits. The exact procedure can be found in
the full version of this paper.

It must be mentioned though that it is principally possible to use any sufficiently
random source to generate the matrices and constants. It is also not necessary that
the source is cryptographically secure.

4 Comparison with other ciphers
In the following we survey a larger number of existing cipher designs and study
their ANDdepth and MC per encrypted bit which we summarize in Table 2. We
both choose representative candidates from various design strategies, as well as the
designs that are most competitive in terms of our metrics. We do this in two distinct
categories: AES-like security (with key sizes of 128-bits and more and data security
and block size of 128-bits and more), and lightweight security (data security and
block size of 96 bits or below). Note that data security refers to the log2 of the
allowable data complexity up to which a cipher is expected to give the claimed
securtiy against shortcut attacks. For LowMC we explicitly de-couple the data
security from the block size of the cipher as the proposed design strategy favour
larger block sizes but we don’t see a new for larger data security than 128. For
size-optimized variants we instantiate `-bit adders using a ripple-carry adder which
has `− 1 ANDs and ANDdepth `− 1; for depth-optimized variants we instantiate
them with a Ladner-Fischer adder that has ` + 1.25` log2 ` ANDs and ANDdepth
1 + 2 log2 `, cf. [62].

We first survey AES versions and then ciphers with related security properties.
The Sbox construction of [12] has 34 AND gates and ANDdepth 4 (the size optimized
Sbox construction of [11] has only 32 AND gates, but higher ANDdepth 6). See
also Canright [17]. To encrypt a 128-bit block, AES-128 has 10 rounds and uses 160
calls to the Sbox (40 for key schedule), hence 5 440 AND gates, or 42.5 AND gates
per encrypted bit. To encrypt a 128-bit block, AES-192 has 12 rounds and uses 192
calls to the Sbox (32 for key schedule), hence 6 528 AND gates, or 51 AND gates per
encrypted bit. To encrypt a 128-bit block, AES-256 has 14 rounds and uses 224 calls
to the Sbox (56 for key schedule), hence 7 616 AND gates, or 59.5 AND gates per
encrypted bit.
AES is actually comparatively efficient. Other ciphers with a different design

strategy can have very different properties. Threefish [27] is a cipher with large block
size. Threefish with its 512-bit block size has 72 rounds with 4 additions modulo
264 each resulting in 35.438 AND gates per encrypted bit and ANDdepth=4 536 (63
per round). Threefish with its 1 024-bit block size has 80 rounds with 8 additions
each resulting in 39.375 AND gates per bit and ANDdepth=5 040 (63 per round).
The recently proposed NSA cipher Simon [6] is also a good candidate to be of low
multiplicative complexity. If b is the block size, it does b/2 AND gates per round, and

64

5 Resistance against cryptanalytic attacks

ANDdepth is equal to the number of rounds. For a key size of 128 bit (comparable
to AES) and block size 128 bit, it needs 68 rounds. This means, 4 352 AND gates, or
34 AND gates per bit.

In the lightweight category, we consider Present, but also Simon. The Present
Sbox can be implemented with as little as 4 AND gates which is optimal [19] and has
ANDdepth 3. With 16 · 31 = 496 Sbox applications per 64 bit block we arrive at 31
AND gates per bit. A depth-optimized version of the Present Sbox with ANDdepth
2 and 8 ANDs is given in the full version of this paper. The 128bit secure version of
Present differs only in the key schedule. Simon-64/96 has a 96 bit key, block size 64
bit and 42 rounds and Simon-32/64 has a 64 bit key, block size 32 bit and 32 rounds;
see above for MC and ANDdepth. As another data point, the DES circuit of [65] has
18 175 AND gates and ANDdepth 261. KATAN [16] has 254 rounds. In KATAN32,
the ANDdepth increases by two every 8 rounds resulting in an ANDdepth of 64; with
3 AND gates per round and a block size of 32 bit this results in 23.81 ANDs per bit,
but similar to Simon-32/64 applications are limited due to the small block size. In
KATAN48 and KATAN64 the ANDdepth increases by 2 every 7 rounds resulting in
an ANDdepth of 74. KATAN48 has 6 ANDs per round and a block size of 48 bit
resulting in 31.75 ANDs per bit. KATAN64 has 9 ANDs per round and a block size
of 64 bit resulting in 35.72 ANDs per bit. Prince [8] has 12 rounds and each round
can be implemented with 10 AND gates and ANDdepth 2, cf. [26]. NOEKEON
[20] is a competitive block cipher with 16 rounds and each round applies 32 S-boxes
consisting of 4 AND gates with ANDdepth 2 each.

LowMC is easily parameterizable to all these settings, see also Table 1 in Section 3.
It has at most (if 3m = n) one AND gate per bit per round which results, together
with a moderate number of rounds to make it secure, in the lowest ANDdepth and
lowest MC per encrypted bit, cf. Table 2.

5 Resistance against cryptanalytic attacks
The number of rounds r equals ANDdepth, and is hence a crucial factor to minimize.
For this we evaluate the security of the construction against an array of known attack
vectors. Below we especially discuss differential, linear and high-order attacks, as
their analysis is a relevant technical contribution in itself. For a short discussion of
other attack vectors, we refer to the full version of this paper.
We aim to prove the LowMC designs secure against classes of known attacks.

However, due to the choice of random linear layers it is not immediately clear how to
bound the probability of differential or linear characteristics. This is something we
will investigate and resolve in Section 5.1. Due to the extremely simple description of
the Sbox, higher order [44] and cube attacks [24] that exploit a relatively slow growth
in the algebraic degree appear to be the most promising attack vector, and are studied
in Section 5.4. The quality of these bounds is tested on small versions of LowMC.
This all will allow us to formulate in Section 5.6 a relatively simple expression for
deriving a lower bound for the number of rounds given other parameters like the

65

Ciphers for MPC and FHE

Cipher Key size Block size Data sec. ANDdepth ANDs/bit Sbox representation
AES-like security

AES-128 128 128 128 40 (60) 43 (40) [12] ([11])
AES-192 192 128 128 48 (72) 51 (48) [12] ([11])
AES-256 256 128 128 56 (84) 60 (56) [12] ([11])
Simon 128 128 128 68 34 [6]
Simon 192 128 128 69 35 [6]
Simon 256 128 128 72 36 [6]
Noekeon 128 128 128 32 16 [20]
Robin 128 128 128 96 24 [35]

Fantomas 128 128 128 48 16.5 [35]
Threefish 512 512 512 936 (4 536) 306 (36) [27]
Threefish 512 1 024 1024 1 040 (5 040) 340 (40) [27]
LowMC 128 256 128 12 8.85 full version

Lightweight security
PrintCipher-96 160 96 96 96 96 full version
PrintCipher-48 80 48 48 48 48 full version

Present 80 or 128 64 64 62 (93) 62 (31) full version ([19])
Simon 96 64 64 42 21 [6]
Simon 64 32 32 32 16 [6]
Prince 128 64 64 24 30 [26]

KATAN64 80 64 64 74 36 [16]
KATAN48 80 48 48 74 32 [16]
KATAN32 80 32 32 64 24 [16]

DES 56 64 56 261 284 [65]
LowMC 80 256 64 11 6.31 full version

Table 2: Comparison of ciphers (excluding key schedule). We list the depth-optimized
variants; size-optimized variants are given in () if available. Best in class
are marked in bold.

desired security level in terms of time and data, and block size.

5.1 Differential characteristics
In differential attacks, the principal goal is to find a pair (α, β) of an input difference
α and an output difference β for the cipher such that pairs of input texts with
difference α have an unusual high probability to produce output texts with difference
β. Such a pair of differences is called a differential. A good differential can be used
to mount distinguishing attacks as well as key recovery attacks on the cipher. For
this it suffices if the differential does not cover the whole cipher but all except one or
a few rounds.

As it is infeasible to calculate the probability of differentials for most ciphers, the
cryptanalyst often has to be content with finding good differential characteristics
i.e., paths of differences through the cipher for which the probability can directly be
calculated. Note that a differential is made up of all differential characteristics that
have the same input and output difference as the differential. The probability of a
good differential characteristic is thus a lower bound for the related differential.

Allowing parts of the state to go unchanged through the Sbox layer clearly increases
the chance of good differential characteristics. It is for example always possible to
find a one round characteristic of probability 1. In fact, it is even possible to find
d l

3me-round characteristics of probability 1 where l is the width of the identity part

66

5 Resistance against cryptanalytic attacks

and m the number of 3-bit Sboxes. Nonetheless, as we will prove in the following,
this poses no threat. This is because of the randomness of the linear layer which
maps a fixed subspace to a random subspace of the same dimension: Most "good"
difference i.e., differences that activate none or only few Sboxes, are mapped to
"bad" differences that activate most of the Sboxes per layer. This causes the number
of characteristics that only use "good" differences to decay exponentially with the
number of rounds. In the case of a d l

3me-round characteristic of probability 1, this
means that the output difference is fixed to very few options, which makes it then
already in the next round extremely unlikely that any one of the options is mapped
onto a "good" difference.

We will now prove that good differential characteristics exist only with negligible
probability in LowMC. The basic idea behind the proof is the following. We calculate
for each possible good differential characteristic the probability that it is realized in
an instantiation of LowMC under the assumption that the binary matrices of the
linear layer were chosen independently and uniformly at random. We then show that
the sum of these probabilities, which is an upper bound for the probability that any
good characteristic exists, is negligible.

Recall that m is the number of Sboxes in one Sbox layer in LowMC and that l is
the bit-length of the identity part of the Sbox layer. We thus have n = 3m+ l. Let
V (i) be the number of bit vectors of length n that correspond to a difference that
activates i Sboxes. As we can choose i out of the m Sboxes, as for each active 3-bit
Sbox there are 7 possible non-zero input differences and as the bits of the identity
part can be chosen freely, we have

V (i) =
(
m

i

)
· 7i · 2l . (1)

Let α0 be an input difference and let α1 be an output difference for one round of
LowMC. Let a0 be the number of Sboxes activated by α0. As an active Sbox maps
its non-zero input difference to four possible output differences each with probability
1
4 , and as a uniformly randomly chosen invertible binary n× n matrix maps a given
non-zero n-bit vector with probability 1

2n−1 to another given non-zero output vector,
the probability that the one-round characteristic (α0, α1) has a probability larger
than 0 is

4a0

2n − 1 . (2)

Let (α0, α1, . . . , αr) now be a given characteristic over r rounds where the differences
αi are at the end of round i and α0 is the starting difference. Let (a0, a1, . . . , ar−1)
be the numbers of Sboxes activated by each α0, α1,. . . , and αr−1. We can now
calculate the probability that this characteristic has a probability larger than 0 in a
random instantiation of LowMC as

4a0

2n − 1 ·
4a1

2n − 1 . . .
4ar−1

2n − 1 = 4a0+a1+···+ar−1

(2n − 1)r . (3)

67

Ciphers for MPC and FHE

Rounds 1 - 6 7 8 9 10 11 12 13 14 15

n = 256 1.0 2−100 2−212 2−326 2−442 2−558 2−676 2−794 2−913 -
n = 1024 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2−26 2−145 2−264

Table 3: Example of how the probability bound pstat, for the existence of differential
or linear characteristic of probability at least 2−d, evolves. The parameters
are here m = 42, d = 128.

Summing now over all possible characteristics over r rounds that activate at most
d Sboxes, we can calculate an upper bound for the probability that there exists an
r-round characteristic with d or fewer active Sboxes as

∑
0≤a0,a1,...,ar−1≤m
a0+a1+···+ar−1≤d

V (a0) · V (a1) · · ·V (ar−1) · (2n − 1) · 4a0+a1+···+ar−1

(2n − 1)r (4)

where the factor (2n − 1) is the number of choices for the last difference αr that can
take any non-zero value.

With the knowledge that each active Sbox reduces the probability of a characteristic
by a factor of 2−2, we can now calculate for each parameter set of LowMC the
number of rounds after which no good differentials are present except for a negligible
probability. We consider as good differential characteristics those with a probability
higher than 2−d, where d is the allowed data complexity in the respective parameter
set. We call a negligible probability a probability lower than 2−100. Note that this
probability only comes into play once when fixing an instantiation of LowMC. The
calculated bound for our choice of parameters can be found in Table 4.

5.2 Linear characteristics

In linear cryptanalysis [55], the goal of the cryptanalyst is to find affine approximations
of the cipher that hold sufficiently well. As with differential cryptanalysis, these can
be used to mount distinguishing and key recovery attacks. The approximation is done
by finding so-called linear characteristics, a concatenation of linear approximations
for the consecutive rounds of the cipher. Similar to differential characteristics, linear
characteristics activate Sboxes that are involved in the approximations.

The proof for the absence of good differential characteristics is directly transferable
to linear characteristics because of two facts. Firstly, the maximal linear probability
of the Sbox is 2−2, just the same as the maximal differential probability. Secondly,
the transpose of a uniformly randomly chosen invertible binary matrix is still a
uniformly randomly chosen invertible binary matrix. Thus we can use equation 4 to
calculate the bounds for good linear characteristics as well.

68

5 Resistance against cryptanalytic attacks

5.3 Boomerang attacks
In boomerang attacks [66], good partial differential characteristics that cover only
part of the cipher can be combined to attack ciphers that might be immune to
standard differential cryptanalysis. In these attacks, two differential characteristics
are combined, one that covers the first half of the cipher and another that covers the
second half. If both have about the same probability, the complexity corresponds
roughly to the inverse of the fourth power of this probability [66]. Thus to calculate
the number of rounds sufficient to make sure that no boomerang exists, we calculate
the number of rounds after which differential characteristics of probability 2−d/4 exist
only with negligible probability and then double this number.

5.4 Higher order attacks
Due to its small size, the degree of the Sbox in its algebraic representation is only
two. Since in one round the Sboxes are applied in parallel and since the affine layer
does not change the algebraic degree, the algebraic degree of one round is two as
well. As a low degree could be used as a lever for a high-order attack, let us take a
look at how the algebraic degree of LowMC develops over several rounds.
Clearly the algebraic degree of the cipher after r rounds is bounded from above

by 2r. It is furthermore generally bounded from above by n − 1 since the cipher
is a permutation. A second upper bound, that is better suited and certainly more
realistic for the later rounds, was found by Boura et al. [9]. In our case it is stated
as following: If the cipher has degree dr after r rounds, the degree after round r + 1
is at most n

2 + dr
2 . Differing from Boura et al. [9], in LowMC the Sbox layer only

partially consists of Sboxes and partially of the identity mapping. This must be
accounted for and requires a third bound: If the cipher has degree dr after r rounds,
the degree after round r + 1 is at most m+ dr. A proof of this can be found in the
full version of this paper. This can be summarized as follows:
Lemma 1. If the algebraic degree of LowMC with m Sboxes and length l of the
identity part in the Sbox layer is dr after r rounds, the degree in round r + 1 is at
most

min
(

2dr,m+ dr,
n

2 + dr
2

)
(5)

where n = 3m+ l is the block width of LowMC.
Combining these three bounds, we can easily calculate lower bounds for the number

of rounds r needed for different parameter sets l and m of LowMC to reach a degree
that is at least as large as the allowed data complexity d minus 1. The results of this
for LowMC’s parameters are displayed in Table 4.

5.5 Experimental Cryptanalysis
We proved that no good differential or linear characteristic can cover sufficiently
many rounds to be usable as an attack vector in LowMC. This does not exclude

69

Ciphers for MPC and FHE

Sboxes blocksize data complexity rstat rbmrg rdeg

49 256 64 5 6 6
63 256 128 5 6 7

Table 4: For the different sets of LowMC parameters, bounds are given for the number
of rounds for which no good differential or linear characteristics exist (rstat),
to avoid good boomerangs (rbmrg), and the number of rounds needed to
have a sufficiently high algebraic degree (rdeg). The bounds were calculated
using equations 4 and 5.

though the possibility of good differentials or linear hulls for which a large number of
characteristics combine. Given the highly diffusive, random linear layers, this seems
very unlikely.

Likewise we were able to find lower bounds on the number of rounds needed for the
algebraic degree of LowMC to be sufficiently high. Even though this is state-of-the
art also for traditional designs to date, this gives us no guarantee that it will indeed
be high. Unfortunately it is not possible to directly calculate the algebraic degree for
any large block size.

To nevertheless strengthen our confidence in the design, we numerically examined
the properties of small-scale versions of LowMC. In table 5, we find the results for
a 24-bit wide version with 4 Sboxes. For testing its resistance against differential
cryptanalysis, we calculated the full codebook under 100 randomly chosen keys and
used the distribution of differences to estimate the probabilities of the differentials.
To reduce the computational complexity, we restricted the search space to differentials
with one active bit in the input difference.

It can clearly be seen that the probability of differentials quickly saturates to values
too low to allow an attack. Clearly, the bound calculated with equation 4 (pstat in
the table) overestimates the probability of good characteristics. Even though we were
not able to search the whole space of differentials there is little reason to assume that
there are other differentials that fare considerably better. It is important to note
that the number of impossible differentials goes to 0 after only few rounds. Thus
impossible differentials cannot be used to attack any relevant number of rounds. At
the same time this assures the absence of any truncated differentials of probability 1.
The minimal algebraic degree5 is tight for this version when compared with

the theoretic upper bound as determined with equation 5. More experimental
cryptanalysis can be found in the full version of this paper.

5That is the minimum of the algebraic degrees of the 24 output bit when written as Boolean
functions.

70

6 Comparison of Implementations

Rounds pbest pworst nimposs degexp degtheor pstat

2 2−8.64 0 228.58 4 4 -
3 2−12.64 0 228.00 8 8 -
4 2−14.64 0 24.25 12 12 -
5 2−18.60 2−26.06 0 16 16 -
6 2−20.49 2−25.84 0 20 20 -
7 2−23.03 2−25.74 0 22 22 -
8 2−23.06 2−25.74 0 23 23 -
10 - - - - - 2−5.91

11 - - - - - 2−16.00

12 - - - - - 2−26.28

19 - - - - - 2−101.5

(a) n = 24, m = 4, k = 12, d = 12

Table 5: Experimental results of full codebook encryption over 100 random keys for a
set of small parameters are given. pbest and pworst are the best and the worst
approximate differential probability of any differential with one active bit in
the input difference. nimposs is the number of impossible differentials with
one active bit in the input difference. degexp is the minimal algebraic degree
in any of the output bits. degtheor is the upper bound for the algebraic degree
as determined from equation 5. pstat is the probability that a differential or
linear characteristic of probability at least 2−12 exists (see eq. 4).

5.6 Fixing the number of rounds
We base our recommendation for the number of rounds on the following:

r ≥ max(rstat, rbmrg, rdeg) + router

where rstat is a bound for statistical attack vectors such as differentials and linear
characteristics as discussed in Section 5.1, rbmrng is the bound for boomerang attacks
as discussed in Section 5.3, and where rdeg indicates the number of rounds needed
for the cipher to have sufficient degree as discussed in Section 5.4. Values of these
for the parameters of LowMC can be found in Table 4. For the number of rounds
which can be peeled off at the beginning and end of the cipher by key guessing and
other strategies, we use the ad-hoc formular router = rstat.

6 Comparison of Implementations
In the following we report on experiments when evaluating LowMC with MPC
protocols in Section 6.1 and with FHE in Section 6.2. The performance of both
implementations is independent of the specific choice of the random matrices and

71

Ciphers for MPC and FHE

vectors used in LowMC (cf. Section 3.3) as we do not use any optimizations that are
based on their specific structure.

In both the FHE and MPC settings, for more efficient matrix multiplication, we use
a method that is generically better than a naive approach: the “method of the four
Russians” [1]. This method reduces the complexity of the matrix-vector product from
O(n2) to O(n2/log(n)), i.e. it’s an asymptotically faster algorithm and is also fast in
practice for the dimensions we face in LowMC. Asymptotically faster methods like
the Strassen-Winograd method method make no sense however, for the dimensions
we are considering.

It turns out that considering design-optimizations of the linear layer by introducing
structure and thereby lowering the density of the matricies and in turn reducing the
number of XOR computations will not improve performance of all these implemen-
tations. On the contrary, as the application of the security analysis suggests, the
number of rounds would need to be increased in such a case.

6.1 MPC Setting
As an example for both classes of MPC protocols described in Section 2.1 we use the
GMW protocol [34] in the semi-honest setting. As described in [18], this protocol
can be partitioned into 1) a setup phase with a constant number of rounds and
communication linear in the MC of the circuit (2κ bits per AND gate for κ-bit
security), and 2) an online phase whose round complexity is linear in the ANDdepth
of the circuit. Hence, we expect that the setup time grows linearly in the MC while
the online time grows mostly with increasing ANDdepth when network latency is
high.

Benchmark Settings.

For our MPC experiments we compare LowMC against other ciphers with a com-
parable level of security. We compare LowMC with the two standardized ciphers
Present and AES and also with the NSA cipher Simon which previously had the
lowest number of ANDs per encrypted bit (cf. Table 2). More specifically, for
lightweight security with at least κ = 80 bit security we compare LowMC with 80
bit keys against Present with 80 bit key (using the Sbox of [19]) and Simon with 96
bit keys (the Simon specification does not include a variant with 80 bit keys); for
long-term security with κ = 128 bit security we compare LowMC with 128 bit keys
against AES-128 (using the Sbox of [12]) and Simon with 128 bit key; we set the
security parameters for the underlying MPC protocol to κ = 80 bit for lightweight
security and to κ = 128 bit for long-term security. We exclude the key schedule and
directly input the pre-computed round keys. We use the GMW implementation that
is available in the ABY-framework [23] which uses the efficient oblivious transfer
extensions of [3]6. We run our MPC experiments on two desktop PCs, each equipped

6Our the MPC implementations of the benchmarked block-ciphers are available online as part of
the ABY-framework https://github.com/encryptogroup/ABY.

72

https://github.com/encryptogroup/ABY

6 Comparison of Implementations

Lightweight Security
Cipher Present Simon LowMC
Communication [kB] 39 26 51
Runtime LAN WAN LAN WAN LAN WAN
Setup [s] 0.003 0.21 0.002 0.21 0.002 0.14
Online [s] 0.05 13.86 0.05 5.34 0.06 1.46
Total [s] 0.05 14.07 0.05 5.45 0.06 1.61
Long-Term Security
Cipher AES Simon LowMC
Communication [kB] 170 136 72
Runtime LAN WAN LAN WAN LAN WAN
Setup [s] 0.01 0.27 0.009 0.23 0.002 0.15
Online [s] 0.04 4.08 0.05 6.95 0.07 1.87
Total [s] 0.05 4.35 0.06 7.18 0.07 2.02

Table 6: GMW benchmarking results for single block. Best in class marked in bold.

with an Intel Haswell i7-4770K CPU with 3.5 GHz and 16GB of RAM, that are
connected by Gigabit LAN. To see the impact of the reduced ANDdepth in the
online phase, we measured the times in a LAN scenario (0.2 ms latency) and also a
trans-atlantic WAN scenario (50 ms latency) which we simulated using the Linux
command tc.
In our first experiment depicted in Table 6 we encrypt a single block, whereas in

our second experiment depicted in Table 7 we encrypt multiple blocks in parallel to
encrypt 12.8 Mbit of data.

Single-Block Results.

From our single-block experiments in Table 6 we see that the communication of
LowMC is higher by factor 2 compared to the lightweight security ciphers but lower
by factor 2 compared to the long-term security ciphers. In terms of total runtime,
for lightweight security LowMC performs similar to Present and Simon in the LAN
setting and outperforms both by factor 3 to 9 in the WAN setting. For long-term
security AES is slightly faster than LowMC in the LAN setting, but slower than
LowMC in the WAN setting by factor 2. These results can be explained by the
high number of XOR gates of LowMC compared to AES, which impact the run-time
higher than the communication for the AND gates. In the WAN setting, the higher
ANDdepth of AES outweighs the local overhead of the XOR gates for LowMC,
yielding a faster run-time for LowMC.

Multi-Block Results.

From our multi-block experiments in Table 7 we see that LowMC needs less commu-
nication than all other ciphers: at least factor 2 for lightweight security and factor
4 for long-term security. Also the total runtime of LowMC is the lowest among all
ciphers, ranging from factor 6 when compared to Simon for lightweight security to
factor 9 when compared to AES for long-term security.

73

Ciphers for MPC and FHE

Lightweight Security
Cipher Present Simon LowMC
Comm. [GB] 7.4 5.0 2.5
Runtime LAN WAN LAN WAN LAN WAN
Setup [s] 214.17 453.89 268.93 568.35 43.33 138.63
Online [s] 2.71 34.35 3.29 37.06 2.02 17.12
Total [s] 216.88 488.24 272.22 605.41 45.36 155.75
Long-Term Security
Cipher AES Simon LowMC
Comm. [GB] 16 13 3.5
Runtime LAN WAN LAN WAN LAN WAN
Setup [s] 553.41 914.27 444.30 727.48 62.01 193.90
Online [s] 2.50 33.52 2.97 34.42 2.36 21.11
Total [s] 555.91 947.79 447.27 761.90 64.37 215.01

Table 7: GMW benchmarking results for multiple blocks to encrypt 12.8 Mbit of
data. Best in class marked in bold.

Summary of the Results.

To summarize our MPC experiments, the benefits of LowMC w.r.t. the online time
depend on the network latency: over the low-latency LAN network existing ciphers
achieve comparable or even slightly faster online runtimes than LowMC, whereas
in the higher latency WAN network LowMC achieves the fastest online runtime.
W.r.t. the total runtime, LowMC’s benefit in the single-block application again
depends on the latency (comparable or slightly less efficient over LAN, but more
efficient over WAN), whereas in the multi-block application LowMC significantly
improves over existing ciphers by factor 6 to 9. For secure computation protocols
with security against malicious adversaries, the benefit of using LowMC would be
even more significant, since there the costs per AND gate are at least an order of
magnitude higher than in the semi-honest GMW protocol, cf. [48], [58].

6.2 FHE Setting
We implemented LowMC using the homomorphic encryption library HELib [37],
[38], which implements the BGV homomorphic encryption scheme [14] and which
was also used to evaluate AES-128 [31], [32]. Our implementation represents each
plaintext, ciphertext and key bits as individual HE ciphertexts on which XOR and
AND operations are performed. Due to the nature of the BGV system this means that
we can evaluate many such instances in parallel, typically a few hundred. We found
this representation to be more efficient than our other “compact” implementation
which packs these bits into the slots of HE ciphertexts.

In the homomorphic encryption setting the number of AND gates is not the main
determinant of complexity. Instead, the ANDdepth of the circuit largely determines
the cost of XOR and AND, where AND is more expensive than XOR. However, due
to the high number of XORs in LowMC, the cost of the linear layer is not negligible.
In our implementation we use the “method of the four Russians” [1] to reduce the
number of HE ciphertext additions from O(n2) to O(n2/ log(n)).

74

7 Conclusions, lessons learned, and open problems

d m r n #blocks tsetup teval tsbox tkey tblock tbit Memory Comment

128 63 12 256 600 11.6 506.1 353.2 1.6 0.8434 0.0033 1.58GB main
128 86 11 512 600 11.7 847.6 451.5 3.2 1.4127 0.0028 2.62GB perf
128 86 12 512 600 11.7 893.9 480.1 3.2 1.4898 0.0029 2.62GB cons

64 49 11 256 600 11.0 383.0 206.3 0.9 0.6383 0.0025 1.52GB main
64 49 10 256 600 11.5 305.6 255.6 1.1 0.5093 0.0020 1.37GB perf
64 34 11 128 600 13.0 260.7 204.0 0.7 0.4345 0.0034 1.08GB smll

Table 8: LowMC (commit f6a086e) in HElib [38] (commit e9d3785e) on Intel i7-
4850HQ CPU @ 2.30GHz; d is the allowed data complexity, m is the
number of Sboxes, n is the blocksize, r is the number of rounds, # blocks is
the number of blocks computed in parallel, tsetup is the total setup time,
teval is the total running time of the encryption in seconds, tsbox the total
time spent in the S-Box layer in seconds, tkey the total time spent in the
key schedule in seconds, tblock = teval/#blocks and tbit = tblock/n. The
rows marked as “main” contain the main parameter proposals. The rows
marked as “perf”, “cons” or “smll” contain alternative parameter sets being
conservative, performance oriented or relatively small respectively.

In our experiments we chose the depth for the homomorphic encryption scheme
such that the “base level” of fresh ciphertexts is at least the number of rounds, i.e. we
consume one level per round. Our implementation also does not precompute round
keys in advance, but deriving round keys is considered part of the evaluation (cost).
We consider LowMC instances for Present-80 and AES-128 like security. We

always choose a homomorphic encryption security level of 80 for compatibility
with [31]. Our results are given in Table 8. Our implementation is available at
https://bitbucket.org/malb/lowmc-helib.

For comparison with previous results in the literature we reproduce those results in
Table 9 which demonstrates the benefit of a dedicated block cipher for homomorphic
evaluation.

7 Conclusions, lessons learned, and open problems
We proposed block ciphers with an extremely small number of AND gates and an
extremely shallow AND depth, demonstrated the soundness of our design through
experimental evidence and provided a security analysis of these constructions. Of
course, as with any other block cipher, more security analysis is needed to firmly
establish the security provided by this new design. Furthermore, with the proposal of
the LowMC familiy, we bring together the areas of symmetric cryptographic design
and analysis research with new developments around MPC and FHE. Finally, in
contrast to current folklore belief, in some implementation scenarios, we identified
practical cases where “free XORs” can no longer be considered free and where local
computations in an MPC protocol represent a considerable bottleneck.

75

https://bitbucket.org/malb/lowmc-helib

Ciphers for MPC and FHE

d ANDdepth #blocks teval tblock tbit Cipher Reference Key Schedule

128 40 120 3m 1.5s 0.0119s AES-128 [31] excluded
128 40 2048 31h 55s 0.2580s AES-128 [25] excluded
128 40 1 22m 22m 10.313s AES-128 [57] excluded
128 40 12 2h47m 14m 6.562s AES-128 [57] excluded
128 12 600 8m 0.8s 0.0033s LowMC this work included

64 24 1024 57m 3.3s 0.0520s PRINCE [26] excluded
64 11 600 6.4m 0.64s 0.0025s LowMC this work included

Table 9: Comparison of various block cipher evaluations in the literature and this
work; Notation as in Table 8. Memory requirements are not listed as they are
usually not provided in the literature. The first row is based on experimental
data obtained on the same machine and the same instance of HELib as in
Table 8.

To finish, we highlight a number of open problems related to the LowMC family
of ciphers. Is it possible to reduce the number of rounds in LowMC further, which in
turn would further reduce MC and ANDdepth? Analyzing such an extreme corner of
the design space for a symmetric cipher is an interesting endavor in itself. Can we add
more structure into the linear layers in order to reduce the necessary computational
effort in those cases where the number of AND gates is no longer the bottleneck?
Do such approaches beat applying asymptotically faster linear algebra techniques
for applying linear layers as done in Section 6? As we argue in the paper, simply
lowering the density of the matrices by several factors of two will not be enough.
Currently, the MC and ANDdepth of various cipher constructions is poorly un-

derstood. For example, it would be interesting to find efficient algorithms along the
lines of [11] for the various ciphers including the recent lightweight cipher proposals
in the literature. While our choice for GF(2) is well motivated, there are scenarios
where larger fields might be beneficial. What designs minimize MC and ANDdepth
under such constraints?

Acknowledgements.

We thank Dmitry Khovratovich for pointing to us out that an earlier version of our
parameter sets for LowMC instantiations are too optimistic. See the full version of
this paper for details. We thank Orr Dunkelman for helpful clarifications on the
cipher KATAN. We thank Gaëtan Leurent and François-Xavier Standaert for helpful
clarifications regarding the ciphers Fantomas and Robin.

The work of Albrecht was supported by EPSRC grant EP/L018543/1 “Multilinear
Maps in Cryptography”. The work of co-authors from TU Darmstadt was supported
by the European Union’s 7th Framework Program (FP7/2007-2013) under grant
agreement n. 609611 (PRACTICE), by the DFG as part of project E3 within the
CRC 1119 CROSSING, by the German Federal Ministry of Education and Research
(BMBF) within EC SPRIDE, and by the Hessian LOEWE excellence initiative within

76

References

CASED.

References
[1] Martin R. Albrecht, Gregory V. Bard, and William Hart. “Algorithm 898:

Efficient multiplication of dense matrices over GF(2)”. In: ACM Transactions
on Mathematical Software 37.1 (2010). url: http://dblp.uni-trier.de/db/
journals/toms/toms37.html#AlbrechtBH10.

[2] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. “Cryptography in NC0”.
In: SIAM Journal on Computing 36.4 (2006), pp. 845–888.

[3] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. “More
Efficient Oblivious Transfer and Extensions for Faster Secure Computation”.
In: Computer and Communications Security (CCS). Code: http://github.
com/MichaelZohner/OTExtension. ACM, 2013, pp. 535–548.

[4] Yonatan Aumann and Yehuda Lindell. “Security Against Covert Adversaries:
Efficient Protocols for Realistic Adversaries”. In: Theory of Cryptography
Conference (TCC). Vol. 4392. LNCS. Springer, 2007, pp. 137–156.

[5] Achiya Bar-On, Itai Dinur, Orr Dunkelman, Virginie Lallemand, and Boaz Tsa-
ban. Cryptanalysis of SP Networks with Partial Non-Linear Layers. Cryptology
ePrint Archive, Report 2014/228. http://eprint.iacr.org/2014/228. 2014.

[6] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK Families of Lightweight
Block Ciphers. Cryptology ePrint Archive, Report 2013/404. http://eprint.
iacr.org/2013/404. 2013.

[7] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. “On
the inherent intractability of certain coding problems (Corresp.)” In: IEEE
Transactions on Information Theory 24.3 (1978), pp. 384–386.

[8] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
“PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications
- Extended Abstract”. In: Advances in Cryptology – ASIACRYPT. Vol. 7658.
LNCS. Springer, 2012, pp. 208–225.

[9] Christina Boura, Anne Canteaut, and Christophe De Cannière. “Higher-Order
Differential Properties of Keccak and Luffa”. In: Fast Software Encryption
(FSE). Vol. 6733. LNCS. Springer, 2011, pp. 252–269.

[10] Joan Boyar, Ivan Damgård, and René Peralta. “Short Non-Interactive Crypto-
graphic Proofs”. In: Journal of Cryptology 13.4 (Dec. 2000), pp. 449–472.

77

http://dblp.uni-trier.de/db/journals/toms/toms37.html#AlbrechtBH10
http://dblp.uni-trier.de/db/journals/toms/toms37.html#AlbrechtBH10
http://github.com/MichaelZohner/OTExtension
http://github.com/MichaelZohner/OTExtension
http://eprint.iacr.org/2014/228
http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404

Ciphers for MPC and FHE

[11] Joan Boyar, Philip Matthews, and René Peralta. “Logic Minimization Tech-
niques with Applications to Cryptology”. In: Journal of Cryptology 26.2 (2013),
pp. 280–312.

[12] Joan Boyar and René Peralta. “A Small Depth-16 Circuit for the AES S-
Box”. In: Information Security and Privacy Conference (SEC). Vol. 376. IFIP
Advances in Information and Communication Technology. Springer, 2012,
pp. 287–298.

[13] Joan Boyar, René Peralta, and Denis Pochuev. “On the multiplicative com-
plexity of Boolean functions over the basis (∧,⊕, 1)”. In: Theoretical Computer
Science 235.1 (2000), pp. 43–57.

[14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “Fully Homo-
morphic Encryption without Bootstrapping”. In: Electronic Colloquium on
Computational Complexity (ECCC) 18 (2011), p. 111.

[15] Gilles Brassard and Claude Crépeau. “Zero-Knowledge Simulation of Boolean
Circuits”. In: Advances in Cryptology – CRYPTO. Vol. 263. LNCS. Sringer,
1986, pp. 223–233.

[16] Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. “KATAN
and KTANTAN - A Family of Small and Efficient Hardware-Oriented Block Ci-
phers”. In: Cryptographic Hardware and Embedded Systems (CHES). Vol. 5747.
LNCS. Springer, 2009, pp. 272–288.

[17] David Canright. “A Very Compact S-Box for AES”. In: Cryptographic Hardware
and Embedded Systems (CHES). Vol. 3659. LNCS. Springer, 2005, pp. 441–455.

[18] Seung G. Choi, Kyung-Wook Hwang, Jonathan Katz, Tal Malkin, and Dan
Rubenstein. “Secure Multi-Party Computation of Boolean Circuits with Ap-
plications to Privacy in On-Line Marketplaces”. In: Cryptographers’ Track at
the RSA Conference (CT-RSA). Vol. 7178. LNCS. Code: http://www.ee.
columbia.edu/~kwhwang/projects/gmw.html. Springer, 2012, pp. 416–432.

[19] Nicolas T. Courtois, Daniel Hulme, and Theodosis Mourouzis. Solving Circuit
Optimisation Problems in Cryptography and Cryptanalysis. Cryptology ePrint
Archive, Report 2011/475. http://eprint.iacr.org/2011/475. 2011.

[20] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. “Nessie
proposal: NOEKEON”. In: First Open NESSIE Workshop. 2000.

[21] Ivan Damgård, Rasmus Lauritsen, and Tomas Toft. “An Empirical Study and
Some Improvements of the MiniMac Protocol for Secure Computation”. In:
Security and Cryptography for Networks (SCN). Vol. 8642. LNCS. Springer,
2014, pp. 398–415.

[22] Ivan Damgård and Sarah Zakarias. “Constant-Overhead Secure Computation
of Boolean Circuits using Preprocessing”. In: Theory of Cryptology Conference
(TCC). Vol. 7785. LNCS. Springer, 2013, pp. 621–641.

78

http://www.ee.columbia.edu/~kwhwang/projects/gmw.html
http://www.ee.columbia.edu/~kwhwang/projects/gmw.html
http://eprint.iacr.org/2011/475

References

[23] Daniel Demmler, Thomas Schneider, and Michael Zohner. “ABY - A Framework
for Efficient Mixed-Protocol Secure Two-Party Computation”. In: Network
and Distributed System Security (NDSS’15). Code: https://github.com/
encryptogroup/ABY. The Internet Society, 2015.

[24] Itai Dinur and Adi Shamir. “Cube Attacks on Tweakable Black Box Polynomi-
als”. In: Advances in Cryptology – EUROCRYPT. Vol. 5479. LNCS. Springer,
2009, pp. 278–299.

[25] Yarkin Doroz, Yin Hu, and Berk Sunar. Homomorphic AES Evaluation using
NTRU. Cryptology ePrint Archive, Report 2014/039. http://eprint.iacr.
org/2014/039. 2014.

[26] Yarkın Doröz, Aria Shahverdi, Thomas Eisenbarth, and Berk Sunar. Toward
Practical Homomorphic Evaluation of Block Ciphers Using Prince. Cryptology
ePrint Archive, Report 2014/233. http://eprint.iacr.org/2014/233,
presented at Workshop on Applied Homomorphic Cryptography and Encrypted
Computing (WAHC’14). 2014.

[27] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare,
Tadayoshi Kohno, Jon Callas, and Jesse Walker. The Skein Hash Function
Family. Submission to NIST (Round 3). 2010. url: http://www.skein-
hash.info/sites/default/files/skein1.3.pdf.

[28] Tore K. Frederiksen, Thomas P. Jakobsen, and Jesper B. Nielsen. “Faster
Maliciously Secure Two-Party Computation Using the GPU”. In: Security and
Cryptography for Networks (SCN). Vol. 8642. LNCS. Springer, 2014, pp. 358–
379.

[29] Tore K. Frederiksen, Thomas P. Jakobsen, Jesper B. Nielsen, Peter S. Nordholt,
and Claudio Orlandi. “MiniLEGO: Efficient Secure Two-Party Computation
from General Assumptions”. In: Advances in Cryptology – EUROCRYPT.
Vol. 7881. LNCS. Springer, 2013, pp. 537–556.

[30] Tore K. Frederiksen and Jesper B. Nielsen. “Fast and Maliciously Secure Two-
Party Computation Using the GPU”. In: Applied Cryptography and Network
Security (ACNS). Vol. 7954. LNCS. Springer, 2013, pp. 339–356.

[31] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic Evaluation of the
AES Circuit. Cryptology ePrint Archive, Report 2012/099. http://eprint.
iacr.org/. 2012.

[32] Craig Gentry, Shai Halevi, and Nigel P. Smart. “Homomorphic Evaluation of
the AES Circuit”. In: Advances in Cryptology – CRYPTO. Vol. 7417. LNCS.
Springer, 2012, pp. 850–867.

[33] Benoît Gérard, Vincent Grosso, María Naya-Plasencia, and François-Xavier
Standaert. “Block Ciphers That Are Easier to Mask: How Far Can We Go?”
In: Cryptographic Hardware and Embedded Systems (CHES). Vol. 8086. LNCS.
Springer, 2013, pp. 383–399.

79

https://github.com/encryptogroup/ABY
https://github.com/encryptogroup/ABY
http://eprint.iacr.org/2014/039
http://eprint.iacr.org/2014/039
http://eprint.iacr.org/2014/233
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/

Ciphers for MPC and FHE

[34] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority”. In:
Symposium on Theory of Computing (STOC). ACM, 1987, pp. 218–229.

[35] Vicente Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici.
“LS-Designs: Bitslice Encryption for Efficient Masked Software Implementa-
tions”. In: Fast Software Encryption (FSE). LNCS. To appear. Springer, 2014.

[36] Jian Guo, Ivica Nikolic, Thomas Peyrin, and Lei Wang. Cryptanalysis of Zorro.
Cryptology ePrint Archive, Report 2013/713. http://eprint.iacr.org/
2013/713. 2013.

[37] Shai Halevi and Victor Shoup. “Algorithms in HElib”. In: Advances in Cryp-
tology – CRYPTO. Vol. 8616. LNCS. Springer, 2014, pp. 554–571.

[38] Shai Halevi and Victor Shoup. Design and Implementation of a Homomorphic-
Encryption Library. https://github.com/shaih/HElib/. 2013.

[39] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. “The
Grain Family of Stream Ciphers”. In: New Stream Cipher Designs - The eS-
TREAM Finalists. Ed. by Matthew J. B. Robshaw and Olivier Billet. Vol. 4986.
Lecture Notes in Computer Science. Springer, 2008, pp. 179–190. isbn: 978-
3-540-68350-6. doi: 10.1007/978-3-540-68351-3_14. url: http://dx.doi.
org/10.1007/978-3-540-68351-3_14.

[40] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. “Faster secure
two-party computation using garbled circuits”. In: USENIX Security. USENIX,
2011.

[41] Yan Huang, Jonathan Katz, and David Evans. “Efficient Secure Two-Party
Computation Using Symmetric Cut-and-Choose”. In: Advances in Cryptology –
CRYPTO. Vol. 8043. LNCS. Springer, 2013, pp. 18–35.

[42] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and
Alex J. Malozemoff. “Amortizing Garbled Circuits”. In: Advances in Cryptology
– CRYPTO. Vol. 8617. LNCS. Springer, 2014, pp. 458–475.

[43] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. “Zero-knowledge
Using Garbled Circuits: How to Prove Non-algebraic Statements Efficiently”.
In: Computer and Communications Security (CCS). ACM, 2013, pp. 955–966.

[44] Lars R. Knudsen. “Truncated and Higher Order Differentials”. In: Fast Software
Encryption (FSE). Vol. 1008. LNCS. Springer, 1994, pp. 196–211.

[45] Lars R. Knudsen, Gregor Leander, Axel Poschmann, and Matthew J. B. Rob-
shaw. “PRINTcipher: A Block Cipher for IC-Printing”. In: Cryptographic
Hardware and Embedded Systems (CHES). Vol. 6225. LNCS. Springer, 2010,
pp. 16–32.

[46] Vladimir Kolesnikov and Thomas Schneider. “Improved Garbled Circuit: Free
XOR Gates and Applications”. In: International Colloquium on Automata, Lan-
guages and Programming (ICALP). Vol. 5126. LNCS. Springer, 2008, pp. 486–
498.

80

http://eprint.iacr.org/2013/713
http://eprint.iacr.org/2013/713
https://github.com/shaih/HElib/
http://dx.doi.org/10.1007/978-3-540-68351-3_14
http://dx.doi.org/10.1007/978-3-540-68351-3_14
http://dx.doi.org/10.1007/978-3-540-68351-3_14

References

[47] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. “Billion-gate Secure
Computation with Malicious Adversaries”. In: USENIX Security. USENIX,
2012.

[48] Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. “Dishonest Majority
Multi-Party Computation for Binary Circuits”. In: Advances in Cryptology –
CRYPTO. Vol. 8617. LNCS. Springer, 2014, pp. 495–512.

[49] Yehuda Lindell. “Fast Cut-and-Choose Based Protocols for Malicious and
Covert Adversaries”. In: Advances in Cryptology – CRYPTO. Vol. 8043. LNCS.
Springer, 2013, pp. 1–17.

[50] Yehuda Lindell and Benny Pinkas. “An Efficient Protocol for Secure Two-
Party Computation in the Presence of Malicious Adversaries”. In: Advances in
Cryptology – EUROCRYPT. Vol. 4515. LNCS. Springer, 2007, pp. 52–78.

[51] Yehuda Lindell and Benny Pinkas. “Secure Two-Party Computation via Cut-
and-Choose Oblivious Transfer”. In: Theory of Cryptography Conference (TCC).
Vol. 6597. LNCS. Springer, 2011, pp. 329–346.

[52] Yehuda Lindell, Benny Pinkas, and Nigel P. Smart. “Implementing two-party
computation efficiently with security against malicious adversaries”. In: Security
and Cryptography for Networks (SCN). Vol. 5229. LNCS. Springer, 2008, pp. 2–
20.

[53] Yehuda Lindell and Ben Riva. “Cut-and-Choose Yao-Based Secure Computa-
tion in the Online/Offline and Batch Settings”. In: Advances in Cryptology –
CRYPTO. Vol. 8617. LNCS. Springer, 2014, pp. 476–494.

[54] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. “Fairplay — a
secure two-party computation system”. In: USENIX Security. USENIX, 2004,
pp. 287–302.

[55] Mitsuru Matsui. “Linear Cryptoanalysis Method for DES Cipher”. In: Advances
in Cryptology – EUROCRYPT. Vol. 765. LNCS. Springer, 1993, pp. 386–397.

[56] Willi Meier and Othmar Staffelbach. “The Self-Shrinking Generator”. In: Ad-
vances in Cryptology - EUROCRYPT ’94, Workshop on the Theory and Appli-
cation of Cryptographic Techniques, Perugia, Italy, May 9-12, 1994, Proceed-
ings. Ed. by Alfredo De Santis. Vol. 950. Lecture Notes in Computer Science.
Springer, 1994, pp. 205–214. isbn: 3-540-60176-7. doi: 10.1007/BFb0053436.
url: http://dx.doi.org/10.1007/BFb0053436.

[57] Silvia Mella and Ruggero Susella. “On the Homomorphic Computation of
Symmetric Cryptographic Primitives”. In: Cryptography and Coding. Ed. by
Martijn Stam. Vol. 8308. LNCS. Springer Berlin Heidelberg, 2013, pp. 28–44.

[58] Jesper B. Nielsen, Peter S. Nordholt, Claudio Orlandi, and Sai Sheshank Burra.
“A New Approach to Practical Active-Secure Two-Party Computation”. In:
Advances in Cryptology – CRYPTO. Vol. 7417. LNCS. Springer, 2012, pp. 681–
700.

81

http://dx.doi.org/10.1007/BFb0053436
http://dx.doi.org/10.1007/BFb0053436

Ciphers for MPC and FHE

[59] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams.
“Secure Two-Party Computation Is Practical”. In: Advances in Cryptology –
ASIACRYPT. Vol. 5912. LNCS. Springer, 2009, pp. 250–267.

[60] Gilles Piret, Thomas Roche, and Claude Carlet. “PICARO - A Block Cipher
Allowing Efficient Higher-Order Side-Channel Resistance”. In: Applied Cryp-
tography and Network Security (ACNS). Vol. 7341. LNCS. Springer, 2012,
pp. 311–328.

[61] Shahram Rasoolzadeh, Zahra Ahmadian, Mahmood Salmasizadeh, and Mo-
hammad Reza Aref. Total Break of Zorro using Linear and Differential Attacks.
Cryptology ePrint Archive, Report 2014/220. http://eprint.iacr.org/
2014/220. 2014.

[62] Thomas Schneider and Michael Zohner. “GMW vs. Yao? Efficient Secure Two-
Party Computation with Low Depth Circuits”. In: Financial Cryptography
(FC). LNCS. Springer, 2013, pp. 275–292.

[63] Abhi Shelat and Chih-Hao Shen. “Fast two-party secure computation with
minimal assumptions”. In: Computer and Communications Security (CCS).
ACM, 2013, pp. 523–534.

[64] Abhi Shelat and Chih-Hao Shen. “Two-Output Secure Computation with
Malicious Adversaries”. In: Advances in Cryptology – EUROCRYPT. Vol. 6632.
LNCS. Springer, 2011, pp. 386–405.

[65] Stefan Tillich and Nigel Smart. Circuits of Basic Functions Suitable For MPC
and FHE. http://www.cs.bris.ac.uk/Research/CryptographySecurity/
MPC/.

[66] David Wagner. “The Boomerang Attack”. In: Fast Software Encryption (FSE).
Vol. 1636. LNCS. Springer, 1999, pp. 156–170.

[67] Yanfeng Wang, Wenling Wu, Zhiyuan Guo, and Xiaoli Yu. Differential Crypt-
analysis and Linear Distinguisher of Full-Round Zorro. Cryptology ePrint
Archive, Report 2013/775. http://eprint.iacr.org/2013/775. 2013.

[68] Andrew C.-C. Yao. “How to Generate and Exchange Secrets”. In: IEEE Sym-
posium on Foundations of Computer Science (FOCS). IEEE, 1986, pp. 162–
167.

82

http://eprint.iacr.org/2014/220
http://eprint.iacr.org/2014/220
http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
http://eprint.iacr.org/2013/775

Observations on the SIMON block
cipher family

Publication Information
Stefan Kölbl, Gregor Leander, and Tyge Tiessen. “Observations on the SIMON
Block Cipher Family”. In: Advances in Cryptology - CRYPTO 2015. Ed. by
Rosario Gennaro and Matthew Robshaw. Vol. 9215. Lecture Notes in Computer
Science. Springer, 2015, pp. 161–185. isbn: 978-3-662-47988-9

Contribution
• All authors contributed equally.

• Main contributions are subsection 2.4, Theorems 3, 4, and 6 in section 3 and 4
as well as Appendix A and B.

Remarks
This publication has been slightly edited to fit the format.

83

Observations on the SIMON block cipher family

Stefan Kölbl1, Gregor Leander2, and Tyge Tiessen1

stek@dtu.dk, gregor.leander@rub.de, tyti@dtu.dk

1 DTU Compute, Technical University of Denmark, Denmark
2 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany

Abstract. In this paper we analyse the general class of functions un-
derlying the Simon block cipher. In particular, we derive efficiently
computable and easily implementable expressions for the exact differen-
tial and linear behaviour of Simon-like round functions.
Following up on this, we use those expressions for a computer aided
approach based on SAT/SMT solvers to find both optimal differential
and linear characteristics for Simon. Furthermore, we are able to find
all characteristics contributing to the probability of a differential for
Simon32 and give better estimates for the probability for other variants.
Finally, we investigate a large set of Simon variants using different
rotation constants with respect to their resistance against differential
and linear cryptanalysis. Interestingly, the default parameters seem to
be not always optimal.

Keywords: SIMON, differential cryptanalysis, linear cryptanalysis,
block cipher, Boolean functions

1 Introduction
Lightweight cryptography studies the deployment of cryptographic primitives in
resource-constrained environments. This research direction is driven by a demand
for cost-effective, small-scale communicating devices such as RFID tags that are a
cornerstone in the Internet of Things. Most often the constrained resource is taken
to be the chip-area but other performance metrics such as latency [7], code-size [2]
and ease of side-channel protection [12]) have been considered as well. Some of these
criteria were already treated in Noekeon [9].
The increased importance of lightweight cryptography and its applications has

lately been reflected in the NSA publishing two dedicated lightweight cipher families:
Simon and Speck [5]. Considering that this is only the third time within four decades
that the NSA has published a block cipher, this is quite remarkable. Especially as
NIST has started shortly after this publication to investigate the possibilities to
standardise lightweight primitives, Simon and Speck certainly deserve a thorough
investigation. This is emphasised by the fact that, in contrast to common practice,

85

mailto:stek@dtu.dk, gregor.leander@rub.de, tyti@dtu.dk

Observations on the SIMON block cipher family

neither a security analysis nor a justification of the design choices were published by
the NSA. This lack of openness necessarily gives rise to curiosity and caution.

In this paper we focus on the Simon family of block ciphers; an elegant, innovative
and very efficient set of block ciphers. There exists already a large variety of papers,
mainly focussed on evaluating Simon’s security with regard to linear and differential
cryptanalysis. Most of the methods used therein are rather ad-hoc, often only using
approximative values for the differential round probability and in particular for the
linear square correlation of one round.

Our Contribution

With this study, we complement the existing work threefold. Firstly we develop an
exact closed form expression for the differential probability and a log(n) algorithm
for determining the square correlation over one round. Their accuracy is proven
rigorously. Secondly we use these expressions to implement a model of differential
and linear characteristics for SAT/SMT solvers which allows us to find the provably
best characteristics for different instantiations of Simon. Furthermore we are able to
shed light on how differentials in Simon profit from the collapse of many differential
characteristics. Thirdly by generalising the probability expressions and the SAT/SMT
model, we are able to compare the quality of different parameter sets with respect to
differential and linear cryptanalysis.
As a basis for our goal to understand both the security of Simon as well as

the choice of its parameter set, we rigorously derive formulas for the differential
probabilities and the linear square correlations of the Simon-like round function that
can be evaluated in constant time and time linear in the word size respectively. More
precisely, we study differential probabilities and linear correlations of functions of
the form

Sa(x)� Sb(x) + Sc(x)

where Si(x) corresponds to a cyclic left shift of x and � denotes the bitwise AND
operation.
We achieve this goal by first simplifying this question by considering equivalent

descriptions both of the round function as well as the whole cipher (cf. Section
2.4). These simplifications, together with the theory of quadratic boolean functions,
result in a clearer analysis of linear and differential properties (cf. Sections 3 and
4). Importantly, the derived simple equations for computing the probabilities of the
Simon round function can be evaluated efficiently and, more importantly maybe,
are conceptually very easy. This allows them to be easily used in computer-aided
investigations of differential and linear properties over more rounds. It should be
noted here that the expression for linear approximations is more complex than the
expression for the differential case. However, with respect to the running time of the
computer-aided investigations this difference is negligible.
We used this to implement a framework based on SAT/SMT solvers to find the

provably best differential and linear characteristics for various instantiations of Simon

86

1 Introduction

(cf. Section 5, in particular Table 1). Furthermore we are able to shed light on how
differentials in Simon profit from the collapse of many differential characteristics
by giving exact distributions of the probabilities of these characteristics for chosen
differentials. The framework is open source and publicly available to encourage
further research [13].
In Section 6 we apply the developed theory and tools to investigate the design

space of Simon-like functions. In particular, using the computer-aided approach, we
find that the standard Simon parameters are not optimal with regard to the best
differential and linear characteristics.
As a side result, we improve the probabilities for the best known differentials

for several variants and rounds of Simon. While this might well lead to (slightly)
improved attacks, those improved attacks are out of the scope of our work.
Interestingly, at least for Simon32 our findings indicate that the choices made

by the NSA are good but not optimal under our metrics, leaving room for further
investigations and questions. To encourage further research, we propose several
alternative parameter choices for Simon32. Here, we are using the parameters
that are optimal when restricting the criteria to linear, differential and dependency
properties. We encourage further research on those alternative choices to shed more
light on the undisclosed design criteria.
We also like to point out that the Simon key-scheduling was not part of our

investigations. Its influence on the security of Simon is left as an important open
question for further investigations. In line with this, whenever we investigate multi-
round properties of Simon in our work, we implicitly assume independent round
keys in the computation of probabilities.

Finally, we note that most of our results can be applied to more general construc-
tions, where the involved operations are restricted to AND, XOR, and rotations.

Related Work

There are various papers published on the cryptanalysis of Simon [1], [3], [6], [16],
[18], [19]. The most promising attacks so far are based on differential and linear
cryptanalysis, however a clear methodology of how to derive the differential prob-
abilities and square correlations seems to miss in most cases. Biryukov, Roy and
Velichkov [6] derive a correct, but rather involved method to find the differential
probabilities. Abed, List, Lucks and Wenzel [1] state an algorithm for the calculation
of the differential probabilities but without further explanation. For the calculation
of the square correlations an algorithm seems to be missing all together.
Previous work also identifies various properties like the strong differential effect

and give estimate of the probability of differentials.
The concept behind our framework was previously also applied on the ARX cipher

Salsa20 [14] and the CAESAR candidate NORX [4]. In addition to the applications
proposed in previous work we extend it for linear cryptanalysis, examine the influ-
ence of rotation constants and use it to compute the distribution of characteristics
corresponding to a differential.

87

Observations on the SIMON block cipher family

2 Preliminaries
In this section, we start by defining our notation and giving a short description of
the round function. We recall suitable notions of equivalence of Boolean functions
that allow us to simplify our investigations of Simon-like round functions. Most of
this section is generally applicable to AND-RX constructions, i.e. constructions that
only make use of the bitwise operations AND, XOR, and rotations.

2.1 Notation
We denote by F2 the field with two elements and by Fn2 the n-dimensional vector space
over F2. By 0 and 1 we denote the vectors of Fn2 with all 0s and all 1s respectively.
The Hamming weight of a vector a ∈ Fn2 is denoted as wt(a). By Zn we denote the
integers modulo n.

The addition in Fn2 , i.e. bit-wise XOR, is denoted by +. By � we denote the AND
operation in Fn2 , i.e. multiplication over F2 in each coordinate:

x� y = (xiyi)i.

By ∨ we denote the bitwise OR operation. By x we denote the bitwise negation of x,
i.e. x := (x+ 1). We denote by Si : Fn2 → Fn2 the left circular shift by i positions. We
also note that any arithmetic of bit indices is always done modulo the word size n.
In this paper we are mainly concerned with functions of the form

fa,b,c(x) = Sa(x)� Sb(x) + Sc(x) (1)

and we identify such functions with its triple (a, b, c) of parameters.
For a vectorial Boolean function on n bits, f : Fn2 → Fn2 , we denote by

f̂(α, β) =
∑
x

µ (〈β, f〉+ 〈α, x〉)

the Walsh (or Fourier) coefficient with input mask α and output mask β. Here we
use µ(x) = (−1)x to simplify the notation.
The corresponding squared correlation of f is given by

C2(α→ β) =
(
f̂(α, β)

2n

)2

.

For differentials we similarly denote by Pr(α −→ β) the probability that a given input
difference α results in a given output difference β, i.e.

Pr(α −→ β) = |{x | f(x) + f(x+ α) = β}|
2n .

Furthermore, Dom(f) is the domain of a function f , Img(f) is its image.

88

2 Preliminaries

S8

S1

S2

ki

Figure 1: The round function of Simon.

2.2 Description of SIMON
Simon is a family of lightweight block ciphers with block sizes 32, 48, 64, 96, and
128 bits. The constructions are Feistel ciphers using a word size n of 16, 24, 32,
48 or 64 bits, respectively. We will denote the variants as Simon2n. The key size
varies between of 2, 3, and 4 n-bit words. The round function of Simon is composed
of AND, rotation, and XOR operations on the complete word (see figure 1). More
precisely, the round function in Simon corresponds to

S8(x)� S1(x) + S2(x),

that is to the parameters (8, 1, 2) for f as given in Equation (1). As we are not only
interested in the original Simon parameters, but in investigating the entire design
space of Simon-like functions, we denote by

Simon[a, b, c]

the variant of Simon where the original round function is replaced by fa,b,c (cf.
Equation (1)).
As it is out of scope for our purpose, we refer to [5] for the description of the

key-scheduling.

2.3 Affine equivalence of Boolean Functions
Given two (vectorial) Boolean functions f1 and f2 on Fn2 related by

f1(x) = (A ◦ f2 ◦B)(x) + C(x)

where A and B are affine permutations and C is an arbitrary affine mapping on Fn2
we say that f1 and f2 are extended affine equivalent (cf. [8] for a comprehensive
survey).

89

Observations on the SIMON block cipher family

With respect to differential cryptanalysis, if f1 and f2 are extended affine equivalent
then the differential α f1−→ β over f1 has probability p if and only if the differential

B(α) f2−→ A−1 (β + C(α))

over f2 has probability p as well.
For linear cryptanalysis, a similar relation holds for the linear correlation. If f1

and f2 are related as defined above, it holds that

f̂1(α, β) = f̂2

((
C ◦B−1)T β +

(
B−1)T α,ATβ) .

Thus up to linear changes we can study f2 instead of f1 directly. Note that, for
an actual attack, these changes are usually critical and can certainly not be ignored.
However, tracing the changes is, again, simple linear algebra.
For differential and linear properties of Simon-like functions of the form

fa,b,c(x) = Sa(x)� Sb(x) + Sc(x)

this implies that it is sufficient to find the differential and linear properties of the
simplified variant

f(x) = x� Sd(x)
and then transfer the results back by simply using linear algebra.3

2.4 Structural Equivalence Classes in AND-RX Constructions
AND-RX constructions, i.e. constructions that make only use of the operations AND
(�), XOR (+), and rotations (Sr), exhibit a high degree of symmetry. Not only
are they invariant under rotation of all input words, output words and constants,
they are furthermore structurally invariant under any affine transformation of the
bit-indices. As a consequence of this, several equivalent representations of the Simon
variants exist.

Let T be a permutation of the bits of an n-bit word that corresponds to an affine
transformation of the bit-indices. Thus there are s ∈ Z∗n and t ∈ Zn such that bit
i is renamed to s · i + t. As the AND and XOR operations are bitwise, T clearly
commutes with these:

Tv � Tw = T (v � w)
Tv + Tw = T (v + w)

where v and w are n-bit words. A rotation to the left by r can be written bitwise
as Sr(v)i = vi−r. For a rotation, we thus get the following bitwise relation after
transformation with T

Sr(v)s·i+t = vs·(i−r)+t = vs·i+t−s·r .

3Note that we can transform the equation f(x) = Sa(x)�Sb(x)+Sc(x) to the equation S−a(f(x))+
Sc−a(x)) = x � Sb−a(x).

90

3 Differential Probabilities of SIMON-like round functions

Substituting s · i+ t with j this is the same as

Sr(v)j = vj−s·r .

Thus the rotation by r has been changed to a rotation by s · r. Thus we can write

TSrv = Ss·rTv.

Commuting the linear transformation of the bit-indices with a rotation thus only
changes the rotation constant by a factor. In the special case where all input words,
output words and constants are rotated, which corresponds to the case s = 1, the
rotation constant are left untouched.
To summarise the above, when applying such a transformation T to all input

words, output words and constants in an AND-RX construction, the structure of
the constructions remains untouched apart from a multiplication of the rotation
constants by the factor s.
This means for example for Simon32 that changing the rotation constants from

(8, 1, 2) to (3 · 8, 3 · 1, 3 · 2) = (8, 3, 6) and adapting the key schedule accordingly gives
us the same cipher apart from a bit permutation. As s has to be coprime to n, all s
with gcd(s, n) = 1 are allowed, giving ϕ(n) equivalent tuples of rotation constants in
each equivalence class where ϕ is Euler’s phi function.
Together with the result from section 2.3, this implies the following lemma.

Lemma 1. Any function fa,b,c as defined in Equation (1) is extended affine equivalent
to a function

f(x) = x� Sd(x)

where d|n or d = 0 .

When looking at differential and square correlations of Simon-like round functions
this means that it is sufficient to investigate this restricted set of functions. The
results for these functions can then simply be transferred to the general case.

3 Differential Probabilities of SIMON-like round
functions

In this section, we derive a closed expression for the differential probability for all
Simon-like round functions, i.e. all functions as described in Equation (1). The
main ingredients here are the derived equivalences and the observation that any such
function is quadratic. Being quadratic immediately implies that its derivative is linear
and thus the computation of differential probabilities basically boils down to linear
algebra (cf. Theorem 2). However, to be able to efficiently study multiple-round
properties and in particular differential characteristics, it is important to have a
simple expression for the differential probabilities. Those expressions are given for
f(x) = x� S1(x) in Theorem 3 and for the general case in Theorem 4.

91

Observations on the SIMON block cipher family

3.1 A closed expression for the differential probability
The following statement summarises the differential properties of the f function.

Theorem 2. Given an input difference α and an output difference β the probability
p of the corresponding differential (characteristic) for the function f(x) = x� Sa(x)
is given by

pα,β =
{

2−(n−d) if β + α� Sa(α) ∈ Img(Lα)
0 else

where
d = dim ker(Lα)

and
Lα(x) = x� Sa(α) + α� Sa(x)

Proof. We have to count the number of solutions to the equation

f(x) + f(x+ α) = β.

This simplifies to

Lα(x) = x� Sa(α) + α� Sa(x) = β + α� Sa(α)

As this is an affine equation, it either has zero solutions or the number of solutions
equals the kernel size, i.e. the number of elements in the subspace

{x | x� Sa(α) + α� Sa(x) = 0}.

Clearly, the equation has solutions if and only if β + α� Sa(α) is in the image of Lα.

Next we present a closed formula to calculate the differential probability in the
case where a = 1. Furthermore we restrict ourselves to the case where n is even.

Theorem 3. Let
varibits = S1(α) ∨ α

and
doublebits = α� S1(α)� S2(α).

Then the probability that difference α goes to difference β is

P (α→ β) =

2−n+1 if α = 1 and wt(β) ≡ 0 mod 2
2−wt(varibits+doublebits) if α 6= 1 and β � varibits = 0

and (β + S1(β))� doublebits = 0
0 else

92

3 Differential Probabilities of SIMON-like round functions

Proof. According to theorem 2, we need to prove two things. Firstly we need
to prove that the rank of Lα (i.e. n − dim kerLα) is n − 1 when α = 1, and
wt(varibits + doublebits)) otherwise. Secondly we need to prove that β + α �
S1(α) ∈ Img(Lα) iff wt(β) ≡ 0 mod 2 when α = 1, and that β+α�S1(α) ∈ Img(Lα)
iff β � varibits = 0 and (β + S1(β))� doublebits = 0 when α 6= 1.

We first consider the first part. Let us write Lα(x) in matrix form and let us take
x to be a column vector. S1(α)� x can be written as MS1(α)�x with

MS1(α)� =

αn−1 0
... α0

...
...

. . .
...

0 αn−2

 . (1)

Equivalently we can write α � x and S1(x) with matrices as Mα�x and MS1x
respectively where

Mα� =

α0 0
... α1

...
...

. . .
...

0 αn−1

 and MS1 =
(

01,n−1 I1,1
In−1,n−1 0n−1,1

)
, (2)

i.e. MS1 consists of two identity and two zero submatrices. The result of MS1(α)� +
Mα�MS1 can now be written as

αn−1 0 0 . . . α0
α1 α0 0 . . . 0

0 α2 α1
...

...
. 0

0 . . . 0 αn−1 αn−2

 (3)

Clearly the rank of the matrix is n− 1 when all αi are 1. Suppose now that not all
αi are 1. In that case, a set of non-zero rows is linearly dependent iff there exist
two identical rows in the set. Thus to calculate the rank of the matrix, we need to
calculate the number of unique non-zero rows.
By associating the rows in the above matrix with the bits in varibits, we can

clearly see that the number of non-zero rows in the matrices corresponds to the
number of 1s in varibits = S1(α) ∨ α.

To count the number of non-unique rows, first notice that a nonzero row can only
be identical to the row exactly above or below. Suppose now that a non-zero row i is
identical to the row (i− 1) above. Then αi−1 has to be 0 while αi and αi−2 have to
be 1. But then row i cannot simultaneously be identical to row (i+ 1) below. Thus
it is sufficient to calculate the number of non-zero rows minus the number of rows

93

Observations on the SIMON block cipher family

that are identical to the row above it to find the rank of the matrix. Noting that row
i is non-zero iff αiαi−1 and that αiαi−1αi−2 is only equal 1 when row i is non-zero
and equal to the row above it. Thus calculating the number of i for which

αiαi−1 + αiαi−1αi−2

is equal 1 gives us the rank of Lα. This corresponds to calculating wt(varibits +
doublebits).
For the second part of the proof, we need to prove the conditions that check

whether β + α� S1(α) ∈ Img(Lα). First notice that α� S1(α) is in the image of Lα
(consider for x the vector with bits alternately set to 0 and 1). Thus it is sufficient
to test whether β is in ImgLα. Let y = Lα(x). Let us first look at the the case of
α = 1. Then Lα(x) = x+ S1(x). We can thus deduce from bit yi whether xi = xi−1
or xi 6= xi−1. Thus the bits in y create a chain of equalities/inequalities in the bits
of x which can only be fulfilled if there the number of inequalities is even. Hence in
that case β ∈ ImgLα iff wt(β) ≡ 0 mod 2.

For the case that α 6= 1, we first note that yi has to be zero if the corresponding row
i in the matrix of equation (3) is all zeroes. Furthermore following our discussion of
this matrix earlier, we see that yi is independent of the rest of y if the corresponding
row is linearly independent of the other rows and that yi has to be the same as
yi−1 if the corresponding rows are identical. Thus we only need to check that the
zero-rows of the matrix correspond to zero bits in β and that the bits in β which
correspond to identical rows in the matrix are equal. Thus β is in the image of Lα
iff β � varibits = 0 and (β + S1(β))� doublebits = 0.

3.2 The full formula for differentials.
Above we treated only the case for the simplified function f(x) = x · S1(x). As
mentioned earlier, the general case where gcd(a − b, n) = 1 can be deduced from
this with linear algebra. When gcd(d, n) 6= 1 though, the function f(x) = x� Sd(x)
partitions the output bits into independent classes. This not only raises differential
probabilities (worst case d = 0), it also makes the notation for the formulas more
complex and cumbersome, though not difficult. We thus restrict ourselves to the
most important case when gcd(a− b, n) = 1. The general formulas are then

Theorem 4. Let f(x) = Sa(x) � Sb(x) + Sc(x), where gcd(n, a − b) = 1, n even,
and a > b and let α and β be an input and an output difference. Then with

varibits = Sa(α) ∨ Sb(α)

and
doublebits = Sb(α)� Sa(α)� S2a−b(α)

and
γ = β + Sc(α)

94

4 Linear Correlations of SIMON-like round functions

we have that the probability that difference α goes to difference β is

P (α→ β) =

2−n+1 if α = 1 and wt(γ) ≡ 0 mod 2
2−wt(varibits+doublebits) if α 6= 1 and γ � varibits = 0

and (γ + Sa−b(γ))� doublebits = 0
0 else .

For a more intuitive approach and some elaboration on the differential probabilities,
we refer to the ePrint version of this paper.

4 Linear Correlations of SIMON-like round functions
As in the differential case, for the study of linear approximations, we also build up
on the results from subsections 2.3 and 2.4. We will thus start with studying linear
approximations for the function f(x) = x� Sa(x). Again, the key point here is that
all those functions are quadratic and thus their Fourier coefficient, or equivalently
their correlation, can be computed by linear algebra (cf. Theorem 5). Theorem
6 is then, in analogy to the differential case, the explicit expression for the linear
correlations. It basically corresponds to an explicit formula for the dimension of the
involved subspace.
The first result is the following:

Theorem 5.

f̂(α, β)2 =
{

2n+d if α ∈ U⊥β
0 else

where
d = dimUβ

and
Uβ = {y | β � Sa(y) + S−a(β � y) = 0}

Proof. We compute

f̂(α, β)2 =
∑
x,y

µ (〈β, f(x) + f(y)〉+ 〈α, x+ y〉)

=
∑
x,y

µ (〈β, f(x) + f(x+ y)〉+ 〈α, y〉)

=
∑
x,y

µ (〈β, x� Sa(x) + (x+ y)� Sa(x+ y)〉+ 〈α, y〉)

=
∑
y

µ (〈β, f(y)〉+ 〈α, y〉)
∑
x

µ (〈β, x� Sa(y) + y � Sa(x)〉)

=
∑
y

µ (〈β, f(y)〉+ 〈α, y〉)
∑
x

µ
(
〈x, β � Sa(y) + S−a(β � y)〉

)
.

95

Observations on the SIMON block cipher family

Now for the sum over x only two outcomes are possible, 2n or zero. More precisely,
it holds that∑

x

µ
(
〈x, β � Sa(y) + S−a(β � y)〉

)
=
{

2n if β � Sa(y) + S−a(β � y) = 0
0 else .

Thus, defining
Uβ = {y | β � Sa(y) + S−a(β � y) = 0}

we get
f̂(α, β)2 = 2n

∑
y∈Uβ

µ (〈β, f(y)〉+ 〈α, y〉) .

Now as
〈β, f(y)〉 =〈β, y � Sa(y)〉 (1)

=〈1, y � β � Sa(y)〉 (2)
=〈1, y � S−a(β � y)〉 (3)

(4)
Now, the function fβ := 〈β, f(y)〉 is linear over Uβ as can be easily seen by the
definition of Uβ . Moreover, as fβ is unbalanced for all β, it follows that actually fβ
is constant zero on Uβ . We thus conclude that

f̂(α, β)2 = 2n
∑
y∈Uβ

µ (〈α, y〉) .

With a similar argument as above, it follows that f̂(α, β)2 is non-zero if and only if
α is contained in U⊥β .

Let us now restrict ourselves to the case where f(x) = x�S1(x). The general case
can be deduced analogously to the differential probabilities. For simplicity we also
restrict ourselves to the case where n is even.
First we need to introduce some notation. Let x ∈ Fn2 with not all bits equal to

1. We now look at blocks of consecutive 1s in x, including potentially a block that
“wraps around” the ends of x. Let the lengths of these blocks, measured in bits, be
denoted as c0, . . . , cm. For example, the bitstring 100101111011 has blocks of length
1, 3, and 4. With this notation define θ(x) :=

m∑
i=0
d ci2 e.

Noting that the linear square correlation of f is f̂(α,β)2

22n , we then have the following
theorem:
Theorem 6. With the notation from above it holds that the linear square correlation
of α f→ β can be calculated as

C(α→ β) =

2−n+2 if β = 1 and α ∈ U⊥β
2−θ(β)) if β 6= 1 and α ∈ U⊥β
0 else.

96

5 Finding Optimal Differential and Linear Characteristics

Proof. Define Lβ(x) := β � S1(x) + S−1(β � x). Clearly Lβ is linear. Also Uβ =
kerLβ(x). Let us determine the rank of this mapping. Define the matrices Mβ·, MS1 ,
and MS−1 as

Mβ· =

β0 0
... β1

...
...

. . .
...

0 βn−1

MS1 =

(
01,n−1 I1,1
In−1,n−1 0n−1,1

)

MS−1 =
(

0n−1,1 In−1,n−1
I1,1 01,n−1

) (5)

We can then write Lβ in matrix form as

0 β1 0 . . . 0 β0
β1 0 β2 0 . . . 0

0 β2 0 β3
. . .

...
...

. 0

0 0 0
. . . 0 βn−1

β0 0 . . . 0 βn−1 0

(6)

Clearly, if β is all 1s, the rank of the matrix is n− 2 as n is even.4 Let us therefore
now assume that β is not all 1s. When we look at a block of 1s in β e.g., βi−1 = 0,
βi, βi+1, . . . , βi+l−1 = 1, and βl = 0. Then clearly the l rows i, i+ 1, . . . , i+ l− 1 are
linearly independent when l is even. When l is odd though, the sum of rows i, i+ 2,
i+ 4, up to row i+ l − 3 will equal row i+ l − 1. In that case there are thus only
l− 1 linearly independent rows. As the blocks of 1s in β generate independent blocks
of rows, we can summarise that the rank of the matrix is exactly θ(β).

Analogously to the differential probabilities, the linear probabilities in the general
case can be derived from this. It is likewise straightforward to derive how to determine
whether α ∈ U⊥β . As an explicit formulation of this is rather tedious, we instead refer
to the implementation in Python given in the Appendix B where both is achieved in
the case where gcd(a− b, n) = 1 and n is even.

For a more intuitive approach and some elaboration on the linear probabilities, we
refer to the ePrint version of this paper.

5 Finding Optimal Differential and Linear
Characteristics

While there are various methods for finding good characteristics, determining optimal
differential or linear characteristics remains a hard problem in general. The formulas
derived for both differential and linear probabilities enable us to apply an algebraic

4The rank is n − 1 when n is odd.

97

Observations on the SIMON block cipher family

approach to finding the best characteristics. A similar technique has been applied to
the ARX cipher Salsa20 [14] and the CAESAR candidate NORX [4]. For finding the
optimal characteristics for Simon we implemented an open source tool [13] based on
the SAT/SMT solvers CryptoMiniSat [15] and STP [11].

In the next section we will show how Simon can be modeled to find both the best
differential and linear characteristics in this framework and how this can be used to
solve cryptanalytic problems.

5.1 Model for Differential Cryptanalysis of SIMON
First we define the variables used in the model of Simon. We use two n-bit variables
xi, yi to represent the XOR-difference in the left and right halves of the state for
each round and an additional variable zi to store the XOR-difference of the output
of the AND operation.

For representing the log2 probability of the characteristic we introduce an additional
variable wi for each round. The sum over all probabilities wi then gives the probability
of the corresponding differential characteristic. The values wi are computed according
to theorem 4 as

wi = wt(varibits + doublebits) (1)

where wt(x) is the Hamming weight of x and

varibits = Sa(xi) ∨ Sb(xi)
doublebits = Sb(xi)� Sa(xi) ∧ S2a−b(xi)

Therefore, for one round of Simon we get the following set of constraints:

yi+1 = xi

0 = (zi � varibits)
0 = (zi + Sa−b(zi))� doublebits

xi+1 = yi + zi + Sc(xi)
wi = wt(varibits + doublebits)

(2)

A model for linear characteristics, though slightly more complex, can be imple-
mented in a similar way. A description of this model can be found in the implemen-
tation of our framework. Despite the increase in complexity, we could not observe
any significant impact on the solving time for the linear model.

5.2 Finding Optimal Characteristics
We can now use the previous model for Simon to search for optimal differential char-
acteristics. This is done by formulating the problem of finding a valid characteristic,
with respect to our constraints, for a given probability w. This is important to limit

98

5 Finding Optimal Differential and Linear Characteristics

Table 1: Overview of the optimal differential (on top) and linear characteristics for
different variants of Simon. The probabilities are given as log2(p), for linear
characteristic the squared correlation is used.

Rounds: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Differential
Simon32 -2 -4 -6 -8 -12 -14 -18 -20 -25 -30 -34 -36 -38 -40 -42
Simon48 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -35 -38 -44 -46 -50
Simon64 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -36 -38 -44 -48 -54
Linear
Simon32 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -34 -36 -38 -40 -42
Simon48 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -36 -38 -44 -46 -50
Simon64 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -36 -38 -44 -48 -54

the search space and makes sense as we are usually more interested in differential
characteristics with a high probability as they are more promising to lead to attacks
with a lower complexity. Therefore, we start with a high probability and check if
such a characteristic exists. If not we lower the probability.
The procedure can be described in the following way:

• For each round of the cipher add the corresponding constraints as defined
in (2). This system of constraints then exactly describes the form of a valid
characteristic for the given parameters.

• Add a condition which accumulates the probabilities of each round as defined
in (1) and check if it is equal to our target probability w.

• Query if there exists an assignment of variables which is satisfiable under the
constraints.

• Decrement the probability w and repeat the procedure.

One of the main advantages compared to other approaches is that we can prove
an upper bound on the probability of characteristics for a given cipher and number
of rounds. If the solvers determines the set of conditions unsatisfiable, we know that
no characteristic with the specified probability exists. We used this approach to
determine the characteristics with optimal probability for different variants of Simon.
The results are given in Table 1.

Upper Bound for the Characteristics.

During our experiments we observed that it seems to be an easy problem for the
SMT/SAT solver to prove the absence of differential characteristics above wmax. This
can be used to get a lower bound on the probability of characteristics contributing
to the differential. The procedure is similar to finding the optimal characteristics.

99

Observations on the SIMON block cipher family

• Start with a very low initial probability wi.

• Add the same system of constraints which were used for finding the character-
istic.

• Add a constraint fixing the variables (x0, y0) to ∆in and (xr, yr) to ∆out.

• Query if there is a solution for this weight.

• Increase the probability wi and repeat the procedure until a solution is found.

5.3 Computing the Probability of a Differential
Given a differential characteristic it is of interest to determine the probability of the
associated differential Pr(∆in

fr−→ ∆out) as it might potentially have a much higher
probability then the single characteristic. It is often assumed that the probability
of the best characteristic can be used to approximate the probability of the best
differential. However, this assumption only gives an inaccurate estimate in the case
of Simon.

Similarly to the previous approach for finding the characteristic, we can formalise
the problem of finding the probability of a given differential in the following way:

• Add the same system of constraints which were used for finding the character-
istic.

• Add a constraint fixing the variables (x0, y0) to ∆in and (xr, yr) to ∆out.

• Use a SAT solver to find all solutions si for the probability w.

• Decrement the probability w and repeat the procedure.

The probability of the differential is then given by

Pr(∆in
fr−→ ∆out) =

wmax∑
i=wmin

si · 2−i (3)

where si is the number of characteristics with a probability of 2−i.
We used this approach to compute better estimates for the probability of various

differentials (see Table 2). In the case of Simon32 we were able to find all character-
istics contributing to the differentials for 13 and 14 rounds. The distribution of the
characteristics and accumulated probability of the differential is given in Figure 1.
It is interesting to see that the distribution of w in the range [55, 89] is close to
uniform and therefore the probability of the corresponding differential improves only
negligible and converges quickly towards the measured probability5.

5We encrypted all 232 possible texts under 100 random keys to obtain the estimate of the probability
for 13-round Simon32.

100

5 Finding Optimal Differential and Linear Characteristics

Table 2: Overview of the differentials and the range [wmin, wmax] of the log2 proba-
bilities of the characteristics contributing to the differential. For computing
the lower bound log2(p) of the probability of the differentials, we used all
characteristics with probabilities in the range from wmin up to the values in
brackets in the wmax column.

Cipher Rounds ∆in ∆out wmin wmax log2(p)
Simon32 13 (0, 40) (4000, 0) 36 91 (91) −28.79
Simon32 14 (0, 8) (800, 0) 38 120 (120) −30.81
Simon48 15 (20, 800088) (800208, 2) 46 219 (79) −41.02
Simon48 16 (800000, 220082) (800000, 220000) 50 256 (68) −44.33
Simon48 17 (80, 222) (222, 80) 52 269 (85) −46.32
Simon64 21 (4000000, 11000000) (11000000, 4000000) 68 453 (89) −57.57
Simon64 22 (440, 1880) (440, 100) 72 502 (106) −61.32

The performance of the whole process is very competitive compared to dedicated
approaches. Enumerating all characteristics up to probability 2−46 for the 13-round
Simon32 differential takes around 90 seconds on a single CPU core and already
gives a better estimate compared to the results in [6]. A complete enumeration
of all characteristics for 13-round Simon32 took close to one core month using
CryptoMiniSat4 [15]. The computational effort for other variants of Simon is
comparable given the same number of rounds. However, for these variants we can use
differentials with a lower probability covering more rounds due to the increased block
size. In this case the running time increases due to the larger interval [wmin, wmax]
and higher number of rounds.

For Simon48 and Simon64 we are able to improve the estimate given in [17].
Additionally we found differentials which can cover 17 rounds for Simon48 and 22
rounds for Simon64 which might have potential to improve previous attacks. Our
results are also closer to the experimentally obtained estimates given in [10] but give
a slightly lower probability. This can be due to the limited number of characteristics
we use for the larger Simon variants or the different assumptions on the independence
of rounds.

Our results are limited by the available computing power and in general it seems
to be difficult to count all characteristics for weights in [wmin, wmax], especially for
the larger variants of Simon. However the whole process is embarrassingly parallel,
as one can split up the computation for each probability wi. Furthermore, the
improvement that one gets decreases quickly. For all differentials we observed that
the distribution of differential characteristics becomes flat after a certain point.

101

Observations on the SIMON block cipher family

20

25

210

215

220

2−40 2−50 2−60 2−70 2−80 2−90 2−37

2−36

2−35

2−34

2−33

2−32

2−31

2−30

2−29

2−28

#
C
ha

ra
ct
er
is
ti
cs

D
iff
er
en
ti
al

P
ro
ba

bi
lit
y

Probability of one characteristic

#Characteristics
Probability

Measured DP

Figure 1: Distribution of the number of characteristics for the differential (0, 40)→
(4000, 0) for 13-round Simon32 and the accumulated probability. A total
of ≈ 225.21 characteristics contribute to the probability.

6 Analysis of the Parameter Choices
The designers of Simon so far gave no justification for their choice of the rotation
constants. Here we evaluate the space of rotation parameters with regard to different
metrics for the quality of the parameters. Our results are certainly not a definite
answer but are rather intended as a starting point to evaluating the design space and
reverse engineering the design choices. We consider all possible sets of rotation con-
stants (a, b, c)6 and checked them for diffusion properties and the optimal differential
and linear characteristics.

6.1 Diffusion
As a very simple measure to estimate the quality of the rotation constants, we
measure the number of rounds that are needed to reach full diffusion. Full diffusion
is reached when every state bit principally depends on all input bits. Compared
to computing linear and differential properties it is an easy task to determine the
dependency.

In Table 3 we give a comparison to how well the standard Simon rotation parame-
ters fare within the distribution of all possible parameter sets. The exact distributions
for all Simon variants can be found in the appendix in Table 8.

6Without lack of generality, we assume though that a ≥ b.

102

6 Analysis of the Parameter Choices

Table 3: The number of rounds after which full diffusion is reached for the standard
Simon parameters in comparison to the whole possible set of parameters.

Block size 32 48 64 96 128
Standard parameters 7 8 9 11 13
Median 8 10 11 13 14
First quartile 7 9 9 11 12
Best possible 6 7 8 9 10
Rank 2nd 2nd 2nd 3rd 4th

6.2 Differential and Linear
As a second criteria for our parameters, we computed for all a > b and gcd(a−b, n) = 1
the optimal differential and linear characteristics for 10 rounds of Simon32, Simon48
and Simon64. A list of the parameters which are optimal for all three variants of
Simon can be found in Appendix D.
It is important here to note that there are also many parameter sets, including

the standard choice, for which the best 10-round characteristics of Simon32 have a
probability of 2−25 compared to the optimum of 2−26. However, this difference by a
factor of 2 does not seem to occur for more than 10 rounds and also not any larger
variants of Simon.

6.3 Interesting Alternative Parameter Sets
As one result of our investigation we chose three exemplary sets of parameters that
surpass the standard parameters with regards to some metrics. Those variants are
Simon[12, 5, 3], Simon[7, 0, 2] and Simon[1, 0, 2].

Simon[12, 5, 3] has the best diffusion amongst the parameters which have optimal
differential and linear characteristics for 10 rounds. The two other choices are both
restricted by setting b = 0 as this would allow a more efficient implementation in
software. Among those Simon[7, 0, 2] has the best diffusion and the characteristics
behave similar to the standard parameters. Ignoring the diffusion Simon[1, 0, 2] seems
also an interesting choice as it is optimal for the differential and linear characteristics.

If we look though at the differential corresponding to the best differential character-
istic of Simon[7, 0, 2] and Simon[1, 0, 2], then we can see the number of characteristics
contributing to it is significantly higher than for the standard parameters (see Ap-
pendix Table 6). However, for Simon[12, 5, 3] the differential shows a surprisingly
different behaviour and the probability of the differential is much closer to the proba-
bility of the characteristic. On the other side, the characteristics seem to be worse
for the larger variants as can be seen in Table 7. Furthermore it might be desirable
to have at least one rotation parameter that corresponds to a byte length, something
that the standard parameter set features.

103

Observations on the SIMON block cipher family

7 Conclusion and Future Work
In this work we analysed the general class of functions underlying the Simon block
cipher. First we rigorously derived efficiently computable and easily implementable
expressions for the exact differential and linear behaviour of Simon-like round
functions.

Building upon this, we used those expressions for a computer aided approach based
on SAT/SMT solvers to find both optimal differential and linear characteristics for
Simon. Furthermore, we were able to find all characteristics contributing to the
probability of a differential for Simon32 and gave better estimates for the probability
for other variants.
Finally, we investigated the space of Simon variants using different rotation con-

stants with respect to diffusion, and the optimal differential and linear characteristics.
Interestingly, the default parameters seem to be not always optimal.
This work opens up for further investigations. In particular, the choice and

justifications of the NSA parameters for Simon remains unclear. Besides our first
progress concerning the round function, the design of the key schedule remains largely
unclear and further investigation is needed here.

Acknowledgments

First of all, we wish to thank Tomer Ashur. Both the method to check whether a
linear input mask gives a correlated or uncorrelated linear 1-round characteristic for
a given output mask as well as the first version of the SMT/SAT model for linear
characteristics in Simon were an outcome of our discussions. We furthermore wish
to thank the reviewers for comments that helped to improve the paper.

References
[1] Farzaneh Abed, Eik List, Stefan Lucks, and Jakob Wenzel. “Differential Crypt-

analysis of Round-Reduced SIMON and SPECK”. In: Fast Software Encryption,
FSE 2014. Ed. by Carlos Cid and Christian Rechberger. Vol. 8540. Lecture Notes
in Computer Science. Springer, 2015, pp. 525–545. isbn: 978-3-662-46705-3.

[2] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander,
Christof Paar, and Tolga Yalçin. “Block Ciphers - Focus on the Linear Layer
(feat. PRIDE)”. In: Advances in Cryptology - CRYPTO 2014. Ed. by Juan A.
Garay and Rosario Gennaro. Vol. 8616. Lecture Notes in Computer Science.
Springer, 2014, pp. 57–76. isbn: 978-3-662-44370-5.

104

References

[3] Javad Alizadeh, Hoda AlKhzaimi, Mohammad Reza Aref, Nasour Bagheri,
Praveen Gauravaram, Abhishek Kumar, Martin M. Lauridsen, and Somitra
Kumar Sanadhya. “Cryptanalysis of SIMON Variants with Connections”. In:
Radio Frequency Identification: Security and Privacy Issues, RFIDSec 2014.
Ed. by Nitesh Saxena and Ahmad-Reza Sadeghi. Vol. 8651. Lecture Notes in
Computer Science. Springer, 2014, pp. 90–107. isbn: 978-3-319-13065-1.

[4] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. “Analysis of
NORX: Investigating Differential and Rotational Properties”. In: Progress in
Cryptology - LATINCRYPT 2014. Ed. by Diego F. Aranha and Alfred Menezes.
Vol. 8895. Lecture Notes in Computer Science. Springer, 2015, pp. 306–324.
isbn: 978-3-319-16294-2.

[5] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK Families of Lightweight
Block Ciphers. Cryptology ePrint Archive, Report 2013/404. http://eprint.
iacr.org/. 2013.

[6] Alex Biryukov, Arnab Roy, and Vesselin Velichkov. “Differential Analysis of
Block Ciphers SIMON and SPECK”. In: Fast Software Encryption, FSE 2014.
Ed. by Carlos Cid and Christian Rechberger. Vol. 8540. Lecture Notes in
Computer Science. Springer, 2015, pp. 546–570. isbn: 978-3-662-46705-3.

[7] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
“PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications
- Extended Abstract”. In: Advances in Cryptology - ASIACRYPT 2012. Ed. by
Xiaoyun Wang and Kazue Sako. Vol. 7658. Lecture Notes in Computer Science.
Springer, 2012, pp. 208–225. isbn: 978-3-642-34960-7.

[8] Claude Carlet. “Vectorial Boolean Functions for Cryptography”. In: Boolean
Models and Methods in Mathematics, Computer Science, and Engineering.
Vol. 134. Encyclopedia of Mathematics And Its Applications. Cambridge Univ.
Press, 2010, pp. 398–469.

[9] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. The
NOEKEON Block Cipher. Submission to the NESSIE project. 2000.

[10] Itai Dinur, Orr Dunkelman, Masha Gutman, and Adi Shamir. Improved Top-
Down Techniques in Differential Cryptanalysis. Cryptology ePrint Archive,
Report 2015/268. http://eprint.iacr.org/. 2015.

[11] Vijay Ganesh, Trevor Hansen, Mate Soos, Dan Liew, and Ryan Govostes. STP
constraint solver. https://github.com/stp/stp. 2014.

105

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
https://github.com/stp/stp

Observations on the SIMON block cipher family

[12] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici.
“LS-Designs: Bitslice Encryption for Efficient Masked Software Implementa-
tions”. In: Fast Software Encryption, FSE 2014. Ed. by Carlos Cid and Christian
Rechberger. Vol. 8540. Lecture Notes in Computer Science. Springer, 2015,
pp. 18–37. isbn: 978-3-662-46705-3.

[13] Stefan Kölbl. CryptoSMT: An easy to use tool for cryptanalysis of symmetric
primitives. https://github.com/kste/cryptosmt. 2015.

[14] Nicky Mouha and Bart Preneel. Towards Finding Optimal Differential Charac-
teristics for ARX: Application to Salsa20. Cryptology ePrint Archive, Report
2013/328. http://eprint.iacr.org/. 2013.

[15] Mate Soos. CryptoMiniSat SAT solver. https://github.com/msoos/cryptominisat/.
2014.

[16] Siwei Sun, Lei Hu, Meiqin Wang, Peng Wang, Kexin Qiao, Xiaoshuang Ma,
Danping Shi, Ling Song, and Kai Fu. Constructing Mixed-integer Programming
Models whose Feasible Region is Exactly the Set of All Valid Differential
Characteristics of SIMON. Cryptology ePrint Archive, Report 2015/122. http:
//eprint.iacr.org/. 2015.

[17] Siwei Sun, Lei Hu, Meiqin Wang, Peng Wang, Kexin Qiao, Xiaoshuang Ma, Dan-
ping Shi, Ling Song, and Kai Fu. Towards Finding the Best Characteristics of
Some Bit-oriented Block Ciphers and Automatic Enumeration of (Related-key)
Differential and Linear Characteristics with Predefined Properties. Cryptology
ePrint Archive, Report 2014/747. http://eprint.iacr.org/. 2014.

[18] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
“Automatic Security Evaluation and (Related-key) Differential Characteristic
Search: Application to SIMON, PRESENT, LBlock, DES(L) and Other Bit-
Oriented Block Ciphers”. In: Advances in Cryptology - ASIACRYPT 2014.
Ed. by Palash Sarkar and Tetsu Iwata. Vol. 8873. Lecture Notes in Computer
Science. Springer, 2014, pp. 158–178. isbn: 978-3-662-45610-1.

[19] Qingju Wang, Zhiqiang Liu, Kerem Varici, Yu Sasaki, Vincent Rijmen, and
Yosuke Todo. “Cryptanalysis of Reduced-Round SIMON32 and SIMON48”. In:
Progress in Cryptology - INDOCRYPT 2014. Ed. by Willi Meier and Debdeep
Mukhopadhyay. Vol. 8885. Lecture Notes in Computer Science. Springer, 2014,
pp. 143–160. isbn: 978-3-319-13038-5.

A Short tutorial for calculating differential probabilities
and square correlations in SIMON-like round
functions

The idea of this section is to complement the rigorous proofs with a more intuitive
approach to calculating the differential probabilities and square correlation of one

106

https://github.com/kste/cryptosmt
http://eprint.iacr.org/
https://github.com/msoos/cryptominisat/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

A Short tutorial on calculating probabilites in SIMON

round of Simon. This should also allow us to better understand the Python code
given later for calculating these values. We restrict ourselves to a simplified version
of the Simon round function:

f : Fn2 → Fn2 (1)
f(m) = S1(m)�m . (2)

Writing this equation bitwise where mi denotes the ith bit of m we obtain:

fi(m) = mi−1 �mi . (3)

When using a bit subscript, we will always implicitly assume that the subscript is
calculated modulo n, the number of bits. Thus m−1 and mn−1 will for example refer
to the same bit.

A.1 Differential probabilities
Suppose now we are given a message m = (mn−1, . . . ,m1,m0) and an input difference
d = (dn−1, . . . , d1, d0). Then the resulting difference D for the function f is calculated
as D(m, d) = f(m)⊕ f(m⊕ d). This can be written bitwise as:

Di(m, d) = (mi−1 �mi)⊕ ((mi−1 ⊕ di−1)� (mi ⊕ di)) . (4)

By differentiating between the four possible different cases for di and di−1, we obtain
the following:

Di(m, d) =

0, if di = 0 and di−1 = 0
mi, if di = 0 and di−1 = 1
mi−1, if di = 1 and di−1 = 0
mi ⊕mi−1, if di = 1 and di−1 = 1 .

(5)

In the last case, Di is 1 exactly when mi = mi−1 and is 0 when mi 6= mi−1.
Let us now look at a first example. Let n = 6, and d = 001010. We then calculate

D(m, d) using the above bitwise definition of D:

i 5 4 3 2 1 0
d 0 0 1 0 1 0
S1(d) 0 1 0 1 0 0
D(m, d) 0 m4 m2 m2 m0 0

. (6)

We can see that the resulting difference depends only on m4, m2 and m0. Thus by
adapting these bits appropriately we can generate the following resulting differences:

000000, 000010, 001100, 001110, 010000, 010010, 011100, 011110.

107

Observations on the SIMON block cipher family

All these differences then have the same probability of 8/64 = 1/8. Note that the
reuse of a message bit, m2 in this case, is due to a subsequence 101 in the difference.
Let us take a look at another example. Let again n = 6 and now d = 011010.

Then we can again calculate D(m, d) as

i 5 4 3 2 1 0
d 0 1 1 1 1 0
S1(d) 1 1 1 1 0 0
D(m, d) m5 m4 ⊕m3 m3 ⊕m2 m2 ⊕m1 m0 0

.

(7)
We can see here that consecutive 1s in the input difference will cause the respective
output difference bit to depend on two message bits. Nevertheless are all five non-zero
output difference bits independent of each other. Thus 25 different output differences
are possible, each one with probability 1/32.
With the observations made above, we can now devise a rule that allows us to

determine the probability of a given pair (α, β) of an input difference α and an output
difference β. First we calculate the set of varibits which is the bits in which the
output difference can be non-zero. So output bit βi is in varibits if and only if αi
or αi−1 is non-zero:

varibits = α | S1(α) (8)
where | denotes the bitwise or.

Next we have to calculate which of these output difference bits have to be the
same because of patterns 101 in the input difference. We do this by calculating the
set doublebits which is the output difference bits that always have to be the same
as the difference bit one position to the right. Thus βi is in doublebits if and only
if αi is 1, αi−1 is 0, and αi−2 is 1.

doublebits = α� S1(α)� S2(α) (9)

To check whether input difference α can map to output difference β with non-zero
probability, we only need to check whether all non-zero bits of β lie in varibits and
that all bits of β that are in doublebits are the same as the bits to their right. The
probability of the transition is then determine by the number of output difference
bits that can be chosen freely, i.e. the number of bits in varibits minus the number
of bits in doublebits.
Before we write this procedure down, we have to take a look at one special case,

namely when all input difference bits are set, e.g. n = 6 and d = 111111. Then we
can again calculate D(m, d) as

i 5 4 3 2 1 0
d 1 1 1 1 1 1
S1(d) 1 1 1 1 1 1
D(m, d) m5 ⊕m4 m4 ⊕m3 m3 ⊕m2 m2 ⊕m1 m1 ⊕m0 m0 ⊕m4

.

(10)

108

A Short tutorial on calculating probabilites in SIMON

Although all bits of the output are influenced and all bits of the input take equal
influence, there are not 64 possible output differences since by switching all bits of m
the output difference does not change.

So which output differences are possible then? By fixing an output difference, we
get a sequence of equations of the kind mi = mi+1 or mi 6= mi+1. This creates a
closed chain of equations that have to be coherent to be satisfiable. As a 0 in the
output difference creates an inequality and a 1 creates an equality, in the end it boils
down to the condition that the number of 0s in the output difference has to be even
when the input difference only consists of 1s.

Let us now summarise all of this in a method to calculate the probability that a
given input difference α is mapped to a given output difference β:

1. Check if α is the difference with all bits set to 1. If that is the case, calculate the
number of 0s in β. If this number is even, return probability 2−n+1, otherwise
return probability 0. If α is not all 1s, go to next step.

2. Calculate varibits as varibits = α | S1(α). Check if β has any bits set to 1
which are not in varibits, i.e. check if varibits� β 6= 0. Should this be the
case, return probability 0. Otherwise continue with next step.

3. Calculate doublebits as doublebits = α � S1(α) � S2(α). Check whether
there are any bits of β in doublebits that are not equal to their right neighbour,
i.e. check

(
β + S1(β)

)
� doublebits 6= 0. Should this be the case, return

probability 0. Otherwise continue with next step.

4. Return probability 2−wt(varibits+doublebits).

This method allows us to determine differential probabilities of the function f(x) =
S1(x) � x. We only have to apply some affine transformation to convert this to
a method for calculating the probability of the Simon round function. A Python
implementation of the more general method can be found in Section B.

A.2 Square correlations
Let us now look at how to calculate square correlations for f(x) = S1(x)� x.
First we look at the case where the input mask α is all 0s. Let n = 6 and let the

output mask β be 010110:

α 0 0 0 0 0 0
m m5 m4 m3 m2 m1 m0
S1(m) m4 m3 m2 m1 m0 m5

β 0 1 0 1 1 0

. (11)

The resulting expression is then

m4m3 +m2m1 +m1m0. (12)

109

Observations on the SIMON block cipher family

Let us look at the first term. It is zero in 3 out of 4 cases. It thus has a correlation
of 1

2 and hence a square correlation of 1
4 .

Let us look at the next two terms m2m1 and m1m0. First we note that they are
not independent as they share the variable m1. So we cannot calculate the square
correlation of the sum of these terms as the product of the square correlations of the
single terms. But we can rewrite the sum of these terms as

m2m1 +m1m0 = m1(m2 +m0). (13)

Now (m2 +m0) behaves like a single one bit variable. Therefore the square correlation
of m1(m2 +m0) is 1

4 as well. As m4m3 and m1(m2 +m0) do not share any variables,
the square correlation of the whole expressionm4m3+m2m1+m1m0 is then 1

4 ·
1
4 = 1

16 .
It is easy to see that different “blocks” of 1s in β that are separated by at least one 0,
will generate independent terms. We thus only need to look at the square correlations
of the terms generated from these blocks and multiply these to get the final result.
Let us thus look at a longer block of 1s with β = 011111:

α 0 0 0 0 0 0
m m5 m4 m3 m2 m1 m0
S1(m) m4 m3 m2 m1 m0 m5

β 1 1 1 1 1 0

. (14)

The resulting expression is

m5m4 +m4m3 +m3m2 +m2m1 +m1m0. (15)

By combining the first and the second as well as the third and the fourth term, we
get

m4(m5 +m3) +m2(m3 +m1) +m0m1. (16)

As (m5 +m3), (m3 +m1), and m1 are independent of each other, the three terms
m4(m5 +m3), m2(m3 +m1), and m0m1 are independent and the square correlation
of the whole expression is thus

(1
4
)3 = 2−6.

At this point we already dare to formulate a rule. The square correlation of the
term generated by m consecutive blocks of 1s is 2−2dm2 e. As every pair of consecutive
single terms can be combined to create one independent term of square correlation
2−2, the total square correlation just depends on the number of terms left after such
pairing. And this number is

⌈
m
2
⌉
.

Let us now consider a non-zero input mask α. Let α = 010010 and let β = 010100:

α 0 1 0 1 1 1
m m5 m4 m3 m2 m1 m0
S1(m) m4 m3 m2 m1 m0 m5

β 0 1 0 1 0 0

. (17)

110

A Short tutorial on calculating probabilites in SIMON

The resulting expression is then

m4m3 +m4 +m2m1 +m2 +m1 +m0. (18)

We see that we can combine the first two terms to get a term of square correlation
2−2 again: m4m3 +m4 = m4(m3 + 1). Note that if the second term had been m3
instead, it would have worked too. For the next three terms we can do the same:
m2m1 +m2 +m1 = (m2 + 1)(m1 + 1) + 1. Note that the bias of this term is now
flipped; the square correlation is nonetheless also 2−2. As the first two terms are
independent of the next three terms, the square correlation of the combined first five
terms is 2−4. But when looking at the last term m0, we see that it is independent of
all other terms and unbiased. Thus the square correlation of the complete expression
is 0.
As a matter of fact, it is easy to see that when for any i the respective bit αi of

the input mask is 1 but both βi and βi+1 are 0, the resulting expression will always
be unbiased. Thus we can say that every non-zero bit in the input mask belonging to
some block of 1s in the output mask is a necessary condition for the whole expression
to be unbiased. Note that every bit in the input mask can at most be associated
with one block of 1s in the output mask.

Thus we can evaluate the square correlation of f for an input mask α and an
output mask β like this: First we check whether every non-zero bit in the input mask
is associated to a block of 1s in the output mask. Is this not the case, we already
know that the square correlation is zero. Otherwise we continue to partition the
output mask and the input mask into blocks of 1s and their associated input mask
bits. For each of these blocks we determing the square correlation of the resulting
expression and finally multiply these together to get the total square correlation.
But how do we evaluate a block of 1s with the associated input mask bits in

general? In the last example, we saw that for a block of a single 1 in the output mask,
the two associated bits of the input mask can take any value; the square correlation
remains 2−2.

How about in the case of a block of two 1s? Let us look at the case of α = 111001
and let β = 110110:

α 1 1 1 0 0 1
m m5 m4 m3 m2 m1 m0
S1(m) m4 m3 m2 m1 m0 m5

β 1 1 0 1 1 0

. (19)

The resulting expression is

m5m4 +m4m3 +m5 +m4 +m3 +m2m1 +m1m0 +m0. (20)

Let us first look at the first block of 1s in the output mask β, i.e. at the expression
m5m4 +m4m3 +m5 +m4 +m3. Combining the first two terms, we get

m4(m5 +m3) +m5 +m4 +m3. (21)

111

Observations on the SIMON block cipher family

We can now combine the first term with m4 to get

m4(m5 +m3 + 1) +m5 +m3. (22)

Finally we can also incorporate m5 and m3 to get

(m4 + 1)(m5 +m3 + 1) + 1. (23)

The expression thus has a square correlation of 2−2.
Let us look at the expression generated by the second block of 1s in the output

mask:
m2m1 +m1m0 +m0. (24)

Combining the first two terms, we get

m1(m2 +m0) +m0. (25)

But now we see that the term m0 is independent of the first term. Thus we are left
with a square correlation of 0. Note that the square correlation would also be 0 if
the last term were m2 but not if the last term were m1 in which case the square
correlation would be 2−2.

As a matter of fact, the rule to determine the square correlation of an expression
generated by a block of two 1s in the output mask and the associated bits in the
input mask is straightforward. There are three associated input mask bits. If and
only if both or none of the two outer bits (m2 and m0 in the last example) are set to
1, is the expression biased and the square correlation is 2−2.

In fact, for a block of an even number of 1s in the ouput mask, any combination of
associated input bits, will lead to a biased expression with the same square correlation.
For a block of an odd number of 1s in the output mask, we need to check the input
mask though. There is an odd number of associated bits to this block in the input
mask. Let us refer to the first bit and then every second bit as the odd bits, and
to the second bit and then every second bit as the even bits (from which direction
we count does not matter). The even bits do not have an influence on the square
correlation. But the parity of the odd bits determines whether the expression for
this block will be unbiased or not. If and only if the parity is even, is the expresssion
biased.

We can summarise a method to calculate the square correlation for a given input
mask α and a given output mask β that is not all 1s as follows:

1. Partition the 1s in the output mask into consecutive blocks of 1s. The total
square correlation is now the product of the square correlations for each block.

2. For each block calculate the square correlation:
a) If the block length is odd, this block is always biased and the square

correlation is solely determined by its length.

112

B Python code to calculate probabilties in SIMON

b) If the block lenght is even, we need to check the input mask. There is
an odd number of bits in the input mask that are associated with this
output block. Calculate the XOR of every second bit of these associated
bits starting with the first one (such that both outer bits are considered).
If this XOR sum is 1, the block is unbiased and thus the whole expression
is unbiased. If the XOR sum is 0, the square correlation for this block is
determined by its length.

For an implementation of the method to calculate the square correlation in Python,
see Section 6.

B Python code to calculate lifferential probabilities and
square correlations in SIMON-like round functions

In the following, code for calculating the differential probabilities and square corre-
lations of Simon-like round functions (fa,b,c(x) = Sa(x)� Sb(x) + Sc(x)) are given
in Python. Restrictions are that the constants need to fulfil gcd(a− b, n) = 1. We
assume that the functions Sd(x) and wt(x) have been implemented as well as a
function parity that calculates the parity wt(x) mod 2 of a bit vector x. a, b, and
c have to be defined in the program as well.
The differential probability of α f−→ β can then be calculated with the following

function:

def pdiff (alpha , beta):
Use gamma instead of beta to get rid of the
linear part
gamma = beta ^ S(alpha , c)
Take care of the case where alpha is all 1s
if alpha == 2**n -1:

if hw(~ gamma)%2 == 0:
return 2**(n -1)

else:
return 0

Determine bits that can take a nonzero difference
varibits = S(alpha , a) | S(alpha , b)
Check whether gamma conforms with varibits
if gamma & ~ varibits != 0:

return 0
Determine the bits that are duplicates
doublebits = S(alpha , 2 * a - b) & ~S(alpha , a) &

S(alpha , b)
Check whether the duplicate bits are the same as
there counterpart

113

Observations on the SIMON block cipher family

if (gamma ^ S(gamma , a - b)) & doublebits != 0:
return 0

return 2**(- hw(varibits ^ doublebits))

The squared correlation of α f→ β can be calculated with the following function. Here
we assume n to be even, which is relevant for the case where β is all 1s.

def plin (alpha , beta):
Get rid of linear part of round function
alpha ^= S(beta , -c)
If the input masks uses bits that have
corresponding bits in the output mask , the
correlation is 0.
if ((S(beta , -a) | S(beta , -b)) ^ alpha) &

alpha != 0:
return 0

#Take care of the case where beta is all 1s
if beta == 2**n -1:

t, v = alpha , 0
while t != 0:

v ^= t & 3
t >>= 2

if v != 0:
return 0

else:
return 2**(-n + 2)

Set in the abits mask the first and then every
second bit of each block of 1s in the output
mask beta. Each corresponds to one independent
multiplication term , and thus adds a factor of
2^(-2) to the square correlation .
Example :
beta = 0111101110110 -> abits = 0101001010100
tmp = beta
abits = beta
while tmp != 0:

tmp = beta & S(tmp , -(a - b))
abits ^= tmp

The sbits correspond to bits one to the right of
each block of an even number of 1s in the output
mask.
Example :
beta = 0111101110110 -> sbits = 0000010000001

114

C Additional Differential Bounds

sbits = S(beta , -(a - b)) &
~beta & ~S(abits , -(a - b))

Adopt sbits to correspond to the respective bits
in the input mask
sbits = S(sbits , -b)
The pbits are used to check whether the input
mask removes the bias from one of the output
mask blocks . It checks the parity of the sum of
every second inputmask bit for each block that
corresponds to a block of an even number of 1s
in the output mask.
pbits = 0
while sbits != 0:

pbits ^= sbits & alpha
sbits = S(sbits , (a - b)) & S(beta , -b)
sbits = S(sbits , (a - b))
pbits = S(pbits , 2 * (a - b))

If the parity is uneven for any one of the
blocks , there is no bias.
if pbits != 0:

return 0
return 2**(-2 * hw(abits))

C Additional Differential Bounds
In Table 4 resp. 5 we give the distributions for the characteristics contributing to a
differential up to the bound we computed them.

D Optimal parameters for differential characteristics
The following sets of rotation constants (a, b, c) are optimal for 10 rounds regarding
differential characteristics for Simon32, Simon48, and Simon64

(1, 0, 2), (1, 0, 3), (2, 1, 3), (4, 3, 5), (5, 0, 10), (5, 0, 15), (5, 4, 3), (7, 0, 14), (7, 6, 5)
(8, 1, 3), (8, 3, 14), (8, 7, 5), (10, 5, 15), (11, 6, 1), (12, 1, 7), (12, 5, 3), (12, 7, 1)
(13, 0, 10), (13, 0, 7), (13, 8, 2)

Similar to the experiments for the default parameters, we used our framework to
evaluate the quality of various rotation constants. In Table 7 we give an overview
of the best differential characteristics for variants of Simon using a different set of

115

Observations on the SIMON block cipher family

rotation constants. Table 6 shows that a carefully chosen set of constants can have a
very strong effect on the differentials.

116

D Optimal parameters for differential characteristics

Table 4: For the 17-round differential (80, 222) f17

−−→ (222, 80) in Simon48, the number
of differential characteristics are listed here.

log2(p) #Characteristics log2(p) #Characteristics
−52 1 −69 20890
−53 6 −70 38837
−54 15 −71 72822
−55 46 −72 133410
−56 100 −73 240790
−57 208 −74 353176
−58 379 −75 279833
−59 685 −76 235071
−60 1067 −77 259029
−61 1607 −78 225836
−62 2255 −79 256135
−63 2839 −80 252193
−64 3476 −81 252654
−65 4088 −82 198784
−66 5032 −83 229843
−67 7063 −84 208757
−68 11481 −85 253112

Table 5: For the 21-round differential (4000000, 11000000) f21

−−→ (11000000, 4000000)
in Simon64, the number of differential characteristics are listed here.

log2(p) #Characteristics log2(p) #Characteristics
−68 2 −83 185709
−69 14 −84 173860
−70 70 −85 171902
−71 276 −86 171302
−72 951 −87 168190
−73 2880 −88 164694
−74 8101 −89 163141
−75 21062 −90 161089
−76 52255 −91 159354
−77 123206 −92 155804
−78 238297 −93 150954
−79 239305 −94 145061
−80 171895 −95 141914
−81 170187 −96 138480
−82 165671 −97 132931

117

Observations on the SIMON block cipher family

Table 6: Distribution of the characteristics for a 13-round differential for Simon32
using different set of constants.

log2(p) [8, 1, 2] [12, 5, 3] [7, 0, 2] [1, 0, 2]
−36 1 1 4 1
−37 4 2 16 6
−38 15 3 56 27
−39 46 2 144 88
−40 124 1 336 283
−41 288 0 744 822
−42 673 0 1644 2297
−43 1426 0 3420 6006
−44 2973 0 6933 14954
−45 5962 0 13270 34524
−46 11661 1 24436 73972
−47 21916 3 43784 150272
−48 40226 14 76261 292118
−49 72246 32 130068 /
−50 126574 54 218832 /
−51 218516 83 362284 /

Table 7: Overview of the optimal differential characteristics for Simon variants.
Rounds: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Differential (12, 5, 3)
Simon32 -2 -4 -6 -8 -12 -14 -18 -20 -26 -28 -34 -36 -42 -44 -47
Simon48 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -36 -36 -38 -40 -42
Simon64 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -35 -37 -43 -47 /
Differential (1, 0, 2)
Simon32 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -36 -36 -38 -40 -42
Simon48 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -36 -38 -44 -48 -54
Simon64 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -36 -38 -44 -48 -54
Differential (7, 0, 2)
Simon32 -2 -4 -6 -8 -12 -14 -18 -20 -25 -30 -35 -36 -38 -40 -42
Simon48 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -35 -38 -44 -48 -53
Simon64 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -36 -38 -44 -48 /

118

D Optimal parameters for differential characteristics

Table 8: For each Simon variant and each possible number of rounds, the number of
possible combinations of rotation constants (a, b, c) with a ≥ b is given that
reaches full diffusion.

Simon32
Rounds 6 7 8 9 10 11 17 ∞
#(a, b, c) 48 600 528 88 144 128 64 576

Simon48
Rounds 7 8 9 10 11 13 14 15 25 ∞
#(a, b, c) 48 1392 1680 792 528 344 144 128 64 2080

Simon64
Rounds 8 9 10 11 12 13 15 17 18 19 33 ∞
#(a, b, c) 384 4800 2112 2256 1152 608 512 48 288 256 128 4352

Simon96
Rounds 9 10 11 12 13 14 15 16 17
#(a, b, c) 336 4272 13920 7104 5568 3456 912 1152 800

19 21 25 26 27 49 ∞
1568 640 48 288 256 128 16000

Simon128
Rounds 10 11 12 13 14 15 16 17 18 19 20
#(a, b, c) 768 10944 26112 25536 9024 6912 7488 2496 192 1824 2304

21 23 24 25 33 34 35 65 ∞
1792 1024 960 512 96 576 512 256 33792

119

Polytopic Cryptanalysis

Publication Information
Tyge Tiessen. “Polytopic Cryptanalysis”. In: Advances in Cryptology - EURO-
CRYPT 2016. Ed. by Jean-Sébastien Coron and Marc Fischlin. Vol. ??? Lecture
Notes in Computer Science. Springer, 2016, ??? isbn: ???????

Contribution
• Single author.

Remarks
This publication has been slightly edited to fit the format.

121

Polytopic Cryptanalysis

Tyge Tiessen

DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark
tyti@dtu.dk

Abstract. Standard differential cryptanalysis uses statistical depen-
dencies between the difference of two plaintexts and the difference of the
respective two ciphertexts to attack a cipher. Here we introduce poly-
topic cryptanalysis which considers interdependencies between larger
sets of texts as they traverse through the cipher. We prove that the
methodology of standard differential cryptanalysis can unambiguously
be extended and transferred to the polytopic case including impossible
differentials. We show that impossible polytopic transitions have generic
advantages over impossible differentials. To demonstrate the practical
relevance of the generalization, we present new low-data attacks on
round-reduced DES and AES using impossible polytopic transitions
that are able to compete with existing attacks, partially outperforming
these.

1 Introduction
Without doubt is differential cryptanalysis one of the most important tools that the
cryptanalyst has at hand when trying to evaluate the security of a block cipher. Since
its conception by Biham and Shamir [2] in their effort to break the Data Encryption
Standard [26], it has been successfully applied to many block ciphers such that any
modern block cipher is expected to have strong security arguments against this
attack.

The methodology of differential cryptanalysis has been extended several times with
a number of attack vectors, most importantly truncated differentials [20], impossible
differentials [1], [19], and higher-order differentials [20], [22]. Further attacks include
the boomerang attack [29], which bears some resemblance of second-order differential
attacks, and differential-linear attacks [24].
Nonetheless many open problems remain in the field of differential cryptanalysis.

Although the concept of higher-order differentials is almost 20 years old, it has
not seen many good use cases. One reason has been the difficulty of determining
the probability of higher-order differentials accurately without evaluating Boolean
functions with prohibitively many terms. Thus the common use case remains

c© IACR 2016. This article is the final version submitted by the author(s) to the IACR and to
Springer-Verlag on 18-02-2016.

123

mailto:tyti@dtu.dk

Polytopic Cryptanalysis

probability 1 higher-order differentials where we know that a derivative of a certain
order has to evaluate to zero because of a limit in the degree of the function.
Another open problem is the exact determination of the success probability of

boomerang attacks and their extensions. It has correctly been observed that the
correlation between differentials must be taken into account to accurately determine
the success probability [25]. The true probability can otherwise deviate arbitrarily
from the estimated one.
Starting with Chabaud and Vaudenay [12], considerable effort has gone into

shedding light on the relation and interdependencies of various cryptographic attacks
(see for example [5], [6], [30]). With this paper, we offer a generalized view on
the various types of differential attacks that might help to understand both the
interrelation between the attacks as well as the probabilities of the attacks better.

Our contribution
In this paper we introduce polytopic cryptanalysis. It can be viewed as a generalization
of standard differential cryptanalysis which it embeds as a special case. We prove that
the definitions and methodology of differential cryptanalysis can unambiguously be
extended to polytopic cryptanalysis, including the concept of impossible differentials.
Polytopic cryptanalysis is general enough to even encompass attacks such as higher-
order differentials and might thus be valuable as a reference framework.
For impossible polytopic transitions, we show that they exhibit properties that

allow them to be very effective in scenarios where ordinary impossible differentials
fail. This is mostly due to a generic limit in the diffusion of any block cipher that
guarantees that only a negligible number of all polytopic transitions is possible for a
sufficiently high choice of dimension. This also makes impossible polytopic transitions
ideal for low-data attacks where standard impossible differentials usually have a high
data complexity.

Finally we prove that polytopic cryptanalysis is not only theoretically intriguing but
indeed relevant for practical cryptanalysis by demonstrating competitive impossible
polytopic attacks on round-reduced DES and AES that partly outperform existing
low-data attacks and offer different trade-offs between time and data complexity.

In the appendix, we further prove that higher-order differentials can be expressed
as truncated polytopic transitions and are hence a special case of these. Thus higher-
order differentials can be expressed in terms of a collection of polytopic trails just as
differentials can be expressed as a collection of differential trails. A consequence of
this is that it is principally possible to determine lower bounds for the probability
of a higher-order differential by summing over the probabilities of a subset of the
polytopic trails which it contains.

Related work
To our knowledge, the concept of polytopic transitions is new and has not been used
in cryptanalysis before. Nonetheless there is other work that shares some similarities

124

1 Introduction

with polytopic cryptanalysis.
Higher-order differentials [22] can in some sense be seen as a higher-dimensional

version of a differential. However, most concepts of ordinary differentials do not seem
to extend to higher-order differentials, such as characteristics or iterated differentials.

The idea of using several differentials simultaneously in an attack is not new (see
for example [4]). However as opposed to assuming independence of the differentials,
which does not hold in general (see [25]), we explicitly take their correlation into
account and use it in our framework.

Another type of cryptanalysis that uses a larger set of texts instead of a single pair
is integral cryptanalysis (see for example [3], [14]), in which structural properties
of the cipher are used to elegantly determine a higher-order derivative to be zero
without relying on bounds in the degree. These attacks can be considered a particular
form of higher-order differentials.
Finally decorrelation theory [28] also considers relations between multiple pairs

of plaintexts and ciphertexts but takes a different direction by considering security
proofs based on a lack of correlation between the texts.

Organization of the paper
In Section 2, notation and concepts necessary for polytopic cryptanalysis are intro-
duced. It is demonstrated how the concepts of differential cryptanalysis naturally
extend to polytopic cryptanalysis. We also take a closer look at the probability of
polytopic transitions and applicability of simple polytopic cryptanalysis.

In Section 3, we introduce impossible polytopic transitions. We show that impossi-
ble polytopic transitions offer some inherent advantages over impossible differentials
and are particularly interesting for low-data attacks. We show that, given an efficient
method to determine the possibility of a polytopic transition, generic impossible
polytopic attack always exist.

In Section 4, we demonstrate the practicability of impossible polytopic transition
attacks. We present some attacks on DES and AES that are able to compete with
existing attacks with low-data complexity, partially outperforming these.

Furthermore, in Section B truncated polytopic transitions are introduced. We then
give a proof that higher-order differentials are a special case of these. The cryptana-
lytic ramifications of the fact that higher-order differentials consist of polytopic trails
are then discussed.

Notation
We use Fn2 to denote the n-dimensional binary vector space. To identify numbers in
hexadecimal notation we use a typewriter font as in 3af179. Random variables are
denoted with bold capital letters (X). We will denote d-difference (introduced later)
by bold Greek letters (α) and standard differences by Roman (i.e., non-bold) Greek
letters (α).

125

Polytopic Cryptanalysis

m0

m1

m2

m3

Absolute positions
of texts with re-
spect to origin

−→
m0

m1

m2

m3

Relative position-
ing to each other

−→
m0

m1

m2

m3

Relative positioning to
chosen reference text

Figure 1: Depiction of three views of a polytope with four vertices.

2 Polytopes and polytopic transitions
Classical differential cryptanalysis utilizes the statistical interdependency of two texts
as they traverse through the cipher. When we are not interested in the absolute
position of the two texts in the state space, the difference between the two texts
completely determines their relative positioning.

But there is no inherent reason that forces us to be restricted to only using a pair
of texts. Let us instead consider an ordered set of texts as they traverse through the
cipher.

Definition 1 (s-polytope). An s-polytope in Fn2 is an s-tuple of values in Fn2 .

Similar to differential cryptanalysis, we are not so much interested in the absolute
position of these texts but the relations between the texts. If we choose one of the
texts as the point of reference, the relations between all texts are already uniquely
determined by only considering their differences with respect to the reference text. If
we thus have d+ 1 texts, we can describe their relative positioning by a tuple of d
differences (see also Fig. 1).

Definition 2 (d-difference). A d-difference over Fn2 is a d-tuple of values in Fn2
describing the relative position of the texts of a (d+ 1)-polytope from one point of
reference.

When we reduce a (d+ 1)-polytope to a corresponding d-difference, we loose the
information of the absolute position of the polytope. A d-difference thus corresponds
to an equivalence class of (d+ 1)-polytopes where polytopes are equivalent if and
only if they can be transformed into each other by simple shifting in state space. We
will mostly be dealing with these equivalence classes.

In principal there are many d-differences that correspond to one (d+ 1)-polytope
depending on the choice of reference text and the order of the differences. As a
convention we will construct a d-difference from a (d+ 1)-polytope as follows:

Convention. For a (d+ 1)-polytope (m0, . . . ,md), the corresponding d-difference is
created as (m0 ⊕m1,m0 ⊕m2, . . . ,m0 ⊕md).

126

2 Polytopes and polytopic transitions

This means, we use the first text of the polytope as the reference text and write
the differences in the same order as the remaining texts of the polytope. We will call
the reference text the anchor of the d-difference. Hence if we are given a d-difference
and the value of the anchor, we can reconstruct the corresponding (d+ 1)-polytope
uniquely.

Example. Let (m0,m1,m2,m3) be a 4-polytope in Fn2 . Then (m0 ⊕ m1,m0 ⊕
m2,m0 ⊕m3) is the corresponding 3-difference with m0 as the anchor.

In the following, we will now show that we can build a theory of polytopic
cryptanalysis in which the same methodology as in standard differential cryptanalysis
applies. Standard differential cryptanalysis is contained in this framework as a special
case.
A short note regarding possible definitions of difference: in this paper we restrict

ourselves to XOR-differences as the most common choice. Most, if not all, statements
in this paper naturally extend to other definitions of difference, e.g., in modular
arithmetic.

The equivalent of a differential in polytopic cryptanalysis is the polytopic transition.
We use d-differences for the definition.

Definition 3 (Polytopic transition with fixed anchor). Let f : Fn2 → Fq2. Let α be
a d-difference (α1, α2, . . . , αd) over Fn2 and let β be the d-difference (β1, β2, . . . , βd)
over Fq2. By the (d + 1)-polytopic transition α

f−→
x

β we denote that f maps the
polytope corresponding to α with anchor x to a polytope corresponding to β. More
precisely, we have α

f−→
x

β if and only if

f(x⊕ α1)⊕ f(x) = β1

and f(x⊕ α2)⊕ f(x) = β2

. . .

and f(x⊕ αd)⊕ f(x) = βd.

Building up on this definition, we can now define the probability of a polytopic
transition under a random anchor.

Definition 4 (Polytopic transition). Let f , α, and β again be as in Definition 3.
The probability of the (d+ 1)-polytopic transition α

f−→ β is then defined as:

Pr
(

α
f−→ β

)
:= Pr

X

(
α

f−→
X

β
)

(1)

where X is a random variable, uniformly distributed on Fn2 . We will at times also
write α −→ β if the function is clear from the context or not important.

Note that this definition coincides with the definition of the differential probability
when differences between only two texts (2-polytopes) are considered.

127

Polytopic Cryptanalysis

Let f : Fn2 → Fn2 now be a function that is the repeated composition of round
functions fi : Fn2 → Fn2 :

f := fr ◦ · · · ◦ f2 ◦ f1. (2)

Similarly to differential cryptanalysis, we can now define trails of polytopes:

Definition 5 (Polytopic trail). Let f be as in Eq. (2). A polytopic trail on f is an
(r + 1)-tuple of d-differences (α0,α1, . . . ,αr) written as

α0
f1−→ α1

f2−→ · · · fr−→ αr. (3)

The probability of such a polytopic trail is defined as

Pr
X

(
α0

f1−→
X

α1 and α1
f2−−−−→

f1(X)
α2 and · · · and αr−1

fr−−−−−−−−−→
fr−1◦···◦f1(X)

αr

)
(4)

where X is a random variable, distributed uniformly on Fn2 .

Similarly to differentials, it is possible to partition a polytopic transition over a
composed function into all polytopic trails that feature the same input and output
differences as the polytopic transition.

Proposition 6. The probability of a polytopic transition α0
f−→ αr over a function

f : Fn2 → Fn2 , f = fr ◦ · · · ◦ f2 ◦ f1 is the sum of the probabilities of all polytopic trails
(α0,α1, . . . ,αr) which it contains:

Pr
(

α0
f−→ αr

)
=

∑
α1,...,αr−1

Pr
(

α0
f1−→ α1

f2−→ · · · fr−1−−−→ αr−1
fr−→ αr

)
(5)

where α0, . . . ,αr are d-differences and as such lie in Fdn2 .

Proof. If we fix the initial value of the anchor, we also fix the trail that the polytope
has to take. The set of polytopic trails gives us thus a partition of the possible anchor
values and in particular a partition of the anchors for which the output polytope is

128

2 Polytopes and polytopic transitions

of type αr. Using the above definitions we thus get:

Pr
(

α0
f−→ αr

)
= Pr

X

(
α0

f−→
X

αr

)
= 2−n ·

∣∣∣{x ∈ Fn2
∣∣∣ α0

f−→
x

αr

}∣∣∣
= 2−n ·

∑
α1,...,αr−1

∣∣∣∣{x ∈ Fn2

∣∣∣∣ α0
f1−→
x

α1, α1
f2−−−→

f1(x)
α2, . . .

. . . , αr−1
fr−−−−−−−−−→

fr−1◦···◦f1(x)
αr

}∣∣∣∣
=

∑
α1,...,αr−1

Pr
X

(
α0

f1−→
X

α1 and α1
f2−−−−→

f1(X)
α2 and . . .

. . . and αr−1
fr−−−−−−−−−→

fr−1◦···◦f1(X)
αr

)
=

∑
α1,...,αr−1

Pr
(

α0
f1−→ α1

f2−→ · · · fr−1−−−→ αr−1
fr−→ αr

)
which proves the proposition.

To be able to calculate the probability of a differential trail, it is common in
differential cryptanalysis to make an assumption on the independence of the round
transitions. This is usually justified by showing that the cipher is a Markov cipher
and by assuming the stochastic equivalence hypothesis (see [23]). As we will mostly
be working with impossible trails where these assumptions are not needed, we will
assume for now that this independence holds and refer the interested reader to
Section A where the Markov model is adapted to polytopic cryptanalysis.
Under the assumption that the single round transitions are independent, we can

work with polytopic transitions just as with differentials:

1. The probability of a polytopic transition is the sum of the probabilities of all
polytopic trails with the same input and output d-difference.

2. The probability of a polytopic trail is the product of the probabilities of the
1-round polytopic transitions that constitute the trail.

We are thus principally able to calculate the probability of a polytopic transition
over many rounds by knowing how to calculate the polytopic transition over single
rounds.

Now to calculate the probability of a 1-round polytopic transition, we can use the
following observations:

3. A linear function maps a d-difference with probability 1 to the d-difference
that is the result of applying the linear function to each single difference in the
d-difference.

129

Polytopic Cryptanalysis

4. Addition of a constant to the anchor leaves the d-difference unchanged.

5. The probability of a polytopic transition over an S-box layer is the product of
the polytopic transitions for each S-box.

We are thus able to determine probabilities of polytopic transitions and polytopic
trails just as we are used to from standard differential cryptanalysis.

A note on correlation, diffusion and the difference distribution
table
When estimating the probability of a polytopic transition a first guess might be that
it is just the product of the individual 1-dimensional differentials. For a 3-polytopic
transition we might for example expect:

Pr
(

(α0, α1) −→ (β0, β1)
) ?= Pr

(
α0 −→ β0

)
· Pr

(
α1 −→ β1

)
.

That this is generally not the case is a consequence of the following lemma.

Lemma 7. Let f : Fn2 → Fn2 . For a given input d-difference α the number of output
d-differences to which α is mapped with non-zero probability is upper bounded by 2n.

Proof. This is just a result of the fact that the number of anchors for the transition
is limited to 2n:∣∣∣{β ∈ Fdn2

∣∣∣ Pr
(

α
f−→ β

)
> 0
}∣∣∣ =

∣∣∣{β ∈ Fdn2

∣∣∣ ∃x ∈ Fn2 : α
f−→
x

β
}∣∣∣ ≤ 2n

One implication of this limitation of possible output d-differences is a correlation
between differentials: the closer the distribution of differences of a function is to a
uniform distribution, the stronger is the correlation of differentials over that function.

Example. Let us take the AES 8-bit S-box (denoted by S here) which is differentially
4-uniform. Consider the three differentials, 7 S−→ 166, 25 S−→ 183, and 25 S−→ 1 which
have probabilities 2−6, 2−6, and 2−7 respectively. The probabilities of the polytopic
transitions of the combined differentials deviate strongly from the product of the
single probabilities:

Pr
(

(7, 25) S−→ (166, 183)
)

= 2−6 > Pr
(

7 S−→ 166
)
· Pr

(
25 S−→ 183

)
= 2−12

Pr
(

(7, 25) S−→ (166, 1)
)

= 0 < Pr
(

7 S−→ 166
)
· Pr

(
25 S−→ 1

)
= 2−13.

Another consequence of Lemma 7 is that it sets an inherent limit to the maximal
diffusion possible over one round. A one d-difference can at most be mapped to 2n
possible d-differences over one round, the number of possible d-differences reachable

130

2 Polytopes and polytopic transitions

can only increase by a factor of 2n over each round. Thus when starting from one
d-difference, after one round at most 2n d-differences are possible, after two rounds
at most 22n differences are possible, after three rounds at most 23n are possible and
generally after round r at most 2rn d-differences are possible.
In standard differential cryptanalysis, the number of possible output differences

for a given input difference is limited by the state size of the function. This is no
longer true for d-differences: if the state space is Fn2 , the space of d-differences is Fdn2 .
The number of possible d-differences thus increases exponentially with the dimension
d. This has a consequence for the size of the difference distribution table (DDT).
For an 8-bit S-box, a classical DDT has a size of 216 entries, i.e., 64 kilobytes. But
already the DDT for 3-differences has a size of 248, i.e., 256 terabytes. Fortunately
though, a third consequence of Lemma 7 is that the DDT table is sparse for d > 1.
As a matter of fact, we can calculate any row of the DDT with a time complexity of
2n by trying out all possible values for the anchor.

Relation to decorrelation theory.

Decorrelation theory [28] is a framework that can be used to design ciphers which
are provably secure against a range of attacks including differential and linear
cryptanalysis. A cipher is called perfectly decorrelated of order d when the image of
any d-tuple of distinct plaintexts is uniformly distributed on all d-tuples of ciphertexts
with distinct values under a uniformly distributed random key. It can for example
be proved that a cipher which is perfectly decorrelated of order 2 is secure against
standard differential and linear cryptanalysis.
When we consider (d+ 1)-polytopes in polytopic cryptanalysis, we can naturally

circumvent security proofs for order-d perfectly decorrelated ciphers. The boomerang
attack [29] for example – invented to break an order-2 perfectly decorrelated cipher –
can be described as a 4-polytopic attack.

Limitations of simple polytopic cryptanalysis
Can simple polytopic cryptanalysis, i.e., using a single polytopic transition, outper-
form standard differential cryptanalysis? Unfortunately this is generally not the case
as is shown in the following.

Definition 8. Let α −→ β be a (d + 1)-polytopic transition with d-differences α
and β. Let α′ −→ β′ be a d′-difference with d′ ≤ d. We then write (α′,β′) v (α,β)
if and only if for each i ∈ [1, d′] there exists j ∈ [1, d] such that the ith differences in
α′ and β′ correspond to the jth differences in α and β.

Using this notation, we have the following lemma:

Lemma 9. Let α −→ β be a (d + 1)-polytopic transition and let α′ −→ β′ be a
(d′ + 1)-polytopic transition with d′ ≤ d and (α′,β′) v (α,β). Then

Pr (α −→ β) ≤ Pr (α′ −→ β′) . (6)

131

Polytopic Cryptanalysis

Proof. This follows directly from the fact that α
f−→
x

β implies α′
f−→
x

β′.

In words, the probability of a polytopic transition is always at most as high as
the probability of any lower dimensional polytopic transition that it contains. In
particular, it can never have a higher probability than any standard differential that
it contains.

It can in some instances still be profitable to use a single polytopic transition instead
of a standard differential that it contains. This is the case when the probability of the
polytopic transition is the same as (or close to) the probability of the best standard
differential it contains. Due to the fact that the space of d-differences is much larger
than that of standard differentials (2dn vs. 2n), one set of texts that follows the
polytopic transition is usually enough to distinguish the biased distribution from
a uniform distribution as opposed to standard differentials where at least two are
needed. Nonetheless the cryptanalytic advantages of polytopic cryptanalysis lie
elsewhere as we will see in the next sections.

3 Impossible polytopic cryptanalysis
Impossible differential cryptanalysis makes use of differentials with probability zero
to distinguish a cipher from an ideal cipher. In this section, we extend the definition
to encompass polytopic transitions.

Impossible polytopic cryptanalysis offers distinct advantages over standard impos-
sible differential cryptanalysis that are a result of the exponential increase in the
size of the space of d-differences with increasing dimension d. This not only allows
impossible (d+ 1)-polytopic attacks using just a single set of d+ 1 chosen plaintexts,
it also allows generic distinguishing attacks on (d− 1)-round block ciphers whenever
it is computationally easy to determine whether a (d + 1)-polytopic transition is
possible or not. We elaborate this in more detail later in this section.

Definition 10. An impossible (d + 1)-polytopic transition is a (d + 1)-polytopic
transition that occurs with probability zero.

In impossible differential attacks, we use knowledge of an impossible differential
over r− 1 rounds to filter out wrong round key guesses for the last round: any round
key that decrypts a text pair such that their difference adheres to the impossible
differential has to be wrong. The large disadvantage of this attack is that it always
requires a large number of text pairs to sufficiently reduce the number of possible
keys. This is due to the fact that the filtering probability corresponds to the fraction
of the impossible differentials among all differentials. Unfortunately for the attacker,
most ciphers are designed to provide good diffusion, such that this ratio is usually
low after a few rounds.

This is exactly where the advantage of impossible polytopic transitions lies. Due to
the exponential increase in the size of the space of d-differences (from Fn2 to Fdn2) and
the limitation of the diffusion to maximally a factor of 2n (see Lemma 7), the ratio

132

3 Impossible polytopic cryptanalysis

of possible (d+ 1)-polytopic transitions to impossible (d+ 1)-polytopic transitions
will be low for many more rounds than possible for standard differentials. In fact,
by increasing the dimension d of the polytopic transition, it can be assured that the
ratio of possible to impossible polytopic transitions is close to zero for an almost
arbitrary number of rounds.
An impossible (d+ 1)-polytopic attack could then proceed as follows. Let n be

the block size of the cipher and let l be the number of bits in the last round key.

1. Choose a d and a d-difference such that the ratio of possible to impossible
(d+ 1)-polytopic transitions is lower than 2−l−1.

2. Get the r-round encryption of d+ 1 plaintexts chosen such that they adhere to
the input d-difference.

3. For each guess of the round key kr decrypt the last round. If the obtained
d-difference after the (r − 1)th round is possible, keep the key as a candidate.
Otherwise discard it.

Clearly this should leave us on average with one round key candidate which is bound
to be the correct one. In practice, an attack would likely be more complex, e.g., with
only partially guessed round keys and tradeoffs in the filtering probability and the
data/time complexities.
While the data complexity is limited to d + 1 chosen plaintexts (and thus very

low), the time complexity is harder to determine and depends on the difficulty of
determining whether an obtained (r−1)-round (d+1)-polytopic transition is possible
or not. The straightforward approach is to precompute a list of possible d-differences
after round r − 1. Both the exponentially increasing memory requirements and the
time of the precomputation limit this approach though. In spite of this, attacks using
this approach are competitive with existing low-data attacks as we show in Section 4.
One possibility to reduce the memory complexity is to use a meet-in-the-middle

approach where one searches for a collision in the possible d-differences reachable
from the input d-difference and the calculated d-difference after round (r − 1) at a
round somewhere in the middle of the cipher. This however requires to repeat the
computation for every newly calculated d-difference and thus limits its use in the
scenario where we calculated a new d-difference after round (r− 1) for each key guess
(not in a distinguishing attack though).

Clearly any method that could efficiently determine the impossibility of most im-
possible polytopic transitions would prove extremely useful in an attack. Intuitively
it might seem that it is generally a hard problem to determine the possibility of
a polytopic transition. As a matter of fact though, there already exists a crypto-
graphic technique that provides a very efficient distinguisher for certain types of
polytopic transitions, namely higher-order differentials which are shown in Section B
to correspond to truncated polytopic transitions. This raises the hope that better
distinguishing techniques could still be discovered.
There is one important further effect of the increase in the size of the difference

space: it allows us to restrict ourselves to impossible d-differences on only a part of

133

Polytopic Cryptanalysis

the state. It is even possible to restrict the d-difference to a d-difference in one bit
and still use it for efficient filtering.1 In Section 4 we will use these techniques in
impossible polytopic attacks to demonstrate the validity of the attacks and provide a
usage scenario.

Wrong keys and random permutations
Note that while impossible polytopic attacks – just like impossible differential attacks –
do not require the stochastic equivalence hypothesis, practical attacks require another
hypothesis: the wrong-key randomization hypothesis. This hypothesis states that
when decrypting one or several rounds with a wrong key guess creates a function
that behaves like a random function. For our setting, we formulate it is as following:

Wrong-key randomization hypothesis. When decrypting one or multiple rounds
of a block cipher with a wrong key guess, the resulting polytopic transition probability
will be close to the transition probability over a random permutation for almost all
key guesses.

Let us therefore take a look at the polytopic transition probabilities over random
functions and random permutation. To simplify the treatment, we make the following
definition:

Definition 11 (Degenerate d-difference). Let α be a d-difference over Fn2 : α =
(α1, . . . , αd). We call α degenerate if there exists an i with 1 ≤ i ≤ d with αi = 0
or if there exists a pair i, j with 1 ≤ i < j ≤ d and αi = αj . Otherwise we call α
non-degenerate.

Clearly if and only if a d-difference α is degenerate, there exist two texts in
the underlying (d + 1)-polytope that are identical. To understand the transition
probability of a degenerate d-difference it is thus sufficient to evaluate the transition
probability of a non-degenerate d′-difference (d′ < d) that contains the same set
of texts. For the following two propositions, we will thus restrict ourselves to
non-degenerate d-differences.

Proposition 12 (Distribution over random function). Let α be a non-degenerate
d-difference over Fn2 . Let F be a uniformly distributed random function from Fn2 to
Fm2 . The image of α is then uniformly distributed over all d-difference over Fm2 . In
particular Pr

(
α

F−→ β
)

= 2−md for any d-difference β ∈ (Fm2)d.

Proof. Let (m0,m1, . . . ,md) be a (d + 1)-polytope that adheres to α. Then the
polytope (F(m0),F(m1), . . . ,F(md)) is clearly uniformly randomly distributed on
(Fm2)d+1 and accordingly β with α

F−→ β is distributed uniformly randomly on
(Fm2)d.

1In standard differential cryptanalysis, this would require a probability 1 truncated differential.

134

4 Impossible polytopic attacks on DES and AES

For the image of a d-difference over a random permutation, we have a similar
result:

Proposition 13 (Distribution over random permutation). Let α be a non-degenerate
d-difference over Fn2 . Let F be a uniformly distributed random permutation on Fn2 .
The image of α is then uniformly distributed over all non-degenerate d-difference
over Fn2 .

Proof. Let (m0,m1, . . . ,md) be a (d+ 1)-polytope that adheres to α. As α is non-
degenerate, all mi are distinct. Thus the polytope (F(m0),F(m1), . . . ,F(md)) is
clearly uniformly randomly distributed on all (d + 1)-polytopes in (Fm2)d+1 with
distinct values. Accordingly β with α

F−→ β is distributed uniformly randomly on all
non-degenerate d-differences over Fn2 .

As long as d� 2n, we can thus well approximate the probability Pr
(

α
F−→ β

)
by

2−dn when β is non-degenerate.
In the following, these proposition will be useful when we try to estimate the

probability that a partial decryption with a wrong key guess will still give us a
possible intermediate d-difference. We will then always assume that the wrong-key
randomization hypothesis holds and that the probability of getting a particular
d-difference on m bits is the same as if we had used a random permutation, i.e., it is
2−dm (as our d is always small).

4 Impossible polytopic attacks on DES and AES
Without much doubt are the Data Encryption Standard (DES) [26] and the Advanced
Encryption Standard (AES) [15] the most studied and best cryptanalyzed block
ciphers. Any cryptanalytic improvement on these ciphers should thus be a good
indicator of the novelty and quality of a new cryptanalytic attack. We believe that
these ciphers thus pose ideal candidates to demonstrate that the generalization of
differential cryptanalysis to polytopic cryptanalysis is not a mere intellectual exercise
but useful for practical cryptanalysis.

In the following, we demonstrate several impossible polytopic attacks on reduced-
round versions of DES and AES that make only use of a very small set of chosen
plaintexts. The natural reference frame for these attacks are hence low-data attacks.
In Table 1 and in Table 2 we compare our attacks to other low-data attacks on
round-reduced versions of DES and AES respectively. We should mention here
that [11] only states attacks on 7 and 8 rounds of DES. It is not clear whether the
techniques therein could also be used to improve complexities of meet-in-the-middle
attacks for 5- and 6-round versions of that cipher.
We stress here that in contrast to at least some of the other low-data attacks,

our attacks make no assumption on the key schedule and work equally well with
independent round keys. In fact, all of our attacks are straight-forward applications

135

Polytopic Cryptanalysis

Table 1: Comparison table of low-data attacks on round-reduced DES. Data com-
plexity is measured in number of required known plaintexts (KP) or chosen
plaintexts (CP). Time complexity is measured in round-reduced DES encryp-
tion equivalents. Memory complexity is measured in plaintexts (8 bytes).
For the other attacks no memory requirements were explicitly specified in
the publications. They should be low though. The attacks of this paper are
in bold.

Rounds Attack Type Time Data Memory Source
5 Differential > 211.7 64 CP - As in [18]

Linear > 213.8 72 CP - As in [18]
MitM 245.5 1 KP - From [13]
MitM 237.9 28 KP - From [18]
MitM 230 8 CP - From [18]
Imp. polytopic 213.2 4 CP 29 This paper

6 Differential 213.7 256 CP - As in [18]
Linear 213.9 >104 KP - As in [18]
MitM 251.8 1 KP - From [18]
Truncated diff. 248 7 CP - From [20]
Truncated diff. 211.8 46 CP - From [20]
Imp. polytopic 232.2 4 CP 210 This paper
Imp. polytopic 218.4 48 CP 29 This paper

7 MitM Sieve 253 1 KP - From [11]
Imp. polytopic 243 16 CP 243 This paper
Imp. polytopic 237.8 48 CP 210 This paper

8 MitM Sieve 253 16 KP - From [11]

of the ideas developed in this paper. There is likely still room for improvement of
these attacks using details of the ciphers and more finely controlled trade-offs.
In all of the following attacks, we determine the possibility or impossibility of a

polytopic transition by deterministically generating a list of all d-differences that
are reachable from the starting d-difference, i.e., we generate and keep a list of all
possible d-differences. The determination of these lists is straightforward using the
rules described in Section 2. The sizes of these lists are the limiting factors of the
attacks both for the time and the memory complexities.

4.1 Attacks on the DES

For a good reference for the DES, we refer to [21]. A summary of the results for DES
can be found in Table 1.

136

4 Impossible polytopic attacks on DES and AES

F

F

F

F

F

(α, β, γ) (0, 0, 0)

(0, 0, 0) (α, β, γ)

(α, β, γ) 35 possible

a

a

a

c b

max. 35 · 26

per S-box

Figure 1: Outline of the 5-round attack on DES.

A 5-round attack.

Let us start with an impossible 4-polytopic attack on 5-round DES. We split our
input 3-difference into two parts, one for the left 32 state bits and one for the right
32 state bits. Let us denote the left 3-difference as (α, β, γ). For the right half we
choose the 3-difference (0, 0, 0). This allows us to pass the first round for free (as can
be seen in Fig. 1).
The number of possible 3-differences after the second round depends now on

our choice of α, β, and γ. To keep this number low, clearly it is good to choose
the differences to activate as few S-boxes as possible. We experimentally tried out
different natural choices and chose the values

(α, β, γ) = (02000000, 04000000, 06000000).

All of these three differences only activate S-box 2 in round 2. With this choice we
get 35 possible 3-differences after round 2. Note that the left 3-difference is still
(α, β, γ) after round 2 while the 35 variations only appear in the right half.

As discussed earlier, the maximal number of output d-differences for a fixed input
d-difference is inherently limited by the size of the domain of the function. A
consequence of this is that for any of the 35 3-differences after round 2 the possible
number of output 3-differences of any S-box in round 3 is limited to 26 as shown in
Fig. 1. But by guessing the 6 bits of round key 5 that go into the corresponding
S-box in round 5, we can determine the 3-difference in the same four output bits of

137

Polytopic Cryptanalysis

round 3 now coming from the ciphertexts. For the right guess of the 6 key bits, the
determined 3-difference will be possible. For a wrong key guess though, we expect
the 3-difference to take a random value in the set of all 3-differences on 4 bits.

But the size of the space of 3-differences in these four output bits is now 24·3 = 212.
Thus when fixing one of the 35 possible 3-differences after round 2, we expect on
average to get one suggestion for the 6 key bits in that S-box. Repeating this for
every S-box, we get on average one suggestion for the last round key for each of the 35
possible 3-differences after round 2, leaving us with an average of 35 key candidates
for the last round key.

What are the complexities of the attack? Clearly we only need 4 chosen plaintexts.
For the time complexity we get the following: For each of the 35 possible 3-differences
after round 2, we have to determine the 26 possible output 3-differences and for
each of these, we have to see in the list of possible 3-differences obtained from the
key guesses whether there is a guess of the 6 key bits that gives us exactly that
3-difference. Thus we have a total of 35 · 8 · 26 = 214.2 steps each of which should be
easier than one round of DES encryption. This leaves us with a time complexity of
≈ 212 5-round DES encryptions equivalents. But to completely determine the DES
key we need 8 additional bits that are not present in the last round key. As we expect
on average maximally 35 round keys, we are left with trying out the 35 · 28 = 213.2

full key candidates, setting the time complexity of this attack to that value.
The only memory requirement in this attack is storing the list of possible 3-

differences for each key guess in each S-box. This should roughly be no more than
212 bytes.

A 6-round attack.

The 6-round attack proceeds exactly as the 5-round attack, with the only difference
being that instead of determining the possible 3-difference output of each S-box in
round 3, we do the same in round 4 and thus have to repeat the attack for every
possible 3-difference after round 3.
Experimental testing revealed that it is beneficial for this attack to choose a

different choice of α, β, and γ, namely

(α, β, γ) = (20000000, 40000000, 60000000),

which now activates S-box 1 instead of S-box 2 as it gives us the lowest number of 3-
differences after round 3. For this choice, we get a number of 48 possible 3-differences
after round 2 and 224.12 possible 3-differences after round 3. Now substituting 35
with this number in the previous attack, gives us the time complexity for this 6-round
attack.
A note regarding the memory requirement of this attack: As we loop over the

224.12 possible 3-differences after round 3, we are not required to store all of them
at any time. By doing the attack while creating these possible 3-differences we can
keep the memory complexity nearly as low as before, namely to roughly 213 bytes.

138

4 Impossible polytopic attacks on DES and AES

A 7-round attack.

Unfortunately extending from 6 to 7 rounds as done when going from 5 to 6 rounds
is not possible, due to the prohibitively large number of possible 3-differences after
round 4. Instead we use a different angle.
It is well known that when attacking r-round DES, guessing the appropriate 36

round key bits of the last round key and the appropriate 6 bits of the round key in
round r−1 allows us to determine the output state bits of an S-box of our choice after
round r − 3. We will thus restrict ourselves to looking for impossible d-differences in
only one S-box. We choose S-box 1 here.

In order to have a sufficiently high success rate, we need to increase the dimension
of our polytopic transitions to increase the size of the d-difference space of the four
output bits of the S-box of our choice. For this attack we choose d = 15 giving us a
15-difference space size of 260 in four bits.

For our choice of input 15-difference, we again leave all differences in the right side
to 0, while choosing for the 15-difference on the left side:(

00000002, 00000004, 00000006, 02000000, 02000002, 02000004,

02000006, 04000000, 04000002, 04000004, 04000006, 06000000,

06000002, 06000004, 06000006
)

which only activates S-boxes 2 and 8. For this choice of input 15-difference we get
1470 possible 15-differences after round 2 and 236.43 possible 15-differences after
round 3.
For each of these 236.43 possible 15-differences after round 3, we calculate the 26

possible output 15-differences of S-box 1 after round 4. Now having precomputed
a list of possible 15-differences in the output bits of S-box 1 after round 4 for each
of the 242 guessed key bits of round 7 and 6, we can easily test whether we get a
collision. What is the probability of this? The 15-difference space size in the four
bits is 260 and, we get maximally 242 possible 15-differences from the key guesses.
This leaves us with a chance of 2−18 that we find a 15-difference in that list. Thus
for each of the 236.43 possible 15-differences after round 3, we expect on average at
most 2−12 suggestions for the guessed 42 key bits, a total of 224.43 suggestions.
What are the complexities for this attack? Clearly again, the data complexity is

16 chosen plaintexts. For the time complexity, for each of the 242.42 possible 4-bit
15-differences obtained after round 4, we have to see whether it is contained in the
list of 242 3-differences which we obtained from the key guesses. To do this efficiently,
we first have to sort the list which should take 242 · 42 = 247.4 elementary steps.
Assuming that a 7-round DES encryption takes at least 42 elementary steps, we can
upperbound this complexity with 242 DES encryption equivalents. As finding an
entry in a list of 242 entries also takes approximately 42 elementary steps, this leaves
us with a total time complexity of at most 243 7-round DES encryption equivalents.
As each suggestion gives us 42 DES key bits and as the list of suggestions has a size
of 224.23, we can find the correct full key with 238.23 7-round DES trial encryptions

139

Polytopic Cryptanalysis

which is lower than then the previously mentioned time complexity and can thus be
disregarded.
The data complexity is determined by the size of the list of 4-bit 15-differences

generated from the key guesses. This gives us a memory requirement of 242(15 · 4 +
42) bits ≈ 246 bytes.

Extension of the attacks using more plaintexts.

The attacks for 5 and 6 rounds can be extended by one round at the cost of a higher
data complexity. The extension can be made at the beginning of the cipher in the
following way.
Let us suppose we start with a 3-difference (δ1, δ2, δ3) in the left half and the

3-difference (α, β, γ) in the right half. If we knew the output 3-difference of the round
function in the first round, we could choose (δ1, δ2, δ3) accordingly to make sure that
we end up at the starting position of the original attack. Thus by guessing this value
and repeating the attack for each guessed value of this 3-difference we can make sure
we still retrieve the key.

Fortunately the values of (α, β, γ) are already chosen to give a minimal number of
possible 3-difference in the round function. Thus the time complexity only increases
by this value, i.e., 35 and 48. The data complexity increases even less. As it turns
out, 12 different values for the left half of the input text are enough to generate all of
the 35 resp. 48 3-differences. Thus the data complexity only increases to 48 chosen
plaintexts.
We should mention that the same technique can be used to extend the 7-round

attack to an 8-round attack. But this leaves us with the same time complexity as
the 8-round attack in [11], albeit at a much higher data cost.

Experimental results.

To verify the correctness of the above attacks and their complexities, we implemented
the 5-round and 6-round attacks that use 4 chosen plaintexts. We ran the attacks
on a single core of an Intel Core i5-4300U processor. We ran the 5-round attack
100000 times which took about 140 seconds. The average number of suggested round
keys was 47 which is slightly higher than the expected number of 35. The suggested
number of round keys was below 35 though in 84 percent of the cases and below 100
in 95 percent of the cases. In fact, the raised average is created by a few outliers in
the distribution: taking the average on all but the 0.02 percent worst cases, we get
33.1 round key suggestions per case. While this shows that the estimated probability
is generally good, it also demonstrates that the wrong-key randomization hypothesis
has to be handled with care.
Running the six-round attack 10 times, an attack ran an average time of 10 min

and produced an average of 222.3 candidates for the last round key. As expected,
the correct round key was always in the list of candidate round keys for both the
5-round and 6-round attacks.

140

4 Impossible polytopic attacks on DES and AES

Table 2: Comparison table of low-data attacks on round-reduced AES. Data complex-
ity is measured in number of required chosen plaintexts (CP). Time com-
plexity is measured in round-reduced AES encryption equivalents. Memory
complexity is measured in plaintexts (16 bytes). The column ‘keyschedule’
denotes whether the attacks use the AES key schedule. All attacks that rely
on the keyschedule are attacks on AES-128. The attacks of this paper are
in bold.

Rounds Attack Type Time Data Memory Keyschedule Source
4 Guess & Det. 2120 1 KP 2120 Yes As in [10]

Diff. MitM 2104 3 CP 1 Yes As in [8], [9]
Guess & Det. 280 2 CP 280 Yes As in [10]
Guess & Det. 232 4 CP 224 Yes As in [10]
Imp. polyt. 238 8 CP 215 No This paper

5 MitM 264 8 CP 256 Yes As in [17], Sec. 7.5.1
Imp. polyt. 270 15 CP 241 No This paper

4.2 Attacks on the AES
For a good reference for the AES, we refer to [15]. A summary of the results for AES
can be found in Table 2.

A 4-round attack.

We first present here an impossible 8-polytopic attack on 4-round AES. For the input
7-difference, we choose a 7-difference that activates only the first byte, i.e., that is
all-zero in all other bytes. Such a 7-difference can be mapped after round 1 to at
most 28 different 7-differences. If we restrict ourselves to the 7-differences in the first
column after round 2, we can then at most have 216 different 7-differences in this
column. In particular, we can have at most have 216 different 7-differences in the
first byte. For a depiction of this, see Fig. 2.
If we now request the encryptions of 8 plaintexts that adhere to our chosen start

7-difference, we can now determine the corresponding 7-difference after round 2 in
the first byte by guessing 40 round key bits of round keys 3 and 4. If this 7-difference
does not belong to the set of 216 possible ones, we can discard the key guess as wrong.

How many guesses of the 40 key bits, do we expect to survive the filtering? There
are 256 possible 7-difference on a byte and only 216 possible ones coming from our
chosen input 7-difference. This leaves a chance of 2−40 for a wrong key guess to
produce a correct 7-difference. We thus expect on average 2 suggestions for the 40
key bits, among them the right one. To determine the remaining round key bits, we
can use the same texts, only restricting ourselves to different columns.
The data complexity of the attack is limited to 8 chosen plaintexts. The time

complexity is dominated by determining the 7-difference in the first byte after round

141

Polytopic Cryptanalysis

A
·
·
·

·
·
·
·

·
·
·
·

·
·
·
·

1

Round 1
A
?
?
?

·
·
·
·

·
·
·
·

·
·
·
·

28

Round 2
A
A
A
A

?
?
?
?

?
?
?
?

?
?
?
?

216

Figure 2: Diffusion of the starting 7-difference for the 4-round attack on AES. The
letter A shows a byte position in which a possible 7-difference is non-zero
and known. A dot indicates a byte position where the 7-difference is known
to be zero. A question mark indicates a byte position where arbitrary
values for the 7-differences are allowed. In total there are 216 different
7-differences possible in the first column after the second round.

2 for each guess of the 40 key bits and checking whether it is among the 216 possible
ones. This can be done in less than 16 table lookups on average for each key guess.
Thus the time complexity corresponds to 240 · 2−2 = 238 4-round AES encryption
equivalents, assuming one 4-round encryption corresponds to 4 · 16 table lookups.
The memory complexity is limited to a table of the 216 allowed 7-difference in one
byte, corresponding to 219 bytes or 215 plaintext equivalents.

A 5-round attack.

In this attack, we are working with 15-polytopes and trace the possible 14-differences
one round further than in the 4-round attack. Again we choose our starting 14-
difference such that it only activates the first byte. After two rounds we then have
maximally 240 different 14-differences on the whole state. If we restrict ourselves
to only the first column of the state after round 3, we then get an additional 232

possible 14-differences in this column for each of the 240 possible 14-differences after
round 2, resulting in a total of 272 possible 14-differences in the first column after
round 3. This is depicted in Fig. 3. In particular again, we can have at most have
272 different 14-differences in the first byte.

Let us suppose now we have the encrypted values of a 15-polytope that adheres to
our starting 14-difference. We can then again find the respective 14-difference in the
first byte after the third round by guessing 40 key bits in round keys 4 and 5. There
are in total 2112 different 14-differences in one byte. The chance of a wrong key guess
to produce one of the possible 272 14-differences is thus 2−40. We thus expect on
average 2 suggestions for the 40 key bits, among them the right one. To determine the
remaining round key bits, we can again use the same texts but restricting ourselves
to a different column.
To lower the memory complexity of this attack it is advantageous to not store

the 272 possible 14-differences but store for each of the 240 key guesses the obtained
14-difference. This gives a memory complexity of 240 · (14 + 5) bytes corresponding
to 241 plaintext equivalents. The time complexity is then dominated by constructing

142

5 Conclusion

A
·
·
·

·
·
·
·

·
·
·
·

·
·
·
·

1

Round 1
A
A
A
A

·
·
·
·

·
·
·
·

·
·
·
·

28

Round 2
A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

240

Round 3
A
A
A
A

?
?
?
?

?
?
?
?

?
?
?
?

272

Figure 3: Diffusion of the starting 14-difference for the 5-round attack on AES. The
letter A shows a byte position in which a possible 14-difference is non-zero
and known. A dot indicates a byte position where the 14-difference is known
to be zero. A question mark indicates a byte position where arbitrary
values for the 14-differences are allowed. In total there are 272 different
14-differences possible in the first column after the third round.

the 272 possible 14-differences and testing whether they correspond to one of the
key guesses. This should not take more than the equivalent of 272 · 16 table lookups
resulting in a time complexity of 270 5-round AES encryption equivalents. The
data complexity is restricted to the 15 chosen plaintexts needed to construct one
15-polytope corresponding to the starting 14-difference.

5 Conclusion
In this paper, we developed and studied polytopic cryptanalysis. We were able to show
that the methodology and notation of standard cryptanalysis can be unambiguously
extended to polytopic cryptanalysis, including the concept of impossible differentials.
Standard differential cryptanalysis remains as a special case of polytopic cryptanalysis.
For impossible polytopic transitions, we demonstrated that both the increase

in the size of the space of d-differences and the inherent limit in the diffusion of
d-differences in a cipher allow them to be very effective in settings where ordinary
impossible differentials fail. This is the case when the number of rounds is so high
that impossible differentials do no longer exist or when the allowed data complexity
is too low.
Finally we showed the practical relevance of this framework by demonstrating

novel low-data attacks on DES and AES that are able to compete with existing
attacks.

Acknowledgements
The author thanks Christian Rechberger, Stefan Kölbl, and Martin M. Lauridsen for
fruitful discussions. The author also thanks Dmitry Khovratovich and the anonymous
reviewers for comments that helped to considerably improve the quality of the paper.

143

Polytopic Cryptanalysis

References
[1] Eli Biham, Alex Biryukov, and Adi Shamir. “Cryptanalysis of Skipjack Reduced

to 31 Rounds Using Impossible Differentials”. In: J. Cryptology 18.4 (2005),
pp. 291–311.

[2] Eli Biham and Adi Shamir. “Differential Cryptanalysis of DES-like Cryptosys-
tems”. In: J. Cryptology 4.1 (1991), pp. 3–72.

[3] Alex Biryukov and Adi Shamir. “Structural Cryptanalysis of SASAS”. In: J.
Cryptology 23.4 (2010), pp. 505–518.

[4] Céline Blondeau and Benoît Gérard. “Multiple Differential Cryptanalysis:
Theory and Practice”. In: Fast Software Encryption, FSE 2011. Ed. by Antoine
Joux. Vol. 6733. Lecture Notes in Computer Science. Springer, 2011, pp. 35–54.
isbn: 978-3-642-21701-2.

[5] Céline Blondeau, Gregor Leander, and Kaisa Nyberg. “Differential-Linear
Cryptanalysis Revisited”. In: Fast Software Encryption, FSE 2014. Ed. by
Carlos Cid and Christian Rechberger. Vol. 8540. Lecture Notes in Computer
Science. Springer, 2015, pp. 411–430. isbn: 978-3-662-46705-3.

[6] Céline Blondeau and Kaisa Nyberg. “Links between Truncated Differential and
Multidimensional Linear Properties of Block Ciphers and Underlying Attack
Complexities”. In: Advances in Cryptology - EUROCRYPT 2014. Ed. by Phong
Q. Nguyen and Elisabeth Oswald. Vol. 8441. Lecture Notes in Computer Science.
Springer, 2014, pp. 165–182. isbn: 978-3-642-55219-9.

[7] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
“PRESENT: An Ultra-Lightweight Block Cipher”. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2007. Ed. by Pascal Paillier and Ingrid
Verbauwhede. Vol. 4727. Lecture Notes in Computer Science. Springer, 2007,
pp. 450–466. isbn: 978-3-540-74734-5.

[8] Charles Bouillaguet, Patrick Derbez, Orr Dunkelman, Pierre-Alain Fouque,
Nathan Keller, and Vincent Rijmen. “Low-Data Complexity Attacks on AES”.
In: IEEE Transactions on Information Theory 58.11 (2012), pp. 7002–7017.

[9] Charles Bouillaguet, Patrick Derbez, Orr Dunkelman, Nathan Keller, Vincent
Rijmen, and Pierre-Alain Fouque. Low Data Complexity Attacks on AES.
Cryptology ePrint Archive, Report 2010/633. http://eprint.iacr.org/.
2010.

[10] Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. “Automatic
Search of Attacks on Round-Reduced AES and Applications”. In: Advances in
Cryptology - CRYPTO 2011. Ed. by Phillip Rogaway. Vol. 6841. Lecture Notes
in Computer Science. Springer, 2011, pp. 169–187. isbn: 978-3-642-22791-2.

144

http://eprint.iacr.org/

References

[11] Anne Canteaut, María Naya-Plasencia, and Bastien Vayssière. “Sieve-in-the-
Middle: Improved MITM Attacks”. In: Advances in Cryptology - CRYPTO
2013. Ed. by Ran Canetti and Juan A. Garay. Vol. 8042. Lecture Notes in
Computer Science. Springer, 2013, pp. 222–240. isbn: 978-3-642-40040-7.

[12] Florent Chabaud and Serge Vaudenay. “Links Between Differential and Linear
Cryptanalysis”. In: Advances in Cryptology - EUROCRYPT ’94. Ed. by Alfredo
De Santis. Vol. 950. Lecture Notes in Computer Science. Springer, 1995, pp. 356–
365. isbn: 3-540-60176-7.

[13] David Chaum and Jan-Hendrik Evertse. “Crytanalysis of DES with a Reduced
Number of Rounds: Sequences of Linear Factors in Block Ciphers”. In: Advances
in Cryptology - CRYPTO ’85. Ed. by Hugh C. Williams. Vol. 218. Lecture
Notes in Computer Science. Springer, 1986, pp. 192–211. isbn: 3-540-16463-4.

[14] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. “The Block Cipher
Square”. In: Fast Software Encryption, FSE ’97. Ed. by Eli Biham. Vol. 1267.
Lecture Notes in Computer Science. Springer, 1997, pp. 149–165. isbn: 3-540-
63247-6.

[15] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer, 2002.
isbn: 3-540-42580-2.

[16] Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. “KATAN
and KTANTAN - A Family of Small and Efficient Hardware-Oriented Block
Ciphers”. In: Cryptographic Hardware and Embedded Systems - CHES 2009,
ed. by Christophe Clavier and Kris Gaj. Vol. 5747. Lecture Notes in Computer
Science. Springer, 2009, pp. 272–288. isbn: 978-3-642-04137-2.

[17] Patrick Derbez. “Meet-in-the-Middle Attacks on AES”. PhD thesis. Ecole
Normale Supérieure de Paris - ENS Paris, Dec. 2013. url: https://tel.
archives-ouvertes.fr/tel-00918146.

[18] Orr Dunkelman, Gautham Sekar, and Bart Preneel. “Improved Meet-in-the-
Middle Attacks on Reduced-Round DES”. In: Progress in Cryptology - IN-
DOCRYPT 2007. Ed. by K. Srinathan, C. Pandu Rangan, and Moti Yung.
Vol. 4859. Lecture Notes in Computer Science. Springer, 2007, pp. 86–100. isbn:
978-3-540-77025-1.

[19] Lars R. Knudsen. DEAL - A 128-bit Block Cipher. Technical Report 151.
Submitted as an AES candidate by Richard Outerbridge. Department of
Informatics, University of Bergen, Norway, Feb. 1998.

[20] Lars R. Knudsen. “Truncated and Higher Order Differentials”. In: Fast Software
Encryption, FSE ’94. Ed. by Bart Preneel. Vol. 1008. Lecture Notes in Computer
Science. Springer, 1995, pp. 196–211.

[21] Lars R. Knudsen and Matthew Robshaw. The Block Cipher Companion. Infor-
mation Security and Cryptography. Springer, 2011. isbn: 978-3-642-17341-7.

145

https://tel.archives-ouvertes.fr/tel-00918146
https://tel.archives-ouvertes.fr/tel-00918146

Polytopic Cryptanalysis

[22] Xuejia Lai. “Higher Order Derivatives and Differential Cryptanalysis”. In:
Communications and Cryptography, Two Sides of One Tapestry. Ed. by Richard
E. Blahut, Jr. Daniel J. Costello, Ueli Maurer, and Thomas Mittelholzer. Kluwer
Academic Publishers, 1994, pp. 227–233. isbn: 978-1-4613-6159-6.

[23] Xuejia Lai and James L. Massey. “Markov Ciphers and Differential Cryptanaly-
sis”. In: Advances in Cryptology - EUROCRYPT ’91. Ed. by Donald W. Davies.
Vol. 547. Lecture Notes in Computer Science. Springer, 1991, pp. 17–38. isbn:
3-540-54620-0.

[24] Susan K. Langford and Martin E. Hellman. “Differential-Linear Cryptanalysis”.
In: Advances in Cryptology - CRYPTO ’94. Ed. by Yvo Desmedt. Vol. 839.
Lecture Notes in Computer Science. Springer, 1994, pp. 17–25. isbn: 3-540-
58333-5.

[25] Sean Murphy. “The Return of the Cryptographic Boomerang”. In: IEEE
Transactions on Information Theory 57.4 (2011), pp. 2517–2521.

[26] National Institute of Standards and Technology. Data Encryption Standard. Fed-
eral Information Processing Standard (FIPS), Publication 46. U.S. Department
of Commerce, Washington D.C., Jan. 1977.

[27] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata.
“The 128-Bit Blockcipher CLEFIA (Extended Abstract)”. In: Fast Software
Encryption, FSE 2007. Ed. by Alex Biryukov. Vol. 4593. Lecture Notes in
Computer Science. Springer, 2007, pp. 181–195. isbn: 978-3-540-74617-1.

[28] Serge Vaudenay. “Decorrelation: A Theory for Block Cipher Security”. In: J.
Cryptology 16.4 (2003), pp. 249–286.

[29] David Wagner. “The Boomerang Attack”. In: Fast Software Encryption, FSE
’99. Ed. by Lars R. Knudsen. Vol. 1636. Lecture Notes in Computer Science.
Springer, 1999, pp. 156–170. isbn: 3-540-66226-X.

[30] David Wagner. “Towards a Unifying View of Block Cipher Cryptanalysis”. In:
Fast Software Encryption, FSE 2004. Ed. by Bimal K. Roy and Willi Meier.
Vol. 3017. Lecture Notes in Computer Science. Springer, 2004, pp. 16–33. isbn:
3-540-22171-9.

A Markov model in polytopic cryptanalysis
To develop the Markov model, we first need to introduce keys in the function over
which the transitions take place. We will thus restrict our discussion to product
ciphers i.e., block ciphers that are constructed through repeated composition of round
functions. In contrast to Eq. (2), each round function f i is now keyed with its own
round key ki which itself is derived from the key k of the cipher via a key schedule.2

2For a clearer notation, we moved the index from subscript to superscript.

146

A Markov model in polytopic cryptanalysis

We can then write the block cipher fk as:

fk := frkr ◦ · · · ◦ f
2
k2
◦ f1

k1
. (1)

The first assumption that we now need to make, is that the round keys are independent.
The second assumption is that the product cipher is a Markov cipher. Here we adopt
the notion of a Markov cipher from [23] to polytopic cryptanalysis:

Definition 14. A product cipher is a (d+ 1)-polytopic Markov cipher if and only if
for all round functions f i, for any (d+ 1)-polytopic transition α −→ β for that round
function and any fixed inputs x, y ∈ Fn2 , we have

Pr
K

(
α

fiK−−→
x

β

)
= Pr

K

(
α

fiK−−→
y

β

)
(2)

where K is a random variable distributed uniformly over the spaces of round keys.

In words, a cipher is a (d+1)-polytopic Markov cipher if and only if the probabilities
of 1-round (d + 1)-polytopic transitions do not depend on the specific anchor as
long as the round key is distributed uniformly at random. For d = 1, the definition
coincides with the classical definition.
Just as with the standard definition of Markov ciphers, most block ciphers are

(d+ 1)-polytopic Markov ciphers for any d as the round keys are usually added to
any part of the state that enters the non-linear part of the round function (for a
counterexample, see [16]). Examples of (d+ 1)-polytopic Markov ciphers are SPN
ciphers such as AES [15] or PRESENT [7], and Feistel ciphers such as DES [26]
or CLEFIA [27]. We are not aware of any cipher that is Markov in the classical
definition but not (d+ 1)-polytopic Markov.

In the following, we extend the central theorem from [23] (Theorem 2) to the case
of (d+ 1)-polytopes.

Theorem 15. Let fk = frkr ◦ · · · ◦ f
1
k1

be a (d + 1)-polytopic Markov cipher with
independent round keys, chosen uniformly at random and let δ0, δ1, . . . , δr be a series
of d-differences such that δ0 is the input d-difference of round 1 and δi is the output
d-difference of round i of some fixed input (d+ 1)-polytope. The series δ0, δ1, . . . , δr
then forms a Markov chain.

The following proof follows the lines of the original proof from [23].

Proof. We limit ourselves here to showing that

Pr
K1,K2

(
δ1

f2
K2−−−−→

f1
K1

(x)
δ2

∣∣∣∣∣ δ0
f1

K1−−→
x

δ1

)
= Pr

K2

(
δ1

f2
K2−−→
z

δ2

)
(3)

where x and z are any elements from Fn2 and K1 and K2 are distributed uniformly at
random over their respective round key spaces and the conditioned event has positive

147

Polytopic Cryptanalysis

probability. The theorem then follows easily by induction and application of the
same arguments to the other rounds.
For any x, z ∈ Fn2 , we now have

Pr
K1,K2

(
δ1

f2
K2−−−−→

f1
K1

(x)
δ2 and δ0

f1
K1−−→
x

δ1

)

=
∑
y∈Fn2

Pr
K1,K2

(
δ1

f2
K2−−→
y

δ2 and δ0
f1

K1−−→
x

δ1 and f1
K1

(x) = y

)

=
∑
y∈Fn2

Pr
K2

(
δ1

f2
K2−−→
y

δ2

)
· Pr

K1

(
δ0

f1
K1−−→
x

δ1 and f1
K1

(x) = y

)

= Pr
K2

(
δ1

f2
K2−−→
z

δ2

)
·
∑
y∈Fn2

Pr
K1

(
δ0

f1
K1−−→
x

δ1 and f1
K1

(x) = y

)

= Pr
K2

(
δ1

f2
K2−−→
z

δ2

)
· Pr

K1

(
δ0

f1
K1−−→
x

δ1

)
where the second equality comes from the independence of keys K1 and K2 and the
third equality comes from the Markov property of the cipher. From this, Eq. (3)
follows directly.

The important consequence of the fact that the sequence of d-differences forms
a Markov chain is that, just as in standard differential cryptanalysis, the average
probability of a particular polytopic trail with respect to independent random round
keys is the product of the single polytopic 1-round transitions of which it consists.
We then have the following result:

Corollary 16. Let fk, f iki , 1 ≤ i ≤ r be as before. Let α0
f1−→ α1

f2−→ · · · fr−→ αr be
an r-round (d+ 1)-polytopic trail. Then

Pr
(

α0
f1

K1−−→ α1
f2

K2−−→ · · ·
frKr−−→ αr

)
=

r∏
i=1

Pr
(

αi−1
fiKi−−→ αi

)
(4)

where x ∈ Fn2 and the Ki are uniformly randomly distributed on their respective
spaces.

Proof. This is a direct consequence of the fact that d-differences form a Markov
chain.

In most attacks though, we are attacking one fixed key and can not average the
attack over all keys. Thus the following assumption is necessary:

Hypothesis of stochastic equivalence. Let f be as above. The hypothesis of
stochastic equivalence then refers to the assumption that the probability of any polytopic

148

B Truncated polytopic transitions and higher-order differentials

trail α0
f1−→ α1

f2−→ · · · fr−→ αr is roughly the same for the large majority of keys:

Pr
(

α0
f1

K1−−→ α1
f2

K2−−→ · · ·
frKr−−→ αr

)
≈ Pr

(
α0

f1
k1−−→ α1

f2
k2−−→ · · ·

frkr−−→ αr

)
(5)

for almost all tuples of round keys (k1, k2, . . . , kr).

B Truncated polytopic transitions and higher-order
differentials

In this section, we extend the definition of truncated differentials to polytopic
transitions and prove that higher-order differentials are a special case of these. We
then gauge the cryptographic ramifications of this.
In accordance with usual definitions for standard truncated differentials (see for

example [6], we define:

Definition 17. A truncated d-difference is an affine subspace of the space of d-dif-
ferences. A truncated (d + 1)-polytopic transition is a pair (A,B) of truncated
d-differences, mostly denoted as A f−→ B. The probability of a truncated (d + 1)-
polytopic transition (A,B) is defined as the probability that an input d-difference
chosen uniformly randomly from A maps to a d-difference in B:

Pr
(
A

f−→ B
)

:= |A|−1 ∑
α∈A
β∈B

Pr
(

α
f−→ β

)
(1)

As the truncated input d-difference is usually just a single d-difference, the probabil-
ity of a truncated differential is then just the probability that this input d-difference
maps to any of the output d-differences in the output truncated d-difference. With a
slight abuse of notation, we will denote the truncated polytopic transition then also
as α

f−→ B where α is the single d-difference of the input truncated d-difference.
A particular case of a truncated d-difference is the case where the individual

differences of the d-differences always add up to the same value. This is in fact
just the kind of d-differences one is interested in when working with higher-order
derivatives. We refer here to Lai’s original paper on higher-order derivatives [22] and
Knudsen’s paper on higher-order differentials [20] for reference and notation.

Theorem 18. A differential of order t is a special case of a truncated 2t-polytopic
transition. In particular, its probability is the sum of the probabilities of all 2t-polytopic
trails that adhere to the truncated 2t-polytopic transition.

Proof. Let f : Fn2 → Fn2 . Let (α1, . . . , αt) be the set of linearly independent differences
that are used as the base for our derivative. Let L(α1, . . . , αt) denote the linear space
spanned by these differences. Let furthermore β be the output difference we are

149

Polytopic Cryptanalysis

interested in. The probability of the t-th order differential ∆α1,...,αtf(X) = β is then
defined as the probability that ∑

γ∈L(α1,...,αt)

f(X⊕ γ) = β (2)

holds with X being a random variable, uniformly distributed on Fn2 .
Let B now be the truncated (2t − 1)-difference defined as

B :=

(δ1, . . . , δ2t−1)

∣∣∣∣∣∣
2t−1∑
i=1

δi = β

 .

Let γ1, γ2, . . . , γ2t−1 be an arbitrary ordering of the non-zero elements of the linear
space L(α1, . . . , αt) and let α = (γ1, . . . , γ2t−1) be the (2t − 1)-difference consisting
of these. We will then show that the probability of the t-th order differential
(α1, . . . , αt, β) is equal to the the probability of the truncated 2t-polytopic transition
α

f−→ B. With X being a random variable, uniformly distributed on Fn2 , we have

Pr
(

α
f−→ B

)
= Pr

X

2t−1∑
i=1

(
f(X⊕ γi)⊕ f(X)

)
= β

= Pr

X

2t−1∑
i=1

(
f(X⊕ γi)

)
⊕ f(X) = β

= Pr

X

 ∑
γ∈L(α1,...,αt)

(
f(X⊕ γ)

)
= β

which proves the theorem.

Example. Let α1 and α2 be two differences with respect to which we want to
take the second order derivative and let β be the output value we are interested
in. The probability that ∆α1,α2f(X) = β for uniformly randomly chosen X is then
nothing else than the probability that the 3-difference (α1, α2, α1 ⊕α2) is mapped to
a 3-difference (β1, β2, β3) with β1 ⊕ β2 ⊕ β3 = β.

This theoretical connection between truncated and higher-order differentials has
an interesting consequence: a higher-order differentials can be regarded as the
union of polytopic trails. This principally allows us to determine lower bounds for
the probability of higher-order differentials by summing over the probabilities of a
subset of all polytopic trails that it contains – just as we are used to from standard
differentials.

150

B Truncated polytopic transitions and higher-order differentials

As shown in Lemma 9, the probability of a (d+ 1)-polytopic trail is always at most
as high as the probability of the worst standard differential trail that it contains. A
situation in which the probability of a higher-order differential at the same time is
dominated by a single polytopic trail and has a higher probability than any ordinary
differential can thus never occur. To find a higher-order differential with a higher
probability than any ordinary differential for a given cipher, we are thus always forced
to sum over many polytopic trails. Whether this number can remain manageable for
a large number of rounds will require further research and is beyond the scope of
this paper.

151

	Abstract
	Resumé
	Zusammenfassung
	Acknowledgements
	Contents
	Introduction
	Overview of the thesis

	Introduction to block ciphers and their security
	Block Ciphers
	Notations and conventions
	Basic definitions
	Notions of security
	The adversary
	Attack goals

	General block cipher design considerations
	Substitution-permutation networks
	Feistel ciphers

	Cryptanalysis
	Overview of attack types and attack constructions
	Attack elements
	Combining attack elements

	Differential cryptanalysis
	Basic differential cryptanalysis
	Truncated differentials
	Impossible differentials

	Linear cryptanalysis
	Higher order-derivatives and integral cryptanalysis
	Higher-order derivatives
	Integral cryptanalysis

	Bibliography

	Publications
	Security of the AES with a Secret S-box
	Introduction
	AES Specification
	SubBytes
	ShiftRows
	MixColumns
	AddRoundKey

	Cryptanalysis of the AES with a Secret S-box
	Differential and Linear Cryptanalysis
	Integral Cryptanalysis on Four Rounds
	Integral Cryptanalysis on Five Rounds
	Integral Cryptanalysis on Six Rounds
	A Note on Chosen Ciphertext vs. Chosen Plaintext

	Conclusion
	The AES Key Schedule
	Lemma

	Ciphers for MPC and FHE
	Introduction
	Schemes
	Multi-Party Computation (MPC)
	Fully homomorphic encryption (FHE)
	Zero-Knowledge proof of knowledge (ZK)

	Description of LowMC
	Pseudocode
	Parameters
	Instantiation of LowMC

	Comparison with other ciphers
	Resistance against cryptanalytic attacks
	Differential characteristics
	Linear characteristics
	Boomerang attacks
	Higher order attacks
	Experimental Cryptanalysis
	Fixing the number of rounds

	Comparison of Implementations
	MPC Setting
	FHE Setting

	Conclusions, lessons learned, and open problems

	Observations on the SIMON block cipher family
	Introduction
	Preliminaries
	Notation
	Description of SIMON
	Affine equivalence of Boolean Functions
	Structural Equivalence Classes in AND-RX Constructions

	Differential Probabilities of SIMON-like round functions
	A closed expression for the differential probability
	The full formula for differentials.

	Linear Correlations of SIMON-like round functions
	Finding Optimal Differential and Linear Characteristics
	Model for Differential Cryptanalysis of SIMON
	Finding Optimal Characteristics
	Computing the Probability of a Differential

	Analysis of the Parameter Choices
	Diffusion
	Differential and Linear
	Interesting Alternative Parameter Sets

	Conclusion and Future Work
	Short tutorial on calculating probabilites in SIMON
	Differential probabilities
	Square correlations

	Python code to calculate probabilties in SIMON
	Additional Differential Bounds
	Optimal parameters for differential characteristics

	Polytopic Cryptanalysis
	Introduction
	Polytopes and polytopic transitions
	Impossible polytopic cryptanalysis
	Impossible polytopic attacks on DES and AES
	Attacks on the DES
	Attacks on the AES

	Conclusion
	Markov model in polytopic cryptanalysis
	Truncated polytopic transitions and higher-order differentials

