1,493 research outputs found

    Wireless Communications in the Era of Big Data

    Full text link
    The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency, computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace such a "bigdata" era. On one hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable for managing the bigdata traffic in wireless networks. On the other hand, instead of viewing mobile bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building a bigdata-aware wireless network with better wireless service quality and new mobile applications. We highlight several promising future research directions for wireless communications in the mobile bigdata era.Comment: This article is accepted and to appear in IEEE Communications Magazin

    Let Opportunistic Crowdsensors Work Together for Resource-efficient, Quality-aware Observations

    Get PDF
    International audienceOpportunistic crowdsensing empowers citizens carrying hand-held devices to sense physical phenomena of common interest at a large and fine-grained scale without requiring the citizens' active involvement. However, the resulting uncontrolled collection and upload of the massive amount of contributed raw data incur significant resource consumption, from the end device to the server, as well as challenge the quality of the collected observations. This paper tackles both challenges raised by opportunistic crowdsensing, that is, enabling the resource-efficient gathering of relevant observations. To achieve so, we introduce the BeTogether middleware fostering context-aware, collaborative crowdsensing at the edge so that co-located crowdsensors operating in the same context, group together to share the work load in a cost- and quality-effective way. We evaluate the proposed solution using an implementation-driven evaluation that leverages a dataset embedding nearly 1 million entries contributed by 550 crowdsensors over a year. Results show that BeTogether increases the quality of the collected data while reducing the overall resource cost compared to the cloud-centric approach

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    Participatory Sensing Based Real-time Public Transport Information Service

    Get PDF
    Abstract—Modern cities continuously struggle with infrastructural problems especially when the population is massively growing. One affected area is public transportation. In default of offering convenient and reliable service the passengers tend to consider other transport alternatives. However, even a relatively simple functional enhancement, such as providing real-time timetable information, requires considerable investment and effort following traditional means, e.g. deploying sensors and building a background communication and processing infrastructure. Using the power of crowd to gather the required data, share information and send feedback is a viable and cost effective alternative. In this demonstration, we present TrafficInfo, our prototype smart phone application to implement a participatory sensing based live public transport information service. TrafficInfo visualizes the actual position of public transport vehicles with live updates on a map, and gives support to crowd sourced data collection and passenger feedback

    MobiGroup: Enabling Lifecycle Support to Social Activity Organization and Suggestion with Mobile Crowd Sensing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This paper presents a group-aware mobile crowd sensing system called MobiGroup, which supports group activity organization in real-world settings. Acknowledging the complexity and diversity of group activities, this paper introduces a formal concept model to characterize group activities and classifies them into four organizational stages. We then present an intelligent approach to support group activity preparation, including a heuristic rule-based mechanism for advertising public activity and a context-based method for private group formation. In addition, we leverage features extracted from both online and offline communities to recommend ongoing events to attendees with different needs. Compared with the baseline method, people preferred public activities suggested by our heuristic rule-based method. Using a dataset collected from 45 participants, we found that the context-based approach for private group formation can attain a precision and recall of over 80%, and the usage of spatial-temporal contexts and group computing can have more than a 30% performance improvement over considering the interaction frequency between a user and related groups. A case study revealed that, by extracting the features such as dynamic intimacy and static intimacy, our cross-community approach for ongoing event recommendation can meet different user needs

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure
    • 

    corecore