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Abstract. Mobile Crowd Sensing is a widespread sensing paradigm, successful 
through the ever-growing availability of mobile devices and their increasing 
sensor quality. Mobile Crowd Sensing offers low-cost data collection, scalability, 
and mobility, but faces downsides like unknown or low sensing quality and 
uncertainty about user behavior and movement.  We examine the combination of 
traditional High Quality Sensing methods and Mobile Crowd Sensing in a Hybrid 
Sensing system in order to build a value-creating overall system, aiming to use 
both sensing methods to ensure high quality of data, yet also benefiting from the 
advantages Mobile Crowd Sensing has to offer such as mobility, scalability, and 
low deployment cost. We conduct a structured literature review on the current 
state and derive a classification matrix for Hybrid Sensing applications. 

Keywords: Mobile Crowd Sensing, High Quality Sensing, Data Combination, 
Hybrid Sensing, Design Science.  

1 Introduction 

By now, Mobile Crowd Sensing (MCS) is a widespread large-scaled sensing paradigm. 
However, some of the most prominent applications, building on information gathered 
via MCS, like the traffic prediction service embedded in Google Maps, which counts 
more than one billion active users per month [1], belong to the subcategory of 
“opportunistic crowdsensing” [2]. This means data is shared without active user 
intervention and, consequently, is often not perceived as MCS by the user. MCS 
approaches belonging to the other subcategory of “participatory crowdsensing” [3], 
where users actively contribute data or information via mobile devices, have received 
more scientific attention so far. Although these applications do not generate revenue on 
the same scale as Google, many of them still have a notable number of active users. 
The user-generated database of Pl@ntnet [4], for instance, contains almost 1.8 million 
images covering nearly 28 thousand species [5] and does not only help plant enthusiasts 
to identify their uploaded plant photos automatically, but also makes an active 
contribution to preserve protected areas [6]. 

The spread of MCS is predominantly driven by the increasing presence of mobile 
devices (e.g., smartphones) as well as improved integrated sensor technology and their 



increasing performance (e.g., accuracy, battery life). In addition, the expansion of 
advanced mobile internet technologies (e.g., 4G, 5G) enables a variety of innovative 
new MCS applications, especially those depending on real-time processing, as large 
amounts of data can be transferred to the cloud with virtually no time delay.  

In contrast, High Quality Sensing (HQS) describes traditional methods to collect data 
(or information), guaranteeing an almost error-free recording of the variable to be 
surveyed (e.g., via sensor, expert observation). These professional measurements, 
sometimes gathered within industrial contexts, are of high quality and verified. 
However, as they are disadvantageous in terms of mobility, scalability, deployment, 
and maintenance, they face the problem of being expensive and lacking in spatial and 
temporal coverage [7].  

As MCS and HQS have, to a certain extent, complementary strengths and 
weaknesses, combining both methods in a Hybrid Sensing (HS) system offers the 
possibility to exploit the strengths of each method in order to compensate for the 
weaknesses of the other. While MCS comes with advantages in terms of mobility, 
causing improved spatial-temporal coverage and low-cost scalability [7], [8], as well as 
the ability to provide additional information for better context awareness through 
human input [9], HQS can provide reliable, high-quality data [10], [11] available for 
quality improvement of the overall system, for instance via sensor calibration or 
training of prediction models applicable on MCS data. Additionally, a cost-reduction 
may be achieved through optimal resource allocation in terms of energy consumption 
[12], maintenance or sensor deployment [13], when combining both sensing methods.  

Against this backdrop, there is a variety of scientific literature that focuses on the 
combination of MCS and HQS. However, existing approaches differ substantially with 
regard to different aspects (e.g., strategic focus, data type) and there is no structured 
overview or general approach, resulting in a lack of knowledge transfer to other 
application areas. 

Consequently, we argue it is time to take a step back and assess the current state of 
affairs by structuring existing approaches, methods and results.  Our research question 
is therefore: 

RQ1: How can existing approaches on the value-creating combination of MCS and 
HQS be classified? 

We approach this RQ by conducting a structured literature review, in which we 
condense the insights of 23 papers, which feature (prototypically) implemented and 
theoretical HS approaches. Since the results show that a structured approach towards 
building an HS system is still missing, we decided to address this striking research gap 
as well. Therefore, our second research question is: 

RQ2: What are the essential components when designing a HS system that combines 
MCS and HQS in value-adding way? 

In a parallel and dependent process to deriving a classification for existing HS 
approaches (answering RQ1), we iteratively develop a HS framework (answering RQ2). 
These two tasks represent the main work of the first of three cycles in our overarching 
Design Science (DS) project [14], within which we aim to build a generic value-
creating process for combining  MCS and HQS. Whilst the focus of this paper lies on 
the results of the first cycle, in future work we will build a prototypical implementation 



of our HS framework (cycle two), for which we have chosen the context of road 
condition monitoring (RCM). We will leverage the prototype’s evaluation results to 
further refine and generalize our approach later on (cycle three). 

RCM is a suitable context for our research endeavour in so far, as the HS applications 
and theoretical approaches that we identified in literature primarily focus on stationary 
high-quality sensors (e.g., [10], [11]), leaving the application of mobile high-quality 
sensors, such as necessary in RCM, as a clear research gap. Conventional high-quality 
approaches on RCM include scanning the road profile with a high-quality Lidar sensor 
and determining the International Roughness Index (IRI), a global measurement for 
longitudinal evenness. This sensing method is expensive, due to the needed equipment 
and personnel expenses, and, therefore, not feasible for ensuring a high spatial-temporal 
coverage. The road condition on German federal motorways, for instance, is only 
recorded at fixed intervals of four years [15]. Moreover, roads in the federal states, 
districts, and municipalities are excluded and thus subject to individual local 
maintenance plans, leading to inconsistent road assessment. In recent years, various 
smartphone-based solutions [16] were implemented using data collected via 
smartphone sensors (e.g., accelerator, gyroscope) to predict the road quality (e.g., 
RoadSense [17], Roadroid [18]). Although they help to increase the spatial-temporal 
coverage, they cannot guarantee a reliable high quality. They do not attempt to include 
the structured and continuous combination of both MCS and HQS data in a HS system, 
which we therefore address as a novelty in our RCM use case (in cycle two), in order 
to solve the quality deficit. 

The contribution of this paper is three-fold. First, with our structured literature 
review, we identify and structure existing approaches, methods, and findings. To the 
best of our knowledge, our paper represents the first structured literature review on this 
timely and important topic. Second, we introduce a novel HS classification matrix, 
which logically groups approaches with similar major tasks and challenges, enabling 
the classification of HS applications and consequently facilitating the transferability of 
knowledge. Third, we present the first version of a HS framework, which we will 
further refine in DS cycle two and three, which aims to provide a generalized approach 
to building a HS system for fellow researchers and practitioners. 

The remainder of this paper is structured as follows. In the next section, we describe 
our research project and the DS methodology used. Section 3 reports on our results 
from the structured literature review on combining MCS and HQS. Based on the 
structured literature review, we then derive two interim artifacts (HS classification 
matrix and HS framework) in Section 4, providing more insight into our RCM use case. 
Section 5 discusses our results and paths for future research. 

2 Design Science Research Methodology 

In our research project, we employ a Design Science Research Methodology following 
the guidelines of Kuechler and Vaishnavi [14], which excels by its strong emphasis on 
an iterative procedure in rapid iterating cycles, making the development of the artifact 
flexible in its ability to react to re-evaluated requirements. Although several quick 



iterations are conducted, we define three main cycles for providing a contextual 
structure. In these three main cycles, we aim to build a HS framework, for value-
creating combination of MCS and HQS, with a prototype implementation in a RCM 
use case using mobile high-quality sensors, which represents a novelty in the domain. 
With our DS project, we seek to solve the lack of a structured cross-disciplinary 
approach when it comes to the combination of MCS and HQS, due to which the 
potential offered by HS is not fully exploited and the transfer of derived knowledge to 
other applications is restrained. Our HS framework aims to help fellow researchers and 
practitioners to design HS applications and improve the knowledge transfer to their 
respective fields of application. 

In the first cycle, we aim to clarify the problem space and classify different types of 
HS applications. Based on the knowledge deducted from literature, we draft an overall 
HS framework, according to whose design we will implement a prototype RCM 
application in the second and third cycle. Since the literature gives only incomplete 
information about the required components of the HS framework, the implementation 
in the following two cycles serves for evaluation and further refinement based on the 
results. The first cycle is already fully completed, the results of which are the main 
focus of this paper. In the second cycle, the operational infrastructure for the RCM 
application is set up, a crowd app is developed and extensively tested. An exploratory 
data analysis, data cleaning, and pre-processing steps for the MCS and HQS data are 
performed as a basis for the following data combination and model training. The 
working steps described up to this point have already been carried out following the  

Figure 1. Design Science Research Methodology by Kuechler and Vaishnavi [14] applied to our 
project with three main cycles (executed tasks are highlighted in color, development in cycle two 
is currently in process) 
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first results of cycle one. Building on this, we will implement and evaluate a 
combination approach based on our HS framework in future work. This will comprise 
the geospatial data fusion (Data Combination), model training for predicting the road 
quality based on sensor data (Data Processing) and system quality assessment (Quality 
Evaluation). The HS framework drafted in the first cycle and continuously refined in 
the second will be evaluated and discussed in the light our specific use case. In the third 
cycle, we want to use the results from cycle one and two to revise the overall HS 
framework and its instantiation in the RCM use case. We will further use the enhanced 
RCM application to derive specific conclusions, which we aim to generalize, regarding 
the overall HS framework including the topics of spatial-temporal coverage and quality 
measures, as well as identifying relevant quality enrichment tasks (e.g., task allocation, 
incentives) for improving the HS system. 

3 Literature Review 

In the following section, we present the results of our structured literature review, which 
we conduct as a central task of the first design cycle. We thereby raise awareness of the 
problem and create the basis for the derivation of the preliminary artifacts described in 
more detail in Section 4. 

3.1 Approach to Literature Review 

We conduct a structured literature review following the methodological suggestions by 
Webster and Watson [19] and vom Brocke et al. [20]. In an explorative search, we 
identify an initial pool of literature for extracting relevant keywords, based on which 
we build a search term1 for our structured literature search. We query a set of 
interdisciplinary databases (i.e., ACM Digital Library, AIS eLibrary, Emerald Insight, 
IEEE Xplore Digital Library, ProQuest, ScienceDirect/Scopus, Web of Science) for 
matching our search term in title, abstract, or keywords [20]. After removing duplicates, 
this results in 134 publications for further review. Since there is no commonly used 
term for what we refer to as HQS, we use describing and closely related terms for it in 
our search query resulting in 118 irrelevant findings, that are not concerned with the 
combination of MCS and HQS, which we identify by analyzing title and abstract. With 
the remaining 16 papers as our initial pool of literature, we conduct a successive 
backward and forward search, which result in further seven relevant publications, 
yielding a total of 23 articles. The identified articles both contain theoretical 
approaches, focusing on architecture or simulated models, and practical approaches 
with concrete or prototype implementations. We consider the paper [7] to be relevant 
as it adequately outlines opportunities and challenges of HS, but does not contain a HS 

                                                           
1 (“mobile crowdsensing” OR “mobile crowd sensing” OR “participatory sensing”) AND 

(“industrial sens*” OR “traditional sens*” OR “stationary sens*” OR “static sens*” OR 
“special* sens*” OR “sensor node*” OR “expert contribut*” OR “industrial data” OR 
“hybrid” OR “industrial IOT” OR “industrial Internet of Things”) Note: * represents one or 
more wildcard characters 



approach. We present the results of our literature review grouped into classes, the 
derivation of which we explain in detail in Section 4.1, in the context of the 
development of the HS classification matrix. 

In the following two subsections, we first clarify the terms MCS and HQS and then 
present an overview over existing HS approaches grouped in classes, highlighting the 
focus of the work. 

3.2 MCS and HQS: Clarification of Terms 

Guo et al. [21] defines MCS as “a new sensing paradigm that empowers ordinary 
citizens to contribute data sensed or generated from their mobile devices, aggregates 
and fuses the data in the cloud for crowd intelligence extraction and people-centric 
service delivery”. Participants in MCS can either collect “hard” data, stemming from 
physical internal or external sensors connected to the mobile device, or “soft” data, 
which refer to human-added information (e.g., annotations, human observations) [22]. 

We define HQS as a sensing method that collects data or information in high quality 
trustworthily, which means that the accuracy can be considered error-free and the 
recording of the data is reliable without failures (like e.g. sensor down times). 

MCS can either be used to gather data (or information derived therefrom), that is 
also professionally measurable by HQS, or aim for gathering data or information that 
cannot be collected feasibly using professional measurement methods.  

3.3 Literature Review on Combining MCS and HQS 

We start by presenting the most frequent approach on HS, in which both sensing 
methods collect the same kind of data and focus on accumulating a large amount of 
data in order to improve the spatial-temporal coverage and/or data quality. For more 
clarity, we present them divided further into approaches that add HQ sensors on top of 
MCS and vice versa, that is adding MCS to an existing HQ sensor network. We address 
both in the following two paragraphs. 

Aiming to overcome limitations of MCS and thus ensuring a stable sensing quality 
and spatial-temporal coverage, the following approaches add static sensor nodes on top 
of a MCS system. In order for incentive mechanisms to work in MCS applications, a 
sufficiently large user base is needed, yet MCS faces the problem that crowd 
participants do not provide sufficient data at all times (e.g., at night). The hybrid 
framework (HySense) presented in [23] offers a solution by adding stationary sensor 
nodes to an environmental monitoring MCS application to ensure spatial-temporal 
coverage. Users’ mobility restrictions can be another source for unreliable sensing 
quality in MCS, which a HS network, containing both static and uncontrolled mobile 
nodes, seeks to solve in [24] and [11]. The authors formulate criteria for measuring the 
sensing service quality in HS, identify relevant influencing factors and develop a 
theoretical grid-based coverage strategy. In [25] missing sensory data from areas less 
covered by MCS is also compensated by additional static sensors, which are combined 
together by means of an interpolation strategy. Evaluation shows that a combining 



interpolation with a mix of static and mobile sensors yields better results over a simpler 
solution where interpolation is based only on data from static sensors. 

In the following approaches, the situation is reversed, making MCS the means to 
improve a static sensor network, aiming to enrich by achieving an improved spatial-
temporal coverage with the benefits of low costs and scalability. Four of the identified 
applications are (prototypically) implemented in an environmental context and one each 
in a smart city, smart factory and military setting. In [10] the authors introduce a hybrid 
sensor calibration scheme for MCS applications, to enable more accurate and dense 
measurements of natural phenomena adding mobile sensing to an existing sensing 
infrastructure (e.g., weather stations). The proposed scheme was applied to an 
environmental use case, in which a temperature map of a city was created, resulting in 
more detailed information than only the infrastructure-based measurements could 
provide. Another environmental use case (pollution monitoring) is portrayed in [26], in 
which MCS is presented as an opportunity to ensure better spatial-temporal coverage 
for stationary sensory networks in a flexible and cost-efficient manner. The authors 
focus on solving the resulting scheduling problem that faces the challenge of multiple 
sensor types generating heterogeneous data at different levels of granularity. In order 
to receive more accurate noise pollution maps with a better spatial-temporal coverage, 
a middleware solution is introduced in [27],  providing a data assimilation technique to 
estimate noise pollution based on simulation and noise levels measured over both static 
and uncontrolled mobile sensor, that are added additionally. In [28] the authors examine 
the potential benefits of combining static and mobile sensors as a participatory sensor 
network in a use case of measuring the emission of a substance (e.g., pollutant), 
evaluating their results using mobility models for simulation. Turning away from 
environmental monitoring towards a smart city context, [12] presents a prototype for 
enriching stationary infrastructure sensors with smartphone data in order to improve 
the situation awareness in cities (public safety and sustainability). The authors aim to 
develop a dynamic sensing platform that intelligently assigns sensing tasks, not covered 
by static sensors, to smartphone users in a resource-efficient manner. In the context of 
smart factories a blockchain-based approach for integrating MCS into a static sensing 
network is introduced in [8], in order to improve the spatial coverage in a scalable and 
cost-effective manner. The work focuses on resolving the three main challenges, 
reliability, security and sensory data quality, arising when integrating MCS into a 
factory. The G-Sense (Global-Sense) architecture [29], prototypically implemented in 
a military context, integrates mobile sensors into static wireless sensor networks, 
featuring an algorithm for optimizing the timing for measuring and sending updated 
data from the mobile device to the server, while meeting the application requirements. 

Having presented HS applications aiming to combine MCS and HQS by collecting 
the some kind of data or information in an accumulating manner, we now list 
approaches in which both methods are not equally prioritized. They aim to minimize 
resource input (e.g., sensor deployment, energy consumption) by cost-efficient 
replacement of the more expensive method, under the condition of a guaranteed 
minimum sensing quality. In order to improve the sensing quality and eliminate 
uncertainties resulting from mobility and varying sensing quality of individuals a 
collaborative sensing approach is presented in [30] and [31] using both mobile phones 



and stationary sensors in form of Wireless Sensor Networks (WSN). While [30] 
introduces an activation scheme for WSN, only enabling stationary sensors when the 
required sensing quality is not sufficient, [31] focuses on finding optimal locations for 
wireless sensors in order to minimize the required number of sensors. By solving an 
optimization problem, the authors in [13] determine the minimal amount of needed 
additional static sensors and their optimal locations to ensure stable sensing quality and 
availability, while simultaneously minimize the deployment costs. Trying to overcome 
limitations of both MCS and static WSN, like network latency, limited lifetime of 
WSN, costly mobile internet connection, and high battery consumption in the case of 
MCS, the authors in [32] and [33] introduce a RPL-routing protocol, enabling 
interaction between MCS and static WSN in a smart city context. In order to optimize 
activities between data utility (e.g., accuracy) and operational costs (e.g., sensor 
deployment), a comprehensive planning-based approach with prototype 
implementation for the combination of mobile devices and in-situ sensors in urban 
environmental sensing is presented in [34], addressing data generation, upload, and 
sensor calibration. The authors in [35] introduce a greedy algorithm to solve the 
dynamic sensor selection problem in a heterogeneous sensor network composed of both 
mobile sensors and stationary sensors, in terms of location, mobility pattern, energy 
constraint, and sensing cost. 

All approaches listed above use MCS and HQS to obtain the same kind of 
measurement, for either data replacement or complement. Yet MCS can also be used 
to generate additional information, which cannot be collected feasibly via HQS 
methods. Especially all non-physiological measurements fall under additional 
information (e.g., context information, human perception), as they are difficult or 
impossible to monitor using traditional sensing networks. A lack of standardisation on 
data, service and method, uncertainty regarding the measurement of quality, and 
privacy concerns are common challenges arising when working with “soft” human data 
[36]. In the following paragraph we present the three applications we have found that 
use MCS to gain additional information to enrich HQS data. 

The integration of spatial-temporal contextual information with human and technical 
sensor information from a geospatial perspective, which is yet another challenge, is 
discussed in [9], introducing a model of interactions between humans, the environment 
and technology in a smart city environment. The MCS application Allergymap [37] is 
developed in the field of public health monitoring and aims to help people with allergic 
diseases (e.g., by identification of allergens season, monitoring of treatment process 
etc.). It combines subjective user input and objective environmental data from fixed 
stations in a privacy aware manner, outputting a data visualisation in form of a map. 
The environmental monitoring network introduced in [38] differs from all previously 
mentioned cases in the fact that it is based on both stationary and mobile high quality 
sensor nodes. The crowd is used for further data enrichment via a mobile participatory 
sensing platform, which allows citizens to subjectively report and comment on 
situations with possible influence on environmental conditions. 

The literature review shows, that several approaches on combining MCS and HQS 
and using its potential already exist, but there is no uniformly structured approach. Most 
prototypes are implemented in an environmental or smart city context. Our findings 



therefore lack in diversity of application, as well as the integration of mobile high-
quality sensors. 

4 Artifact Description 

With the results of our structured literature review at hand, we now continue with the 
description of our two derived artifacts: The HS classification matrix and the HS 
framework. 

4.1 Hybrid Sensing Classification Matrix 

Based on the use cases identified in literature on combing both MCS and HQS we 
derive a Hybrid Sensing Classification Matrix (Figure 2). We start the development of 
the HS classification matrix by identifying the features, displayed on the horizontal and 
vertical axis in Figure 2. For this, we first structure the found literature based on the 
main aspects of each paper (e.g., minimizing energy consumption, spatial-temporal 
coverage). In the same process, we extract relevant tasks and requirements for the 
creation of a first draft of a generic HS framework, which maps the overall process for 
the value-creating combining of both sensing methods. Based on those two parallel 
tasks, which are mutually dependent, we inductively derive superordinate 
distinguishing features for classifying HS systems. While doing so, we have our 
attention on two aspects. On the one hand, we aim for gaining distinguishing features 
that help to group the identified approaches into classes, which have similar relevant 
activities and challenges when concretely applying the HS framework. On the other 
hand, our features should help to divide the approaches into classes that separate as 
clearly as possible between approaches, that are most challenging to incorporate into 
one single framework, due to their varying relevant processing tasks. By inductively 
testing different distinguishing features we conclude that the overall goal of the data 
combination (vertical feature: strategic focus) answers the first mentioned aspect well 
and the used data basis (horizontal feature: data/information) answers the second. Note 
that other classification features (or more than two) are conceivable, but these have 
proven to be suitable for the development of the HS framework.  

To summarize, while the characteristic depicted on the horizontal axis states whether 
the data or information collected using both methods is the same or different, the 
vertical characteristic differentiates between the strategic focus lying on data 
aggregation or substitution, thus resulting in an equal or unequal prioritization of both 
methods. This leads to the following four HS classes: 

─ Complement: Both methods collect the same data/information and both methods 
have equal priority, i.e. the methods do not aim to replace each other, but are 
combined in order to aggregate a large amount of data to achieve better spatial-
temporal coverage, object coverage, or a quality improvement.  

─ Direct Replacement: Both methods collect the same data/information, but not both 
collection methods are equally prioritized, as they aim to minimize resource input 
(e.g., stationary sensors, energy consumption) by cost-efficient replacement of the 



more expensive method, under the condition of a guaranteed minimum sensing 
quality. 

─ Supplement: MCS and HQS gather a different kind of data/ information and both 
methods have equal priority, aiming to enrich each other by adding additional 
unknown data/ information.  

─ Indirect Replacement: MCS and HQS collect different types of data/information 
and not both methods are equality prioritized, as they aim for substitution, not 
aggregation. Although both methods collect a different type of data/information 
(e.g., sensor data vs. human subjective input), the data/information from one method 
can be used to approximate the data/information of the other method, thus making it 
able to replace the measurement. 
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Figure 2. Hybrid Sensing Classification Matrix  

Note that, whereas the horizontal differentiation between same and different data is 
clearly assignable, determining the strategical approach is in some cases not equally 
unambiguous. The overall goal of HS is the combination of both collection methods in 
a way which maximizes the overall value (which has to be defined individually for each 
application, as it depends crucially on the strategic focus and could thus target e.g., data 
quality, coverage or, deployment costs), not replacing one method altogether. 
Consequently, a complementary component will always play a partial role in the 
system, even when the strategical approach aims for substitution. This circumstance 
makes it difficult to assign applications whose combination goal is not clearly 
communicated in the literature. Due to the fact that HS approaches featured in literature 
are often not described in full detail, as the research focus may lie on one very specific 
aspect and not the system as a whole, this is a situation that occurs occasionally. 
Although this makes a clear assignment difficult in some cases, we have tried to assign 
the identified approaches consistently to the best of our knowledge, based on the 
provided information in the respective papers. Table 1 features example HS systems 
found in literature with type assignment and main target. We found no applications 
aiming for Indirect Replacement, which leaves its relevance open for discussion, but 
also possible opportunities open for future research. 

 



Table 1. Example HS systems with classification 

Ref. Main aim Context Type 

[10] 
High quality through sensor 
calibration 

Environmental monitoring 
(temperature map)  

Complement 

[23] Spatial-temporal coverage 
Environmental monitoring 
(ozone concentration) 

Complement 

[26] Spatial-temporal coverage  
Environmental monitoring 
(pollution mapping) 

Complement 

[30]
, 
[31]  

Cost-efficient resource 
allocation (energy 
consumption, senor 
deployment) 

Theoretical approach; 
Evaluation via simulation 

Direct 
Replacement 

[34] 
Optimization between data 
utility and operational costs 

Community IoT systems in 
urban sensing 

Direct 
Replacement 

[38] 
Additional information 
through subjective user input 

Environmental monitoring 
(air quality) 

Supplement 

[37] 
Additional information 
through subjective user input 
for personalized services 

Allergy map Supplement 

 Spatial-temporal coverage RCM (our project) Complement 

4.2 Hybrid Sensing Framework 

In the following section, we describe the derivation of the Hybrid Sensing Framework, 
which aims to generalize the process of combining MCS and HQS in a value-create 
manner, and present our first draft, illustrated in Figure 3. It visualizes the generalized 
processing steps in a HS system, including data collection, data combination, data 
processing, quality evaluation, and quality enhancement tasks for optional system 
improvement. 

As mentioned in the previous section, we build our first draft of the HS framework 
based on the results of our literature review. For this purpose, we derive essential tasks, 
requirements and general recurring components from the literature on existing HS 
applications, yet as stated before the information provided is often incomplete. 
Therefore we will develop and evaluate an instantiation in a RCM use case (cycle 2), 
the evaluation results of which we will use for further refining the framework (cycle 3). 
As we do so, we will continuously check with the literature and the identified HS 
classes to ensure that all revisions maintain the universal validity of the HS framework. 

The final HS framework should include all possible applications combining MCS 
and HQS, yet up to now, there is a lack of research on the combination of MCS and 
high-quality data gathered by mobile sensors, making it not possible to extract 
knowledge on this scenario from literature.  We will therefore build a prototype 
application in our RCM use case to extract further knowledge, which we will use to 
refine and validate our framework draft in terms of generalization.  



 

Figure 3. Hybrid Sensing Framework illustrating the processing steps when combining MCS 
and HQS 

Data Collection. MCS gathers human-generated data via mobile devices or 
connectable sensors [39]. HQS data is collected by either stationary sensor networks 
(e.g., [10], [11], [23], [24]), mobile high-quality sensors [38] or possibly expert 
observations. For our RCM application, we developed a crowd app for android phones, 
making it possible to gather relevant sensor data (e.g., acceleration, gyroscope, GPS) 
and upload it to our server. The high-quality data is collected, as described in the 
introduction, by a project partner specialized in RCM, providing us with IRI 
measurements. We tested both data collection methods extensively, making our 
operative infrastructure ready to use for large-scale data collection as a basis for the 
development of data combination methods. 
Data Combination. Regardless of whether both methods collect the same or different 
data, in order to perform a value-creating processing, it must be combined by some kind 
of link characteristic, which is done in the Data Combination step. In the literature one 
finds mainly a spatial-temporal link (e.g., in [9], [23], [26]), but it would also be 
possible to link data, for example, over identical objects featured in images or data 
connected to a similar situation. In our use case, we have to answer questions on how 
to define geospatial coverage and how to deal with measurements taken at different 
times.  Aim of this step is to have a data fusion method, merging both data types by 
geo-coordinates with respect to time and a linkage score (e.g., percentage geospatial 
coverage within a certain time interval). 
Data Processing. From the linked MCS and HQS, data knowledge is extracted (e.g., 
in the form of a prediction [37], interpolation [25], assimilation [27] or calibration 
model [10]), which is subsequently used to enhance the unlinked data. When extracting 
knowledge based on the linked data (which can also be referred to as labeled data) an 
individual quality score for the specific knowledge extraction is derived, which serves 
to estimate the quality of the knowledge application on the unlinked data. We will use 
smartphone data collected via the crowd app, which can be linked to specialist data with 
respect to space and time, to extract knowledge in form of training an individual IRI 



prediction model for every crowd driver. This knowledge, in our case the individual 
model, will be used to predict the road quality based on data collected by the same 
driver. Every model has a known accuracy, which is the individual quality score for 
every driver. Data from crowd workers with no spatial-temporal coverage with high-
quality data will be processed with a more generalized model, thus resulting in a greater 
prediction quality uncertainty.  
Quality Evaluation. The creation of suitable and meaningful evaluation scores and 
identification of influencing factors [11] on the overall system quality, is a core task in 
the design of a HS system, as they serve as optimization target values when improving 
the system. We propose to evaluate the quality of the overall system based on the 
individual quality score, which describes the performance of the Data Processing, and 
the linkage score, which evaluates the Data Combination, also taking into account 
potential influencing factors. We will use the linkage score, that has yet to be defined, 
and the model accuracies as individual quality scores to determine the quality of our 
RCM system. We will also search for influencing factors in the evaluation. 
Quality Enhancement Tasks. Apart from improving the individual quality score (Data 
Processing) and the linkage score (Data Combination), the overall system quality can 
also be improved by working on the relevant influencing factors. This can be achieved 
by means of  subtasks which comprise topics like task scheduling and sensor 
coordination [26], [40], incentive mechanisms and data security [8], or simply stating 
technical requirements, to name a few. Research on “traditional” standalone MCS 
already offers extensive research in those domains, yet through changing the initial 
situation by combining MCS and HQS in a value-creating manner, it will be necessary 
to revise and extend some already well-researched approaches. Based on the results of 
our quality evaluation, we will derive and implement possible solutions for quality 
improvement. If there is too little crowd data available, for example, the development 
of incentive mechanisms could be of help. If poor prediction model results are based 
on insufficient linkable data, task allocation mechanisms, which assign crowd workers 
or specialists to specific sensing tasks, may be beneficial. The quality of smartphone 
data could be improved by defining a minimal technical standard. 

5 Discussion and Outlook 

HS gives us new opportunities to fully exploit the possibilities that the spread of mobile 
devices, and thus MCS, has to offer in a wider field of application. Alongside technical 
improvements (e.g., sensor quality), the flexibility of approaches is further extended by 
the possibility of connecting external sensors and integrating smart gadgets. This allows 
to create new cost-efficient industrial solutions, but also build services for participants, 
aiming for an improvement in quality of life in general. With the expansion of 5G 
networks, opportunities also arise for applications based on real-time information and 
high-speed cloud processing, enabling applications requiring computing power, mobile 
devices cannot provide (e.g., intelligent hazard detection in traffic based on smartphone 
image processing). However, involving people into the data collection process not only 
creates opportunities like improved spatial-temporal coverage, but also raises problems 



(e.g., security/privacy issues, data trustworthiness, incentive techniques) [7]. While 
most resulting challenges have been comprehensively discussed in literature in the 
domain of MCS, including high-quality sensors and the corresponding effect is so far 
not dealt with extensively. We now summarize frequently mentioned issues that present 
challenges for HS applications but also offer opportunities for improved solutions. 

─ Reliable high-quality data can contribute to enhanced incentive techniques by the 
development of more attractive crowd services. Furthermore, incentives can, when 
needed, promote the generation of overlapping data by both collection methods. 

─ Malicious misuse can be detected and prevented more easily, thus improving data 
trustworthiness, through the availability of verified high-quality measurements. 

─ Subjective human input offers opportunities for various new applications, yet 
represents a challenge due to the lack of standardization when combined with 
physiological sensor measurements. 

─ Some HS approaches will require a modified optimal task allocation for participants, 
when including high-quality sensors, and sensor coordination strategies, when 
aiming for a cost-efficient resource allocation. 

─ Finding suitable quality and coverage metrics and relevant influencing factors is 
crucial and has to be solved individually depending on the field of application, yet 
the definition of generalized requirements could help practitioners and researches. 

We did not find any applications falling into the category of indirect replacement, but 
we see potential for this HS class when it comes to applications providing public benefit 
yet facing limited financial resources (e.g., crowd sourcing projects).  

6 Conclusion 

We conducted a structured literature review on the systematic combination of MCS and 
HQS (i.e., Hybrid Sensing).  This is the first of three cycles in our DS project for 
creating a generic process for HS systems. We classified existing approaches by their 
data or information gathered and the strategical approach regarding the sensing method 
prioritization. This resulted in four main types, differentiating HS approaches: 
Complement, supplement, direct replacement, and indirect replacement. This 
categorization contributes a structure to open opportunities and challenges to address 
in the field of HS. We also presented a HS framework for the structured combination 
of MCS and HQS and identified the usage of mobile high-quality sensors in HS systems 
as research gap. Researchers and practitioners may use the framework to structure HS-
related projects. The introduction of Quality Enhancement Tasks may be of high 
relevance for related fields (e.g., Citizen Science) that suffer from data quality issues 
[41]. We also discussed both contributions in the light of our RCM use case. After 
having set up the operational infrastructure, we will develop and evaluate an initial 
combination procedure in cycle two, answering questions regarding temporal-spatial 
coverage and quality assessment. In the third cycle, we will use the evaluation results 
to revise the HS framework and improve the RCM application to enable low-cost road 
maintenance, contributing to road safety by near real time damage detection.  
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