56 research outputs found

    Network reputation-based quality optimization of video delivery in heterogeneous wireless environments

    Get PDF
    The mass-market adoption of high-end mobile devices and increasing amount of video traffic has led the mobile operators to adopt various solutions to help them cope with the explosion of mobile broadband data traffic, while ensuring high Quality of Service (QoS) levels to their services. Deploying small-cell base stations within the existing macro-cellular networks and offloading traffic from the large macro-cells to the small cells is seen as a promising solution to increase capacity and improve network performance at low cost. Parallel use of diverse technologies is also employed. The result is a heterogeneous network environment (HetNets), part of the next generation network deployments. In this context, this thesis makes a step forward towards the “Always Best Experience” paradigm, which considers mobile users seamlessly roaming in the HetNets environment. Supporting ubiquitous connectivity and enabling very good quality of rich mobile services anywhere and anytime is highly challenging, mostly due to the heterogeneity of the selection criteria, such as: application requirements (e.g., voice, video, data, etc.); different device types and with various capabilities (e.g., smartphones, netbooks, laptops, etc.); multiple overlapping networks using diverse technologies (e.g., Wireless Local Area Networks (IEEE 802.11), Cellular Networks Long Term Evolution (LTE), etc.) and different user preferences. In fact, the mobile users are facing a complex decision when they need to dynamically select the best value network to connect to in order to get the “Always Best Experience”. This thesis presents three major contributions to solve the problem described above: 1) The Location-based Network Prediction mechanism in heterogeneous wireless networks (LNP) provides a shortlist of best available networks to the mobile user based on his location, history record and routing plan; 2) Reputation-oriented Access Network Selection mechanism (RANS) selects the best reputation network from the available networks for the mobile user based on the best trade-off between QoS, energy consumptions and monetary cost. The network reputation is defined based on previous user-network interaction, and consequent user experience with the network. 3) Network Reputation-based Quality Optimization of Video Delivery in heterogeneous networks (NRQOVD) makes use of a reputation mechanism to enhance the video content quality via multipath delivery or delivery adaptation

    An intelligent call admission control algorithm for load balancing in 5G-satellite networks

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.Cellular networks are projected to deal with an immense rise in data traffic, as well as an enormous and diverse device, plus advanced use cases, in the nearest future; hence, future 5G networks are being developed to consist of not only 5G but also different RATs integrated. In addition to 5G, the user’s device (UD) will be able to connect to the network via LTE, WiMAX, Wi-Fi, Satellite, and other technologies. On the other hand, Satellite has been suggested as a preferred network to support 5G use cases. Satellite networks are among the most sophisticated communication technologies which offer specific benefits in geographically dispersed and dynamic networks. Utilising their inherent advantages in broadcasting capabilities, global coverage, decreased dependency on terrestrial infrastructure, and high security, they offer highly efficient, effective, and rapid network deployments. Satellites are more suited for large-scale communications than terrestrial communication networks. Due to their extensive service coverage and strong multilink transmission capabilities, satellites offer global high-speed connectivity and adaptable access systems. The convergence of 5G technology and satellite networks therefore marks a significant milestone in the evolution of global connectivity. However, this integration introduces a complex problem related to resource management, particularly in Satellite – Terrestrial Integrated Networks (STINs). The key issue at hand is the efficient allocation of resources in STINs to enhance Quality of Service (QoS) for users. The root cause of this issue originates from a vast quantity of users sharing these resources, the dynamic nature of generated traffic, the scarcity of wireless spectrum resources, and the random allocation of wireless channels. Hence, resource allocation is critical to ensure user satisfaction, fair traffic distribution, maximised throughput, and minimised congestion. Achieving load balancing is essential to guarantee an equal amount of traffic distributed between different RATs in a heterogeneous wireless network; this would enable optimal utilisation of the radio resources and lower the likelihood of call blocking/dropping. This research endeavours to address this challenge through the development and evaluation of an intelligent call admission control (CAC) algorithm based on Enhanced Particle Swarm Optimization (EPSO). The primary aim of this research is to design an EPSO-based CAC algorithm tailored specifically for 5G-satellite heterogeneous wireless networks. The algorithm's objectives include maximising the number of admitted calls while maintaining Quality of Service (QoS) for existing users, improving network resource utilization, reducing congestion, ensuring fairness, and enhancing user satisfaction. To achieve these objectives, a detailed research methodology is outlined, encompassing algorithm development, numerical simulations, and comparative analysis. The proposed EPSO algorithm is benchmarked against alternative artificial intelligence and machine learning algorithms, including the Artificial Bee Colony algorithm, Simulated Annealing algorithm, and Q-Learning algorithm. Performance metrics such as throughput, call blocking rates, and fairness are employed to evaluate the algorithms' efficacy in achieving load-balancing objectives. The experimental findings yield insights into the performance of the EPSO-based CAC algorithm and its comparative advantages over alternative techniques. Through rigorous analysis, this research elucidates the EPSO algorithm's strengths in dynamically adapting to changing network conditions, optimising resource allocation, and ensuring equitable distribution of traffic among different RATs. The result shows the EPSO algorithm outperforms the other 3 algorithms in all the scenarios. The contributions of this thesis extend beyond academic research, with potential societal implications including enhanced connectivity, efficiency, and user experiences in 5G-Satellite heterogeneous wireless networks. By advancing intelligent resource management techniques, this research paves the way for improved network performance and reliability in the evolving landscape of wireless communication

    Enabling 5G Edge Native Applications

    Get PDF

    Mobility-aware mechanisms for fog node discovery and selection

    Get PDF
    The recent development of delay-sensitive applications has led to the emergence of the fog computing paradigm. Within this paradigm, computation nodes present at the edge of the network can act as fog nodes (FNs) capable of processing users' tasks, thus resulting in latency reductions compared to the existing cloud-based execution model. In order to realize the full potential of fog computing, new research questions have arised, mainly due to the dynamic and heterogeneous fog computing context. This thesis focuses on the following questions in particular: How can a user detect the presence of a nearby FN? How should a user on the move adapt its FN discovery strategy, according to its changing context? How should an FN be selected , in the case of user mobility and FN mobility? These questions will be addressed throughout the different contributions of this thesis. The first contribution consists in proposing a discovery solution allowing a user to become aware of the existence of a nearby FN. Using our solution, the FN advertizes its presence using custom WiFi beacons, which will be detected by the user via a scan process. An implementation of this approach has been developed and its evaluation results have shown that it results in a non-negligible energy consumption given its use of WiFi. This has led to our second contribution, which aims at improving the WiFi scan performed in our discovery approach, especially in the case of user mobility. At a first stage, this improvement consisted in embedding information about the topology of the FNs in the beacons the user receives from previous FNs. We have shown that by adapting the scan behavior based on this information, considerable energy savings can be achieved, while guaranteeing a high discovery rate. However, as this approach is associated with a restrictive FN topology structure, we proposed a different alternative, at a second stage. This alternative leverages the history of cellular context information as an indicator allowing the user to infer whether an FN may be present in its current location. If so, the scan will be enabled. Otherwise, it is disabled. The simulation results comparing different classification algorithms have shown that a sequence-based model, such as a hidden-Markov model is able to effectively predict the FN presence in the current user location. While the previous approaches have focused on a sparse FN deployment, our third contribution considers a high density of FNs. Consequently, as there are multiple nearby FNs that can process the user's tasks, it is important to derive a suitable FN selection strategy. This strategy should consider the time-varying set of FNs caused by the user's mobility. Besides, it should minimize the number of switches from one FN to another, in order to maintain a good quality of service. With these considerations in mind, we have shown that an adaptive greedy approach, that selects an FN having a good-enough delay estimate, achieves the best results. Finally, unlike the previous contribution, where the focus has been on FN selection when the user is mobile, our final contribution deals with mobile vehicular FNs (VFNs). Given the mobility of such VFNs, it is important to make the most of their resources, since they are only available for a short time at a given area. So, we propose that, in order to select an appropriate VFN for a given task, a reference roadside unit (RSU) responsible for task assignment can use advice from a neighbor RSU. This advice consists in the VFN that will result in the lowest delay for the current task, based on the experience of the neighbor RSU. The results have shown that, using the provided advice, the reference RSU can observe significant delay reductions. All in all, the proposed contributions have addressed various problems that may arise in a fog computing context and the obtained results can be used to guide the development of the building blocks of future fog computing solutions.El recent desenvolupament d'aplicacions IoT ha comportat l'aparició del paradigma de fog computing. Dins d'aquest paradigma, els nodes de càlcul presents a la vora de la xarxa poden actuar com a “fog nodes'' (FN) capaços de processar les tasques dels usuaris, produint així reduccions de latència en comparació amb el model d'execució basat en núvol. Per assolir tot el potencial del fog computing, han sorgit noves qüestions de recerca, principalment a causa del context dinàmic i heterogeni de fog computing. Aquesta tesi se centra especialment en les qüestions següents: Com pot un usuari detectar la presència d'un FN? Com hauria d’adaptar un usuari en moviment la seva estratègia de descobriment de FN, segons el seu context? Com s’ha de seleccionar un FN, en el cas de la mobilitat dels usuaris i la mobilitat FN? Aquestes preguntes s’abordaran al llarg de les diferents aportacions d’aquesta tesi. La primera contribució consisteix a proposar una solució de descobriment que permeti a l'usuari detectar l’existència d’un FN proper. Mitjançant la nostra solució, un FN anuncia la seva presència mitjançant beacons Wi-Fi personalitzats, que seran detectats per l'usuari mitjançant un procés d’exploració. S'ha desenvolupat una implementació d'aquest enfocament i els seus resultats d’avaluació han demostrat que resulta en un consum d'energia menyspreable donat el seu ús del Wi-Fi. Això ha suposat la nostra segona contribució, que té com a objectiu millorar l’exploració Wi-Fi, especialment en el cas de la mobilitat dels usuaris. En una primera fase, aquesta millora va consistir a incorporar informació sobre la topologia dels FN en les beacons que rep l'usuari dels FN anteriors. Hem demostrat que mitjançant l'adaptació del comportament d'escaneig basat en aquesta informació es pot aconseguir un estalvi considerable d’energia, alhora que es garanteix un índex elevat de descobriment. Tanmateix, com aquest enfocament s'associa a una estructura de topologia FN restrictiva, vam proposar una alternativa diferent, en una segona etapa. Aquesta alternativa aprofita la història de la informació del context cel·lular com a indicador que permet a l'usuari deduir si un FN pot estar present en la seva ubicació. En cas afirmatiu, l'exploració estarà habilitada. Els resultats de la simulació comparant diferents algoritmes de classificació han demostrat que un model basat en seqüències, com un model HMM, és capaç de predir eficaçment la presència de FNs a la ubicació actual de l'usuari. Si bé els enfocaments anteriors s’han centrat en un desplegament escàs de FNs, la nostra tercera contribució considera una alta densitat d'FNs. En conseqüència, com que hi ha múltiples FNs propers que poden processar les tasques de l'usuari, és important derivar una estratègia de selecció de FN adequada. Aquesta estratègia hauria de tenir en compte el conjunt variable de temps causat per la mobilitat de l'usuari. A més, hauria de minimitzar el nombre de canvis d'un FN a un altre, per mantenir una bona qualitat del servei. Tenint en compte aquestes consideracions, hem demostrat que un enfocament codiciós adaptatiu, que selecciona un FN amb una estimació de retard suficient, aconsegueix els millors resultats. Finalment, a diferència de l'aportació anterior, on l'atenció s'ha fixat en la selecció d'FN quan l'usuari és mòbil, la nostra contribució final tracta sobre les FNs per a vehicles mòbils (VFNs). Tenint en compte la mobilitat d’aquests VFNs, és important aprofitar al màxim els seus recursos, ja que només estan disponibles per a un temps curt. Així doncs, proposem que, per seleccionar un VFN adequat per a una tasca, una unitat RSU responsable de l'assignació de tasques pot utilitzar consells d'un RSU veí. Aquest consell consisteix en escollir el VFN que suposarà el menor retard de la tasca actual, en funció de l’experiència del RSU veí. Els resultats han demostrat que ..

    On the use of intelligent models towards meeting the challenges of the edge mesh

    Get PDF
    Nowadays, we are witnessing the advent of the Internet of Things (IoT) with numerous devices performing interactions between them or with their environment. The huge number of devices leads to huge volumes of data that demand the appropriate processing. The “legacy” approach is to rely on Cloud where increased computational resources can realize any desired processing. However, the need for supporting real-time applications requires a reduced latency in the provision of outcomes. Edge Computing (EC) comes as the “solver” of the latency problem. Various processing activities can be performed at EC nodes having direct connection with IoT devices. A number of challenges should be met before we conclude a fully automated ecosystem where nodes can cooperate or understand their status to efficiently serve applications. In this article, we perform a survey of the relevant research activities towards the vision of Edge Mesh (EM), i.e., a “cover” of intelligence upon the EC. We present the necessary hardware and discuss research outcomes in every aspect of EC/EM nodes functioning. We present technologies and theories adopted for data, tasks, and resource management while discussing how machine learning and optimization can be adopted in the domain

    A Cognitive Routing framework for Self-Organised Knowledge Defined Networks

    Get PDF
    This study investigates the applicability of machine learning methods to the routing protocols for achieving rapid convergence in self-organized knowledge-defined networks. The research explores the constituents of the Self-Organized Networking (SON) paradigm for 5G and beyond, aiming to design a routing protocol that complies with the SON requirements. Further, it also exploits a contemporary discipline called Knowledge-Defined Networking (KDN) to extend the routing capability by calculating the “Most Reliable” path than the shortest one. The research identifies the potential key areas and possible techniques to meet the objectives by surveying the state-of-the-art of the relevant fields, such as QoS aware routing, Hybrid SDN architectures, intelligent routing models, and service migration techniques. The design phase focuses primarily on the mathematical modelling of the routing problem and approaches the solution by optimizing at the structural level. The work contributes Stochastic Temporal Edge Normalization (STEN) technique which fuses link and node utilization for cost calculation; MRoute, a hybrid routing algorithm for SDN that leverages STEN to provide constant-time convergence; Most Reliable Route First (MRRF) that uses a Recurrent Neural Network (RNN) to approximate route-reliability as the metric of MRRF. Additionally, the research outcomes include a cross-platform SDN Integration framework (SDN-SIM) and a secure migration technique for containerized services in a Multi-access Edge Computing environment using Distributed Ledger Technology. The research work now eyes the development of 6G standards and its compliance with Industry-5.0 for enhancing the abilities of the present outcomes in the light of Deep Reinforcement Learning and Quantum Computing
    corecore