
10.15476/ELTE.2021.123

Eabling 5G Edge Native Applications

Doctoral Dissertation
2021

Reale Anna
anna.reale@inf.elte.hu

Doctoral advisor: Dr. Zoltán Horváth, PhD, habil.
Doctoral advisor: Dr. Melinda Tóth, PhD
Industrial advisor: Dr. Benedek Kovács, PhD
Eötvös Loránd University, Faculty of Informatics,
1117 Budapest, Pázmány Péter sétány 1/C
Department of Programming Languages and Compilers

ELTE IK Doctoral School of Informatics
Doctoral Programme of Foundations and Methodologies of Informatics
Head of the doctoral school: Erzsébet Csuhaj-Varjú, DSc., habil
Head of the doctoral program: Zoltán Horváth, PhD, habil.



Contents

List of Figures v

Acknowledgements vii

1 Introduction 1
1.1 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Edge Computing architectures and infrastructures . . . . . . 5
1.2.2 5G Based Execution Infrastructures . . . . . . . . . . . . . . 11
1.2.3 Edge computing Standardizations and architectures . . . . . 12
1.2.4 Edge-native Applications . . . . . . . . . . . . . . . . . . . 13

2 Facilitate Deployment at the Edge 18
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.2 Continuous Interactive Applications . . . . . . . . . . . . . . 21

2.2 Offloading in Edge Computing . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Application Partitioning . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Application Offloading . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Context Awareness . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.4 AR Requirements . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.5 Offloading Framework . . . . . . . . . . . . . . . . . . . . . 27
2.2.6 Toolchain for Context Analysis . . . . . . . . . . . . . . . . 29
2.2.7 Preliminary Analysis . . . . . . . . . . . . . . . . . . . . . . 29

2.3 A model for application partitioning and deployment . . . . . . . . 34
2.3.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Application Partitions . . . . . . . . . . . . . . . . . . . . . 35
2.3.3 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.4 Service Request . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.5 Modeling the example application . . . . . . . . . . . . . . 39
2.3.6 Network Simulations . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

iii



2.4.1 Offloading Frameworks and Architectures . . . . . . . . . . . 45
2.4.2 Application Placement . . . . . . . . . . . . . . . . . . . . . 48

2.5 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . 50
2.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Migration in Edge Computing 54
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 Fog computing in 5G . . . . . . . . . . . . . . . . . . . . . . 55
3.1.2 Comparison of Virtual Machine and Container Migration . . 56
3.1.3 Container Live Migration . . . . . . . . . . . . . . . . . . . 57
3.1.4 A Comparison of Opensource Container Orchestration . . . 58

3.2 A framework for application migration in Fog Computing . . . . . . 62
3.2.1 Network mapping . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.2 Task assignment . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.3 Deployment infrastructure: an Orchestrators Comparison . . 64
3.2.4 First Experimental Settings . . . . . . . . . . . . . . . . . . 69

3.3 Integrating Live Migration to Kubernetes . . . . . . . . . . . . . . . 76
3.3.1 UCs for Live Migration in Kubernetes . . . . . . . . . . . . 77
3.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.5 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . 87
3.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Scheduling for Distributed Mobile Edge 92
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 93
4.2 Kubernetes schedulers . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3 Edge Cloud Scheduler Implementation . . . . . . . . . . . . . . . . 96

4.3.1 Monitoring agents . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.2 Customized scheduler . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Setup and Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . 100
4.4.1 Old Setup: Baseline Experiments and preliminary results . 101
4.4.2 New Improved Setup . . . . . . . . . . . . . . . . . . . . . . 103
4.4.3 Final Test Results . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.6 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . 109
4.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Dissertation Extended Summary 113
5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1.1 Facilitate Deployment at the Edge . . . . . . . . . . . . . . 115

iv



5.1.2 Migration in Edge Computing . . . . . . . . . . . . . . . . . 117
5.1.3 Distributed Mobile Edge - Scheduling and Exposing Services 118

6 Summary 121

References 122

Acronyms 140

List of Figures

1.1 A cloudlet is a mobility-enhanced small-scale cloud data centre that
is located at the edge of the Internet [9]. . . . . . . . . . . . . . . . 6

1.2 An overview on MEC [10] . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 MEC infrastructure on 5G [11] . . . . . . . . . . . . . . . . . . . . . 9
1.4 Characteristics of Edge-native applications . . . . . . . . . . . . . . 14

2.1 Continuous Interactive Applications General Requirements . . . . . 22
2.2 Context-Aware Framework for Application Offloading . . . . . . . 23
2.3 The proposed offloading framework . . . . . . . . . . . . . . . . . . 28
2.4 Environment overview [12] . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Server and services [12] . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Client Architecture [12] . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7 Edge profiling overview graphs . . . . . . . . . . . . . . . . . . . . . 34
2.8 Partitioned Call Graph for an Image Capture Service . . . . . . . . 40
2.9 Camera calibration call graph . . . . . . . . . . . . . . . . . . . . . 41
2.10 Simulation of application partitioning and deployment . . . . . . . 42
2.11 Network delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.12 Failed tasks- capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.13 Failed tasks- network . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.14 Summary of Chapter Contributions . . . . . . . . . . . . . . . . . . 53

3.1 Kubernetes Architecture . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Docker Swarm architecture . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Marathon architecture overview . . . . . . . . . . . . . . . . . . . . 61
3.4 Our Fog Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

v



3.5 Migration for Edge Computing . . . . . . . . . . . . . . . . . . . . 70
3.6 Before migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.7 Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.8 After migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.9 Live Migration - a simple flow . . . . . . . . . . . . . . . . . . . . . 79
3.10 Live Migration in Kubernetes . . . . . . . . . . . . . . . . . . . . . 80
3.11 Summary of Chapter Contributions . . . . . . . . . . . . . . . . . . 91

4.1 Default K8s scheduling process [13] . . . . . . . . . . . . . . . . . . 96
4.2 Preliminary setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3 Scheduling time comparison . . . . . . . . . . . . . . . . . . . . . . 102
4.4 Node temperature comparison . . . . . . . . . . . . . . . . . . . . . 102
4.5 Distributed Edge setup . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 Network connections in our setup . . . . . . . . . . . . . . . . . . . 104
4.7 Cluster health comparison among schedulers . . . . . . . . . . . . . 106
4.8 Summary of Chapter Contributions . . . . . . . . . . . . . . . . . . 112

vi



Acknowledgements

I would like to thank wholeheartedly my two supervisors Zoltan and Melinda for
the support and guidance during these five years. Knowing that, despite your
overwhelmed schedules, your doors were always open for me, really made the
difference.

Thank you to my Ericsson supervisor Bence, for all the challenges, all the
teachings and all the fun.

Thank you to my ever presents colleagues:
Peti, for all the time spent with me at our office, and for coping with my

bad character, for all our little fights that still ended up into making things that
worked.

Charles, for sharing anxieties and work, both in Ericsson and ELTE, and for
being my fake almost-husband for all this years.

Michael, for the day and nights spent working and learning together, for the
great company and ever presents smiles and good humor.

I am sure without all of you there would be no thesis!
Also an infinite thank you to Davide, for his never-ending patience, for always

being ready to listen to my complaints and for being the awesome partner that he
is.

Thank you to my flatmate Iti, for the awesome tea and chats covered in dark
humor we shared at home after work.

Thanks to my favourite coffe-mate Akos, and all of the CLC stuff and the
ELTE colleagues that made everyday life so much better!

And of course, thank you to my mum, sister and brother for giving me the
opportunity and the guidance needed to start and move forward with my studies.

vii



Chapter 1

Introduction

The research described in this thesis revolves around Edge-Native Applications.
In fact, since the 5G Mobile Edge infrastructure is not entirely in the market yet,
there are many questions about how to facilitate the new category of applications
that it will host.

The focus points of this thesis will be deployment, mobility, network and cloud
integration in 5G and Edge Computing (EC).

1. Deployment - An efficient and distributed allocation scheme is needed in
EC. The optimization of resource allocation may be multi-objective and
varies due to heterogeneity of applications, servers, user demands and con-
nections. A centralized approach is not suitable for distributed MEC (Mobile
Edge Computing) systems [14, 15] thus a distributed one should prevail.

2. Mobility - Edge servers will mostly be located near the RAN (Radio Ac-
cess Network). Since 5G requires a dense network of small, and low-power
cellular base stations (nano or femto cells), user mobility will cause frequent
handovers. Service disruption will need to be avoided. Users may move dur-
ing the computation offloading period and their data will have to travel with
them. Mobility will create also a requirement for application portability.
Finally, the variations in user requests, may affect uplink interference and
performances of the computing resources [16].

3. Network and Cloud integration - EC should be interacting with the
underlying network architecture, profiting from existing interfaces [11]. Fur-
thermore, a distributed EC will not have all the computing resources needed
to satisfy user requests. A solution will be transferring intensive and non-
latency related operations to the cloud [17].

For this reason, our work concentrated at first in assisting developers in making
a cloud or monolithic application into one that could fit the Edge. Secondly, we
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CHAPTER 1. INTRODUCTION

tried to establish how to deploy edge-native applications and how to guarantee their
mobility. Finally, we concentrated on building a full infrastructure, optimizing the
scheduling and integrating cloud services and current 5G network standards.

The three main research questions we will try to answer in this work are the
following:

1. How to facilitate deployment on the new Edge computing infrastructure?
Can deployment be optimized in real-time? [1, 2, 3]

2. How to Migrate applications? What infrastructure works for migration and
whether or not live migration can be achieved in real-time scenarios. [4, 5]

3. Creating a full infrastructure for distributed Edge Computing. There are
two main reasons for migration: re-balancing and user movement. Can we
reduce service redeployment, adding dynamic context awareness? How much
this reflects on scheduling performances and service availability? [6, 7]

Three thesis follow our main questions:

1. Facilitate Deployment at the Edge: Adapting code from Cloud to
Edge involves a great amount of work to refactor applications and services.
Usually developers do this solely based on experience, simulating tools can
be of support since the infrastructure is new and blind deployment may be
expensive. Furthermore the extensive mobility of the applications represents
a challenge for the choice of a correct separation of applications in micro-
services. I created a framework for partitioning and estimation of
best deployment of a monolithic application. I implemented it in
the form of a tool to assist into selecting the proper way to refactor
an application, via graph partitioning schemes. I demonstrated
this concept partitioning an AR application at a function level
granularity. Via non-intrusive online profiling of the application I created
a call graph representing functions runtimes and number of calls between
functions. The partition process applies min edge cut using a refinement
algorithm, MLKL, that Coarsen, Partition and Uncorsen a graph multiple
times. Any weighted graph may be used to represent the application in this
step in our tool.
This method aims at suggesting partitions that minimize their interaction,
the idea is that the partitions should be easily moved around the network
without compromising performances. Indeed more complex approaches may
involve other parameters, such as the amount of allocated memory or the
dependency to other code/services.

2



Finally the tool can suggest pareto-optimal places for deployment, based
on Network resources capacities and existing links. I simulate the placement
and routing issues into a single algorithm taking care to handle multiple user
request at the same time. I show how it is possible to compute a deployment
that satisfies SLA keeping in consideration cost of resources and benefit of
requests. I proved that the approach does performs better than a random
deployment, reducing deployment and networks failures.

2. Migration in Edge Computing: In Edge computing it will be necessary
to move an edge-native application from one edge to the other, following the
user, or, for recovery reasons, even from an Edge to the Cloud. The best
approach to avoid this would be to have Stateless Apps, but there are cases
in which this is not a possibility.
I implemented a Java simulation of a Fog network, integrating live
migration trough means of CRIU library calls and coordination via
Docker Swarm. After testing the limits of this configuration I set
up a better version based on Kubernetes. I constructed a docker in
docker solution that is deployed as a daemon set on each node. This
component is in charge of actuating iterative pre-copy migration
of its hosted containers, if triggered by any other software running
in the cluster. I have tested the migration against stop and restart
of multiple container deployments and shown how, given a stable
network connection (like a 5G coverage) we can use migration to
achieve a lower Service Downtime. .

3. Distributed Mobile Edge Scheduling: In many Edge scenarios, espe-
cially those related to distributed Edge and IoT, it is for the best to reduce
the need for application migration from the start. I proved that we can
reduce need for migration trough the improvement of the deploy-
ment strategies. I made a lightweight monitoring tool to feed real
time telemetries to a scheduler component of the edge orchestra-
tor. Thanks to awareness of cluster status resources are used more
efficiently: 10 to 20 more ngnix containers can be scheduled on
our cluster of raspberrypies compared to the default K8s sched-
uler. The devices do not crash due to overheat contrary to the
default scheduling setup.
I selected a scoring system that no only increased life of the raspberrypies
but that makes the scheduler up to 64% faster than the default. The score
is based on a composition (Multiplicative Exponent Weighting) of nodes
telemetries, where the minimum value correspond to the best candidate.
Weights are using Coefficient of Variation: the more a parameter is variable

3



CHAPTER 1. INTRODUCTION

the higher its influence on the deployment.

1.1 Thesis Structure
This document is structured as illustrated in Table 1.1:

Chapter 1 contains a short background introduction to Edge Computing and
5G and includes our own classification and definition of Edge-native applications
as we described in [8].

Chapter 2 concentrates on Thesis 1 and presents our efforts to facilitate parti-
tioning and first deployment of applications on an Edge infrastructure.

Chapter 3 presents the issue of application mobility and our efforts towards
integrating container live migration into networks relying on existing container
orchestration technologies. This Chapter collects our Thesis 2. In particular we
present an ad-hoc Fog network exploiting Docker Swarm and a pattern to apply
live migration within a Kubernetes cluster.

Chapter 4 focuses on the improvement of scheduling approaches for Distributed
Edge, illustrating our algorithm for a Kubernetes scheduler and comparing it with
state of the art approaches;

Finally, in Chapter 5 we synthesize the scope, the problems and solutions,
together with the domain and contribution of this work.

Chapter Content
1 Background: context and focus
2 Theses 1: Facilitate Deployment at the Edge
3 Thesis 2: Migration in Edge Computing
4 Thesis 3 : Distributed Mobile Edge Scheduling
5 Summary: all theses and contributions

Table 1.1: Chapters and their content.

1.2 Background
As the number of mobile devices and services requiring computing or storage capa-
bilities that significantly exceed their own capacities has exploded, the paradigm
of Cloud Computing (CC) had arisen and gained a continuously increasing im-
portance. The concept of CC is based on Data Centers (DC), which are capable
of coping with storage and processing requirements of tasks involving large scale
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1.2. BACKGROUND

data. Moreover, data centers are usually connected between each other over opti-
cal cable building up Data Center Networks (DCNs) that, due to meager internal
communication costs, appear to the outside world as a single entity. When facing
a problem that outruns available local resources, one can offload the code and the
data to the Cloud, then - when computations are done - receive the results back.

The paradigm of CC has given a solution to the scalability problems related to
inefficient resources. Code and data migration, however, may involve a significant
latency or cause congestions in the network. The root of the problem can be
summarized as location unawareness of the CC paradigm and is getting severe
with time as more and more (semi-)intelligent devices will attempt to connect to
DCNs.

The concept of Edge Computing has emerged to leverage the storage and com-
putation capabilities of the edge devices that are connected to the Internet and
meant to be an intermediate layer between the devices and the CLoud. They
are able to handle a subset of requests that would be usually sent to the Cloud,
but which, in fact, do not need its real involvement because of the diminished
resource requirement or no need for the DC to be involved. Thus, thanks to the
presence of this type of device, the computation load of DCs is reduced, similarly
to the latency of responses, when an application needs to have real-time or almost
real-time responses.

Moreover, due to its geo-distributed nature and high availability, the Edge layer
is apt to handle the challenges of mobility. E.g., to serve requests of moving users
as it is necessary in cases of autonomous cars or providing streaming and real-time
gaming in a high-speed vehicle.

1.2.1 Edge Computing architectures and infrastructures
Edge Computing (EC) [18] in Mobile networks is an architecture that suggests
deploying cloud servers in each base station of the mobile network. Such disposition
will allow network owners to satisfy the requirements for the 5G era: acceleration
of content, services, and applications, and increase in the responsiveness.

Edge computing has been proposed for mobile cloud computing and IoT cloud
computing in different formats by different parties. A fundamental component
of the edge computing services is the underlying cloud infrastructure (based on
physical hardware) that hosts the applications and the supporting functions.

In the following paragraphs, we will present a distinction of Edge Computing
paradigms into three main categories, as previously associated by [19]: Cloudlets,
Fog computing, and Mobile Edge Computing .

These conceptual models are partially overlapping and complementary. The
core idea to run applications and related processing tasks in proximity of mobile
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CHAPTER 1. INTRODUCTION

users is common to all. We also will describe related industrial implementations
such as Distributed Clouds, Mini Clouds, and Nano and Micro Datacenters.

Cloudlets

Cloudlets are an extension of the cloud or a "data center in a box" [20, 21]. They
are self-managed, energy-efficient, and simple to deploy on-premises. The term
Cloudlet [22] can be defined as a trusted set of computers having a good connection
to the Internet and making their resources available to nearby mobile devices. The
Cloudlet runs a virtual machine that is capable of provisioning resources to the
connected users near real-time over a WLAN network in one-hop distance and with
high bandwidth. Above provisioning, the infrastructure, Cloudlet architecture
also provides a middleware framework support to component-based applications
designed with a focus on applications with strict real-time requirements such as
Augmented Reality.

Figure 1.1: A cloudlet is a mobility-enhanced small-scale cloud data centre that
is located at the edge of the Internet [9].

Fog Computing

Fog computing is another edge paradigm that mainly supports the Internet of
things (IoT) applications [23]. The OpenFog Consortium was founded in 2015 by
Cisco Systems, ARM Holdings, Dell, Intel, Microsoft, and Princeton University.
In this paradigm, Fog Computing Nodes (FCN) can be placed at any point in the

6



1.2. BACKGROUND

architecture. FCNs are highly heterogeneous; they can be built on various devices
like routers, switches, IoT gateways, set-top boxes, etc. The heterogeneity of
devices leads to the ability to work with different protocols as well as with non-IP-
based technologies in communication between FCNs and the end-devices. Since the
inhomogeneity of the Edge naturally should stay hidden from the user devices, FC
systems expose a uniform interface containing storage and computational services
along with monitoring security and device management facilities. On top of this
abstraction layer, an orchestration layer organizes resource allocations according
to user requests.

With the term Fog computing, we refer thus to a highly virtualized platform
that provides services related to computation, storage and networking, and that
can be seen as a layer in between the Data Centers and the user equipment/devices.
Since this original definition leaves the Fog paradigm very close to other Edge
Computing ones as Mobile Edge Computing [24] and Cloudlets [21], we adopt
Vaquero [25] views on Fog computing. The author distinguishes Fog from other
Edge computing architecture by specifying that the involved nodes may be in a
great quantity and extremely heterogeneous (wireless and sometimes autonomous).
Vaquero envisions Fog nodes that can deploy decentralized communication and
potentially cooperate with each other to perform storage and processing tasks
in an autonomous fashion. Nodes tasks can range from basic network functions
support to new services and applications running in a sandbox environment. Thus,
the most interesting characteristic of this interpretation would be that users can
become an active part of the Fog network, by not only being consumers but also
providers: leasing part of their devices to host services and get incentives for doing
so.

The main factors that will bring the Fog can be summarized as follows:

• Nodes edge location and geographical distribution: Fog nodes must be de-
ployed at the Edge of the network and must be able to locate at least their
neighbors in the local area. Due to the geographical distribution and the
closeness to the final user, they will be able to communicate at low latency
and reduce in data movement across the network significantly.

• User mobility: fog applications can communicate directly with mobile de-
vices via mobility techniques and protocols such as LISP [26] (Cisco’s Loca-
tor/ID Separation Protocol) that can decouple host identity from location
identity [27].

• Nodes heterogeneity: Fog is a multi-layered hierarchical infrastructure, with
dynamic and miscellaneous nodes deployed in a wide variety of environments,
possibly in both physical and virtual form.

7



CHAPTER 1. INTRODUCTION

• Nodes interoperability: Fog nodes must be all-purpose and able to inter-
operate even if related to different providers’ networks.

• Nodes and users real-time interaction: services with low latency, and involv-
ing continuous real-time interactions between users and system.

Mobile Edge Computing (MEC)

In the first declinations of MEC, the acronym referred to Mobile Edge Comput-
ing. In recent years the European Telecommunications Standards Institute (ETSI)
shifted this paradigm toward Multi-access Edge Computing, whose parts are fur-
ther investigated in Section 1.2.3 while current efforts in the literature and stan-
dardization are synthetized in Figure 1.2.

Figure 1.2: An overview on MEC [10]

MEC [28] is responsible for bringing storage and computational resources to
the Edge to reduce latency and improve location awareness.

ETSI describes a MEC implementation fully reliant on 5G in [11]. In this
architecture(Figure 1.3) the MEC orchestrator can interact with the Network Ex-
posure Function (NEF), or in some scenarios directly with the target 5G NFs.
The MEC host, i.e. the host level functional entities, are most often deployed in
a data network in the 5G system. An instance of NEF can also be deployed in
the edge to allow low latency, high throughput service access from a MEC host.

8



1.2. BACKGROUND

The distributed MEC host can accommodate, MEC apps, a message broker as a
MEC platform service, and another MEC platform service to steer traffic to local
accelerators.

Figure 1.3: MEC infrastructure on 5G [11]

The User Plane Function (UPF) can be seen as a distributed and configurable
data plane from the MEC system perspective.

A MEC application may belong to one or more network slices that have been
configured in the 5G core network. In 5G is Network Slicing, that allows the
allocation of the required features and resources to different services or to tenants,
is handled by the Network Slice Selection Function (NSSF). NSSF also assists in
the allocation of the necessary Access Management Functions (AMFs).

In a 5G system it is the AMF that handles mobility related procedures and
it is responsible for the termination of RAN control plane. The Session Man-
agement Function (SMF) includes session management, IP address allocation and
management, DHCP services, selection/re-selection and control of the UPF. As
MEC services may be offered in both centralized and edge clouds, the SMF ex-
poses service operations to allow MEC as a 5G AF to manage the PDU sessions,
control the policy settings and traffic rules as well as to subscribe to notifications
on session management events.

The procedures related to authentication are instead served by the Authenti-
cation Server Function (AUSF). Policies and rules in the 5G system are handled
by the PCF. The PCF can be accessed either directly, or via the NEF.

Brief comparison: Among the conceptual models for Mobile Edge, Fog Com-
puting offers more flexibility in the choice of devices. It leverages on legacy devices
by adding storage and processing to them, however the overall capacities are usu-
ally lesser than that of Cloudlets or Mobile Edge servers [19]. Since dedicated
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CHAPTER 1. INTRODUCTION

devices are used as Edge, MEC and Cloudlets require more time and effort to
setup the infrastructure, but reduce heterogeneity of systems. MEC also aug-
ments context awareness compared to Cloudlets since it gives access to Network
information. Implementation differences are summarized in Table 1.2 . In our
work, when we refer to Edge Computing, we imply Fog Computing and MEC.

Table 1.2: Comparison of Edge Implementations

Fog MEC Cloudlet

Devices Routers, Switches,
AP, Gateways

Servers on
base stations

Data Centers
"in a box"

Location Varying between
UE and Cloud

RN Controller/
Base Station

Local/Outdoor
installation

SW Architecture Fog Abstraction Layer Mobile Orchestrator Cloudlet Agent
Context awareness Medium High Low

Network Bluetooth, Wi-Fi,
Mobile Networks Mobile Networks Wi-Fi

Node to Node Can communicate Partial comm. Partial comm.

Industrial takes on Edge Computing

Edge Computing boxes can range from extremely mobile, low-powered de-
vices (e.g. Tactical Edge Computing [29]) to racks of traditional servers (i.e. Cisco
Flexpod Express [30] ).

Mini clouds have been defined as one or more clusters of computers within the
same LAN, able to provide services such as web pages and storage [31]. Authors
envision an integration of instances owned by multiple institutions to form a self-
managed virtualized Cloud.

Micro and nano data centers are rack of lights-out servers, relatively small in
size(on the range of a tenth of square meters), and managed remotely by a larger
data center. Disruptive startup companies such as Vapor IO, EdgeConneX, and
DartPoints have been deploying some [32]. Dimensions vary from small, regional,
and micro-regional data centers. Typical locations are parking lots, municipal
areas, and at the base of cell towers.

This are the first industrial attempt towards Cloudlets. One of the main pro-
moters of the technology is MobileEdgeX [33], a company created by a Commu-
nication Service Provider, Deutsche Telekom [34]. Other examples of Cloudlets
in this cathegory are Network Attached Storage (NAS) units with Cloud synchro-
nization (e.g. Synology’s CloudSync [35] ).
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1.2. BACKGROUND

Distributed Cloud is promoted by Ericsson [36], one of the most prominent
telecommunication vendors, as a distributed cloud infrastructure hosting telecom-
munication application runtime components as well as designed for 3rd party ap-
plications. Distributed Cloud is an execution environment for applications over
multiple sites, including connectivity managed as one solution. Edge computing
is here envisioned at enterprise premises, for example inside factory buildings, in
homes and vehicles, including trains, planes and private cars. The infrastructure
can be managed or hosted by communication service providers or other types of
service providers.

1.2.2 5G Based Execution Infrastructures
The more frequent usage of mobile devices to perform and compute-intensive op-
erations or storing a vast amount of data introduced the need to offload tasks
or data to the clouds to achieve better performance and extend battery life [37].
The new generation of mobile networks (i.e., 5G) will be characterized by network
densification in spatial, spectral, and back-haul dimensions. Mobile Edge Com-
puting (MEC) [38] is a network architecture that suggests deploying cloud servers
in each base station of the mobile network to reduce the distance between end-
users and Cloud. Cellular networks will be using C-RAN [39], SDN [40], NFV [41]
and MIMO [42] technologies and maybe even involve full duplex or device to de-
vice connections. As explained in the Europeans actions plans [43], 5G will be
characterized by:

1. Economic fiber-like radio with data rates beyond 10 Gb/s, using higher fre-
quency bands above 6 GHz.

2. Network Function Virtualization (NFV) to allow implementing specific net-
work functions in software running on generic hardware, effectively reducing
implementation, management, and operational costs and allowing reuse.

3. Software Defined Networking (SDN), to allow the control of network re-
sources to be opened to third parties.

It was already stated in [44] that: "Future mobile terminals will have much im-
proved context awareness, with knowledge of the user’s requirements, the sur-
rounding environment, and the network." Core 5G applications requirements that
are out of the current 4G technology’s abilities will be:

1. low latency of 1ms (10 to 20 ms for 4G),

2. serving 1 million of devices/km2 (about 1000 device/km2 for 4G)

3. fast deployment of new services in 1 hour time (done in days with current
technology)
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1.2.3 Edge computing Standardizations and architectures
Telecom operators are promising millisecond range latency for 5G networks. By
the laws of physics, this is only feasible if the serving application requests are
geographically close enough to the mobile equipment. However, as pointed out
in [45], it is not only the low latency itself that drives network architecture towards
edge computing but also the ability to offload the device and therefore save on
battery.

In order to enable the portability of applications through countries and mobile
operators, telecommunication standardization bodies are working on solutions to
support edge computing in networks.

• ETSI Multi-Access Edge Computing (MEC) ETSI efforts towards
standardization of edge computing are translated into a series of specifi-
cations. The standard proposes integration options to mobile networks and
introduces a concept of a telecommunication specific edge computing plat-
form that allows operators to open their Edge to authorized third-parties.
ETSI MEC definitions In (GS MEC 012), the Radio Network Information
Service (RNIS) is described as “a service that provides radio network-related
information to mobile edge applications and to mobile edge platforms.” It
exposes information to applications per User Equipment (UE) or per cell or
per period of time, such as radio network conditions, user plane statistics,
and UE context.
(GS MEC 013) Location Service API defines services for activities related to
the location of the device (e.g., its geo-location or Cell ID ), such as tracking
or service recommendation.
The location of single or multiple UEs associated with the “MEC host” is
deducted based on the site of all radio nodes connected to that Edge.
In later work, two API services were detailed:

1. (GS MEC 014)UE Identity API tags the user’s equipment (UE) to map
it to enable enforcement of traffic rules. Example usage [46] is to apply
traffic rules to program the data path and redirect the traffic to a cor-
responding service provider, whether it’s local or remote, to lower the
latency.

2. (GS MEC 015)API for the Bandwidth Management Service (BWMS),
allows applications to register for the bandwidth allocation for sharing
and flexibility of the resource usage. This service also allows more
complex policies such as prioritization of certain traffic.
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• Edge Computing in 3GPP Being the main standardization body in the
mobile telecommunication sector, 3GPP has its own tracks for standardizing
edge computing since release 15 [47]. The work inherits some concepts from
ETSI MEC but specifies the details in a way that the solution is optimized for
5G mobile networks. 3GPP defines the separation of the control plane and
the data plane, network slicing, and so-called Local Breakout functionality
to enable breakout points closer to the user devices and proposes methods
describing how the user devices may found the application.

1.2.4 Edge-native Applications
In this thesis work, I am introducing the new concept of edge native applications.
The term is a relatively new concept, I am defining it with a detailed characteri-
zation.

Initially, ETSI MEC [48] classified applications running at the Edge into three
categories: device-centric (e.g., online gaming), RAN-centric (e.g., caching), and
information-centric (e.g., content optimization). 3GPP does not specify appli-
cations for Edge, besides the network functions that are an integral part of the
network, it differentiates between so-called trusted applications that are entitled
to manipulate specific network configurations through Network Exposure Function
and untrusted 3rd party applications that are running over the top.

The term Edge-native has been applied only later, in December 2019, by the
The Eclipse Foundation to refer to their new vendor-neutral Working Group.

The definition is inspired by the term Cloud-native: those applications born
segmented into microservices with the intent to increase agility and maintain-
ability. Each part of the stack (applications, processes, etc.) is packaged in its
own container, allowing for reproducibility, transparency, and resource isolation.
Containers are actively scheduled and managed to optimize resource utilization
(Orchestration).

The group intends to provide an end-to-end software stack to support deploy-
ments on top of Edge resources of applications related to the Internet of Things
(IoT), Artificial Intelligence (AI), autonomous vehicles, and others.

In their announcement [49] Edge computing is stated to be not necessarily
different from Cloud computing in terms of computational power or software stack
(e.g., containers, Kubernetes, and microservices). The significant difference stands
in the fact that, in Edge Applications, we care about the location of the used
resources and the transparency of the orchestration.

In the recent works on Edge computing, few authors have also introduced this
term [50, 51].

Authors in [50] define an Edge-native application as any software custom-
designed to take advantage of one or more of the attributes of Edge comput-
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ing: bandwidth scalability, low-latency offload, privacy-preserving denaturing, and
WAN-failure resiliency. We do argue that privacy-preserving is not a characteris-
tic intrinsic to the Edge. Even though adding an extra tier to the network allows
data aggregation, and reduces the amount of data that gets to the Cloud. In fact,
security and privacy could potentially benefit from the Edge. However, they are
still highly dependent on the application implementation. Nothing forbids an ap-
plication running on the Edge to log in clear every data sent to it. In fact, the
security aspects of Edge Computing are out of the scope of this work.

In [51] an application is Edge-native not only because it is deeply dependent
on services that are only available at the Edge; but also because it is written to
adapt to scalability-relevant guidance. This implies that the application should
be able to scale up and down, not only horizontally (ex. growing resource usage
on the same machines/tiers) but also vertically: moving from a device/Tier-3 to
Edge/Tier-2 to Cloud/Tier-3.

In the following text, we expand on this definitions identifying five common
characteristics for Edge-native applications (as summarized in Figure 1.4): Cloud-
native, Edge Driven, Mobile, Geo-Localized and User Equipment Dependent.

Figure 1.4: Characteristics of Edge-native applications

Cloud native

Edge-native applications are a subset of Cloud native applications and preserve
their features.
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Container based: self-contained, independent applications; packaged in lightweight
containers.

Loosely-coupled: designed as Microservices. Where each exists indepen-
dently from others but can discover them dynamically to allow for integration, in
other words, each edge-native application should be easily represented in a depen-
dency graph, where the nodes express a service and the edges the dependency with
a different subset of services.

Strongly separated between stateless and stateful: state independent
services are privileged. However, persistence can be enabled, relying on a separate
service. (For example a shared database, a cache service, etc.)

Infrastructures independent: their abstraction level is higher than the OS,
allowing smooth migration. However, they may specify some required system
capability (e.g., GPU).

Policy driven: they can be configured to be highly automatable and elastic,
thus easier to scale.

Edge Driven

Applications require at least one of the three vertices of the 5G triangle: greater
data-bandwidth, ultralow latency (network proximity), or massive/continuous com-
munication.

Greater data-bandwidth: they are immersive applications such as Premium
HD, 360 degrees views, 4K video, or any multimedia that can benefit from cashing
and trans-coding.

Ultralow Latency: Real-time application where communication is critical.
Industrial IoT applications for monitoring and time-critical process control such
as smart grid switching of power, triggering alternative energy supplies, or fault
detection applications. Precision farming. Applications that are sensitive to la-
tency variation (jitter): AR/VR and other forms of tactile Internet, smart vehicles,
and their V2V or V2I communication, Industry 4.0. Also, smart cities, primarily
emergency-related applications: traffic safety and control systems, hazard warning
and cooperative autonomous driving, Healthcare applications like remote surgery
or remote abdomen scans.

Massive communication: Those applications where sending billions of events
or data to the Cloud would be expensive and inefficient. Examples are: analysis
of raw video streams for video surveillance, face recognition or object recognition
such as plates or pass stickers; IoT gateways, big-data analytic collections.
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Mobility aware

Applications are designed to follow the user or to be subjected often to redeploy-
ment and scaling horizontally and vertically, meaning that, Edge Native applica-
tions have the ability to scale out to the Edge or scale back to the Cloud.

Mobility awareness also helps edge-native applications to prevent or react to
catastrophic failures since Edge sites may suffer single points of failure in their
network and power supplies.

Application mobility requires transferring and synchronization in order to guar-
antee service continuity to the final user—the added complexity to the infrastruc-
ture changes according to the type of application mobility. The simplest scenario
is if the application is stateless so that there is no need to store and move its
context.

Stateful applications increase complexity since they require moving and seam-
lessly synchronizing the context to make the migration transparent to the user.

Geo-localized

The software is highly dependent and reacting to the surrounding environment.
Not only the performance of the application depends on its network proximity to
the services, but also the service leverages on inputs dependent on the location
of the user. An example is ad delivery and footprints analysis in shopping malls.
The main priority for this applications is to provide high defined personalized
content without burdening the upstream bandwidth. These are geographically
self-contained services like those for stadiums, airports, concerts, universities, or
any smart buildings. Applications that allow the viewers to perform the same ac-
tion from different perspectives based on their personal preferences. For example,
having multiple views of a soccer field during a match. Live camera signals are
locally ingested and played out to visitors in real-time. Visitors can select between
different cameras for an immersive experience.

User Equipment Dependent

Applications, being either human-centric or event-centric, have most of their inter-
actions influenced by the UE. The Equipment characteristics alter the performance
of the application (ex. video input and connection quality, amount of messages
that can be handled in the time unit, memory available to perform tasks offloading
or preprocessing, etc.).

An example of edge-native application covering all the presented properties are
Augmented Reality based Massive Multiplayer Online Games.
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These are Cloud-native applications that are dependent on all three vertexes
of the 5G triangle. It is mandatory to enable UEs to interact with each other
in real-time: time of all servers and clients should advance at the same rate to
ensure as close as possible experiences (ultralow latency). They render very
high-quality images and videos (great data bandwith) and involve continuous
data transmission from the gamer controller (massive communication). Clients
are mobile devices and need a stateful context: they should share the same
application state (temporal and spatial consistency) .

The rendering of the backgrounds, maps, and other surrounding user avatars
depends on the user location (Geo-Localized). Users may access the games
from different equipment/mobiles but have to get the same chance of participation
regardless (UE Dependent).
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Chapter 2

Facilitate Deployment at the Edge

5G mobile networks promise high bandwidth and low latency on the radio interface
for both downlink and uplink data [52], which capability will enable new types of
applications and services. Nowadays, there exist very few edge-native applications,
but their number will grow in the future. Such mobile applications include Aug-
mented Reality (AR), Virtual Reality, Gaming, and many other bandwidth-heavy
and latency-sensitive applications, potentially applied for critical use cases such as
Intelligent Transportation Systems or Surveillance.

Deploying an application on a 5G network with distributed edge cloud capabili-
ties involves, first of all, the choice of were to allocate what parts of the application.
The decision depends both on the application itself and on the involved network.

In this chapter, we propose an offloading framework to allow components of
edge-native applications to run not only on the user device but also on the Edge
and Cloud sites. The aim is to give an overall impression of the problem, but we
cannot cover the complexity of a working infrastructure solution for Edge-native
applications. We will address the issues of scheduling, migration, and service
provisioning in later chapters.

To support the change from Cloud to Edge, we also present a toolset to enable
analysis and partition of an existing monolithic cloud application.

Finally, we provide a method and tool to facilitate the refactoring of an exist-
ing application into modules. To do so, we calculate the best placement of the
modules on the network compute servers, given user profile and context condi-
tions information. Common ones are the typical user request size, policy per type
of user (SLA), available bandwidth, network node types, available computation
power and cost (on the device, in the distributed Edge, and at the central Cloud).

We have chosen a resource-demanding AR application for our test. We assume
that they can benefit both from involving low latency external computation power
and significant sized, but affordable, storage capabilities. To validate our assump-
tions, we apply the mentioned tool and measure the application properties under
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certain circumstances and network constraints.
Our main contribution is the proposal of a method to automatize application

partitioning and placement in a 5G/Edge environment. We introduce a possible
toolset implementing our approach, its experimental setup, and evaluation.

Most works on this topic focus only on task partitioning and placement, while
they seldom address the question of handling multiple users and performing load
balancing. For this purpose, in our work, we integrate an approach from network
service placements and apply a variation of the approximation algorithm for the
Path Computation and Function Placement Problem described in [53].

2.1 Motivation
Our first objective is to describe what characteristic the Edge infrastructure will
have to enable the movement of applications trough different layers of the network.
Secondly, we want to provide a first guide to enable the transformation from Cloud
to Edge.

In most cases, developers rely on experience to make migration decisions from
one technology to another, like what happened with micro-services and contain-
ers. However, Edge computing also involves new physical elements in the cloud
infrastructure, for which experience only may not be enough. Thus the developer
has to decide the best allocation and division of services without having previous
references on the network and infrastructure influence on the overall performance.

While knowledge of the service category retains its importance in the migration
process, a toolset to simulate such a process may save developers time and money.
In fact, as for the Cloud, most of the Edge infrastructure will be pay-per-use, so
that an unfortunate choice of deployment would translate in a significant waste of
resources.

There is an extensive literature on Edge computing [54], partitioning [55] and
code offloading [56]. However, from our knowledge, all the components of this
complex system have been analyzed as standalone without considering too deeply
their interactions.

The Chapter is structured as follows. After a deeper introduction to the ob-
jectives of modeling, partitioning and placing an application (Section 2.1.1), in
Section 2.2 we present a classification of Application Partitioning and Offloading
models. We also concentrate on the importance of context awareness and describe
the requirements for partitioning of an AR application. Finally in Section 2.2.6
and Section 2.2.7 we present our first setup. Section 2.3 contains our model to
partition an application and simulate multiple deployments and service requests.
Together with modeling(Section 2.3.5) and network experiments(Section 2.3.6). In
Section 2.4 we compare our work both with offloading and placement frameworks.
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Section 2.5 summarizes our findings while 2.6 .

2.1.1 Problem Statement
To partition an application and deploy its modules in a 5G network, with edge
computing resources, we need to calculate the (sub)optimal grouping of the com-
ponents and their placement that maximizes network capacities in a given instant.
Giving a flexible method to automate this process enables applications to adapt
to environmental changes through dynamical reallocation of resources.

We can synthesize this task in three main steps:

a) Model the application through hybrid analysis (using both static analysis
and heuristics from dynamic profiling of the given application);

b) Calculate a partition to divide the application in modules minimizing their
interactions and communication cost while maximizing the responsiveness
and perceived performances;

c) Decide best placements of the modules in the given network;

Model and Discovery The first step in finding the optimal way for execut-
ing a task should be profiling the context and the job itself. Profiling of a given
task can be carried out in several ways. Fundamentally, this phase discovers lo-
cations of the code at which distribute or parallelize the execution. Having an
enriched description or abstraction of the different resources available could help
with integrating different vendors HW and SW and fastening this profiling. De-
velopers may annotate an application to influence the result of the profiling and
the consequent partitioning decision. An offline static analysis may help separate
monolithic applications into candidates for tasks, such as identifying paralleliz-
able or independent parts of the code and therefore, suggesting deployments on
different machines. The scope of the context discovery is to build up a model or
representation of an available network slice for which the subtasks’ deployment is
reasonable. In this analysis, we have to gain information on the costs of transmis-
sion, available resources, and the capabilities and current workload of reachable
nodes in the network. A combination of static invariable knowledge and dynamic
collection of this data through simulation and estimation models will be needed.
For example, one could model measurements of the average consumption of the
battery per instruction or task size, while total memory can be considered static
data. Finally, the available resources on a node change during time and need
constant monitoring. Based on previous works [55] we believe a graph representa-
tion of the task connections and the cost associated with running them in different
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available nodes would be more performing and less resource-intensive than a linear
programming (LP) model.

Placement Thus, the results of the Discovery phase should be applied to elab-
orate a sort of place-and-route graph, as a plan to deploy our subtasks in the
available network. Making deployment plan is very similar to a path computation
and function placing problem; already well-known task that must be solved by
network manager in NFV/SDN settings. Even et al. in [53] described an approx-
imation algorithm for addressing this problem efficiently and flexibly. Integrating
this solution with methods for faster Pareto-optimal solutions may allow us to
comply with a more strict real-time requirement. Further restriction to the slice of
the network to consider may be posed by the application of clusters, as described
in the previous section.

2.1.2 Continuous Interactive Applications
In this chapter, we will run experiments with a category of cloud applications
that share some characteristics with the edge-native ones. In Continuous Inter-
active Applications (CIA) [57] the interaction is real-time and almost constant,
so this time must be as close as possible to zero. Examples of such applications
are augmented reality (AR) solutions or MMORPGs (Massive Multiplayer Online
Role-Playing Games). The main requirement for such applications is to enable par-
ticipants (even if in different locations) to interact with each other in real-time. All
clients should share the same application state (temporal and spatial consistency)
and have an equal chance of participation regardless of their network conditions
(fairness). The simulation times of all servers and clients should advance at the
same rate. The representation within a simulation should be as similar as pos-
sible to the real-world (fidelity). This general requirements are summarized in
Figure 2.1

In these scenarios, latency is a known significant barrier. Furthermore, network
latency has a lower theoretical limit imposed by the speed of light. We believe
it is possible to reduce latency and to improve CIAs by applying computation
offloading and by reducing physical distance between server and user through 5G
and edge computing.

The emerging 5G network architecture, together with the concept of edge com-
puting seems to be the perfect solution to the requirements of CIAs [58]. State of
the art 4G networks can add from 10ms to more latency to CIAs, but the future
5G network can be expected to be able to support real-time and context-aware
applications, being able to provide specific context information [59].

The mobile nature of CIA requires adaptive algorithms and context-aware ar-
chitectures. Dynamic changes in the configuration at the Edge of the network can
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happen frequently: devices may be physically moving, the network may need to
balance resources or reallocate them. Therefore, our goal is to define a framework
that takes into account the dynamic nature of CIA applications.

Figure 2.1: Continuous Interactive Applications General Requirements

2.2 Offloading in Edge Computing
The use of mobile devices, to perform intensive operations, or store a considerable
amount of data, requires offloading to the clouds to achieve better performance and
extend battery life [37]. These would be difficult and expensive without bringing
the Cloud closer to the Edge of the network and the end-users.

One of the fundamental properties of an Edge Computing framework is compu-
tation offloading. In Edge offloading, resource-intensive tasks should be executed
over the cloud infrastructure to overcome the resource limitation of mobile devices
and reduce the total execution time [56].

Furthermore, at the Edge applications will travel trough all tiers: mobile device,
Edge, and Cloud, according to the user and network.

Having at least two supported types of layers (the Edges and the Local clouds)
and including context awareness to facilitate task or code offloading, increase the
infrastructure complexity.

We describe our work towards a framework keeping in consideration such needs,
together with the interactions of its components (see Figure 2.2).

The UE connects to an antenna site, where the Edge resources are co-located,
and where it can get access to the internet and thus to Local Cloud resources.
Generally we consider Local Cloud any data center close enough to the user, for
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instance in the same area of his Region. The main idea behind the framework is
to store multiple partitions of the same application, and switch among them based
on the context.

Figure 2.2: Context-Aware Framework for Application Offloading

In this sense, we also investigate how to provide a flexible partitioning of the
application based on the location it has to be moved.

2.2.1 Application Partitioning
Partitioning an application means starting from a monolithic application and sep-
arate it in multiple communicating components.

Program partitioning has been used in application offloading for resource-
constrained devices. Previous works propose computation offloading at different
levels of granularity: Module level [60], Method level [61], Object level [62, 63],
Thread level [64, 65], Component level [66, 67]. Various metrics can help to decide
the right level of granularity for the partition of a graph. For instance, the critical
path, being the longest directed path between any start and finish nodes, indicates
the shortest time needed to execute. The time can be calculated from its length,
computed by the sum of the traversed nodes’ weights. The average degree of con-
currency, that is, the total amount of work divided by critical path length, is also
a standard metric. Related to the size of the partitions, we consider essential the
size of the data associated with tasks because it helps to minimize the volume of
data-exchange and maximize data locality. Also, the size of context is an indicator
of how affordable or expensive the communication between tasks can be.

Another dimension that could be considered is the type of gathered information
used by the partitioning. It can be a result of a static (based on the source code)
or a dynamic (based on runtime information) analysis.
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Applications may be partitioned using automatic or manual annotations.
The partitioning analysis can be performed using a graph-based or a linear

programming (LP) model. According to [55] graph approaches perform better,
consume fewer resources, in comparison with LP.

State-of-the-art Application Partitioning Algorithms (APAs), applied to dis-
tributed processing, still face many issues and challenges. An extensive summary
concerning APAs in Mobile Cloud Computing is proposed in [55]. Based on the
model used as an input to the partition, the authors identify three main categories
of solutions: graph-based, Linear Programming (LP), or hybrid solutions between
the two.

Solutions based on graph representations of the applications may use a data
flow graph to represent data dependencies between operations [68, 60, 65],

while class dependency graphs can describe the structure of an application [69,
68].

Authors in [62] partition object-oriented programs by generating an Object
Relation Graph (ORG) to estimate the runtime objects and their interactions,
and then applying graph partitioning to this ORG. In [63], a two-layer graph
structure is used, in which a second graph, the Target Graph (TG) accounts for
the various target infrastructures and distribution objectives.

Graph-based APAs require efficient manual annotation techniques; it is up to
the programmer to balance the metrics and specify metrics function. Besides,
a tremendous resource overhead is generated in case of applications with a large
number of components. Finally, the performance of graph-based solutions depends
on the application characteristics: the analysis becomes easy if the application is
already somehow modularized. On the other hand, LP-based solutions always pro-
duce optimal results for a particular objective function [66, 70, 71]. LP APAs need
dynamic scheduling techniques, extra profiling, and resource monitoring; thus,
causing high overheads.

Hybrid solutions extract the important features of graph-based APAs and LP-
based APAs to improve the performance and mitigate overheads but, in most cases,
at the expense of generating only a sub-optimal partition [61, 64, 65, 72, 67].

Application Modeling and graph partitioning

The NP-hard graph partitioning problem is a fundamental issue in many other do-
mains of computer science, such as parallel processing [73] and load balancing [74].
In grid computing, the graph partitioning problem has been used to define parallel
tasks to be deployed on heterogeneous infrastructures. As stated by [67], many
proposed algorithms, such as MiniMax, VHEM, QM, PaGrid, and MinEX, use a
multilevel paradigm, while others use simulated annealing [75].

In the literature, decomposition techniques based on graphs [76] involve three
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macro steps: (1) Identify the level of granularity for the elements of the partition;
(2) Analyze the application with task dependency and interaction graphs, (3) Map
possible valid partitions.

Properties of tasks that affect the quality of mapping are feasibility of task
generation, size of tasks, and volume of data handled by the task or passed between
two of them.

In fact, one needs to take into consideration the interaction between the parti-
tioned tasks: they often share data and may have a correct sequential order [77, 78].

In scheduling, the interaction graph represents the application divided into
tasks. Nodes in the graph are the tasks while their weights denote the amount of
work to be performed. Edges represent the interactions between tasks. Generally,
edges are undirected; when directed, they are used to show the direction of the
dataflow (if unidirectional). Weights on edges contain the cost of communication.
Shared data may imply synchronization protocols (mutual exclusion, etc.) to
ensure consistency.

In distributed systems theory, the interaction graph is also referred to as the
Control Flow Graph (CFG). A CFG is a representation, using graph notation, of
all traversable paths of a program state during its execution. The graph provides
the whole structure of a program, among others, making explicit all of the paths
that are induced by a conditional branch. A function dependency graph, for exam-
ple, is a sub-graph of these graphs, having has partition granularity the function.
Dependency between functions implies interaction (calls or data passing) between
them.

A Call Graph (CG) is a dependency graph representing calling relationships
between functions in a computer program. Each node denotes a procedure and
each edgepf, gq indicates that procedure f calls g. Thus, a cycle in the graph
indicates recursive calls.

Call graphs are results of basic program analysis, that can be used for model
programs, or as a basis for further investigations. Call graphs can be dynamic
or static. A dynamic call graph is a record of one execution of the program, for
example, as output by a profiler. Thus, a dynamic call graph can be exact but
only describes one performance.

In object-oriented languages, the potential target method(s) of many calls can-
not be precisely determined solely by an examination of the source code [79].

Thus, to build the call graph, it is necessary to have inter-procedural data and
control-flow analysis of the program.

2.2.2 Application Offloading
The decision about whether to offload part of an application depends on a complex
combination of factors: the size of the task, the available resources, their distance,
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the actual latency, and the cost of the code, state and data migration itself in
terms of energy consumption.

The decisions could be taken either online or offline. The difference being in
the higher computational overhead of online approaches.

Though the technical problem of offloading is well addressed in the current
efforts [56], the application partitioning is still challenging due to the variation of
resource requirements in heterogeneous mobile devices. An ideal solution should
consider which granularity to choose for different mobiles and edges. It should
adapt to changes in the network, without creating overhead and interfering with
the application behavior. Our solution aims to solve this, as well.

2.2.3 Context Awareness
Adapting an application behavior based on the continuous changes of certain con-
text variables, such as user location and resources (processor, network bandwidth,
computational power, etc.), has been of interest in multiple works in the past years.
We may distinguish between application adaptation, traditionally concerned with
variability in hardware resources, and context-aware applications, more related to
the user and the physical environment in which he/she is [80].

Context-awareness works include context management, context modeling, con-
text measurement, and context delivery. Which respectively refer to: how context
and relationships are modeled, how context is obtained, and how it is delivered to
the engine responsible for the adaptation [80].

Context-awareness and application adaptation are critical enablers for au-
tonomous systems [81]. IBM autonomic computing architecture states that they
require self-management, self-configuring, self-healing, self-optimizing, and self-
protecting.

For [82], the key challenges for application-level automation include models,
frameworks and middleware services that support the definition of autonomic el-
ements, the development of autonomic applications as the dynamic and oppor-
tunistic composition of these autonomic elements, and the policy, content, and
context-driven definition, execution and management of these applications.

Works on autonomic computing address some of these self-management ca-
pabilities applied in specific domains [83]. Software deployment, data storage,
resource allocation, communication patterns are only a few examples.

Since for our work, we concentrate on enhancing the AR technologies through
self-optimization of the application offloading, we will shortly review the work in
this direction.
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2.2.4 AR Requirements
A mobile device user may offload code or data to a dedicated instance in the
Edge directly. The mobile device communicates with the instance using a cellular
network via the Internet. Because of mobility, device users may lose connectivity
to the Edge, but might later reconnect to the same or a different one. In these
cases, the offloaded code and data should not be lost.

Mostly, the need for a latency lower than what the human eye can perceive
(25ms), pointed us toward a hybrid partitioning, using a base-pool of partitions
created offline, and an algorithm for the online selection based on the graph repre-
sentation of the method level costs. The partitioning approach will imply running
the application on a small set of inputs to create a database of possible parti-
tions varying according to network and hardware resources availability. Measur-
ing through light profiling techniques will help to reduce the overhead. When the
setup threshold is passed, the new partitioning will be deployed. Logs that do not
tamper with applications can be used to allow a periodical offline analysis of the
partitioning performance. This way, the database can be updated. We decide to
focus on a module level or a method level partitioning, and object-level partition-
ing was excluded because of the general dimensions of OpenCV objects in the AR
applications.

2.2.5 Offloading Framework
Based on the previous assumptions, we propose an offloading architecture that
takes inspiration from [84] and [85] (see Figure 2.3). It distinguishes two supported
types of layers: the Edges and the local Clouds.

An Edge has virtual machines (VM) instances hosted by a public cloud service
near the mobile devices. Every application is assigned to an instance for offloading
and caching purposes. Instances can communicate with each other and with the
local Cloud. A cloud is a VM hosted by a resource-rich machine placed far enough
from the Edge.

The Edge handler on the user device queries the nearest mobile base station
for the most adjacent Edge. If one is available for connection, connects using a
public IP address.

The Dynamic content downloader downloads input data for tasks when a mo-
bile device offloads computing tasks through the Internet, so that the mobile device
does not have to transmit input data with the code, which saves energy.

TheData migration handler manages data transmitted between a mobile device
and its instance on the Edge. The mobile device connects to the client handler
on the Cloud, and the dynamic migration handler connects to the dynamic object
input/output stream on the Edge and the mobile device. When the mobile device
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Figure 2.3: The proposed offloading framework

connects to the next nearest Edge, the new Edge handler attaches to the handler
of the previous Cloud to retrieve the code/data. If the old Edge does not receive
user data requests after a short time, it transfers the data back to the Cloud to
prevent data loss.

The Remote decision engine decides on whether to migrate unfinished jobs with
their data to the Edge or not.

The App Data caches frequently offloaded codes with application input data.
The offloading framework in the Cloud is placed in a VM hosted by a virtual-

ization platform. This is the Cloud VM.
The Remote execution decision engine is the decision-making component of

the offloading framework. Whether and where to offload data, it is based on the
selected partitioning and optimization algorithm. This engine takes the measure-
ments provided by the profilers as inputs. At execution time, active profiles will
be monitoring: network bandwidth, user device energy and resources, Cloud, and
edge resources. As stated by [61], it does not make sense to complicate network
measures: a simple TCP packet is enough to judge latency. The main software
measures are the time spent per method and CPU resources required. The main
hardware ones are available battery and memory on the device and Edge.

The Partition DB leads us to a hybrid solution. A set of preferable partitions
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based on thresholds of the profiled metrics can be stored in the DB. Every time the
profilers register significant changes, the best fitting partition will be implemented
on a new instance, and there will be a handover between the two.

2.2.6 Toolchain for Context Analysis
In our work, we plan to apply both static and dynamic tools. Static analysis
can be used to discover dependencies on the application source code/bytecode.
This analysis is quite lightweight and adds minimal overhead since it is done once
and offline. The advantage of the dynamic techniques is to take into account any
software and hardware and contextual network changes. The dynamic techniques
use profilers, and they can optimize the application partitioning based on dynamic
program analysis and context awareness. We used sample/log based profilers that
are executed without modifying the binaries they measure.

The following tools are used: Callgrind [86], OProfile [87] to profile the system
calls and CPU usage for a single process, and CProfile [88] to create graphical call
graph.

• Callgrind is a static analysis and profiling tool. It was used to generate
function dependency graphs and to record the call history among functions
in a program’s run (call-graph). The number of instructions executed, their
relationships, the caller/callee, and the numbers of calls were registered.

• OProfile Was used to profile the system calls and CPU usage for a single
process. The program offers a tool to check some information about the last
profiling information, including CPU cycles and call graphs. The number
of cycles can be combined with the processor information and provide hints
about the energy consumption [89]. The profiler is composed of three main
parts, (i) Kernel, responsible for the measurements itself, (ii) DataCollec-
tion, responsible for storing the measurement information and finally the
(iii) Sample Database and Analysis that is responsible for computing and
showing the profiling results.

• CProfile is a C extension of a Python module to profile software, it was used
to generate graphical callgraph, profiling of CPU in nanoseconds grouped by
Source File, cycle and by functions from called libraries. CProfile is mainly
used for function-level performance analysis [88].

2.2.7 Preliminary Analysis
To support the proposed architecture and applying an offloading technique inspired
from [67], we wanted to verify our toolchain and our ability to estimate the cost of
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each method call (and thus possible partition) through hybrid static and dynamic
analysis.

This experiments are taken from a collaboration work and are further detailed
in [12].

Our simplified distributed 5G network consisted of two laptops simulating the
Edge and the Cloud, connected via Ethernet cable to a Raspberry pi(as shown
in Figure 2.4). The latency and speed are simulated in the application by soft-
ware, where the minimal latency varies from half a millisecond to one and a half
millisecond. This way, simulating the 5G environment mentioned by [18].

Figure 2.4: Environment overview [12]

We created a simple AR application based on OpenCV, a face recognition
solution [90].

It recognizes all the faces appearing on a video stream and brackets them
in real-time. The augmented video stream was rendered on the Raspberry pi,
representing our augmented reality device.

The application was divided into four different modules, used to implement
three different partitions, as explained bellows.

The Video Decoder receives a .jpg image from the streaming and decodes into
an array readable by OpenCV. The Face recognition server receives a .jpg image
from the streaming and does the full processing: decodes it into an array readable
by OpenCV, performs the face pattern matching, draws a square around it, encodes
back to jpg, and sends the image to stream. The Video Encoder converts an array
of an OpenCV readable image into jpg. Finally, the Face Recognition from encoded
image receives a decoded image, performs a pattern match, draws a square around
these and sends the still decoded image for streaming.
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Figure 2.5: Server and services [12]

In this way, the application can be divided in more instances and different
machines. An example of it can be seen in the Figure 2.5.

The possibility of splitting the library itself was not explored, but it is a strong
possible further study, as some tasks may be done in the client side avoiding the
data transmission.

The Client Application is able to read data from the server and display it, in
two different fashions:

• Encode and Show: OpenCV decoded image are read from the buffer, and
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Figure 2.6: Client Architecture [12]

encoded into JPG, than shown on screen.

• Show: a jpg image, is directly read and displayed.

An example of how the Client Application works can be seen in the figure 2.6.
In this given scenario, the encoding performed by the client or the Edge, give

us not just information related to itself, but the transmission of different data and
the cost of the serialization process.

Given this, the three different partitioning scenarios where: (S1) the Edge
performs all the activities, (S2) the Edge receives already decoded images from
a mobile device, and (S3) the Edge receives the encoded image and streams an
encoded image with the face detection.(As shown in Table 2.1)

An example of outcomes is shown in Table 2.2, which is a small sampling of
the profiling data for us to better notice how the information is retrieved by the
tool. The table shows the overhead for each of the five most expressive modules
and five most called functions. The whole profiling covered an arc of five minutes
(i.e. 5e+11 nanoseconds), equivalent to 20551547 processor cycles. Considering
this, libopencv_objdetect took around 85.7% of the cycles in the first scenario
(S1).
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Table 2.1: Experiment scenarios

RaspberryPi EDGE Client

S1 Streaming Read Stream + Decode +
Face Detect + Encode + Stream Read streaming + Show

S2 Decode
+ Write Buffer

Read Buffer + Face Detect
+ Write Buffer

Read buffer + Decode
+ Show

S3 Streaming Read Stream + Decode
+ Face Detect + Write Buffer

Read buffer + Encode
+ Show

Table 2.2: Edge Profiling

Functions Processing Time in Nanoseconds:
1st 2nd

S1 detect_haar 59105000 sre_parse 14119997
S2 detect_haar 59724000 sre_parse 13461991
S3 detect_haar 59632000 sre_parse 14606995

3rd 4th
S1 __init__ 10180922 sre_compile 6389996
S2 __init__ 10563998 sre_compile 5780996
S3 __init__ 10180994 sre_compile 6060998

Number of Processor Cycles per Module:
1st 2nd

S1 libopencv_objdetect.so.3.2.0 17610014 libjpeg.so.8.0.2 986295
S2 libopencv_objdetect.so.3.2.0 5369080 libc-2.23.so 1495032
S3 libopencv_objdetect.so.3.2.0 4039863 libc-2.23.so 2078818

3rd 4th
S1 kallsyms 895637 libopencv_imgproc.so.3.2.0 378891
S2 python2.7 700766 kallsyms 507515
S3 kallsyms 284041 libjpeg.so.8.0.2 280537

This first example also shows us that, in the Edge simulations, the most used
function always concerns the object detection.

The serialization algorithm is a built-in resource of Python called Pickle [91],
which is widely used even for performance and hybrid approaches (e.g. [92]). It
was responsible for around 1.5% of the added processing time for the client, which
in our experiment was representing an average of 0.55 millisecond per frame.

In the Figure 2.7, we can see two graphs summarizing how this performance
tests result for the Edge.

The two graphs on the top refers to a first 5 minutes batch and the two in the
bottom to a second 5 minutes batch.

Based on the static analysis tool outputs, and adding an average offloading
time (the communication cost between devices), we selected the first partition
to be the most efficient. The key performance parameter was the number of
calls and processing time in the face recognition activity, which is the same in all
cases. When comparing S3 with S2, it processes a similar amount of frames with
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Figure 2.7: Edge profiling overview graphs

significantly better usage of Edge’s resources. On the other hand, S1 performed,
on average, three times more frames. In fact, on a 5 minutes streaming, for the
same amount of total processor clocks, the number spent on performing detection
is 85.7% against the 26% of S2 and 19.6% of S3. Offloading time cost was greater:
in case of such a small application, the partitioning only adds overheads to the
application performance.

2.3 A model for application partitioning and de-
ployment

We decided to work on defining a toolset to assist the creation of edge-native ap-
plications based on the learning experiences on partitioning and offloading. The
idea is to enable analysis and partition of existing cloud applications so that de-
velopers can understand how they could be deployed on the Edge infrastructure.
In the following sections, we provide a formal description of the models and meth-
ods used to construct our simulation toolset, followed by a description of the real
application we used as first input for it.

2.3.1 Models
To map an application based on functions granularity, we construct a function
dependency graph. In scheduling and load balancing, this method is used when
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the application can be described from the static definition of the dependency graph,
and the function sizes are known.

Determining an optimal mapping of the function dependency graph becomes
solvable if there are useful heuristics available to estimate the data flow and a
structured call graph. We use a static analyzer tool to generate the function call
graph from the source code. Then we run the application and collect for each
function, using a non-intrusive dynamic profiler, the percentage of runtime spent
in it. Besides, for each link between two functions, we collect the number of
times the caller calls the callee. We normalize those results and store them in the
call graph as a node and edge weights. The normalized edge weights will define
the dependency between the two connected functions, thus to estimate how to
separate the application to reduce such interactions, it will be enough to use a
minimum edge-cut strategy. The node weight is useful information to determine
the complexity of the computations handled by the function. This value can be
used to balance the partitions or to deploy different optimization strategies. For
example, if we want the User Equipment (UE) to save energy, we would concentrate
the computational load on the Edge or the Cloud.

It is important to stress how we are deploying a context-insensitive construction
of the application call graph. Each node will represent precisely a single contour:
an analysis-time representation of a function.

2.3.2 Application Partitions
Having our weighted graph, we partition it using Multilevel [93] version of the
Kernighan - Lin [94] algorithm (MLKL). We choose the multilevel strategy to be
able to handle potentially large function call graphs. After running the algorithm,
the application will be divided into several Modules where the user can select
the ceiling for the number of partitions, and the weight of each Module and the
interaction frequencies between them will derive from the original graph. The
directed graph resulting after the partition step represents the due interactions
between the modules. This new level of abstraction means that we lose information
like when and for how long two specific functions in two modules will interact at
running time. Such information also depends on the user interaction with the
application itself and can vary from instance to instance.

We decided to adopt a pessimistic approach in the module deployment phase,
taking as the weight of the assumption making that we want to run all the modules
instantaneously.

35



CHAPTER 2. FACILITATE DEPLOYMENT AT THE EDGE

MLKL and METIS

MLKL is a Multilevel Version of the KL algorithm. It means that the algorithm
is applied in three repeated phases: Coarsen, Partition, and Uncoarsen.

First, the algorithm coarsens down the graph by merging connected vertices
into a smaller one. Then this graph is partitioned and uncoarsened again while
optimizing the partition in each uncoarsening step, using KL as refinement func-
tion.

The KL algorithm is iterative. It starts with an initial partition, and, in each
iteration, it finds two subsets which guarantee a smaller edge-cut. If such subsets
exist, then it moves them to the other part, and this becomes the partition for
the next iteration. The algorithm continues by repeating the entire process. In
the implementation proposed by [95], the KL algorithm computes for each vertex
v a quantity called gain, which is the decrease (or increase) in the edge-cut if v is
moved to the other part. The algorithm terminates when the edge-cut does not
decrease after x number of vertex moves, and those last moves are undone to get
the maximum edge cut.

2.3.3 Network Model
We test our partition behavior in our network to see what configuration gets the
maximum out of the same network conditions. Thus we deploy all tasks in all nodes
and see what are used the most to satisfy network demand considering network
capacities.

The network is a fixed set of computational resources and communication links.
It is represented by a graph N “ pV,Eq, where V is the set of nodes, and E is the
set of edges.

We classify nodes into three categories: UE, Edge Cloud Servers, and Central
Cloud Servers. Note that the classes are disjoint, and our proposed method works
with other types of disjoint classification of nodes as well.

Nodes and edges have capacities. The capacity of an edge e P E is denoted
by cpeq, and the capacity of a node v P V is denoted by cpvq. All capacities
are positive integers. cpeq represents the available bandwidth between the two
network nodes; cpvq depends on the amount of available computational resources
and the cost of accessing them. We suppose several UEs that request services
from the application. Each of these services may be different on the Service type
and the Location of the involved nodes. Examples of such services can be a video
upstream or augmented downlink video. Each Module is a part of the application
that, combined, can solve a specific service request.
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2.3.4 Service Request
A service request for user j is specified by a tuple sj “ pGj, dj, bj, Ujq, where the
components are as follows:

Gj “ pMj, Yjq is a directed (acyclic) graph called the place-and-route graph (pr-
graph). There are a single source and a single sink, that corresponds to the node
requesting the service. We denote the source and sink nodes in Gj by nsj P Mj

and ntj PMj, respectively. The other vertices correspond to services or processing
stages of a request. The edges of the pr-graph are directed and indicate precedence
relations between pr-vertices.

The demand of a request sj is dj and its benefit is bj. Demand is computed from
the cost of running a complete module. The benefit is the benefit of serving that
precise request of service. It should be calculated from the SLA, but it depends
on the network owner as well. By scaling, we may assume that minjtbju “ 1.

We map the User Equipment service request sj as the realization of a path
through the directed partition graph representing the application. In this case,
the Module’s demand can be calculated over the cost of each function composing
the Modules in the specific service request. The routing cost from one Module to
the other becomes than the overhead or transmission cost brought by the selected
Module interaction scheme. For example, the size of the data to be transferred
from one Virtual Machine to the other to keep a consistent state trough all their
network instances [96]. Thus, the impact of the service request on the network can
vary only based on the Modules’ location. To specify the possible realization of a
pr-graph in the physical network, we use a function Uj : Mj YYj Ñ 2V Y 2E where
Ujpmq is a set of “allowed” nodes in N that can perform module m, and Ujpyq
is a set of “allowed” edges of N that can implement the precedences and routing
requirement that corresponds to y. We now define for each service request sj the
product network pnpN, sjq. The node set of pnpN, sjq, denoted by Vj, is defined
as Vj fi YyPYj

pUjpyq ˆ yq. We refer to the subset Ujpyq ˆ y as the y-layer in the
product graph. The edge set of pnpN, sjq, denoted Ej, consists of two types of
edges Ej “ Ej,1 Y Ej,2 defined as follows:

1. Routing edges connect vertices in the same layer, they represent the physical
links in the network.
Ej,1 “ tppu, yq, pv, yqq | y P Yj, pu, vq P Ujpyqu

2. Processing edges connect two copies of the same network vertex in different
layers, representing the move from one Module to the consecutive one in the
service chain specified in Y .
Ej,2 “ tppv, yq, pv, y1qq | y ‰ y1 P Yj edges with common endpoint m, and
v P Ujpmqu
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PCPF problem. The substrate network N “ pV,Eq and a set of service
requests tsiuiPI described as stated before, are the necessary input for the solution
we used for Path Computation and Function Placement Problem (PCFP). The
goal is to compute valid realizations P̃ “ tp̃iuiPI 1 for a subset of the requests
I 1 Ď I so that P̃ satisfies the capacity constraint of N and maximize the total
benefit

ř

iPI 1 bi. For our work, we apply the fractional relaxation of PCFP-problem
described in [53]. It is a variation of Raghavan’s randomized rounding algorithm
for general packing problems [97]. For each user request that we decided to supply,
we assign a simple path Pi from its source si to its destination ti. At each node,
the random walk proceeds by rolling a dice. The probabilities of the sides of the
dice are proportional to the flow amounts.

Experiment Setup

We created a generic setup for Multi-Access Edge Computing partitioning and
distribution. It is composed of four resource-constrained devices connected with
an edge server through redundant networks, where different network setups can
be tried. The application initially has all the processing activities done in the
server, which collects information from the four connecting devices and performs
the processing.

The connections used for the experiment explained in this article were car-
ried with wireless 5 GHz and Ethernet connections, where the client devices were
equipped with 100 megabits network shields.

The client devices were equipped with cameras using Sony IMX219 sensors,
streaming real-time video to the server. The camera was configured to create
frames of 640x480 pixels, 25 frames per second, and 4:3 aspect ratio. The connec-
tion between the clients and the server was via UDP.
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Measurement Tools

The measurements used to configure the tool are grouped in three independent
areas, namely: (1) Network performance, (2) Computational performance, and (3)
Software processing cost. Each of them composed as described below:

• Network Performance: available resources, Jitter between nodes (Latency
variation), Locality UE-Edge-Cloud;

• Computational Performance: Machine capabilities, Network connection
speed, Processor capabilities, Memory availability;

• Software processing cost: Dependency between two functions (number of
calls), Resource usage from App (Average memory Usage Mb per function),
cost of the software execution (processor cycles that are required to execute
each function of the software).

The software measurements were taken using instrumented profiling tools, Val-
grind [98], and our self-produced tools.

Peer-to-peer communication is measured during execution using a network tool
called "Packet Beat”, which tracks the packets and connections of the server and
send those to our repository.

2.3.5 Modeling the example application
In our experiment, we chose to start at a function level granularity and to partition
the application into Modules. A typical AR application has the following chain of
services: capture, preprocessing, detection, recognition, tracking, rendering. Each
of these services calls a sequence of Modules. Note that these Modules may be dif-
ferent for different applications. Another example can be a partitioning of a Linear
Unicast service, which may have the following modules: Streaming, Origination,
Manipulation, Encapsulation, Encryption, Encoding, according to to [99].

In our first example (Figure 2.8), we show the result of running the partitioning
only on the call graph of the capture service (involving camera calibration), where
different colors refer to different modules and the number of requested partitions
was 5. As a second example (Figure 2.9), we show the Function Call graph gener-
ated only by the camera calibration part of the application: on the edges the calls
between functions and on the nodes the CPU clocks.

The result of the whole AR application partition is shown in Figure 2.10a. The
Start node represents the interface with the User Equipment, the Main node is
the partition in which the known entry point of the program execution is located.

The arrows are the interaction between Modules. For example, we know that
Main can receive data and be called by M1, while, every call from the Main,
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Figure 2.8: Partitioned Call Graph for an Image Capture Service
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Figure 2.9: Camera calibration call graph
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(a) AR Application after parti-
tion

(b) Simulation Network
(c) Complete AR applica-
tion pr-graph

(d) Maximal bene-
fit flows satisfying all
user requests

Figure 2.10: Models of a real application deployed on an imaginary network com-
posed of of Cloud, Edge and User Equipment nodes.

goes either to M2 or to M4. In the construction of service requests we kept the
following interaction constraints: if the service needed by UE is inM1 the shortest
possible request path became tpStart,MainqpMain,M2qpM2,M1qpM1,Mainqu.

The Simulation Network will represent the possible interactions between nodes.
In our simulation, we decided to allow both direct UE to Edge and UE to Cloud
communications (Figure 2.10b). We consider different average transmission over-
heads: in the range of few ms (1 or 2) between UE and Edge nodes; 25 ms between
Edge and Local Clouds; the sum of the two (26 or 27ms) between UE and Cloud.
The resulting pr-graph is shown in Figure 2.10c. We normalize the capacities of the
network nodes based on available memory. We experimented on a SLA scenario
where we want to reduce the computation time at a minimum overhead.

For the same computation demand, we define the benefit of a chosen deploy-
ment path based on the computation cost (we estimated the Edge to be four times
more expensive than the Cloud) and the average transmission overhead. Both
weights were calculated as the coefficient of variation of the relative measures reg-
istered on the Experiment Setup.

In all the generated simulations, a deployment was proposed for which 12 con-
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current simulated user requests where served, respecting the capacity constraints
of different networks, obtaining maximal benefit flows like the one shown in Figure
2.10d. On average, the benefit was higher than running everything on the device:
a complete run on the single device lasted on average 9444 ms, while the average
run on our simulations saved from 667 ms up to 3904 ms with maximum average
communication overhead per request being 1152 ms (Table 2.3).

Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8
Edges 4 2 5 5 5 3 4 4
UEs 3 6 3 3 3 5 4 4
Local Cloud 1 1 1 1 1 1 1 1
Average overhead per request (ms) 37 58 144 29 1152 583 84 148
Average benefit per request (ms) 3941 1348 3743 3348 1820 2841 3340 2395
Average final benefit (ms) 3904 1289 3598 3319 667 2258 3255 2246

Table 2.3: Experiment result: benefits of partitioning and deployment
of the same application on different networks topologies

2.3.6 Network Simulations
Later, in collaboration with the author of [100], we verified more extensively the
performance of our deployment strategy. The simulation was this time performed
within a realistic cloud computing environment called Edge CloudSim. Edge-
CloudSim [101] is a cloud computing simulator based on CloudSim [102] that is
desigend for edge computing.

Its main modules are:

• Mobility module: manages the location of edge devices and clients. Each UE
has x and y coordinates that are updated according to dynamically managed
hash tables.

• Task generator module: is responsible for generating network services. By
default, it will randomly choose a mobile device as the device that generates
and receives the services. Each service is generated according to Poisson
distribution. Task inter-arrival time (load generation period), idle and active
periods are configurable.

• Network module: simulates WAN and WLAN and handles the transmission
delay. WAN is used for cloud communication. By default, it uses M/M/1
queue model for network transmitting. The number of arrivals is based on
Poisson process; the service time is an exponential distribution; one server
handles the transmissions.
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Name Augmented reality Health app Game app Infotainment app
Usage percentage 30 20 20 30
Poisson interarrival 2 3 20 7
Active period 40 45 60 30
Idle period 20 90 120 45
Data upload 1500 200 2500 250
Data download 250 1250 200 1000
Length 12000 6000 30000 15000
Required core 1 1 1 1
VM utilization on cloud 0.8 0.4 2 1
VM utilization on edge 8 4 20 10
VM utilization on mobile 40 20 50 25

Table 2.4: Applications used to compose our services

• Edge orchestrator module: decides how and where the incoming requests go.
This abstract class has been extended to apply our deployment strategy.

We compared its performance to a random resource selection. In Table 2.4
the applications used for the simulation are listed. These applications represent
macro-categories of services(e.g. CPU intensive, high download, high upload, high
communication rate...), and are simulated by the tool to recreate different usage
patterns. For instance, the infotainment application requires less CPU power
compared to the augmented reality application. The AR application requires high
CPU, small amount of data to download, and bigger amount of data to upload. The
tasks generated by the applications have random lengths in terms of the number
of instructions and random input/output file sizes to upload/download [103].

EdgeCloudSim extends the functionality of CloudSim giving the possibility to
describe: cloud devices, edge devices and mobile devices. In our case:

• Local Cloud: One data center and only one host with 4 VMs.

• Edges: 4 edge servers each composed of one host and three VMs(Xen X86
Linux, 16 cores, 80000 mips, 16000 ram, 400000 storage).

• UE: Each mobile device has only one host which serves one VM.

In Table 2.5 we compare the RANDOM and Product Network deployments for
100 to 500 UE requests.

We can see from Figure 2.11, that the network delay reduces adopting our
policy, since it takes in consideration the Edge devices in terms of cost and benefit.
The two algorithms can be compared also on the percentage of failed tasks. There
are two reasons that may cause a deployment failure: the capacity of the VM is
insufficient (too many tasks were allocated at the same time) or there have been
network issues during the migration.

In Figure 2.12 we show how VM capacity is well handled in our policy as fewer
tasks fail. In Figure 2.13 mobility, WLAN or WAN falures are shown.
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Number of mobile devices RANDOM PN

100
Total tasks:

25767

Cloud: 8480 Total tasks:
30871

Cloud: 824
Edge: 8680 Edge: 9693
Mobile: 8607 Mobile: 20354

200 Total tasks:
53724

Cloud: 17971 Total tasks:
48994

Cloud: 2140
Edge: 17770 Edge: 12324
Mobile: 17983 Mobile: 34530

300 Total tasks:
76786

Cloud: 25422 Total tasks:
82633

Cloud: 8916
Edge: 25461 Edge: 16707
Mobile:25903 Mobile: 57010

400 Total tasks:
103898

Cloud: 35156 Total tasks:
111663

Cloud: 11658
Edge: 34931 Edge: 24116
Mobile: 33811 Mobile: 75889

500 Total tasks:
134865

Cloud: 45646 Total tasks:
130362

Cloud: 7437
Edge: 45379 Edge: 35151
Mobile: 43940 Mobile: 87774

Table 2.5: Simulations runs with different amounts of UE requests

On average our policy has less number of mobility failures; for both strategies
WLAN or WAN failures grows significantly when the number of UE is larger than
300. This is obviously more related to a physical upperbound of the network than
to the model themselves. The product network deployment based on randomized
rounding, seems to satisfy the Pareto-optimal performance that has been proven
theoretically in [53]. This experiments batch, together with our previous simu-
lation cannot be sufficient to justify an algorithm for an orchestrator, since the
times of the simulations plays an important role in establishing the quality of an
online deployment decision. However, they can be exploited offline, to assist in
the conversion from Cloud-based to Edge-native applications. An analysis of the
existing software, can indeed save time and money to developer, especially con-
sidering that most of the Cloud and Edge resources their applications will run on
will be pay per use. Simulating different partition of the same service can, finally,
help reduce risk of service failure and need for service replication. This concept is
further explored in Chapter 4 of this thesis.

2.4 Related Works

2.4.1 Offloading Frameworks and Architectures
Most recent offloading works concentrate on frameworks for adapting and opti-
mizing how to autonomously compose the partitioned application with some basic
model for managing context delivery.

CloneCloud [64] concentrates on offload optimization and service availability
but uses a simple partitioning scheme for any input. The limit of this approach is
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Figure 2.11: Network delay

Figure 2.12: Failed tasks- capacity
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Figure 2.13: Failed tasks- network
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that it ignores the fact that different optimal partitioning solutions can be found for
different inputs. In our solution, instead we focus on keeping track of the current
network and resource status; we tackle a real time scenario, where multiple requests
for variation of the same service may arrive at the same time.

Since mobile devices usually use a wireless channel, with the bandwidth fre-
quently changing, static application partitioning methods (those computing com-
munication costs offline and ignoring bandwidth fluctuations) are unsuitable [104].

Authors in [105] suggest to improve predictors for the online partitioning of the
application, by adding awareness of the complexity associated with the inputs.

Since online partitioning introduces too high latency, the most promising for
AR application is the hybrid approach proposed by [67]. The main objective is to
minimize the bandwidth between software components, but the authors promise
their algorithm can optimize many alternative objectives as well. In our work we
follow the author’s suggestions and opt for KL algorithm to implement partition-
ing.

Based on these works, we can abstract a common architecture 1 consisting of
the following components:

The partitioner : also referred as a static profiler, whenever a request to offload
an application is made, a partitioner decides which components are offloading
candidates. This decision is made based on a static analysis of the code. The con-
text monitor2: provides information about the context of the migration: available
edges, device battery status, network connectivity, etc. The solver : uses the data
of the context monitor and the partitioner candidates to choose whether and on
which Edge to execute the offloading candidates. Finally, the coordinator manages
additional tasks that are necessary to hand over the computation, as in the case
of verification and synchronization.

2.4.2 Application Placement
Appropriate resource allocation is an old issue in different disciplines. In this sec-
tion, we present two resource allocation problems in computer networks: placement
of Virtual Machines (VM) in cloud computing and placement of Virtual Networks
Function (VNF).

VM Placement. With the term VM placement, we refer to selecting the
most appropriate physical machines for VMs. According to [106], objectives of
VM placement are maximizing resource utilization, reliability, and availability.

There are several approaches to VM placement in the literature [107, 108, 109];
some variants even consider dynamic placement and multi-clouds placement. For

1Similar to [61]
2Also known as dynamic profilers/samplers
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instance, [107] uses traffic-aware VM placement to improve the network scalability
in the data center, defining it as a hard optimization problem solved by a two-tier
approximation algorithm to overcome substantial sizes. Authors in [110] present
an approach for reorganising two-tiered web applications by allocating resources
across data centres in response to workload changes; Each data item that is di-
rectly accessed by a client is mapped to the weighted average of the geographic
coordinates for the client IPs that access it. The weights are given by the amount
of communication between the client nodes and the data item whose initial location
is being calculated.

In [111] a cloud management middleware to adjusts the placement of web
application components across multiple cloud data centres. Based on observations
and predictions of client request rates, it migrates application components between
data centres. Their optimization function for the placement is based on RTT
reduction. Authors maximize the sum of total request satisfied, attributing them
different weights based on SLA priorities. The optimization does not consider costs
of migration. Flash crowds or other unexpected workload peaks are not considered
in the model.

Also [112] considers resource allocation algorithms for distributed cloud sys-
tems. To minimize the maximum distance, or latency, between the selected data
centers authors describe an algorithm for minimum diameter subgraph problem
that gives the best approximation guarantees. In a similar fashion they select,
within each data center, the racks and servers to allocate the requested VMs. The
algorithm exploits the tree like structure of a datacenter network. Partition of
the requested resources amongst the chosen data centers and racks is decided via
heuristics.

With a similar objective to our context aware framework, [113] utilizes Cloud-
Stack, an open source cloud management system. A cloud dashboard queries
an ALTO server (network protocol by IETF) for the network metrics to feed a
placement decision algorithm, which computes a score for each data center and
recommends the data center with the best overall score. The ALTO server collects
network topology data and provides an abstract view of that topology and costs
including dynamic loss and delay information.

Service Chain Placements in NFV. Service Function Chaining (SFC) [114]
aims to overcome the limitation of static deployment models applying algorithms
that can optimally map SFC to the substrate network. This category of algorithms
is referred to as “Virtual Network Functions Placement (VNFP)” algorithms [115].
As explained in [116], in this category of placement problems, we are given a
physical network, VNF specifications, and a set of service requests. The algorithm
performs the three following steps:

1. Calculate an optimal number of needed VNF types, all the VNFs that should
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be instantiated compose a set.

2. Place VNFs to physical nodes such that the demand of VNFs do not exceed
the capacity of physical nodes;

3. Assign service requests to VNFs such that the demand per service requests
do not exceed the capacity of VNFs.

However, the three steps are not independent, and their order depends on the
implementation of the algorithm and the problem statement. For example, [117,
118] give an Integer Linear Programming (ILP) formulation. Many others prefer
fast heuristics to allow real-time decisions [119], and propose dynamic program-
ming; [120] provides a Mixed ILP formulation and a heuristic algorithm that solve
the problem incrementally, which can solve the problem for incoming flows without
impacting existing flows. Among the meta-heuristic solutions, [121] introduces a
method based on genetic algorithms, while [122] considers a greedy algorithm and
a tabular search-based algorithm.

Although we will not work with VNF specific algorithms, we claim that our
methods may be applied to them. It is especially true for network functions such
as User Plane Function and special observability, monitoring, tracing, logging, and
analytics VNFs.

2.5 Conclusions and Future Works
Migrating from cloud infrastructure to an edge mesh involves a considerable
amount of work to refactor applications and service chains. Usually, developers
do this refactoring solely based on experience. Simulating tools can be of
support, considering that the infrastructure is new and blind deployment may be
expensive. Most of the involved resources being pay-per-use, it is crucial to avoid
faulty deployments.

In this chapter, we firstly argue the importance of an Edge Computing and 5G
infrastructures for the deployment of efficient Continuous Interactive Applications.

Our analysis of application deployment consisted of two phases. In the first
work we identify the requirements for an AR use case, select a partitioning granu-
larity and other possible ones to evaluate. We then propose an architecture inspired
by previous works, with a focus on a hybrid adaptive solution. We selected the
toolchain for context and application analysis to integrate into the framework. Fi-
nally, we demonstrated our first experiments on the offloading using a simple face
recognition use case.

In the second work, we described the methods and the algorithms we used
to develop the prototype of our tool to partition and deploy an application in a
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5G distributed network. This is the minimum analysis to be performed to enable
a dynamic reallocation of the applications based on the variation of the context
conditions. (This context-aware scheduling is later tackled in Chapter 4 of this
dissertation) The tool executes three main steps. First selecting the application
granularity and construct a graph model. Then reduce it into Modules by solv-
ing the NP-hard graph partitioning problem it represents; finally, implement and
apply a fractional relaxation of the Path Computation and Function Placement
Problem as described by [53]. Simulations were run with various requests of service
simultaneously. For our specific setup and our AR application, we can implement
a distributed scenario with reasonably low overhead.

The next step would be to implement the new application partition suggested
by the framework and locate them in the physical network to verify how close
our simulations are to reality. By running the new deployment we could perfect
the parameters we used to describe the network capacities and the benefits of the
distributed execution. Interesting measures to validate the outcome on different
AR applications could be quality and efficiency-related ones: for example, Video
Quality as Average Bit rate expressed in Kbps.

2.6 Contributions
In this Chapter we collected our work concerning Thesis 1. I presented an extensive
survey of the literature. I established requirements for Edge native applications,
concentrating on AR use cases. I created a framework for application offloading in
Edge computing and selected a profiling toolset to use. I verified this framework via
profiling of three different partitioning scenarios for a video streaming application.
I created a model for application partitioning and deployment on a 5G based Edge
network. My model exploits a combination of online and offline profiling tools to
map an application and decide it’s ideal partitioning based on a min edge cut of
the function call graph. I created a tool to estimate the best allocation of those
partitioned service replica based on network capacity, benefit/SLA function and
user requests and service chains. I tested the tool on an Edge Cloud simulator and
compared it to a random allocation strategy.

Figure 2.14 summarize the main concepts and contributions.

Thesis 1 (Facilitate Deployment at the Edge). Adapting code from Cloud to Edge
involves a great amount of work to refactor applications and services. Usually de-
velopers do this solely based on experience, simulating tools can be of support since
the infrastructure is new and blind deployment may be expensive. Furthermore
the extensive mobility of the applications represents a challenge for the choice of a
correct separation of applications in micro-services. I created a framework for
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partitioning and estimation of best deployment of a monolithic appli-
cation. I implemented it in the form of a tool to assist into select-
ing the proper way to refactor an application, via graph partitioning
schemes. I demonstrated this concept partitioning an AR application
at a function level granularity. Via non-intrusive online profiling of the ap-
plication I created a call graph representing functions runtimes and number of calls
between functions. The partition process applies min edge cut using a refinement
algorithm, MLKL, that Coarsen, Partition and Uncorsen a graph multiple times.
Any weighted graph may be used to represent the application in this step in our
tool.

This method aims at suggesting partitions that minimize their interaction, the
idea is that the partitions should be easily moved around the network without com-
promising performances. Indeed more complex approaches may involve other pa-
rameters, such as the amount of allocated memory or the dependency to other
code/services.

Finally the tool can suggest pareto-optimal places for deployment, based on Net-
work resources capacities and existing links. I simulate the placement and routing
issues into a single algorithm taking care to handle multiple user request at the
same time. I show how it is possible to compute a deployment that satisfies SLA
keeping in consideration cost of resources and benefit of requests. I proved that the
approach does performs better than a random deployment, reducing deployment
and networks failures.

thesis relevant publications
[1] [2] [3] [4] [5] [6] [7] [8]

(1) Facilitate Deployment
at the Edge • • •

(2) Migration in Edge Com-
puting ◦ ◦ ◦

(3) Distributed Mobile Edge
Scheduling ◦ ◦ ◦ ◦
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Figure 2.14: Summary of Chapter Contributions

53



Chapter 3

Migration in Edge Computing

The current trend for Cloud and Edge computing is toward self-contained stateless
services, where a whole application can be divided into simple parts with minimal
interaction among them and virtually no need for persistent data. Orchestration
frameworks and technologies favour this trend, like in the case of Kubernetes [123]
where, in the default configuration, for Pods restart or redeployment all session
data and temporary data would be lost.

To develop a containerized application the best practice would be using state-
less containers. Data generated in one request to the application in the container
will not be recorded for use in other requests. The application will be easier to
restart and more lightweight. However, real-world applications do require stateful
behaviour: data generated in one request should be recorded somewhere in the
container to be available for use later on.

It is not always a trivial task to decouple the application components into
containers trying to make most containers stateless; there are scenarios in which
statefulness cannot be bypassed.

In applications that also require low latency, the challenge is to preserve the
state of the container hosting it, while following the user physically moving away
from the hosting part of the network.

In 5G fog networks, this is the case for some virtual network function and a
number of consumer application, such as real-time multi-player gaming, remote
health inspections (e.g. ultrasounds) or autonomous vehicles.

A concrete example for this use case is that of a smart vehicle providing on
board infotainment, while crossing countries borders: HD maps or video games
would be hosted on an Edge in country A and should be handed over quickly to
country B while the car moves towards it at high speed.

Migration of an application from an Edge to the Cloud may also be needed for
recovery reasons.

However there is no well-established method to implement live migration of
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containerized applications in Edge environments.
In this Chapter, we propose a mid-range design to integrate live migration in

an ad hoc peer to peer Edge network exploiting DockerSwarm and in a setup made
with state of the art orchestrator (Kubernetes).

The Chapter is structured as follows. After a deeper introduction to the objec-
tive of Live Migration, we compare container and VMs solutions. In Section 3.1.3
we present a classification of migration models, libraries and existing solutions. In
Section 3.1.4 we compare existing container orchestrators and justify our choices.
Section 3.2 we present our first setup of a Fog peer to peer network implementing
LM. Section 3.3 presents our effort into integrating LM in Kubernetes, preserving
the controls of the platform. In Section 3.4 we compare our work both with of-
floading and placement frameworks. Section 3.5 summarizes our findings while 3.6
.

3.1 Background
The objective of this chapter is to specify basic concepts behind Fog, application
encapsulation and migration.

3.1.1 Fog computing in 5G
One of the key enablers for 5G networks is Edge computing: the concept of ex-
ploiting smaller resources collocated at the edge of the network, for example at
the antenna site, to reduce delays. The delay reduction is twofold. On one side
we reduce the number of network and routing elements that our data has to travel
trough, thus cutting processing and transmissions delays; on the other, we also di-
minish the physical distance impacting propagation delay. In most cases, latency
is a byproduct of distance. Although fast connections may make networks seem
to work instantaneously, data is still constrained by the laws of physics and can’t
move faster than the speed of light.

A complex case in Edge computing solution is represented by Fog computing,
that involves very diverse devices, also User Equipment, to collaborate at the edge
of the network to allow computations offloading and task sharing. As stated by [23]
Fog networks are characterized by high node and user mobility, high diversity of
the nodes and incomplete mapping of the Fog network itself. We can consider it
as a Device to Device ad-hoc network, coexisting with the more structured mobile
network, trough edge nodes.

Authors in [124] also use the term Fog to indicate any three-layer IoT-cloud ar-
chitecture with an intermediate layer of geographically distributed gateway nodes,
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typically well positioned at the edges of network localities, that are densely popu-
lated by IoT sensors and actuators.

Overall we can state that a Fog network is a distributed system close to a
large-scale sensor network, with prevalent wireless access and high need for inter-
operability. Physically close nodes should be able to collaborate among themselves
but also to interact with more reliable and far resources.

As specified by the National Institute of Standards and Technology of the US
chamber of commerce in [125], fog nodes are context aware and support a common
data management and communication system. They can be organized in clusters,
both vertically (to support isolation) and horizontally (to support federation).

The main challenge in orchestrating this type of networks will be finding the
beneficial trade-off between uncontrolled and centralized orchestration. In our
proposal we do not concentrate specifically on the federation part of the problem,
but it is worth to mention that there are multiple strategies to implement cluster
federation, including Kubernetes itself.

Among customized orchestration for Fog, [124] work is also worth mentioning.
The authors propose IoT gateways working as full fog nodes, by extending the
existing base of open-source Kura IoT gateway. They employ containerization
techniques, in particular, Docker, Docker Swarm and live migration to deploy
measuring/sensors data collection services on Raspberry-Pis. Authors mention a
Swarm based orchestration solution, which make us suppose a solution based on
API calls to Docker Swarm functionalities from the Kura gateway. In our work,
we specify a more generic solution that is immediately deployable on any existing
cluster.

3.1.2 Comparison of Virtual Machine and Container Mi-
gration

While VMs are often chosen to abstract, split, duplicate, and emulate entire
servers, OSs, databases, and networks, containers are used to package single func-
tions that perform specific tasks.

In Fog computing, the situation is the same. For example, the ETSI standard
for Virtual Network Infrastructure [126] relies on Virtual Network Functions being
Container Infrastructure Service Instances. The Container Infrastructure Service
can then be deployed on the hardware resource (bare metal) or deployed on a VM,
to ensure isolation.

The first reason why we preferred containers in this scenarios is one of flexibility
and scalability: containers smaller size favours migration, since any incremental
file synchronization or migration mechanism will need to remotely compare a larger
amount of data in case of VMs.
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In [127] Linux Containers (LXC) are proven to have a clear advantage over
Linux Kernel-based Virtual Machine (KVM) in terms of total migration time, ser-
vice downtime, and amount of transferred data. This is mainly because containers
are more compact and the filesystem and in-memory contents include mostly what
is relevant for the application, whereas VMs content can be related to many other
background processes.

The second factor influencing the choice was the “cloud-native” aspect. The
term describes applications designed specifically to run on a cloud-based infras-
tructure. Edge computing must follow this principle since, apart from the locality
and size, it will act like a cloud infrastructure.

Cloud-native applications are usually loosely coupled micro-services running
in containers managed by an orchestration platform. To anticipate failure, run
and scale reliably, applications must adhere to a set of constraint that facilitate
automation (Single-concern, self-containment and runtime-confinement to mention
a few [128]).

Because containers best practice requires small images, arbitrary user IDs,
marking ports and using volumes for persistent data, most VM native applications
cannot be mapped one to one with a container.

Decomposition from VM to Containers becomes an essential part of the mi-
gration process. It helps to split large monolithic application topology into small,
logical pieces and work with them independently.

Taking into account these differences and the fact that Fog and Edge nodes
are diverse, often with limited bandwidth, unstable network connectivity, costly or
limited storage and processing capability, running a container-based solution will
be much more beneficial.

As mentioned in [129], with containers, the complexity can be reduced through
container abstraction since they avoid reliance on low-level infrastructure services.
Automation can be supported to maximize portability. Security and governance
can be achieved by placing services outside the containers. Higher computing capa-
bility can be provisioned with service composition, achievable even if the containers
run on different physical machines.

Given the above mentioned advantages, more and more mainstream operating
systems begin to adopt container technology to provide isolation and resource
control, which has demonstrated great potential for service migration [130].

3.1.3 Container Live Migration
Live migration attempts to provide a seamless transfer of services between physical
machines without impacting client processes or applications.

It can be used for those services that require too long start-up time and that
must ensure low downtime.
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Strategies and techniques to achieve migration of containers build on top of
those of VMs.

In fact, migrating containers involves migrating running processes and warrant
that all accessed files will be available at the destination host.

In the literature there has been successfull attempts at migrating contain-
ers [131] [132]. In this work we will exploit the CRIU [133] project.

The Checkpoint Restore In Userspace is a project to implement checkpoint/re-
store functionality for Linux. It can be used to perform Lazy migration (postcopy)
and precopy migration, live and iterative strategies:

• In lazy, or postcopy memory migration, when the task accesses missing mem-
ory pages, CRIU processes the page fault, transfers the required page from
the source node and injects it into the running task address space. The dump
action should be invoked with –lazy-pages option. In addition, –address and –
port options may be used to select IP address and port that will be serving
the page requests.

• precopy migration can be performed by running pre-dump commands spec-
ifying the images directory where to save them.

• In live and iterative migration CRIU utility can be used both with a shared
file-system such as NFS or by using rsync. Also, a Page server to reduce
read and writes operations is available.

3.1.4 A Comparison of Opensource Container Orchestra-
tion

Container orchestration frameworks provide support for management of complex
distributed applications. Different frameworks have emerged only recently. The
three most prominent orchestration frameworks are [134]: Docker Swarm, Kuber-
netes (K8s), and Mesos (DC/OS).

Kubernetes is an open-source technology for automating deployment, opera-
tions, and scaling of containerized applications. It groups the containers making
up an application into logical units for easy management and discovery, for ex-
ample, based on their resource requirements and other constraints. Kubernetes
also provides horizontal scaling of applications, which can be performed manually
or automatically based on CPU load. Finally, it provides automated rollouts and
rollbacks and self-healing features. An overall architecture of K8S is described in
Figure 3.1.
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Figure 3.1: Kubernetes Architecture

Kubernetes deploys and schedules containers in groups called Pods. Pods are
scheduling units (and can contain one or more containers). Containers in a Pod
run on the same node and share resources such as filesystems, kernel namespaces,
and an IP address. Deployments can be used to create and manage a group of
Pods. A service tier can be added for scaling horizontally or ensuring availability.
Services are endpoints that can be addressed by name and can be connected to
Pods using label selectors. The service will automatically round-robin requests
between Pods. This allows two Pods to communicate over the Kubernetes overlay
network. Kubernetes will set up a DNS server for the cluster that watches for new
services and allows them to be addressed by name. Each host can be a node part
of a cluster. Each cluster will have a master node that places container workloads
in user Pods on worker nodes or on itself. The same machine could also host
multiple virtual-nodes using VMs or Containers. There are then, a number of
components associated with a Kubernetes cluster [123]. An API Server will be
the management hub the Kubernetes master node. Its role will be to facilitate
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communication between the various components, maintaining cluster health. The
etcd stores all configuration data, including those that influence the API server.
Controller Manager will ensure to scale workloads up and down according to
placement decision performed by a Scheduler. Finally, the Kubelet component will
receive Pod specifications, for example in a yaml file format, and manage Pods
running in a host.

Docker Swarm provides native clustering for Docker containers. It turns a pool
of Docker hosts into a single virtual Docker host. Because Docker Swarm serves the
standard Docker API, any tool that already communicates with a Docker daemon
can use Swarm to transparently scale to multiple hosts.

Figure 3.2: Docker Swarm architecture

Docker Swarm architecture consists of managers and workers. The user can
specify the desired state of various services to run in the Swarm cluster using
YAML files. A node is an instance of a Swarm. Nodes can be distributed, they
can be virtual or physical, and located on proprietary machines or in public clouds.
A cluster of nodes (or Docker Engines) is defined as a swarm. In Swarm mode,
one orchestrate services, instead of running container commands. Manager Nodes
will receive service definitions from the user, and dispatch work to worker nodes.
Worker Nodes will collect and run tasks from the managers. A Service in Swarm
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is nothing but a configuration specifying the container image and the number of
replicas in the swarm.

At service deployment, the swarm manager accepts the service definition as
the desired state for the service. The underlying logic of Docker swarm mode is
a general purpose scheduler and orchestrator. The service and task abstractions
themselves are unaware of the containers they implement.

Figure 3.2 shows how swarm mode accepts service create requests and schedules
tasks to worker nodes.

DC/OS (the Distributed Cloud Operating System) is an extended Mesos
distribution that allows fine-grained sharing of cluster resources across multiple
scheduler frameworks. Its decentralized scheduling architecture can support large-
scale clusters till 50,000 nodes. It also offers support for load balancing non-
container orchestrated workloads such as databases or high-performance comput-
ing applications. We believe that for Fog applications such scale will not be needed.
However, in the next section, we proceed with a description and comparison of all
three technologies.

DC/OS is itself a distributed system, a cluster manager, a container platform,
and an operating system. It includes a group of agent nodes that are coordinated
by master nodes. Components running on the master nodes perform leader election
with their peers. Cluster management is provided by Mesos.

Figure 3.3: Marathon architecture overview

All tasks on DC/OS are containerized. Container orchestration is one example
of a workload that can run on Mesos architecture, and it is done using a specialized
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orchestration “framework” built on top of Mesos called Marathon (See Figure 3.3).
Containers can be started from images downloaded from a container repository

or they can be native executables containerized at runtime. The platform supports
two container runtimes: Docker and Mesos. Docker is currently required on ev-
ery node but it may become optional in the future, as components and packages
migrate to using Mesos Universal Container Runtime.

The logic of the management is the following [135]: a Mesos Master aggregates
resource offers from all agent nodes and provides them to registered frameworks
(containerized applications running on Mesos togheter with its executors and a cor-
responding scheduler). Examples of Mesos frameworks include Marathon, Chronos
and Hadoop Offer: a list of an agent’s available CPU and memory resources. An
Agent daemon can run on the same component than the master daemon or on
a different one. Agent nodes provide resources exposing them as resource offers
and making them available to registered schedulers. The schedulers then accept
these offers and allocate their resources to specific tasks, indirectly placing tasks
on specific agent nodes. The agent spawn executors to manage each task type and
the executors run and manage the tasks assigned to them.

3.2 A framework for application migration in
Fog Computing

The proposed system is a peer-to-peer collaborative computation network. The
nodes in the network are light-weight uniform piece of software, whose main re-
sponsibilities are: to maintain the graph of the available nodes, to move the code
of the pieces of the deployed application and to organize communication among
the deployed modules (as represented in Figure 3.4).

Applications that are intended to be run over the network, must be partitioned
to minimize the imposed overhead. As we exposed in Section 2 we can separate
monolithic applications along the minimum cuts of their function call graph (or
data flow graph or in some other balanced middle-way), to minimize data flow in
between parts [2].

In this work we regard applications as a composition of micro-services, assuming
that with more or fewer efforts any application can be transformed into such an
architecture.

In such a framework we had to address in the design process: (A) the mapping
of the available resources, (B) the creation of the deployment plan, (C) the plans
and approaches to move codes to their assigned location, and (D) the strategy to
maintain the health of the service and the shared state of the application, that is
how to transfer data between the functions, and how to keep globals up-to-date.
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Figure 3.4: Our fog network implementation is perceived from
the rest of the mobile network as multiple overlays deploying
different services
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3.2.1 Network mapping
When in need to deploy or execute a service, a network user can make a decision on
the deployment according to the mapping strategies best fitting the characteristics
of the service. To make it possible, the system should provide the initiator node
information about the possible Service Level Agreements (SLAs): the description
of the available resources along with the price of the usage of a particular resource,
also expressed in terms of latency or volatility of the perceived QoS (Quality of
Service). We will further discuss possible parameters to be considered in the next
paragraph.

3.2.2 Task assignment
With the mapping of the available network and the call-graph/interaction graph
of the service, the next task is to map the modules to nodes. There are several
methods to do task assignments, like the placement of Virtual Machines (VM)
in cloud computing or placement of Virtual Networks Function (VNF). The pa-
per [136] shows a global classification of VM placement solutions into online and
offline approaches, categorizing them based on their target objective. Some of
the solutions are single objectives, others may have several. The point of view of
the analysis may be either the final user or the network providers. Among the
objectives we can mention:

• Energy consumption: based on minimizing power consumption and number
of active nodes;

• Cost: as Return On Investment (ROI), resource exploitation or allocation
cost;

• QoS: can be expressed in terms of response time, overhead time;

• Resource usage: RAM, CPU, storage;

• Reliability;

• Load balancing: avoidance of congestion, data overload.

3.2.3 Deployment infrastructure: an Orchestrators Com-
parison

Given our premises on Fog, an important choice to improving services deployment
is the selection of orchestration environment. One can use either Kubernetes,
Docker Swarm or DC/OS for Docker engines.
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[134] identifies Mesos as the most fitting platform for prototyping novel tech-
niques for container networking and persistent volumes because of the adherence
to all relevant standardization. This classification made a stride away from Mesos.

Docker and Kubernetes are instead suggested for prototyping for container
runtimes.

One weakness of Kubernetes, compared to Mesos, is that automated installa-
tion of a cluster with multiple master nodes is not supported (in the open source
version). It is also less scalable: no more than 5000 nodes in a single cluster. In
our scenario, however, we considered the number of nodes sufficient.

Kubernetes is the most generic orchestration framework. However, the differ-
ences with Docker EE (docker Enterprise solution) in supported features is small.

Kubernetes is also identified as the most mature container orchestration frame-
work. It has unique support for integrating with public cloud platform’s load-
balancing tiers and offers a wide range of external service discovery. In fact, a
large number of public cloud providers have offer Kubernetes as a Service.

Kubernetes usually is not a complete solution and requires custom plug-ins to
set up; on the other hand, Docker Swarm has the advantage of tightly integrated
into the Docker ecosystem, and uses its own API. This removes many compatibility
issues and other differences and favours smooth integration.

Unfortunately, the community and support around Docker are not as expansive
and convenient to address. Most cloud providers today offer Kubernetes as a
service. Kubernetes currently holds the largest market share and is almost the
standard platform [137].

Because of these reasons, in our industrial work we selected Kubernetes, as the
best orchestrator for a Fog network infrastructure that integrates within the exist-
ing mobile ones. Instead in our first work on a Container Orchestration framework
for an ad-hoc Fog network we chose the API of Docker Swarm that is the least
restrictive for common actions such as creating, updating and stopping a container.

Service Migration Infrastructures At deployment, thus, the challenge is how
to move the code and resources between the nodes. As a base scenario, we assume
that the modules of the service to be deployed resides at the initiator. The initiator
can contact the joined nodes assigned to the tasks and push the codes and data
that he needs to run. Multiple applications, each made of several components
should simultaneously use the Fog infrastructure. Memory isolation is necessary
for security and integrity reasons but also for bug prevention and performance
tuning. The real-time constraint is an added requirement to the migration.

This can be achieved by using either a shared file-system such as NFS [138] or
by using rsync, a unix-like OS utility, able to copy files across networked hosts.
The latter requires to know the destination host address or a predefined path. The
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former solutions, based on undefined path, require more downtime, but overall have
shorter migration time. This is because only memory has to be transferred since
they involve a shared file system.

Migration using predefined path gives the smallest downtime but increases the
total migration time. In the case of predefined paths one can have either disk-based
or diskless solutions. In the first case, a temporary file system (tmpfs) can be used
to copy files from the original host to target mounted volume. This approach
requires two reads and two writes operations: it moves data on the original host
to a tmpfs, copies them in the target host tmpfs and finally loads them in target
memory.

Instead, a diskless approach involves having a fix known address and port to
directly dump the memory on the target host. This reduces the reads and write
operations and can be performed by a separate actor (eg. a page server).

To shorten the migration time precopy and postcopy strategies can be applied
as well.

As the term precopy suggest, one can copy all tasks memory before moving a
container image and permanently stopping it. Performing multiple precopy steps
would generate other sets of images which will contain memory changed after the
previous step. Doing several precopy iterations may reduce the amount of data
dumped on dump stage (the final memory copy before stopping the container) and
thus lead to shorter freeze time.

However, this implies starting the migration quite ahead of time, since the size
of the first transfer may be considerable, and thus create the need for predictive
or preventive mechanisms.

In case of lazy, or postcopy memory migration, one can minimize application
downtime. Unlike precopy memory migration, lazy migration does not copy the
task’s memory, but rather keeps the memory pages at the source node. Only the
minimal task state required to start the application is copied to the destination
node and resumed. When the task accesses missing memory pages, those pages
will be retrieved and injected in the running task address space.

Iterative migration mostly uses pre-copies. Even though it can also implement
hybrid approaches with post-copy, we followed the classical sequence:

1. Pre-dump: we take memory page to migrate and pre-dump them into some
place (this can be either tmpfs or page server or final host). Tasks will remain
running after pre-dump, unlike regular dump. Multiple iterations of these
steps can be done.

2. Dump: this dump only takes the memory that has changed since the last
pre-dump;

3. Copy: Copy images to the destination node;
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4. Restore: On the destination node restore the apps from images;

5. Kill: right after the last dump is performed, the stopped tasks on the source
node gets killed.

After selecting an iterative approach for Live Migration we proceeded with a
comparative study of existing solutions.

Analysis and comparison of LM Existing Solutions Migration of
containers becomes possible since CRIU checkpoint restore functionality for
Linux. CRIU checkpoint and restore of containers is integrated in Linux
Containers [139](LXC), runC [140] compatible containers (eg. Docker [141]),
Virtuozzo (based on OpenVZ [142]) and Jlastic. While the latter two present out
of shelf solutions for live migration, the others only allow calls to the CRIU
library:

• runC, from the Open Containers Initiative (OCI), is a lightweight univer-
sal container engine; it is a command-line tool for spawning and running
containers according to the OCI specification. RunC is available in Docker
Experimental mode together with CRIU library and allows to implement live
migration.

• Linux Container (LXC) is a lightweight virtualization technology integrated
into Linux kernel enabling multiple containers on top of the same host. LXC
is a userspace interface for the Linux kernel containment features. Through
a powerful API and simple tools, it lets Linux users easily create and manage
system or application containers [143].

• Docker [141] extends LXC with a kernel- and application-level API that
together runs processes in isolation: CPU, memory, I/O, network, and so
on. Docker also uses namespaces to completely isolate the application view
of the underlying operating environment, including process trees, network,
user IDs, and file systems [144].

• Virtuozzo [145] team created the live migration technology for containers
(OpenVZ); today they offer a production-ready containers engine with live
migration. It is claimed that migration could be done within 5 seconds.

• Jelastic [146] is a proprietary solution, offering a container orchestration plat-
form that provides live migration of production applications across hardware
regions, data centres and cloud vendors. In a recent demo, Jlastic shows Live
Migration of a Minecraft container from AWS to Azure without downtime.
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Live migration of LXC containers is done using LXD (Linux system container
management project) and CRIU [147]. The state of the container is saved, copied
to the destination node through remote images and then the container is restored
to the target. Successful completion of migration kills the container data on the
source server. Live migration of OpenVZ containers involves private keys to check
authorizations. Once the connection is established, the container can be migrated
by first synchronizing the file system, then updating the memory pages in the con-
tainer. Finally, the last dump file is transferred to the destination. The container
is resumed while its data in the source host are removed.

LXC can be considered an OpenVZ redesigned to be able to be merged into
the mainline kernel. However, OpenVZ uses a distributed storage system, where
all files are shared across a high bandwidth network. This means that during
container migration no file transfer needs to be performed. This is the reason
why checkpoint/restart migration on LXC has higher CPU utilization, thus lower
performance when compared with OpenVZ. However, as shown in [147] if the CPU
load is lower, LXC proves less migration time and downtime.

Anyhow, due to the limited bandwidth for edge servers and the volatile wireless
connection of Fog nodes, it can be challenging to deploy distributed storage [148].
Therefore, OpenVZ containers are not suitable for our scenario.

Authors in [149] advocate that LXC gives more flexibility for running different
applications, services and protocols. Dockers are standalone applications running
in an isolated environment and do not offer any system level functionality as LXC
does. Moreover, the checkpoint and restore phases take a considerable amount of
time for a lightweight Docker container.

In our work, we decided to opt for Docker to reduce complexity and friction
of adoption for the final user. Docker containers are easily scalable and allow
component reuse (Plug-in like features) and collaboration. Finally the support
available for Docker is higher.

It is true that Linux containers, being integrated into the kernel OS systems
utilities are more lightweight and give direct access to the kernel. However, it is
in question whether such access should be allowed in a Fog infrastructure. LXC
upstream’s position is that Privileged LXC containers are not and cannot be root-
safe since there are a number of exploits which will let a container get full root
privileges on the host [150]. Some risk is not avoidable as they would require
blocking so many core features that the average container would become completely
unusable. Unprivileged containers could also present security issues: actions a non-
root access can perform and generic kernel security bugs.

In the first iteration, Docker containers were essentially LXC containers, and
they came with the same security features. Docker initially relied on LXC as its
container interface, but because LXC provides each container with a full Linux
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system in an isolated namespace, Docker developed its own runtime, containerd,
as a replacement. Containerd is used for single application containers, while LXC
is able to run multiple applications inside system containers.

Contrary to LXC, Docker will start containers with a very restricted set of
capabilities [151]. In most cases, containers will not need “real” root privileges at
all. This means that “root” within a container has fewer privileges than the real
“root”; making it harder to do serious damage or to escalate to the host.

Based on our analysis we define a migration scenario as following (Figure 3.5
):

Any UE or Edge node may trigger a migration event. The node currently
serving the UE will react by selecting the next best node to migrate the service.
Service migration is done in an iterative step during which the UE can still access
the service on the first node. At the final step of the migration the service is down
just the amount of time needed for the second node to restart the container. The
change of the node hosting the service should be transparent to the UE that always
calls for it at the same IP.

3.2.4 First Experimental Settings
In this first experiment we model a Fog computing environment fulfilling the re-
quirements described at Section 3.2, using existing and more or less mature tech-
nologies as Docker, Docker Swarm, CRIU and runc. The orchestrator enables
dynamic adjustments on the underlying infrastructure where the managed service
is running on.

As mentioned before, Swarm could potentially use docker experimental feature
integrating CRIU basic live migration. However, this has to be completely config-
ured and handled by the user, so we wanted to verify whether such a setup was
feasible.

Management Orchestration layer The Management and Orchestration layer
is responsible for building up and maintaining an overlay network, that is capable
of running the service at predefined QoS (as shown in Fig. 3.4). The orchestrator
consists of a set of peer applications that run on each physical machine. When
a node joins a network, it contacts a known area-node whose address could be
obtained through DNS lookup. The node then shares some of its own connections,
to make the network more connected. When a node needs to submit a task it has
to map the available network. The notion "availability" includes the feasibility of
the QoS requirements of the given task, in the meaning of taking into consideration
the bandwidth requirements and acceptable total network latency.

Technically these nodes should be implemented in a cross-platform language.
Thus, we have chosen Java for this purpose. The control communication, that is
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Figure 3.5: Migration for Edge Computing
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sending connection or mapping requests, or making agreements on secondary chan-
nels uses REST protocols over a standard TCP connection. The nodes maintain
the addresses of the nearby nodes along with network segment reachable within a
given time constraint.

Network mapping

Since fog computing systems are expected to scale massively, new compute nodes
are likely to join frequently. Therefore, node discovery is an essential part of fog
computing systems.

In this iteration, nodes are simulated as multiple java programs running on two
different linux machines. Before the deployment phase, a peer sends a request to
the neighbouring nodes with a unique identifier. As a node receives this request it
returns an acknowledgement, through which the actual latency can be learned. A
receiver then forwards the request to its neighbours, who are statistically predicted
to be within the remaining latency constraint, measures the actual latency and so
on. If a peer has already received a mapping request with the same id, it only
sends back the acknowledgements since the sub-network that is reachable through
it is already submitted in another mapping path. This helps to avoid network
overflowing with useless traffic. The results will be sent back recursively to the
requiring node, eventually reaching the originator, where a local picture of the
neighbouring nodes will be assembled.

The first phase is randomized and about collecting the shape of the network
along with some important statistics of the available resources of the nodes and
the quality of the links between them. Based on this the deployment plan can
incorporate the learn knowledge on volatility and availability of the components.

Task assignment

Task assignment phase covers the creation of a deployment strategy for the tasks in
the service, that is a mapping between the physical network and our task call graph,
which is the result of partitioning the software to be deployed. The topic of this
task assignment is often referred to as Path Computation and Function Placement
and is described in [53]. For this scope, we selected an eager randomized approach
of randomized rounding introduced in [53].

According to this method, the service chain graph, representing the application
tasks and their interaction, is traversed in Breadth-First Search fashion, assigning
the root task to the initiator node. At edges in the graph (calls between the mod-
ules/tasks), the location of the subsequent task will be chosen pseudo-randomly
from the neighbouring nodes of the source task node. This happens so that hosts
with higher capabilities and/or better communication links from the node of the
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parent task will be chosen with a higher chance. Different policies can be provided.
A more detailed description of the process is given in Chapter 2.

Figure 3.6: Before migration

Figure 3.7: Migration

Figure 3.8: After migration
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Deployment

We choose Docker containers to encapsulate tasks. To reduce the complexity of
routing the communication between tasks located at different hosts, the containers
carrying the code of the tasks will be deployed to a Docker swarm, assigning a
unique port to each task. At the deployment, the initiator node of the service
creates a swarm and sends a request to the nodes that are the assigned location
of the individual tasks to join the swarm.

At the first deployment of the service, when no images exist for the tasks,
the efficient way to move and execute codes at deployment is to move the all the
service-specific volumes and build the images and containers at the destination
node.

In this case, the missing images are passed with the data needed at the execu-
tion through TCP sockets, to avoid download from online repository (green line
in Figure 3.7).

Migration Support The problem of relieving the workload of struggling
hosts, or reducing the increased communication latency can be addressed
through tasks relocation. In our simulation we select candidates for migration in
a naive fashion: for each node a local_cost is calculated as a score summing the
percentage of available CPU and MEM resources that the container would
occupy if moved on the node; than the migration can be triggered as follows:

Algorithm 3.1: Migration trigger
Trigger Migration (node, container):

neighbours_costs = get_cost(node.neighbours)
if local_cost <= min(neighbours_costs) then

keep running container
else

select random node where cost < local_cost
migrate container

To implement iterative migration, we rely on runC containers, that are natively
integrated with CRIU. The main steps we will follow to achieve container LM are
the following:

a) select a container engine compliant to runC

b) setup a mechanism to share memory or data among containers on different
machines
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c) install the CRIU library

d) transmit base image and the task-specific static volumes (ex. files, that are
mounted into the container) to the new host

e) run checkpoint commands

f) starts the container at the destination host and mounts the volume and
tmpfs, where the dumps from the old node will be saved. After the trans-
mission of the final dump, the state of the old task can be restored at the
new host.

g) iteratively update the state of the container: one or more pre-dump needs
to be taken, which keeps the original process alive, while starts tracking
memory changes.

h) utilize a diskless approach with a known address and port to directly dump
the memory on the target host (e.g. CRIU page server or a K8s Service
endpoint, tmpfs mounts)

i) when migration is done (final dump) kill the other instance

In our simulator Live migration of the container takes the following steps (Fig-
ures 3.6, 3.7 and 3.8): (1) through the management nodes we transmit the docker
image and the task-specific static volumes [152] (files, that are mounted into the
container), that is, the docker image containing the kernel and libraries the task
needs. (2) If there are files in the volumes, that are written by the task, they might
be synchronized using tools like rsync [153], that provides a very fast method for
remote file synchronization. (3) When the above steps are done, it is possible to
create the container at the target destination.

What left is to transmit the internal state of the migrated process. For achiev-
ing the least process downtime possible, one can execute incremental checkpoint-
ing [154] of the process to be relocated. At first, (4) one or more pre-dump needs
to be taken, which keeps the original process alive, while starts tracking memory
changes. After a number of these pre-dump operations, when everything is ready
on the receiver side, the last dump can be taken (5), that kills the process at the
original location.

The shipping of the dumps of the old container should take place using the
CRIU page server [155], that is a component that has been developed to move user
memory to a destination system. This enables disk-less transmission of the state,
loading the taken dumps into the so-called tmpfs [156] mount at the destination
container. The tmpfs mounts make possible to write temporary files in the system
memory. For that (6) the system starts the container at the destination host and
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mounts the volume and the tmpfs, where the dumps from the old node will be
saved.

After the transmission of the final dump, the state of the old task can be
restored at the new one. When the migrated process is up, the neighbouring tasks
in the call graph will communicate with the new tasks. Since the described system
uses Docker swarm, there is no need to rewire the connections, because it grants
us relocation transparency.

Meanwhile, on the original node, it is possible to detach the node from the
swarm, since the dump operation stopped the process of it.

The best strategy we have found to approach the idea of live migration is that
of incremental checkpoint (we use iterative pre-copy for the incremental steps of
the migration).

The main reason to introduce migration in a Fog environment is to increase
service availability, thus we want a migrations that introduces the least downtime.
In iterative migration the overall migration time will be dependent on the Pre-
Migration steps (1 and 2), the Container Creation (3), the Iterative Pre-dump (4)
the Last Dump (5) and the Re-Start times:

Ttot fi TP M ` TCC ` TIP ` TLD ` TRS, (1)

However, the downtime will be a fraction of those, since the original container
will stay active while being copied. The downtime will regard only the last copy
and the restart phases:

TDT fi TLD ` TRS, (2)

While this first setup proved to us that we can achieve an iterative migration
on a simulated Fog network, it also presented various limitations:

Docker Swarm utilizes virtual machines to run on a non-Linux platform. An
application which is designed to run in docker container on Windows can’t run on
Linux. This limits the usage of Swarm for our Fog scenario.

Docker Swarm does not provide an embedded way to connect containers to
storage, requiring manual configuration. Furthermore in a Fog network there is
no guarantee that the same host will run the same container each time it is run.
In this case, every time the application restarts or it is migrated it will require
separate scripts handling volumes.

Finally Docker Swarm provides too basic information on container status and
does not collects enough data on the deployments.

Mainly for this reasons, we decided to improve our setup by switching orches-
tration towards Kubernetes, as presented in the next chapter.
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3.3 Integrating Live Migration to Kubernetes
Migration strategy in Kubernetes is by default cold: it shut down, move and
restart, losing any intermediate state.

Currently, relocating a Pod in Kubernetes is only feasible by removing the
source Pod, then recreating a new Pod of the same type.

New pods have no obvious relationship to the original pods they replace. They
have different names, different user ids, different IP addresses, different hostnames
(since we set the pod hostname to pod name), and newly initialized volumes.

Also, update options are limited. For example, one cannot add or remove
containers from a Pod. Instead of explicitly replacing, one can update a Pod using
a patch.

Kubectl patch modifies on the fly the Pod configuration. It is important to
realize that the container is anyway destroyed and re-created with the new version,
so the service still has an outage. Application developers need to design around
this fact.

Live migration can be a mean to relocate a container or to change its state,
without Pod restart.

To integrate live migration in Kubernetes we started by experimenting CRIU
migration features using runC library for Docker (docker_runc). The docker image
is flattened to a runC one so that calls to basic library checkpoint and migration
configurations can be used.

As a second step, we had to understand how to access a docker library for a
Docker container deployed on Kubernetes.

There was a possibility to access remotely to nodes in the cluster and run
bash commands on them. We could have installed a docker environment on the
node and create containers to migrate at the node site. That strategy would
have been against the principles of SELF and RUN TIME CONTAINMENT for
cloud-native orchestration. That is why we resolved the problem nesting a Docker
Daemon instance inside the container. For running containers under Kubernetes
it is necessary to implement a Container Runtime Interface (CRI) integrated with
a container runtime environment compliant with the Open Container Initiative
(OCI). As mentioned in Section 3.2.3, OCI includes a set of specifications that
container runtime engines must implement and a seed container runtime engine
called runC. This is ideal in our case since CRIU leverages on runC. In our setup we
used docker, thus runC is integrated. Cri-o [157], would have been a Kubernetes-
specific, lightweight alternative, to docker. It directly runs over runC containers,
thus it may save extra memory and CPU since it removes one extra layer in the
container image. However, due to limits in its extensions and complexity of the
installation, we preferred to create a live migration solution on the default CRI
installation.
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In the following sections, we present possible use cases for Live migration in
Kubernetes and further detail our solution.

3.3.1 UCs for Live Migration in Kubernetes
Live migration would let one reduce downtime for services that do not support
fail-over and have a long start-up time.

Theoretically, a statefull software could run under a single-instance since in
Kubernetes there are StatefulSet: a single-instance stateful application using a
Persistent Volume and a Deployment. The stateful deployment configuration will
keep application states even if Pods have to restart. However all restarts would
be very slow due to the rolling cluster reboot: when in need to rescale or balance
the deployment, Kubernetes incrementally deletes all the Pods controlled by a
Replication Controller (RC) and allows the RC to recreate them elsewhere.

To avoid time-consuming reboots, one could live migrate the state of a running
instance, stop it, and restart on the target replica.

The main reason to use migration in a Edge network is however related to the
user mobility: the application follows the user when he moves from one Edge site
to the other. We synthesize other use cases for live migration in Fog network in
the following three scenarios:

• Load Re-balancing: to replace an unreliable or under-resourced node, a cold
swap may cause service disruptions. Instead, one could mark the node as
unused and gradually phase it out. An internal scheduler could automate
the migration of components that are too costly to simply restart. Also
dynamically switching node locations for cost-effectiveness would become
feasible.

• Hardware Maintenance Without Downtime: in case of need, some Edge
server could be substituted by a neighbour once until maintenance is com-
plete without compromising the service.

• Affordable Redundancy: replicas are usually needed to guarantee service
coverage even in case of major disruptions to the infrastructure. For a net-
work where the demand is high and the available resources are low( small
bandwidth, limited CPU) replicas may be expensive to maintain. Similarly,
a shared file system would be too heavy on the network traffic. Instead, a re-
duced amount of replicas, able to perform live migration, would only require
a smaller amount of network resources for a far limited time.
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3.3.2 Experimental Setup
In this section, we integrate live migration in a Kubernetes cluster moving a docker
state from one Pod to another.

Our environment is composed by an Edge server with 5G non-stand-alone
connectivity, where the K8s master resides (an Ubuntu 16.4 VM instance vCPU:
4 Disk: 80GB RAM: 8GB).

Kubernetes minion nodes are two raspberry-pies(models 3B and 3B+) and an
ubuntu dell ( Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz) connected via 5G
modems to the server.

We have an OpenVPN Certificate Authority and Server on the Edge, so that
we can join the nodes with their virtual address to overcome NAT.

We deploy a DinD container in our cluster for each node as a Stateful set. These
nodes will be running the docker container we would like to migrate. For instance
a busybox running a counter script or a minecraft server (the server container
would be migrated, while its persistent volume and the related services are still
under K8s controls).

DinD works by running a Docker daemon inside a Docker container. Containers
created with the DinD daemon are not visible to our original host Docker daemon.

All tasks are deployed to the Fog nodes using our customized scheduler, as we
describe in [7].

For the sake of simplicity, we will show examples for migrating a single natural
number generator container, that counts from zero to infinity, however in the test
section a table summarize the different containers we experimented with. The
application is wrapped in two nested layers: a Kubernetes Pod and, within the
Pod, a docker container DinD running a local daemon.

The Kubernetes Pod groups together all the sub-tasks necessary for the mi-
gration process in form of containers: an Initiator, a Checkpointer, a Migrator,
and the DinD itself (See Figure 3.10). The solution is nested because the NNG
container will be created and run by the Docker daemon inside DinD only after
Pod A has started.

The experiment is executed on multiple machines, each a "Fog" node of our
Kubernetes cluster.

With DinD we created a simple cluster with a master node, from where Ku-
bernetes performs orchestration tasks; and two workers where the Pods, among
which we want to move our application, will be deployed.

After that, we implemented a sidecar container solution in a Kubernetes Pod
that contains a DinD container. Applications and services often require related
functionality, such as monitoring, logging, configuration, and networking services.
These peripheral tasks are implemented in a sidecar pattern: separate components
or service inside their own process or container, they provide an homogeneous
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Figure 3.9: Live Migration - a simple flow

interface for others to access to them. In our case the DinD container provides a
docker daemon service so that other containers can instantiate migratable ones in
it.

The logic of the migration process is synthesized in Figure 3.9.
The Docker daemon can listen for Docker Engine API requests via three dif-

ferent types of Socket: unix, tcp, and fd. To access the Docker daemon remotely
is enough to enable a tcp Socket.

At configuration, the DinD container is setup so that the Docker daemon starts
on the path of a Kubernetes mount. Through bind mounting, we give all the
containers in Pod A full access to mounted resources of the DinD daemon.

So in the container description, DinD must be specified as a privileged
container and the mount should be declared both in the container and in the Pod.

...
securityContext:

privileged: true
volumeMounts:

- name: dockermount
mountPath: /var/lib/docker

...
volumes:

- name: dockermount
emptyDir: {}

This allows for other containers in the same Pod A, to be able to create and
destroy containers in DinD using REST requests over the localhost (docker run
calls with p 80:80) , and if they share that mount, to be able to create, destroy
containers inside DinD and migrate them to other Pods.

In Pod A, the sidecar container, DinD, starts a Docker REST service on a fixed
port (as shown in Fig.3.10). This container will serve as a server, locally exposing
all daemon services. It is conventional to use port 2375 for un-encrypted communi-
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Figure 3.10: Live Migration in Kubernetes

cation with docker daemon. The Docker clients will honor the DOCKER_HOST
environment variable and forward request to the specified address. This means
that the containers in Pod A will have an environment variable DOCKER_HOST
set to tcp://localhost:2375. With this configuration, any container in Pod A will
have Docker binaries that point to the Docker daemon on the DinD container. In
other words, we enable calls to the daemon through localhost.

The initiator container in Pod A can then issues Docker commands to start a
container.

The container, in our example a Natural Number Generator, will run as child
processes of the DinD daemon and inherits its CPU and memory constraints.

The NNG in our case is just a simple while loop in a busybox image that now
runs inside DinD.

The yaml file configuring Pod A will have the initiator container described like
follows:

...
- name: initiator

image: docker:1.12.6
command: ["/bin/sh"]

command: [’docker’, ’run’, ’-p’,
’80:80’,’-d’,’busybox:latest’,
’/bin/sh’, "-c"]
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args: [i=0;while true; do echo $i;
i=$(expr $i + 1);sleep 1; done]
resources:

requests:
cpu: 10m
memory: 256Mi

env:
- name: DOCKER_HOST

value: tcp://localhost:2375

It is important to notice that, even tough NNG is created after Pod startup,
since it shares resources with DinD it will still die with it in case of relocation of
Pod A. In case of removal of the Pod also NNG resources or eventual storage will
return under Kubernetes.

The checkpointer container regularly, in our case every 20 seconds makes a
runc call to the DinD to make a checkpoint of the running container, and to write
it into the shared mount.

To setup a shared mount is enough to declare a volume and in all involved
containers declare a mount, the mounts path can differ between each other as long
as the name is the same.

volumes:
- name: shared-data

emptyDir: {}
containers:

...
- name: checkpointer

....
volumeMounts:
- name: shared-data

mountPath: /usr/share/

The migrator container is in charge of sending data trough Kubernetes IPs to
a replica of our Pod in node_2. Moving the checkpointed state, the container
and the shared file resources between physically separated pods(that is residing on
different physical machines) can be carried out in many different ways, as through
simple http posts, rsync or even shared filesystems. Our migrator will be sending
data through http using Kubernetes IPs to a replica of our Pod in node_2, where
the restorer container is listening.

In our image (3.10) the external IP address of Pod C will be 10.244.2.8.
To share data among nodes without a shared filesystem, we have created a

service (e.g. my-service): a Kubernetes Service is an abstraction which defines a
logical set of Pods and a policy by which to access them. Similarly, for the local
host set up, we created an environment variable mapping what port the restart
service listen to.

To enable Pods communication also an ‘endpoint’ must be created. The end-
point name is the same as that of the service name. Kubernetes will handle the
service discovery process and only the port reference will be needed. Pods A and C
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use the endpoints and the service: if migration and restore of the image in Pod C
is needed, it will be POSTed by Pod A to the endpoints object called my-service.

The restorer will have to expose a service to get the migration data from the
migrator. This service (as any services) has two IP addresses - an internal IP (also
called cluster IP, for communication with containers in the pod) and an external
IP that can be exposed outside. Port forward today only works for TCP protocol.

In the service definition the target portshould be the same as that of app-port.
This means that the service exposes Pods who have the port declared as app-port.
Thus, if Pod B or Pod C have ports as app-port, the service will expose these
Pods.

So internally, it is exposed as ăcluster-IPą:80.
The restorer as any previous container has access to a mount shared within all

containers on Pod C, where the task should be migrated. It listens for calls from
the migrator, takes the data and saves them in the local mount, calling to the local
DinD to restart the container in its own resource space.

To reduce the number of containers interacting with DinD, initiator, check-
pointer and migrator in our example could be all part of a single internal scheduler
in charge of the whole life cycle of inner containers and of relocating the "live" part
of the Pod.

We performed several test with different deployments, trying to variate in im-
age and checkpoint size. To select images we took inspiration from possible fog
scenarios, were resources have a reason to join and leave the network:

• Mysql: basic shared database scenario

• Minecraft: gaming server between mobile peers(eg. friends hosting a tur-
nament, one of them hops on a train)

• Stanford corenlp: distributed AI learning (eg. a smart car fleet)

• Jenkins and Jira: collaborative tool (eg. laptops coming and going from a
workplace)

In Table 3.2 we report average times of deployment and migration. Since the
scheduling time and pod creation would be identical in both scenarios, we did
not consider them. Deployment only represents average container creation time.
Equally, for migration, we used two existing pods as described before, and only
calculated the time of checkpoint, scp (migration) and restore of the container.
Each migration run over a container with 20 seconds lifetime. In most cases time
spent to restart the container is often shorter compared to the start time, with
the added value that the container will start exactly at the state were it left.
The overall migration time is influenced by the checkpoint size and the checkpoint
migration in itself.
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Table 3.1: Applications deployed in our tests

Application Image
size MB

Checkpoint
size MB

minecraft server 68.53 0.328
mysql 151.88 9.29

jenkins 285.8 84
jira 482.5 20

stanford-corenlp 1500 4.96

Table 3.2: Comparison between k8s container deployment in pod and migration
from one existing pod to the other using CRIU and Dind strategy

Average start and
run time (s)

Average Migration
time (s)

Application start run tot checkpoint migrate restart tot
minecraft server 23 20 43 4 1 13 18

mysql 16 20 36 5 1 14 20
jenkins 10 20 30 8 7 10 25

jira 31 20 51 7 1 10 18
stanford-corenlp 17 20 37 4 1 14 19

In our tests migration saved between 5s and 33s, introducing a communication
overhead between 0.33 and 84 MB. On average, service disruption time is halved,
if we compare complete migration with restart and run. As a worst scenario,
if we compare only the start of a fresh container with the complete migration,
the average time stays in favours of the migration, with exceptions of Jenkins
deployment where restarting a checkpoint or a new image takes exactly the same
time.

In situations where the throughput between nodes is higher in magnitude than
the checkpoints size, the iterated pre-copy phases does not have a prolonged du-
ration and can be an effective means to reduce downtime. In case of checkpoint
size greater than what we had in the Jenkins example, our setup would have been
better configured with an iterative migration based on post-copy [158].

3.4 Related Works
In the last years, the interest over service placement techniques has piqued, because
of the many network paradigm that has arisen especially in connection with 5G
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and Edge Computing.
Authors in [159] have modeled service replicas and migration in MEC. The

overall conclusion is that service migration and replication should coexist: in case
of short-duration applications, duplication increase the system performance by
avoiding service migrations. For services of long duration, user mobility strongly
require service migration.

Among the works on Service Migration for Edge Computing the paper [129]
discusses two concepts similar to service migration: live migration for data centers
and handover in cellular networks. Authors distinguish live migration in datacenter
from what is needed for service migration in MEC. They argue that the former
focuses only on reducing downtime, while the latter should attempt to reduce the
overall end-to-end latency. The authors present an extensive taxonomy on the
topic. They favor Agent-based solutions over VM and containers but stress how
these technologies are still at a too early stage.

Also [136] shows a global classification of VM and VFN placement solutions
categorizing them based on their target objective. The point of view of the analy-
sis may be either the final user or the network providers. Recent works have been
done also in the direction of applying containers for service migration. In [148], af-
ter a systematic study of Docker container layer management and image stacking,
the authors propose a migration method that reduces file system synchronization
overhead, without dependence on the distributed file system. The first evalua-
tion result in a reduction of the total service handoff time by 80% with network
bandwidth 5Mbps.

In [149] three different mechanisms are proposed and evaluated to improve
the end user experience by using container-based live migration paradigm. The
author privilege LXC over Docker because of their lighter structure. The described
methods are the classical approaches for VM and distributed systems: temporary
file system (tmpfs) and disk-less based lightweight container migration, and the
shared file system.

Basic notions on the topic of containers checkpointing and live migration can
be found in [130]. Also, [137] summarizes the differences between LXC and Docker
and introduce the success of Kubernetes.

Related to our use case, in [160] a comprehensive description has been given
on the advantages of the federated learning approach, with a range of applicable
algorithms. In [161] the authors present a practical method, named Federated
average, and through a series of experiments, they show that the idea of federated
learning can be effectively and efficiently used in similar scenarios to ours, as
defined in Section 3.3.1.

Authors in [110] worked on geographical distribution of VMs in cloud. Their
software, Volley, performs automatic service placement based on iterative opti-
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mization algorithms, and performs service migrations when detecting changes in
data center capacity or user location. A spring model to simultaneously reduce
latency and reduce inter-datacenter traffic is adopted: an update rule iteratively
moves nodes with more communication closer together. Volley does not attempt
to migrate the data, but leaves the migrations specifics to the application.

To the best of our knowledge, there is no effort in the literature to integrate
live migration in existing orchestrator platforms such as Kubernetes or Mesos.

Work on improvement of resource scaling using live migration have been done
in [162]. ELASTICDOCKER scales CPU and memory assigned to each container
according to application workload. As vertical elasticity is limited to the host ma-
chine capacity, ELASTICDOCKER performs container live migration using CRIU
in case of insufficient resources on the hosting machine. Since ELASTICDOCKER
improves performance when compared to Kubernetes autoscaling, it could be in-
teresting in future work to experiment if similar techniques, using our migration
scheme in Kubernetes, could as well improve autoscaling.

Multiple efforts towards stand-alone solutions, both opensource and propri-
etary, where made.

Authors in [131] present a live migration solution for Docker by means of logging
and replaying iteratively the container. The paper is far from presenting a full
orchestration and migration stack. This is one of the earliest efforts we could find
on checkpointing containers. The results compared to a VM implementation where
interesting, with downtime reduced up to 65% under different scenarios, while the
total migration time diminished between 27% and 47%.

Also, [132] presented a generic checkpoint/restore mechanism evaluated with
Docker. Their experiment and performance evaluation shows that the checkpoint
and restore time scale linearly with the micro-service application image size. Again
no complete orchestration solution is presented.

Container live migration specifically for Edge Computing and 5G is also a
recent interest in the literature.

In 2016 [163] proposed Foglets, a programming infrastructure for fog nodes.
It provides APIs for a spatio-temporal data abstraction for storing and retrieving
application data on the local nodes; as well as primitives for communication among
network resources. Algorithms are presented for launching application components
and handling their migration between nodes, based on the mobility pattern of the
sensors and the computational needs of the application. The implementation uses
Docker containers and RocksDB [164]. Compared to our pattern proposal for
Kubernetes, in Foglets all instantiated containers will have to use a Foglet image
as a base layer.

In 2017 [148] propose a framework that enhances service handoff across edge
servers by leveraging the layered storage system of Docker containers to improve
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migration performance. Iterative migration is used to eliminate unnecessary trans-
fers of a redundant and significant portion of the application file system. Base
memory images are transferred ahead of the handoff, and only the incremental
memory difference when migration starts.

Partially under the TAKE5 Finnish Ministry project, [165] worked on a frame-
work which leverages MEC to support diverse applications in smart city scenarios.
To always ensure high QoE, the Follow Me Edge concept is introduced. The au-
thors prove better efficiency of container migration based on OpenVZ. However
migrating a blank container has considerable latency, even using NFS and shared-
async mode the average time is 10s. The Follow Me Edge stays as a framework
proposal and is yet not available for orchestration. However, the authors present
interesting findings: in a later publication from Take5 group [149] three migra-
tion approaches for LXC are investigated as an enabler of the Follow Me Edge
concept. NFS approach delivered the shortest migration time, it also imposed the
highest downtime. Meanwhile, the larger migration time was caused by the file
system copy, which was done while the container was running. Iterative migration
achieved a mean downtime of 1,042 s. Performance issue in the current implemen-
tation of CRIU’s page server slowing down diskless migration was finally identified.
We used this information in our work when deciding for Docker containers and to
choose against NFS.

Authors in [127] presented a layered framework for service migration in Multi-
access Edge Computing nodes (MECs). The framework supports both container
and VM technologies, and the author claims it can be easily implemented using ex-
isting functionality of container and VM implementations. As a proof of concept,
nested KVM and LXC containing running various applications were run inside the
two host VMs mimicking MECs. Their results are based on the concept of sharing
the same configuration base layer for all MEC nodes (OS, kernel etc.) to reduce
migration size. Contrary to a Kubernetes implementation, the framework does
not include orchestrating mechanisms and does not keep in consideration node
heterogeneity and networks fluctuations.

Among customized orchestration for Fog [124] propose IoT gateways work-
ing as full fog nodes, by extending the existing base of open-source Kura IoT
gateway. They employ containerization techniques, in particular, Docker, Docker
Swarm and live migration to deploy measuring/sensors data collection services
on Raspberry-Pis. Authors mention a Swarm based orchestration solution, which
make us suppose a solution based on API calls to Docker Swarm functionalities
from the Kura gateway. On our work, we specify a more generic solution that is
immediately deployable on any cluster.

For completeness, we include live container migration solutions in shelf prod-
ucts platforms. As mentioned in Section 3.2.3, those are meanly Virtuozzo and
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Jelastic.
Virtuozzo [145] leverages OpenVZ containers and can thus apply live migration

using NFS. It is optimized for hosters and offers hypervisor (VMs in addition to
containers), distributed cloud storage, dedicated support, management tools, and
easy installation.

Jelastic [146] is a cloud services provider that combines PaaS (Platform as
a Service) and CaaS (Container as a Service). Jelastic provides custom Docker
containers. Live container migration is integrated into the platform services as
well.

3.5 Conclusions and Future Works
Current orchestrators for mobile networks cannot handle the complexity added
by new paradigms such as Fog computing. Having to integrate and manage such
peer-to-peer and ad-hoc solutions requires the introduction of: (A) mapping of
available and mutable resources, (B) creation of a dynamic deployment plan, (C)
infrastructures to guarantee codes and application location assignment, and (D)
the strategy to maintain the health of the service; especially the shared state of
the application.

In this chapter we described some of the current technology, their benefit and
how we combine them, to build a framework tackling all four of these needs.

We advocated that implementing live migration can help to achieve zero down-
time even in situations when redundancy is not an option, like in the case of
hardware maintenance or for re-balancing low latency critical services.

We presented two application scenario leveraging on the current container or-
chestration technologies: one on Docker Swarm and another on Kubernetes.

Our checkpoint and restore of containers relies on CRIU. The library facilitates
the migration process but has multiple restrictions [166]. As of today, the migration
process seems more error prone than VM live migration: since checkpoint and
restoring are two separate processes they need to be implemented in scripts and
if resuming fails the last migration should be redone. However, the smaller size of
the average migration and reduced time still work in favour of container solutions.

IP addresses used by the applications should be available on the destination
host: when restoring TCP sockets, CRIU will try to bind and connect them using
their original credentials; if IPs are not available the system call will fail. In our
case, however, the app lives in a net namespace (a container). In this case, CRIU
will call action scripts to lock the network and the Docker daemon will handle it
through the libnetwork library.

In CRIU usually restored processes have the same PID as the originals. This
prevents to migrate processes already existing at the destination host. This is one
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strong point to involve Kubernetes in the migration. Kubernetes can handle IPs
and namespaces, so we could work around this limitation.

Another reason to rely on an orchestrator was that CRIU does only plain
snapshot/restore of the process. No cleanup is performed: no rundown of the
application, no disconnection of network connections and no files is closed. In a
Fog network garbage collection and redistribution of resources would be needed.

In the Docker Swarm case we described a Federated Learning case scenario.
At present the orchestrator functionalities Network mapping, Task assignment
and Deployment are fully implemented. In the next iteration, we would like to
optimize the current migration strategy, based on experimental Docker CRIU calls,
with what described in Migration Support (Section 3.2.4).

In the Kubernetes work, we presented a possible integration of Live Container
Migration patterns into Kubernetes. The purpose of such an integration is to allow
Kubernetes to exploit highly volatile resources at deployment of latency critical
applications in Fog networks.

Migrating docker containers outside Kubernetes would have nullified all the
advantages of having an orchestrator. For this reason, our solution uses docker in
docker and sidecar container patterns built upon Kubernetes overlay network.

Other advantage of our proposal is that containers created inside the DinD
container are still exploiting Kubernetes capabilities. They are reachable through
localhost since containers running in Kubernetes Pods share the same network
namespace; the Pod IP allows reachability from all the nodes in the cluster (fixed
path), thus the migration process is simplified.

Kubernetes garbage collects Pods after they are terminated, preventing nodes
from running out of space. Ideally having a one to one mapping from "side" DinD
and "car" container, will keep this benefit.

CPU and memory resources will be inherited by containers inside the DinD.
Finally, there will be storage cleanup if the Pods is removed or terminated.

The cons of our approach mostly derive by using DinD. As Jeŕom̂e Petazzoni
wrote [167]: it is possible to do something reliable and fast involving multiple pro-
cesses and state-of-the-art concurrency management with DinD; but it is simpler
and easier to maintain, to use the single actor model of Docker. The risk we could
incur in is that of nesting side effects and of a build cache shared across multiple
invocations (possible data corruption).

DinD problems are solved in case of DooD (Docker outside of Docker). DooD
uses its underlying host’s Docker installation by bind-mounting the Docker socket.
Even if DooD is the preferred solution because of simplicity and lesser risk, we ad-
vocate that it infringes the principle of run-time confinement and self-containment.
In fact, DooD involves creating containers in the host node, bypassing the Kuber-
netes infrastructure. In this sense also image immutability through the cluster
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cannot be guaranteed, since Kubernetes will have no awareness whatsoever of the
container existence. Deploying migrating Docker containers outside the domain of
Kubernetes also requires a completely separate orchestration and reintroduce all
the complexity previously discussed.

The need for live migration integration for some cloud-native services still jus-
tifies our attempt at a safe setup, involving a single instance of DinD per Pod.

A live migration feature in Kubernetes will allow us in the future to rethink
scheduling and resource deployment on a finer grain, without compromising user
quality of experience. Services could be redeployed more often according to the
state of the network without the downside of introducing continuity disruptions.

Live migration should be included in a Fog platform to compensate the inherent
high mobility of the nodes, for all those scenarios that cannot be solved with a
stateless service deployment.

Our solution relies on Checkpoint and Restore and is thus limited by it. The
library presents multiple restrictions [166] that are continuously being addressed
by the community. In our scenario the most significant one being that CRIU calls
for containers in privileged mode. We also experienced that different machines/en-
vironments and images can incur in diverse errors at checkpoint and restore time.
To reduce errors we plan to shift the implementation to newer container daemon-
less solutions, such as podman [168], so that root mode will not be a necessity. We
argue that with a relatively low impact on the network, our strategy of migration
can still be convenient in therms of time saving and reduction of service disruption.

Framing migration inside a platform such as Kubernetes allows us to compen-
sate for migration failures, since we can fall back on preexisting high-availability
mechanisms such as an N-Way Active based redundancy [169].

A live migration feature in Kubernetes will allow us in the future to rethink
scheduling and resource deployment on a finer grain, without compromising user
quality of experience.

For future work we are investigating rescheduling of services, were we exploit
live migration and trigger pods re-deployment according to the state of the network
and the health of the cluster nodes.
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3.6 Contributions
In this Chapter we collected our work concerning Thesis 2. I made a study and
comparison between VM and container technologies. I tested and compared dif-
ferent orchestrators. I ideated a framework to enhance Edge computing with
container migration. I tested it on a real 5G Edge setup. I created a simulation of
peer to peer Fog nodes that can join an Edge cluster and send each other tasks.
After migration is triggered it exploits Docker swarm and CRIU.

I defined possible reasons and application for container migration in Edge com-
puting. I created a live migration flow for Kubernetes. I tested the migration flow
in an implementation on top of a 5G network.

I verified that the container migration reduces downtime for most of the services
tested.

Figure 3.11 summarize the main concepts and contributions.
Thesis 2 (Migration in Edge Computing). In Edge computing it will be necessary
to move an edge-native application from one edge to the other, following the user,
or, for recovery reasons, even from an Edge to the Cloud. The best approach to
avoid this would be to have Stateless Apps, but there are cases in which this is not
a possibility.

I implemented a Java simulation of a Fog network, integrating live
migration trough means of CRIU library calls and coordination via
Docker Swarm. After testing the limits of this configuration I set
up a better version based on Kubernetes. I constructed a docker in
docker solution that is deployed as a daemon set on each node. This
component is in charge of actuating iterative pre-copy migration of
its hosted containers, if triggered by any other software running in
the cluster. I have tested the migration against stop and restart of
multiple container deployments and shown how, given a stable network
connection (like a 5G coverage) we can use migration to achieve a
lower Service Downtime. .

thesis relevant publications
[1] [2] [3] [4] [5] [6] [7] [8]

(1) Facilitate Deployment at
the Edge ◦ ◦ ◦

(2) Migration in Edge
Computing • • •

(3) Distributed Mobile Edge
Scheduling ◦ ◦ ◦ ◦
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Figure 3.11: Summary of Chapter Contributions
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Chapter 4

Scheduling for Distributed Mobile
Edge

In many Edge scenarios, especially those related to distributed Edge and IoT, it
is for the best to reduce the need for application migration from the start.

The orchestrators built for cloud resources usually oversimplify the allocation
task, since they do not contemplate high application mobility or great variability
of cloud resources.

Reducing rescheduling and frequent reallocation of resources is instead crucial
in case of smaller and heterogeneous realities, such as an industrial Distributed
Edge scenario.

We can reduce need for migration trough the improvement of the deployment
strategies. Improving the scheduler component of the edge orchestrator via dy-
namic memory allocation can boost the health of the Edge cluster and reduce
ping-pong effects between neighbour Edge nodes.

4.1 Motivation
Distributed Mobile Edge Clouds are Edge resources across different physical ma-
chines, located in a relatively close distance. Example scenarios for this kind of
on premises setups come from the Industrial IoT (IIoT): collaborative robotics,
remote robot controlling, flexible reconfiguration of manufacturing pipeline, etc.

A Distributed Edge introduces new challenges for the involved resources man-
agement functions.

It is likely in these scenarios that an Edge instance on the premises will host
not only the software in charge of mobile connectivity, but also the orchestration
logic.

The general role of an Orchestrator is to handle the applications life-cycles (ac-
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tions like service binding, querying, copying, updating and deleting). Cloud-native
Orchestrators badly adapt to the job. Their scheduling configurations are usually
simplistic since they seldomly need to handle distribution of the computational
resources: quite often Virtual Machines with very similar baseline characteristics
and hosted in the same datacenter. The devices that will compose the orchestrated
cluster in our IIoT case scenario are diverse in capabilities, resources, availability,
life-time, supported temperatures and so on.

Cloud-native orchestrator solutions need to be adapted and customized towards
this context. In the next section we will briefly explain how IIoT applications
benefit from 5G and Edge computing infrastructures and what characteristics of
current orchestration solution made us verge towards Kubernetes as a starting
point for edge-native applications orchestration in IIoT.

The Chapter is structured as follows: after a deeper introduction to the ob-
jectives (Section 4.1.1), we describe the Kubernetes Scheduler (Section 4.2). In
Section 4.3 we present our implementation and finally our tests (Section 4.4.3).
The Chapter ends with the Related works and Conclusions (Sections 4.5 and 4.6).

4.1.1 Problem Statement
Scheduling resources and jobs on a distributed Mobile Edge requires awareness of
the Edge Context (Network and Nodes resources). In this Chapter we try to adapt
an existing Orchestration platform to enable optimal Edge scheduling.

More in details, the objectives of the chapter are to:

a) define how to ensure deployment and orchestration of edge-native applica-
tions when the cluster is spread among communicating devices at the edge,
keeping in mind the peculiarities and challenges of such a new infrastructure.

b) describe our verification setup in details. How real 4G and 5G connectivity
work together, the 5G New Radio and the concept of non-standalone (NSA)
5G core network.

c) present a lightweight CoAP-based (Constrained Application Protocol) tool,
to collect cluster metrics, able to traverse Network Address Translation when
UEs act as modems for devices in the network (i.e. tethering);

d) introduce a Kubernetes compatible scheduler, based on real-time application
context information, with an aggressive scoring mechanism to prioritize the
balance of resources usages all over the cluster.
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4.2 Kubernetes schedulers
As stated previously in this thesis, Kubernetes (K8s) can be considered as an
orchestrator since it is able to automate deployment, scaling, and management
of containerized applications. It is important to state that from March 2019,
a stripped down version of Kubernetes for IoT and Edge application has been
released: K3s [170]. Scheduling, network and cluster logic are kept the same
and only the kubelet size is significantly reduced through a reorganized plugin
structure and a less resource-intensive database (sqlite3). When faced with the
choice between K3s and K8s, the latter was still preferred, considered the following:

1. The K3s project was fairly too recent and not production-ready, not enough
information was available online;

2. The scheduler component was identical in both Kubernetes;

3. K3s does not allow multiple masters, so if the master goes down the whole
cluster is lost;

4. a K3s cluster is not compatible with K8s, adding unnecessary complexity
in the case of multilayered orchestration, to enable aggregated control of
clusters located in distributed facilities.

An other scheduler option could have been Poseidon/Firmament scheduler [171,
172] that incorporates flow network graph based scheduling and applies min-cost
flow optimizations. Due to the inherent rescheduling capabilities, the scheduler
enables a globally optimal scheduling (Single-step scheduling) and high scalabil-
ity. Focusing on a global optimum for an allocation process complicates and slows
down the scheduling algorithm, but it reduces the necessity of rescheduling and
maintenance phases. According to [172], Poseidon supports high-volume workloads
placement and complex rule constraints. It achieves a 7X or greater end-to-end
throughput than the Kubernetes default scheduler, as long as resource require-
ments (CPU/Memory) for incoming Pods are uniform across jobs. Due to its
characteristics this scheduler is more adapt to Big Data or AI jobs were with a
large number of tasks the throughput benefits would be high. Currently, Poseidon-
Firmament scheduler is in alpha release, does not provide support for high avail-
ability, and is not used in any production deployment [173]. This scheduler would
be interesting as a stepping stone for implementing the algorithm proposed in
Chapter 2; yet this was not a good option for our IIoT use case, so our final choice
remained K8s default scheduler.

For our specific scenario, we found that the most lacking orchestration feature
in K8s was related to the scheduling techniques themselves. As we will show later
in this Chapter, and as we stated in [6], in a distributed IoT cluster scenario, the
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amount of time spent scheduling and rescheduling a pod may grow significantly,
with service disruptions up to a minute in case of node death. In the default K8s
scheduler nodes are evaluated at scheduling time; when the user creates a new
pod and assigns it to the Kubernetes cluster, the pod gets into the event stream
(Object Store) with a “Pending” status. The scheduler watches constantly for this
type of event and decides the most appropriate binding to a node.

At first, a subset of feasible schedules, containing only those nodes that are sat-
isfying the given constraints for the deployment are collected; Then the scheduler
computes a subset called viable schedules, which ranks the selected nodes based
on scoring functions:

1. PodFitsResources: If the free amount of CPU and memory on a given
node is enough

2. NoDiskConflict: if a pod can fit due to the volumes it requests

3. NoVolumeZoneConflict: checks possible zone restrictions.

4. PodFitsHostPorts: check if the needed port is free

5. CheckNodeMemoryPressure and CheckNodeDiskPressure: if a pod
can be allocated on a node reporting memory pressure condition or disk
pressure condition.

6. MatchNodeSelector (Affinity/Anti-Affinity): By using node selectors
(labels), it is possible to define that a given pod can only run on a particular
set of nodes or that it cannot be allocated on a node that has already certain
pods deployed (pod-anti-affinity).

The scheduler also uses “general-purpose” cloud computing scheduling criteria,
called priorities: for example ImageLocalityPriority ranks according to the lo-
cation of the requested pod container images.

A more clear schema of the interactions among K8s components during the
default scheduling, is shown in Figure 4.1.

The default scheduler that we compare to acts mostly as a rule based entity:

1. first it determines all the nodes that exist and are healthy

2. then runs the predicate tests to filter out nodes that are not suitable

3. finally runs priority tests according to a spreading function, so that candi-
dates are ordered by a score influenced by few parameters such as if the pod
image is already present or if there is not already a duplicate of the service
in that location.
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Figure 4.1: Default K8s scheduling process [13]

4. If nodes have the same score they are selected in a round-robin fashion

Our scheduler implementation modifies the last two steps of the scheduling
phase. Furthermore it is a hybrid between multi-step [174] and single-step schedul-
ing. Multi-step scheduling is the approach of K8s default scheduler: each pod is
considered independently to provide a local optimum for each allocation process.
This solution mitigates the complexity of having multiple parameters involved in
the decision process. Overall it requires more maintenance processes, especially in
case of rearrangements based on pod priorities, pod preemption and reassignment.

In our case we do not perform exactly Single-step scheduling since the optimum
is calculated every batch of pods.

4.3 Edge Cloud Scheduler Implementation
There was a possibility to instantiate the custom scheduler as a pod on the master
node to profit from the virtual network built up by K8s. Our version does run in the
master node of the cluster, however, it is outside of K8s control, to avoid delays
and interference from the default scheduler. Hence we preferred to handle the
communication separately and make use of an external asynchronous module, so
that the scheduler itself can operate without an excessive computational overhead.

The status data fed by the nodes of the cluster are input to the scheduler for
node score computation. The requirements of a Pod also influence the choice.
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The scheduling mechanism is able to dynamically adapt to the changes, and
its fair since it distributes workloads based on the actual node status.

The motivation behind our approach also relies on the observation that the
existing scheduler does not fully satisfy the need to preserve the health of the
cluster and its services. Sharing physical resources among containers might lead
to a degradation in the performance of the applications running inside them [175].
Kubernetes resource reservation mechanism is only available for CPU and RAM.
However other resources are shared such as bandwidth and network access [176].

In the following paragraphs, we will first describe our tool to collect information
about network and cluster context (Section 4.3.1), finally the scheduler algorithm
described (Section 4.3.2) : first the task prioritization and candidates selection are
summarized, then the new score computation rationale is presented.

4.3.1 Monitoring agents
The limited resources on our minion nodes required a stripped-down solution to
monitor their resources. Kubernetes monitoring solutions mostly employ greater
resources since they rely on multiple containers and more complex networking. In
our solution monitoring agents were added to the minion nodes for reporting run-
time data of the edge devices to the edge-cloud network management system. The
agent uses CoAP [177] for the communication between client and servers. When
gathering data, the master node acts as the client and edge devices act as the
servers. Low message overhead, low latency and high efficiency in comparison [178]
with other IoT communication protocols such as MQTT and DDS, made us verge
toward this solution. CoAP follows a Client-Server model, our solution takes
advantage of an asynchronous function facility in python, asyncio, which facilitates
execution of concurrent operations. The client sends multiple requests to all the
connected servers and collects the responses, then exposes the collected data on
localhost. This simplified service is always available for the custom scheduler to
gather data simultaneously from all nodes.

Such a solution is completely independent of K8s, so it can be replaced and
maintained without having to update the cluster, which is often an expensive and
error prone task.

The client can choose what parameters to request, via command-line. The
frequency of the collection of all parameters can be adjusted dynamically. On
the edge devices, a server-like application handles GET request, and is able to
measure the temperature of the CPU and its usage; total amount of free and used
physical memory, and total amount of swap memory. Network parameters are:
latency, jitter and packet loss. In case of Network Address Translation(NAT), a
login mode can be activated to initiate an ACK sequence from the device to the
master. This will ensure that any farther communication can transverse NAT in
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both directions.

4.3.2 Customized scheduler
An allocation process begins when the user issues the creation of a Kubernetes
entity (Pod, Deployment, Service). The entity gets into the Object Store and
the scheduler can manage it through the Kubernetes API (every action performed
in the cluster passes through the API, there is no direct interaction with the
entities of the system). At this point, if the pod is set to use the custom scheduler
in its specification, it will be assigned to it. This step does not consist of a real
assignment, as it is actually the scheduler that has the role of continuously watching
the Object Store for events triggered by Pods that by specification should be
related to it. To integrate to the default scheduler our customized version will
fetch nodes and pods through Python Kubernetes APIs, then select pods with
“phase=Pending” and matching in the schedulerName property.

The‘hybrid’ single-step scheduling optimizes the pods globally, as a single-step
scheduler would do, but it categorizes the pods and arranges them locally.

The specification of resource requirements in the Pod influence the allocation.
Memory and CPU and any other custom label can be easily specified for this phase,
just like in the default scheduler. However the network owner will be able to select
also connectivity and other network related criteria to influence the placement.

The scheduler will however take also inputs data from the metric agents and its
finals scores may be influenced by the infrastructure owner as he sees fit. Memory
can be specified as the minimum that has to be guaranteed or the maximum that
is allowed at run-time. CPU will be specified as the number of cores needed by
the software to run properly. In the simpler case of Pods with no requirements,
the best nodes are taken in order.

If there are requirement set, the total resource requirement of all the containers
for each pod is computed. The list of pods to deploy will be ordered from the most
resource-intensive pod to the least one. Pods with no requirements remain in an
untouched order on a separate list.

Ordering by resource consumption is a powerful way to simplify the knapsack
problem [179] towards a greedy solution: remembering that the available nodes
are lowest first, the optimization is fulfilled by binding the‘biggest pod’ (the first
in the requirement ordering) to the best node in the list that can accommodate its
requirements. After that the record about the free available memory in the node
is updated.

Nodes are first classified based on their Usability for that specific scheduling
time: Liveness (is it responding to ALIVE probes), CPU and Memory (are enough
and available for the job).
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If, for example, there are pods requesting only CPU and others both specifying
CPU and memory, two lists will be generated:

CPU only – The CPU usage values are compared for all the nodes. The lowest
value get the highest priority;

CPU and MEM – The values of the CPU and memory usage are simply summed
to build the score. The scores all the nodes are then compared. To build the
priority list nodes receive a score based on their run-time state.

In the investigation from [180] multiple automated placement decision algo-
rithms are compared and ranked. Among those, our improved score computation
solution is close to the Coefficient of Variation (CV) weighting method, combined
with Multiplicative Exponent Weighting (MEW). This upgrade was done based
on the observation that this combination was the one resulting with a greater
influence towards highly volatile parameters.

This score is computed as a linear composition of their utilization state proper-
ties (e.g. CPU usage, memory usage, core temperature, etc.), where the minimum
value correspond to the best candidate(s). The properties that are considered are
formulated so that their minimizations correspond to an increased health for the
system. Properties like reachability are also taken into consideration, expressed
through parameters such as network latency and failure rate.

The first iteration of experiments used the score as:

score “

S

|P |
ÿ

i“1
piwi

W

, i P N (1)

This formulations was not normalized and had a tendency to grow too rapidly.
The final score formulation become:

score “

|P |
ź

i“1

ˆ

pmin

pi

˙´wi

(2)

For each parameter related to the context of the scheduling,
P :“ set of parameters, the stream of values received from the devices is a time
series data. The weighted scores will be W :“ set of weights of the parameters
with |W | “ |P | ; so that each pi parameter data from a node device, is
normalized by the minimum value it historically reached for that node; and with
wi the weight assigned to it.

The approach is performed by implicitly trying to minimize the utilization of
each node, at each scheduling step (a minimization function where the minimum
is dynamically adjusted based on the current workload).

For this multi-objective problem the weight aggregation strategy is:
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wi “ Di “
σ2

i

µi,n
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The weight is the index of dispersion of the values taken by the parameters of a
node at run-time. The scheduler will use the weights to compute how compromised
is the operational state of a certain node.Since the computation is based on time
series, the longer the scheduler runs, the stronger the influence of the diverging
parameters will be, ensuring the balance between the different objective functions.
The scheduler can learn, during execution, which parameters should be considered
with more importance, compared to others, and will optimize the allocation of
computational tasks while also updating the values of the weights with the results
of each scheduling process.

Conceptually, the more the values of each parameter fluctuate during run-
time, the higher the value of the index gets, which means that the corresponding
parameter will have a stronger contribution on the computation of the score.

Since the history of the parameters is linearly growing we simplify the com-
plexityvia an online update, or recursive estimation of the mean, as shown below:
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n
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The benefit of this is that the length of the computation will remain constant
throughout the run-time of the system, so its impact on the scheduling time per-
formance will always be known and stable. This method will always converge,
since it does not use cumulative sums.

4.4 Setup and Evaluation Criteria
The scheduler and the metrics component were implemented in two versions each.
Several scheduling patterns have been explored, from simple methods such as
round-robin allocation of each pod to the ranked nodes, to more sophisticated
methods based on bin-packing algorithms for pods that have specific system re-
quirements. Two different Setups where tested. An Old Setup [6] within WiFi and
a New Setup employing 2 kinds of cellular networks: 4G and non-standalone 5G.

100



4.4. SETUP AND EVALUATION CRITERIA

Figure 4.2: Preliminary setup

4.4.1 Old Setup: Baseline Experiments and preliminary
results

The objective of the first testbed was to simulate an industrial setting where the
devices composing the cluster would be heterogeneous and reflecting the ideas of
Industry 4.0 [181].

The master node was an HP Elitebook 8560w, while the worker nodes Rasp-
berry Pi minicomputers (models 3B and 3B+) as shown in Figure 4.2. Limitations
of this first trial were that: the responsiveness of the cluster was reduced by the
WiFi connection. The network setup was over-simplistic since devices were in the
same subnet and had static IPs.

To simulate an intensive work, multiple batches of pods were deployed at the
same time: first 2 replicas, then 10, 20, 30 and 40, The application was a small
Python Flask web server. For higher numbers of simultaneous pods there was a
risk that the cluster would start to resent both schedulers and nodes would shut
down just because the requested resources were too high.

First experiments [6] also involved an application deployed on 2 nodes, in the
form of 2 replicas of the same pod. Two scenario were tested:
Only one of the two nodes dies – The service doesn’t respond when it is
called and Kubernetes directs the call to the fallen node. After 20-30 seconds,
Kubernetes recognizes that the fallen node is dead and a new replica of the pod is
deployed to one of the remaining available nodes. Meanwhile Kubernetes directs
the calls only to the working node. In this fashion, disruption of service should be
prevented after 30 seconds, unless excessive request are sent before the replication
is completed.
Both nodes die – It takes around 3 minutes for Kubernetes to decide to redeploy
new replicas of the pod to the remaining nodes. During that period, Kubernetes
acts as if the service was still available (even though service calls do not yield
any response, since no application is available to take them). After that time new
replicas of the pod are created and deployed, one after the other, with a 20-30
seconds interval between each other.

To compare the two schedulers we analyzed the pod distribution, the time to
schedule and the delta of the temperature of the CPUs pre and post scheduling.
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Figure 4.3: Scheduling time comparison

Figure 4.4: Node temperature comparison

This last metric is an observational indicator for cluster health, since it is a
parameter indicating the usage of the nodes not considered in the allocation by our
scheduler. Data were collected by three means: execution time measurement code,
either embedded in the scheduling components (when possible) or coming from test
packages; Cluster information displayed by the Kubernetes dashboard; Monitoring
data retrieved from the devices (the same data that includes the parameters used
by the optimization component).

The results from the custom scheduler were satisfyingly balanced. And this is
obtained not only by focusing on the number of pods per node, but also taking into
account the strain that the node is sustaining, in a way that is, most of the times
‘stricter’ than the approach taken by the default scheduler. Nodes overheating
happened a few times with the default scheduler. Time efficiency of the default
scheduler was proven in Figure 4.3, with
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The average temperature and delta of both schedulers resulted similar, (Fig-
ure 4.4) showing that our scheduler does not compromise the life expectancy of the
cluster. With custom scheduler being 64% faster in case of 40 pods deployments.

4.4.2 New Improved Setup
To further explore the IIoT use-case, the second cluster was built on top of a
real 4G/5G cellular network. This end-to-end verification system is built up by
using 5G NSA core, and an Edge network with Kubernetes cluster that operates
across the wireless connectivity. The connectivity between core and edge is estab-
lished via a high-performance 100G router. The core network provides 4G and 5G
connectivity with the following main components, installed in a virtualized envi-
ronment: Evolved packet gateway (EPG), 3GPP compliant Policy and Charging
Rules Function (PCRF) [182] and Policy Control Function (PCF), Mobility Man-
agement Entity (MME), Home Subscriber Server (HSS), User Database compliant
to 3GPP User Data Convergence standard [183]. The setup operates in NSA mode,
which means the control plane uses 4G control functions, while the user plane is
provided by 5G. The Edge network is distributed, the master node is instantiated
in a VM close the core network, while the 4G, and 5G worker nodes are connected
to the Kubernetes cluster via 4G and 5G connectivity, respectively. The worker
nodes types are Raspberry Pi model 3B and 3B+, two of them can perform 4G
attach to the test APN of the core via 4G USB modems (Huawei e3372) and the
other two via 5G modem through USB tethering.

Figure 4.5: Distributed Edge setup

This configuration allows the nodes to have access to the internet (dashed line
in Figure 4.6), for example to access a datacenter or to download container images
needed for deployments.

Mobile connectivity, however, introduces in the cluster the issue of Network
address translation (NAT) . The mobile nodes are not physically in the same subnet
and cannot be pinged by the master on the server nor can they communicate with
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each other using their internal addresses. This is against basic requirements of a
Kubernetes network [123]:

1. any two containers should be able to communicate without NAT

2. any node should communicate with all containers without NAT

3. the IP that a container sees itself as must be the same IP others can use to
reach it

As shown in Figure 4.6 the K8s cluster will have to rely on a Container Network
Interface plugin. Pods are connected to the node network namespace with a virtual
Ethernet pair: two namespaces with an interface on each end (veth0 in the root
node namespace, and eth0 within the pod). Pods in the same node are connected
to each other and to the node’s eth0 interface via a bridge: docker0. The mapping
of virtual IPs to pod IPs within the cluster is coordinated by the kube-proxy
process on each node. This process sets up iptables. In our cluster setup we
used Flannel [184] as the plugin to configure the layer 3 IPv4 network fabric for
Kubernetes.

Figure 4.6: Network connections in our setup
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Any deployment or service inside the cluster will not be influenced by NAT
since it will follow this virtual network (orange line), however, our monitoring tool
being outside K8s namespace, had to be adapted to overcome the NAT (blue line).
Our approach consisted in having the Server side on the Raspberry pis to send an
ACK as soon as the tool starts. Since only the minion nodes are behind the NAT,
they can see and have access to the Master node. After the client side on the
K8s node receives the ACK, his address will be resolved in the NAT tables of the
modems attached to the Raspberry pi. From now on the VM hosting the master
node will be able to act as a client as described in Section 4.3.1. An other approach
would be to handle a virtual private network (VPN) to enable direct node to node
communication at the Edge. There are two solutions in this direction:

1. To handle the VPN inside the cluster: a Pod in K8S will host an instance
of a openVPN server and allow other nodes to become clients, by exposing
itself as a cluster IP service. The tunneling is handled inside Kubernetes so,
to be able to communicate with Edge devices directly, a UE should become
part of the Edge cluster. In our scenario this is not preferable, because we
may want for a device to be able to join our network without becoming part
of the distributed Edge, but just as a client.

2. To handle the VPN outside of the cluster: an openVPN server instance may
be running on the Edge master site, all devices that want to join must receive
the client configurations from the server, but they do not need to join the K8s
cluster. Nodes of the cluster will have to join using the virtual address of the
VPN or they will have to communicate their alternative VPN address to the
master. Let us imagine a mobile device moving near our distributed Edge,
now it will be able to obtain a VPN address via an https get request to the
server. The Edge master exposes the available services addresses to all VPN
clients. From now on, the device will be able to use cluster services associated
to nodes virtual IPs. This configuration reduces the traffic handled trough
the Edge master and promotes segregation of duties, separating clients-only
devices from cluster devices.

4.4.3 Final Test Results
Compared to the previous implementation [6], the current custom scheduler applies
an algorithm that makes it more sensitive to environment and application changes.
This enabled us to extend the limits of nodes capabilities, which is especially
important in the case of Edge Computing.

In the new test setup the number of pods allocated per node is less balanced, as
expected from the algorithm of our scheduler (Table 4.1). This results in a variation
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Table 4.1: Pod allocation per node

Allocated pods per node
Default scheduler Custom scheduler

Total # pods kn1 kn2 kn3 kn4 kn1 kn2 kn3 kn4
2 1 0 1 0 0 1 1 0
10 2 3 2 3 2 3 3 2
20 5 5 5 5 3 8 6 3
30 7 8 8 7 5 8 10 7
40 10 10 10 10 14 10 8 8
50 13 12 13 12 11 16 14 9
60 - - - - 13 20 15 12

(a) Time of scheduling deployments (b) Average cluster temperature deltas

Figure 4.7: Cluster health comparison among schedulers

of the overall cluster temperature that is also less linear: nodes get the chance to
cool down and "rest". When actuating the allocation of a significant number of
pods, the custom scheduler becomes faster, not only at selecting nodes but also for
what matters: the overall completion time of the deployments. In our test cases
this improvement in performance showed itself starting from the deployment of
30 pods, as visible in Figure 4.7a. This confirms that when the devices are under
stress, our scheduler performs better by choosing less overwhelmed nodes. The
result becomes even more interesting when considering the allocation of 50 pods
onward. In this instance, the time spent by the default scheduler resulted being
109 seconds, against the 55 seconds taken by ours.

The main reason for this is the fact that, while the default scheduler prioritizes
strongly the balance in the allocation of the pods (mostly by number), ours tries
to preserve a safe operational state of the devices. The default scheduler then had
issues optimizing the allocation when the Kubernetes core agent running in the
worker nodes started reporting that the devices were in "risky states", but since
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each of them would sporadically report something similar (because a very similar
number of pods was being allocated), it found itself having to adjust its decision
several times per pod, before actually binding them to a node. All this added to the
fact that some nodes probably were not capable of reporting themselves correctly
to the master node, again due to pressure, as defined in point 5 of Section 4.2.

As further proof for that, the custom scheduler managed to successfully allocate
60 pods on the Raspberry Pis, while the default one made the entire cluster crash
(the devices overheated and stopped working), as visible in Table 4.1.

4.5 Related works
Only the sum of requested resources in each node of a cluster is taken into con-
sideration by the default scheduler in Kubernetes. This is not effective enough
when resource optimization should also account for potential sudden and drastic
performance degradation. Despite that, there are not too many works focusing
mainly on the improvement of the scheduling process in Kubernetes.

Specifying only limits for resource utilization is not enough to avert the risk
of resource contention, as shown in [185]. The authors explored the problem and
proposed as a result the software architecture for a scheduler which tries to avoid
the issue by characterizing the "incoming" applications. Briefly, the scheduler
makes an effort to put containers that are characterized by high resource usage in
different host machines. The scheduling time also happened to get an improvement
in speed that was around 20%, compared to the default scheduler, in a few test
scenarios. Similarly to our approach, the authors tried to actualize a balanced
distribution of tasks, but the overall speed improvement is not significantly strong
and there was no dynamic input taken into consideration.

A close approach to ours in introducing better multi-objective scheduling in
Kubernetes has been published in 2019 [186]. The authors formulated energy ef-
ficiency as a multi-objective optimization problem between maximal use of green
energy, optimal performance with minimal interference, and overall energy mini-
mization. The ILP problem is solved via Mosek Solver.

The orchestration concept based on Kubernetes has been extended to fog com-
puting in [187]. Authors designed a set of labels for the default scheduler to
addresses the application deployment challenges in fog set-ups: distribution, con-
nectivity, availability, heterogeneity, and real-time.

Also [175] extends the basic K8s scheduler with labels: applications are clas-
sified depending on which resource they use more intensively – CPU, I/O disk,
network bandwidth, or memory bandwidth. The score of a node at scheduling
time is penalized if similar labels are already present on that node. This ensures
that the resulting Kubernetes scheduler can balance the number of applications in
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each node while still minimizing the degradation caused by resource competition.
The overall execution time of the experiment is about eight minutes. This value
is only 20% better than the mean time of the Kubernetes scheduler. The total
time is similar to the best case of the default scheduler and overall the scheduling
process has a lower time variance.

Similar efforts to reduce resource degradation have been expressed in [188]. Au-
thors define a Reference Net (a Petri net) to model performance and management
of resources for Kubernetes, identifying different operational states associated with
“pods”, containers and their shared resources. Such a model may be potentially
used to calculate interference generated from certain deployments.

A network-aware scheduling approach for container-based applications in Smart
City deployments is proposed in [189]. The Kubernetes scheduler is configured
to make use of nodes RTT labels to decide where they are suitable to deploy a
specific service with the target location specified on the pod configuration file.
After completion of the scheduling request, the available bandwidth is updated
on the corresponding node label. The objective of this scheduler is not to reduce
strains on nodes nor to reduce the scheduling time, but to enhance the deployment
performance by choosing nodes closer to the target of the service. In fact, the
overall time of scheduling is slightly increased compared to the default scheduler.

The monitoring mechanism in [190] takes both system resource utilization and
application QoS metrics into account. However it is not lightweight since it is
composed of a container-based cluster-monitoring tool for Kubernetes, a database
designed to store time series data and a visualization application. The authors also
provide a dynamically configurable resource provisioning algorithm for K8s. As
mentioned in [186] these tools occupy a great number of resources in the cluster.

As mentioned before in this Chapter, a notable example of a custom scheduling
mechanism that can be installed as a plug-in into Kubernetes is the Poseidon-
Firmament Scheduler [171], which tries to solve the scheduling problem by mod-
eling a graph of the network flow, on which it runs its the optimization. It is
therefore meant to solve the issue of optimal allocation only in regards to the net-
work performance, which anyway proved to be good enough as an approach to
make it 50%-80% faster than the Kubernetes default scheduler in the process of
binding a pod to a node.

VM placement [191], such as cloud resource management [192], can be con-
sidered to be the "traditional ingredients" in the field of provisioning for resilient
online services, which had a strong influence in the research related to scheduling
and placement of containers. A very informative listing of several solutions for VM
placement can be found in [136]. These solutions are categorized by the objective
they want to fulfill, in terms of resource usage optimization, and the categorization
underlines the fact that these solutions are specific for a single or very restrictive
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set of parameters. Our study, on the other hand, was conducted with a different
mindset, aiming to design a solution that would allow the infrastructure owner to
directly control how many parameters are taken into consideration for the system
optimization. In [180] a thorough analysis of weight computation formulas, related
to multi-objective optimizations, is presented, especially for tasks like dynamic and
automated strategies for decision making.

The paper by Parest [193] shows several other methodologies to accomplish
similar estimations, nonetheless, both this and the aforementioned work do not
present approaches that make use of online scoring and dynamic weight attribution.

4.6 Conclusions and Future Works
In this Chapter we presented work based on the scheduler published in [6] and [7]
.

We realized a scheduler for distributed Edge Computing usecases, such as IIoT.
The scheduler component is designed for a Kubernetes cluster and is dynamically
capable of adjusting the way it allocates pods to nodes, based on a measure of the
strain that is affecting the devices at run-time.

The current Kubernetes custom scheduler applies an algorithm that makes it
more sensitive to environmental and application changes. This is not ideal in an
Edge Computing scenario. We extend the limits of nodes capabilities, especially
scheduling edge-native applications.

A fully functioning 5G and Edge computing network was built, complete with
5G radio and connectivity located in the proximity of the IoT devices. All the
LTE virtualized functions are hosted at the same server rack as the Kubernetes
cluster, as per the definition of Edge Computing.

Our solution is capable of adjusting jobs allocations over the nodes, balancing
not only memory and CPU usage, but also multiple specific network and infras-
tructure parameters.

Points of improvement regard the speed and efficiency of the scheduling process
in case of stressful deployments: starting from 30 pods onward, the application is
ready to run earlier for the custom scheduler. At 50 pods the time of scheduling
is cut in a half compared to the default scheduler. While the custom scheduler
also manages to allocate up to 60 pods, the default one causes all the devices to
overheat and shut down even before completing container creation. The proposed
solution has trade-offs with operational and capital expenditures, those can be
tackled by reducing or increasing the sample rate of the system. Further tests
should be applied for this kind of fine tuning. In the next works we plan to reduce
the sampling of the nodes and network status. Each parameter should have a
separate sampling rate, adapted according to the application dynamic behavior
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and previous footprint in the score calculation. The idea is to further shrink down
the impact of the metric agents on the nodes and the network, intending to shorten
the reaction time of the scheduler.
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4.7 Contributions
In this Chapter we collected our work concerning Thesis 3.

I analyzed existing schedulers and found their limits for Edge computing ap-
plication. I ideated a new scoring algorithm for a K8s scheduler to prevent choice
of unstable resources. I created a lightweight tool to profile nodes and to feed the
scheduler. I tested the scheduler and monitoring tool in a real 5G Edge setup. I
have proven that it can schedule more pods of the same deployment while keeping
the service agreement and without killing the nodes.

Figure 4.8 summarize the main concepts and contributions.

Thesis 3 (Distributed Mobile Edge Scheduling). In many Edge scenarios, espe-
cially those related to distributed Edge and IoT, it is for the best to reduce the need
for application migration from the start. I proved that we can reduce need
for migration trough the improvement of the deployment strategies. I
made a lightweight monitoring tool to feed real time telemetries to a
scheduler component of the edge orchestrator. Thanks to awareness of
cluster status resources are used more efficiently: 10 to 20 more ngnix
containers can be scheduled on our cluster of raspberrypies compared
to the default K8s scheduler. The devices do not crash due to overheat
contrary to the default scheduling setup.

I selected a scoring system that no only increased life of the raspberrypies but
that makes the scheduler up to 64% faster than the default. The score is based on
a composition (Multiplicative Exponent Weighting) of nodes telemetries, where the
minimum value correspond to the best candidate. Weights are using Coefficient
of Variation: the more a parameter is variable the higher its influence on the
deployment.

thesis relevant publications
[1] [2] [3] [4] [5] [6] [7] [8]

(1) Facilitate Deployment at
the Edge ◦ ◦ ◦

(2) Migration in Edge Com-
puting ◦ ◦ ◦

(3) Distributed Mobile
Edge Scheduling • • • •
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Figure 4.8: Summary of Chapter Contributions

112



Chapter 5

Dissertation Extended Summary

This dissertation presented novel research results in three fundamental areas of
Edge Computing: applications deployment, applications migration, Network and
Cloud integration. We identify characteristics and unique needs for Edge-native
applications. We presented a tool-set to suggest partitioning of a cloud applications
in components closer to our definition of edge native. Than we simulated and
optimized first deployment based on historical data of network and user requests.
We suggested a new approach to integrate live migration of containers in the Edge
infrastructure. We demonstrated a new context aware scheduling for Distributed
Edge computing.

We finally provided a collection of services to integrate network connectivity to
the Edge and a proof of concept implementation for new techniques of integration
of Cloud services on the Edge.

The three main thesis and results of this works are summarized as follows:
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5.1 Results
Thesis 1 (Facilitate Deployment at the Edge). Adapting code from Cloud to Edge
involves a great amount of work to refactor applications and services. Usually de-
velopers do this solely based on experience, simulating tools can be of support since
the infrastructure is new and blind deployment may be expensive. Furthermore
the extensive mobility of the applications represents a challenge for the choice of a
correct separation of applications in micro-services. I created a framework for
partitioning and estimation of best deployment of a monolithic appli-
cation. I implemented it in the form of a tool to assist into select-
ing the proper way to refactor an application, via graph partitioning
schemes. I demonstrated this concept partitioning an AR application
at a function level granularity. Via non-intrusive online profiling of the ap-
plication I created a call graph representing functions runtimes and number of calls
between functions. The partition process applies min edge cut using a refinement
algorithm, MLKL, that Coarsen, Partition and Uncorsen a graph multiple times.
Any weighted graph may be used to represent the application in this step in our
tool.

This method aims at suggesting partitions that minimize their interaction, the
idea is that the partitions should be easily moved around the network without com-
promising performances. Indeed more complex approaches may involve other pa-
rameters, such as the amount of allocated memory or the dependency to other
code/services.

Finally the tool can suggest pareto-optimal places for deployment, based on Net-
work resources capacities and existing links. I simulate the placement and routing
issues into a single algorithm taking care to handle multiple user request at the
same time. I show how it is possible to compute a deployment that satisfies SLA
keeping in consideration cost of resources and benefit of requests. I proved that the
approach does performs better than a random deployment, reducing deployment
and networks failures.

Thesis 2 (Migration in Edge Computing). In Edge computing it will be necessary
to move an edge-native application from one edge to the other, following the user,
or, for recovery reasons, even from an Edge to the Cloud. The best approach to
avoid this would be to have Stateless Apps, but there are cases in which this is not
a possibility.

I implemented a Java simulation of a Fog network, integrating live
migration trough means of CRIU library calls and coordination via
Docker Swarm. After testing the limits of this configuration I set
up a better version based on Kubernetes. I constructed a docker in
docker solution that is deployed as a daemon set on each node. This
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component is in charge of actuating iterative pre-copy migration of
its hosted containers, if triggered by any other software running in
the cluster. I have tested the migration against stop and restart of
multiple container deployments and shown how, given a stable network
connection (like a 5G coverage) we can use migration to achieve a
lower Service Downtime. .

Thesis 3 (Distributed Mobile Edge Scheduling). In many Edge scenarios, espe-
cially those related to distributed Edge and IoT, it is for the best to reduce the need
for application migration from the start. I proved that we can reduce need
for migration trough the improvement of the deployment strategies. I
made a lightweight monitoring tool to feed real time telemetries to a
scheduler component of the edge orchestrator. Thanks to awareness of
cluster status resources are used more efficiently: 10 to 20 more ngnix
containers can be scheduled on our cluster of raspberrypies compared
to the default K8s scheduler. The devices do not crash due to overheat
contrary to the default scheduling setup.

I selected a scoring system that no only increased life of the raspberrypies but
that makes the scheduler up to 64% faster than the default. The score is based on
a composition (Multiplicative Exponent Weighting) of nodes telemetries, where the
minimum value correspond to the best candidate. Weights are using Coefficient
of Variation: the more a parameter is variable the higher its influence on the
deployment.

5.1.1 Facilitate Deployment at the Edge
Our analysis of application deployment consisted of two phases. In the first work
we identify the requirements for an AR use case, select a partitioning granularity
and other possible ones to evaluate. We then propose an architecture inspired
by previous works, with a focus on a hybrid adaptive solution. We selected the
tool chain for context and application analysis to integrate into the framework.
Finally, we demonstrated our first experiments on the offloading using a simple
face recognition use case.

In the second work, we described the methods and the algorithms we used to
develop the prototype of our tool to partition and deploy an application in a 5G
distributed network.

The tool executes three main steps. First selecting the application granularity
at function level and construct a graph model. Then reduce it into Modules
by solving the NP-hard graph partitioning problem it represents;in our case we
used MLKL min edge cut algorithm. Finally, implement and apply a fractional
relaxation of the Path Computation and Function Placement Problem.
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We classify nodes into three categories: UE, Edge Cloud Servers, and Central
Cloud Servers.

The capacity of an edge cpeq represents the available bandwidth between the
two network nodes; that on the nodes,cpvq depends on the amount of available
computational resources and the cost of accessing them. We suppose several UEs
that request services from the application. Each of these services may be different
on the Service type and the Location of the involved nodes.

Each Module is a part of the application that, combined, can solve a specific ser-
vice request. A service request for user j is specified by a tuple sj “ pGj, dj, bj, Ujq.

Gj “ pMj, Yjq is a directed (acyclic) graph called the place-and-route graph (pr-
graph). There are a single source and a single sink, that corresponds to the node
requesting the service. We denote the source and sink nodes in Gj by nsj P Mj

and ntj PMj, respectively. The other vertices correspond to services or processing
stages of a request. The edges of the pr-graph are directed and indicate precedence
relations between pr-vertices.

The demand of a request sj, dj is computed from the cost of running a complete
module and the benefit of satisfying sj, bj, comes from the SLA.

We map the User Equipment service request sj as the realization of a path
through the directed partition graph representing the application. In this case,
the Module’s demand can be calculated over the cost of each function composing
the Modules in the specific service request. The routing cost from one Module to
the other becomes than the overhead or transmission cost brought by the selected
Module interaction scheme. Thus, the impact of the service request on the network
can vary only based on the Modules’ location. To specify the possible realization
of a pr-graph in the physical network, we use a function Uj : Mj Y Yj Ñ 2V Y 2E

where Ujpmq is a set of “allowed” nodes in N that can perform module m, and
Ujpyq is a set of “allowed” edges of N that can implement the precedences and
routing requirement that corresponds to y. We now define for each service request
sj the product network pnpN, sjq. The node set of pnpN, sjq, denoted by Vj, is
defined as Vj fi YyPYj

pUjpyq ˆ yq. We refer to the subset Ujpyq ˆ y as the y-layer
in the product graph. The edge set of pnpN, sjq, denoted Ej, consists of two types
of edges Ej “ Ej,1 Y Ej,2 defined as follows:

1. Routing edges connect vertices in the same layer, they represent the physical
links in the network.
Ej,1 “ tppu, yq, pv, yqq | y P Yj, pu, vq P Ujpyqu

2. Processing edges connect two copies of the same network vertex in different
layers, representing the move from one Module to the consecutive one in the
service chain specified in Y .
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Ej,2 “ tppv, yq, pv, y1qq | y ‰ y1 P Yj edges with common endpoint m, and
v P Ujpmqu

The final goal is to compute valid realizations P̃ “ tp̃iuiPI 1 for a subset of the
requests I 1 Ď I so that P̃ satisfies the capacity constraint of N and maximize the
total benefit

ř

iPI 1 bi. We apply the fractional relaxation of PCFP-problem, a vari-
ation of Raghavan’s randomized rounding algorithm for general packing problems.
Simulations were run with various requests of service simultaneously.

Related publications of this thesis [1, 2, 3].

5.1.2 Migration in Edge Computing
The current trend for cloud and Edge computing is toward self-contained state-
less services. To develop a containerized application the best practice would be
using stateless containers. However, real-world applications do require stateful
behaviour. It is not always a trivial task to decouple the application components
into containers trying to make most containers stateless; there are scenarios in
which statefulness cannot be bypassed. JIRA and Jenkins could be mentioned as
examples of container based solutions used daily in production that could benefit
from migration. In applications that also require low latency, the challenge is to
preserve the state of the container hosting it, while following the user physically
moving away from the hosting part of the network. In Edge computing it will be
necessary to move an edge-native application from one edge to the other, following
the user, or, for recovery reasons, even from an Edge to the Cloud.

We worked on two scenarios integrating container live migration and leveraging
on the current container orchestration technologies.

In the Docker Swarm case we described a Federated Learning case scenario:
a peer-to-peer collaborative computation network represents Iot Fog computing
resources. The nodes in the network are light-weight uniform piece of software,
whose main responsibilities are:

1. The mapping of available and mutable resources. Before the deployment
phase, a peer sends a request to the neighbouring nodes. As a node receives
this request it returns an acknowledgement to use to calculate latency.

2. The creation of a dynamic deployment plan. This step is based on Thesis
1 work. In a naif SLA implementation, hosts with higher capabilities and
better communication links will be chosen with a higher chance.

3. The migration of tasks. At the deployment, the initiator node of the service
creates a swarm and sends a request to the nodes that are the assigned
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location of the individual tasks to join the swarm. At the first deployment
of the service (no images exist) we move all the service-specific volumes and
build the images and containers at the destination node. The source code of
a task along with the data needed at the execution is passed by the nodes
through TCP sockets. In all other occasion container checkpoint and restore
is used.

In the second work, we presented a possible integration of Live Container Mi-
gration patterns into Kubernetes.

We created a simple cluster with a master node, from where Kubernetes per-
forms orchestration tasks; and two workers. We implemented a sidecar container
solution in a Kubernetes Pod that contains a Docker in Docker (DinD) container.
For the sake of simplicity, we migrate a single natural number generator container,
that counts from zero to infinity. Migration is performed using CRIU between the
two DinD daemons.

The Kubernetes Pod groups together all the sub-tasks necessary for the migra-
tion process in form of containers: an Initiator, a Checkpointer, a Migrator, and
the DinD itself. The solution is nested because the NNG container will be created
and run by the Docker daemon inside DinD only after Pod A has started.

Advantage of our proposal is that containers created inside the DinD container
are still exploiting Kubernetes capabilities. They are reachable through localhost
from all the nodes in the cluster, thus the migration process is simplified. Kuber-
netes garbage collects Pods after they are terminated. CPU and memory resources
will be inherited by containers inside the DinD.

A live migration feature allow us to rethink scheduling and resource deployment
on a finer grain, without compromising user quality of experience.

Related publications of this thesis [4, 5].

5.1.3 Distributed Mobile Edge - Scheduling and Exposing
Services

We realized a scheduler for distributed Edge Computing usecases, such as IIoT.
The scheduler ranks the nodes to select the best candidate. The score is com-

puted as a composition of the nodes utilization state properties (e.g. CPU usage,
memory usage, core temperature, etc.), where the minimum value correspond to
the best candidate(s). Score computation is based on the Coefficient of Varia-
tion (CV) weighting method, combined with Multiplicative Exponent Weighting
(MEW).
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score “

|P |
ź

i“1

ˆ

pmin

pi

˙´wi

For each parameter related to the context of the scheduling, P :“ set of parameters,
the stream of values received from the devices is a time series data. The weighted
scores will be W :“ set of weights of the parameters with |W | “ |P | ; so that
each pi parameter data from a node device, is normalized by the minimum value
it historically reached for that node; and with wi the weight assigned to it.

The parameters weight aggregation strategy is:

wi “ Di “
σ2

i

µi,n

A fully functioning 5G and Edge computing network was built, complete with
5G radio and connectivity located in the proximity of the IoT devices. All the
LTE virtualized functions are hosted at the same server rack as the Kubernetes
cluster, as per the definition of Edge Computing.

Our solution is capable of adjusting jobs allocations over the nodes, balancing
not only memory and CPU usage, but also multiple specific network and infras-
tructure parameters.

At 50 pods the time of scheduling is cut in a half compared to the default
scheduler. While the custom scheduler also manages to allocate up to 60 pods, the
default one causes all the devices to overheat and shut down even before completing
container creation.

The scheduler is part of our framework for integration of network and cloud
services to edge computing. We tested the idea trough a proof of concept: an
edge-native application on a real 3GPP mobile network, showing the power of
Container as a Service combined with Network exposure APIs serving as a Mobile
Edge Computing platform.

Cloud orchestrators are designed to handle a cluster in a single Zone, meaning
that all nodes should be co-located. Works to collaborate among different Zones or
Cloud operators involves strategies such as cluster federation. These solutions are
still in development stage and are limited since the deployment is never distributed:
a service replica can either have all pods fully assigned in a cluster or none of them
are.

To leverage at the same time on Edge and Cloud, we plan to enable a more
flexible distribution. We propose a solution that extends the base capabilities of
a Kubernetes cluster. The CSP allows Enterprises to deploy a distributed K8s
cluster, where nodes can be allocated at the Edge and on multiple partner Cloud
providers.
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The CSP provides an API to create an instance of K8S orchestrator on its
domain, it could be on the Edge or on the Cloud. The API allows generations
of nodes on different cloud provider VMs. The Kubernetes container network
interface (CNI) has integrated a script to contact the CSP Virtual Private Network
Certificate authority, in charge of generating and spreading certificates to connect
the distributed nodes. Each VM in the cloud sites will have a tunnel towards the
other nodes from the same cluster. The CSP can leverage on Network exposure
Function APIs based on ETSI MANO and make them accessible as services to the
K8s clusters. This configuration allows the part of the application that resides at
the Edge to access network based services, without the need to involve a central
cloud. The CSP is in charge of managing a pool of accounts from different Cloud
resources, so that the enterprise has a single point of contact to instantiate its
services, without having to access the cloud provider sites separately. From the
Kubernetes API, the Enterprise can access to a Catalogue collecting partner cloud
services through OSBA brokers and operators. In this way the user can create
resources for persistent storage.

Related publications of this thesis [6, 7, 8].
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Summary

This dissertation presented novel research results in three fundamental areas of
Edge Computing: applications deployment, applications migration, Network and
Cloud integration.

Thesis 1 (Facilitate Deployment at the Edge). I created a framework for partition-
ing and estimation of best deployment of a monolithic application. I implemented
it in the form of a tool that proposes how to refactor an application, via graph
partitioning schemes. I demonstrated this concept partitioning an AR application
call graph. I suggest pareto-optimal places for deployment, simulate the placement
and routing of multiple user requests into a single algorithm. I proved that the ap-
proach does performs better than a random deployment, reducing deployment and
networks failures.

Thesis 2 (Migration in Edge Computing). I designed a framework for migration
of containers in Fog. I implemented a Java simulation of a Fog network, inte-
grating live migration via CRIU calls and Docker Swarm. I identified its limits. I
constructed a Kubernetes solution based on a docker in docker container deployed
as a daemon set on each node. This component is in charge of actuating iterative
pre-copy migration of its hosted containers, if triggered by any other software run-
ning in the cluster. I have tested the migration against stop and restart of multiple
container deployments and shown that we can achieve a lower Service Downtime.

Thesis 3 (Distributed Mobile Edge Scheduling). I create a deployment strategy
that reduces rescheduling and needs to migrate services from dying nodes. I se-
lected a scheduling scoring system that makes the scheduler up to 64% faster than
default. I made a lightweight monitoring tool to feed real time telemetries to a
scheduler component of the edge orchestrator. 10 to 20 more ngnix containers can
be scheduled on our cluster of raspberrypies compared to the default scheduler. The
devices do not crash due to overheat.
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3GPP Third Generation Partnership Project.

5G 5th Generation (of Mobile Networks).

ABBE Attribute-Based Broadcast Encryption.

AI Artificial Intelligence.

AMF Access Management Function.

APA Application Partitioning Algorithms.

API Application Programming Interface.

AR Augmented Reality.

AUSF Authentication Server Function.

C-RAN Centralised or Cloud RAN.

CaaS Container or Cluster as a Service.

CC Cloud Computing.

CFG Control Flow Graph.

CG Control Graph.

CIA Continuous Interactive Applications.

CLI Command Line Interface.

CoAP (Constrained Application Protocol.

CPU Central Processing Unit.

CRD Custom Resource Definition.
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CRI Container Runtime Interface.

CRIU Checkpoint Restore In Userspace.

CRUD Create Read Update Delete.

CSP Cloud Service Provider.

CV Coefficient of Variation.

DB Data Base.

DC Data Centers.

DC/OS Distributed Cloud Operating System.

DCN Data Centers Networks.

DDS Data Distribution Service.

DHCP Dynamic Host Configuration Protocol.

DinD Docker in Docker.

DNS Domain Name System.

DooD Docker outside of Docker.

EC Edge Computing.

EPG Evolved Packet Gateway.

EPS Edge Packet Service.

ETSI European Telecommunications Standards Institute.

GBA Generic Bootstrapping Architecture.

GPU Graphics Processing Unit.

HSS Home Subscriber Server.

HTTP HyperText Transfer Protocol.

IaaS Infrastructure as a Service.

IBBE Identity-Based Broadcast Encryption.
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IETF Internet Engineering Task Force.

IIoT Industrial Internet of Things.

ILP nteger Linear Programming.

IoT Internet of Things.

IP Internet Protocol.

K8S Kubernetes.

KPI Key Performance Indicator.

KVM linux Kernel-based VM.

LAN Local Area Network.

LM Live Migration.

LP Linear Programming.

LTE Long Term Evolution.

LXC LinuX Container.

MBS Message Broadcast Service.

MEC Mobile or Multiaccess Edge Computing.

MEW Multiplicative Exponent Weighting.

MIMO Multiple-Input and Multiple-Output.

MLKL Multi-Level Kerninghan-Lin.

MME Mobility Management Entity.

MMORPG Massive Multiplayer Online Role-Playing Games.

MPTCP Multi-Path TCP.

MQTT Message Queue Telemetry Transport.

NAS Network Attached Storage.

NAT Network Address Translation.
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NFS Network File System.

NFV Network Function Virtualization.

NNG NAtural Number Generator.

NR New Radio.

NSA Non Stand-Alone.

NSSF Network Slice Selection Function.

OCI Open Containers Initiative.

ORG Object Relation Graph.

OS Operative System.

OSBA Open Service Broker API.

P2P Peer-to-Peer.

PaaS Platform as a Service.

PCF Policy Control Function.

PCFP ath Computation and Function Placement.

PCRF Policy and Charging Rules Function.

PDU Protocol Data Unit.

PoC Proof of Concept.

QM Quine–McCluskey.

QoE Quality of Experience.

QoS Quality of Service.

RAM Random Access Memory.

RAN Radio Access Network.

RBAC Role-Based Access Control.

RC Replication Controller.
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REST REpresentational State Transfer.

RNIS Radio Network Information Service.

ROI Return Of Investment.

RTT Round Trip Time.

SDK Software Development Kit.

SDN Software Defined Networking.

SFC Service Function Chaining.

SLA Service Level Agreement.

SMF Session Management Function.

TCP Transport Control Protocol.

TG Target Graph.

UC Use Case.

UDP User Datagram Protocol.

UE User Equipment.

UPF User Plane Function.

URL Uniform Resource Locator.

V2I Vehicle to Infrastructure.

V2V Vehicle to Vehicle.

vCMTS virtual Cable Modem Termination Systems.

VHEM Variational Hierarchical Expectation–Maximization.

VM Virtual Machine.

VNF Virtual Network Function.

VNFP VNF Placement.

vOLT virtual Optical Line Terminal.
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VPN Virtual Private Network.

VR Virtual Reality.

vRAN virtual RAN.

WAN Wide Area Network.

XaaS Multi-cloud as a service.
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