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ABSTRACT 

Cellular networks are projected to deal with an immense rise in data traffic, as well 

as an enormous and diverse device, plus advanced use cases, in the nearest future; 

hence, future 5G networks are being developed to consist of not only 5G but also 

different RATs integrated. In addition to 5G, the user’s device (UD) will be able to 

connect to the network via LTE, WiMAX, Wi-Fi, Satellite, and other technologies. On 

the other hand, Satellite has been suggested as a preferred network to support 5G 

use cases.  Satellite networks are among the most sophisticated communication 

technologies which offer specific benefits in geographically dispersed and dynamic 

networks. Utilising their inherent advantages in broadcasting capabilities, global 

coverage, decreased dependency on terrestrial infrastructure, and high security, they 

offer highly efficient, effective, and rapid network deployments. Satellites are more 

suited for large-scale communications than terrestrial communication networks. Due 

to their extensive service coverage and strong multilink transmission capabilities, 

satellites offer global high-speed connectivity and adaptable access systems. The 

convergence of 5G technology and satellite networks therefore marks a significant 

milestone in the evolution of global connectivity.  

However, this integration introduces a complex problem related to resource 

management, particularly in Satellite – Terrestrial Integrated Networks (STINs). The 

key issue at hand is the efficient allocation of resources in STINs to enhance Quality 

of Service (QoS) for users. The root cause of this issue originates from a vast 

quantity of users sharing these resources, the dynamic nature of generated traffic, 

the scarcity of wireless spectrum resources, and the random allocation of wireless 

channels.  
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Hence, resource allocation is critical to ensure user satisfaction, fair traffic 

distribution, maximised throughput, and minimised congestion. Achieving load 

balancing is essential to guarantee an equal amount of traffic distributed between 

different RATs in a heterogeneous wireless network; this would enable optimal 

utilisation of the radio resources and lower the likelihood of call blocking/dropping. 

This research endeavours to address this challenge through the development and 

evaluation of an intelligent call admission control (CAC) algorithm based on 

Enhanced Particle Swarm Optimization (EPSO). The primary aim of this research is 

to design an EPSO-based CAC algorithm tailored specifically for 5G-satellite 

heterogeneous wireless networks. The algorithm's objectives include maximising the 

number of admitted calls while maintaining Quality of Service (QoS) for existing 

users, improving network resource utilization, reducing congestion, ensuring 

fairness, and enhancing user satisfaction. To achieve these objectives, a detailed 

research methodology is outlined, encompassing algorithm development, numerical 

simulations, and comparative analysis.  

The proposed EPSO algorithm is benchmarked against alternative artificial 

intelligence and machine learning algorithms, including the Artificial Bee Colony 

algorithm, Simulated Annealing algorithm, and Q-Learning algorithm. Performance 

metrics such as throughput, call blocking rates, and fairness are employed to 

evaluate the algorithms' efficacy in achieving load-balancing objectives. 

The experimental findings yield insights into the performance of the EPSO-based 

CAC algorithm and its comparative advantages over alternative techniques. Through 

rigorous analysis, this research elucidates the EPSO algorithm's strengths in 

dynamically adapting to changing network conditions, optimising resource allocation, 
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and ensuring equitable distribution of traffic among different RATs. The result shows 

the EPSO algorithm outperforms the other 3 algorithms in all the scenarios.  

The contributions of this thesis extend beyond academic research, with potential 

societal implications including enhanced connectivity, efficiency, and user 

experiences in 5G-Satellite heterogeneous wireless networks. By advancing 

intelligent resource management techniques, this research paves the way for 

improved network performance and reliability in the evolving landscape of wireless 

communication. 
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CHAPTER 1: INTRODUCTION 

1.1 OVERVIEW 

There has been an exponential increase in cellular network data traffic over the last 

few years. New multimedia and broadband applications, as well as the Internet of 

Things (IoT) and mobile Internet technology, are all increasing quickly. The capacity, 

cost, data rate, coverage, and latency of the current communication system are all 

being challenged by emerging technologies like 4K ultra-high-definition video, virtual 

reality, tactile internet, remote surgery, smart devices, augmented reality, and 

machine-type communications [1]. 

Ericson Mobility report forecasts that the global monthly average mobile data usage 

will be 19GB in 2023 and is expected to increase to 46GB by the end of 2028 [2].    

As a result of the rising demand for wireless services, mobile technology has 

advanced quickly towards the fifth-generation (5G) networking framework, which will 

allow rapid network connectivity for a wide range of applications. With regard to 

present demands, the implementation of 5G technologies will significantly increase 

cellular capacity. 

Huge data exchanges are anticipated to be supported by 5G networks and their 

evolution. According to [3], 5G networks are planned to accommodate billions of 

Machine-to-Machine (M2M) and Ultra Reliable Low Latency Communication 

(URLLC) devices in addition to enhanced Mobile BroadBand (eMBB) connections. 

With the introduction of 5G, users will be able to share data anytime, anywhere, with 

any other users, or with any connected objects, with improved reliability and 

extremely low latency. In comparison to earlier generations, 5G also allows an 

extremely high connection density. The connection and control of self-drive vehicles, 

virtual and augmented reality, the smart city, factory automation, telemedicine, etc. 
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are only a few examples of the applications that are now available thanks to this 

technology [4]. 

A single network, however, is unable to meet customer demand for high speed, low 

latency, and large capacity services because of the explosion in traffic, particularly in 

remote areas and low-density areas where it is challenging to build ground base 

stations (BSs). Thus, 5G networks are being developed with heterogeneity concepts; 

numerous RATs, including those from the 3GPP and IEEE families, are being 

combined and controlled collaboratively [5]. 

Each Radio Access Technology (RAT) has different attributes, such as coverage 

range, security, data rate, energy consumption, and protocol support for mobility and 

security. Therefore, by employing multimode terminals (MTs), mobile users will be 

able to roam between several RATs and communicate using any of them [6]. 

Seamless traffic transfer between heterogeneous wireless access technologies will 

be a fundamental attribute of 5G, as well as the utilisation of multiple radio access 

technologies simultaneously to boost capacity, connectivity and reliability [7]. 

Today, the concept of integrating satellite components into a 5G network is gaining 

more attention. Satellite communication (SatCOM), which may provide 

communication services for areas that base stations cannot reach, has drawn the 

attention of researchers due to its properties of broad coverage, minimal delay, and 

high bandwidth. To offer continuous connectivity, Satellite-Terrestrial Integrated 

Networks (STINs) emerge as a new paradigm [8]. 

In addition to providing pervasive coverage, emergency/disaster recovery and 

broadcast/multicast delivery, SatCOM will be a key component of the 5G network [9]. 

Satellites will have unique opportunities as a result of their ability to support 5G 

services in remote regions. In addition, machine-type communications enabled by 
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satellites will create new opportunities for smart agriculture, animal tracking, 

transportation, and environmental protection, among other applications [7]. A general 

5G-Satellite integration network is shown in Figure 1-1 below. 

 

 

 

Figure 1-1: 5G -Satellite Integration 

 

The key feature of 5G-Satellite heterogeneous wireless networks (HWNs) lies in their 

integrated framework, which blends terrestrial and SatCOM infrastructure. This 

combination made it possible to have higher capacity, wider coverage and enhanced 

network stability. Additionally, in order to guarantee effective use of spectrum, 5G-

satellite HWNs utilise frequency bands appropriate for both terrestrial and SatCOM. 

By using this strategy, interferences may be reduced, resources can be allocated 

optimally, and network performance is improved overall.   
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However, apart from the use of spectrum, standardisation of protocols and 

frameworks is also essential to the smooth coexistence of satellite and terrestrial 

networks.  Hence, cooperative efforts among industry stakeholders, standardisation 

bodies, and regulatory bodies are essential to guarantee network compatibility, 

interoperability, and a smooth user experience between various locations and 

service providers. 

In conclusion, 5G-Satellite HWNs offer a very promising framework for achieving 

uninterrupted global connections. By utilising the benefits of both terrestrial and 

SatCOM, these networks can provide higher capacity, increased coverage, and 

pervasive connection.  Even though there are still obstacles to overcome, 

cooperation and technical developments will make it possible for this game-changing 

technology to become a reality. As the world moves towards an increasingly 

connected future, 5G-Satellite HWNs hold the potential to revolutionise wireless 

communication and reduce the digital gap. 

 

1.2 PROBLEM STATEMENT 

The rapid growth in cellular network data traffic driven by emerging technologies like 

4K ultra-high-definition video, virtual reality, IoT, and 5G connectivity has raised 

significant challenges in terms of capacity, cost, data rate, coverage, and latency 

[10]. As the global demand for mobile data usage continues to escalate, traditional 

cellular networks are struggling to keep up. To address these challenges, the 

integration of satellite communication into 5G networks has gained attention due to 

its potential to provide broad coverage, minimal delay, and high bandwidth, 

especially in remote and underserved areas. 
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However, this integration introduces a complex problem related to resource 

management, particularly in STINs. The key issue at hand is the efficient allocation 

of resources in STINs to enhance QoS for users [8]. The root cause of this issue 

originates from a vast quantity of users sharing these resources, the dynamic nature 

of generated traffic, the scarcity of wireless spectrum resources, and the random 

allocation of wireless channels [11]. 

Hence, resource allocation is critical to ensure user satisfaction, fair traffic 

distribution, maximised throughput, and minimised congestion. Moreover, the 

integration of multiple Radio Access Networks (RANs) in STINs introduces the 

challenge of load balancing, which aims to evenly distribute User Devices (UDs) 

among cells or access points (APs).  

Existing load-balancing techniques often rely on manually chosen rules and expert 

knowledge, which may become inadequate as communication networks become 

more advanced [12].  Additionally, advanced communication networks need to be 

able to scale to support a large number of users and devices, and manually chosen 

rules may not be scalable to large networks. Moreover, new technologies, such as 

5G and network function virtualisation (NFV), are introducing new challenges for load 

balancing, and manually chosen rules may not be able to effectively address these 

challenges. 

Several traditional load-balancing techniques have been proposed in the literature.  

[13] incorporates two functional units into Media Independent Handover (MIH) to 

improve energy efficiency and seamless handover of mobile nodes across 

heterogeneous networks. The first unit optimises network scanning decisions and 

the second functional unit computes handover decisions using a utility function-

based TOPSIS algorithm. 
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In a cellular-wireless local area network (WLAN) heterogeneous network, a novel 

load-balancing scheme was proposed that employs a cell-breathing technique for the 

WLAN network. The user association is controlled by the scheme, which balances 

the load among the cells [14].  

In [15], the authors suggested a two-stage load balancing mechanism based on two 

biases to adjust the layer and RAT selection in multi-tier HetNets of LTE-A macro 

cells and mmWave small cells. 

[16] proposed a cell selection algorithm for load balancing in two-tier HetNets based 

on Physical Resources Blocks (PRBs), Signal -to- Interference -plus-Noise Ratio 

(SINR), and reference signal received power. The algorithm uses estimated signal 

strength and biased pilot signals from base stations, preparing a list of candidate 

FAPs under the critical SINR condition. The algorithm allocates qualified Resources 

Blocks (RBs) to users, and its performance was evaluated for throughput and 

fairness index. 

In [17], the user association is defined as a local optimisation problem in macro BS. 

Only a limited channel state information (CSI) feedback user association scheme 

was proposed, developing a low complexity successive offloading scheme. A 

distance-based load balancing algorithm was employed to enable users to connect 

with the closest BS when load imbalance is identified in Heterogeneous Networks 

(HetNets). 

[18] study explores downlink resource allocation in two-tier HetNets with macrocells 

transmitting at microwave frequency and dual-band small cells using both 

frequencies. A novel architecture with dual-band small-cell base stations, serving 

users in inner and outer regions is proposed. A two-layer game theory approach is 
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used to maximise energy efficiency and spectral efficiency, focusing on non-

cooperative frequency assignment and multi-objective optimisation.  

[19] propose a vertical handoff algorithm based on load balance to address network 

congestion caused by large users connecting to partial networks in HetNets. The 

algorithm uses an analytic hierarchy process to weight networks, ensuring average 

load distribution and close network utilisation, based on user demands. 

Another promising approach for load balancing is biased user association. This 

approach offloads users from macro base stations to small cell base stations, 

thereby reducing the load on macro base stations. It involves adding a positive bias 

value to small cell BSs, making them appear stronger to users. This bias influences 

user choice, encouraging more users to connect to small-cell BSs instead of macro-

BSs. This redistribution alleviates the load on macro-BSs and improves network 

capacity and performance [20]. 

Although these algorithms improve load balancing performance, and provide 

flexibility and control, they also have drawbacks including scaling issues, restricted 

automation, lack of adaptability, reliance on specialist knowledge, inadequate 

performance, and difficulty in optimising trade-offs. These methods may not adapt 

well to unanticipated changes in network configuration or traffic fluctuations, and they 

might necessitate extensive reconfiguration work to support network evolution. 

In light of these challenges, there is a pressing need to develop intelligent solutions 

that can dynamically manage resources in STINs. New load-balancing techniques 

that are more intelligent and adaptive have therefore emerged. Artificial Intelligence 

(AI) and Machine Learning (ML) algorithms, such as reinforcement learning, genetic 

algorithms, and neural networks, have shown promise in solving complex system 

control and resource management problems. These AI techniques offer the potential 
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to adapt to dynamic network conditions and optimise resource allocation effectively. 

They automatically learn the traffic patterns on the network and dynamically adjust 

the load balancing rules accordingly. 

Hence, this thesis addresses the resource management and load balancing 

challenges in 5G-Satellite HWNs using artificial intelligence to ensure quality of 

service, fair distribution of users, and efficient network performance, as well as 

optimising resource allocation in a dynamic network environment. 

 

1.3 RESEARCH AIM AND OBJECTIVES 

To address the challenges posed by the exponential increase in cellular network 

data traffic and the integration of SatCOM into 5G networks, this thesis proposes a 

dynamic solution that optimises resource management in 5G-Satellite HWNs.   In 

this thesis, the resource management and load balancing problem in 5G-Satellite 

HWNs is solved by call admission control (CAC). 

The aim of this research is to develop and evaluate an intelligent call admission 

control (CAC) algorithm for load balancing in 5G-satellite heterogeneous wireless 

networks. This algorithm aims to optimise resource management by maximising call 

admission, improving network resource utilisation, reducing congestion, maximising 

throughputs, ensuring fairness, and enhancing user satisfaction, while dynamically 

adapting to changing network conditions and traffic loads. 

To achieve the aim of this thesis, the following objectives are pursued: 

 

Research Objectives: 

• Develop an intelligent call admission control algorithm based on Enhanced 

Particle Swarm Optimization (EPSO) to maximise the number of admitted 
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calls while maintaining Quality of Service (QoS) for existing calls in 5G-

Satellite HWNs. 

• Investigate methods to improve network resource utilisation through dynamic 

resource allocation and load balancing techniques integrated into the EPSO-

based CAC algorithm. 

• Evaluate the effectiveness of the proposed EPSO-based CAC algorithm in 

reducing network congestion and minimising call dropping by efficiently 

sharing the load between co-located wireless networks. 

• Assess the performance of the EPSO-based CAC algorithm in maximising 

throughputs to ensure efficient use of resources, improved data transmission 

rates, and increased user satisfaction. 

• Investigate methods to ensure fairness in resource allocation among users 

within 5G-Satellite HWNs, while maintaining high system throughput and user 

satisfaction levels. 

• Compare the performance of the EPSO-based CAC algorithm with other 

artificial intelligence and machine learning algorithms, including the Artificial 

Bee Colony Algorithm, Simulated Annealing Algorithm, and Q-Learning 

Algorithm, to evaluate its efficacy and suitability for real-world deployment. 

• Implement the EPSO-based CAC algorithm and evaluate its performance 

through simulation experiments, considering various network scenarios and 

traffic conditions. 

 

1.4 RESEARCH QUESTION 

Given the research background, problem statement, aim and objectives, the 

research questions are as follows: 
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RQ1: How can dynamic radio resource allocation algorithms be tailored to effectively 

balance the load across 5G-Satellite HWNs, ensuring optimal utilisation of available 

spectrum resources? 

RQ2: What decision-making mechanisms can be employed to accurately determine 

whether incoming calls should be admitted or rejected within the network, 

considering factors such as network congestion, user priority, and QoS 

requirements? 

RQ3: How can intelligent call admission control strategies be devised to make 

optimal decisions regarding connectivity handover, including pre-emptive switching 

to maintain quality before degradation, automated quality assessment and selection 

prior to connection establishment, and reactive switching post-degradation? 

RQ4: What criteria and metrics should be considered in selecting a unified solution 

capable of harmonising the diverse design paradigms prevalent in next-generation 

wireless networks, including the integration of SatCOM systems with terrestrial 5G 

networks, to ensure seamless interoperability and performance optimisation? 

RQ5: How can ML and AI techniques be leveraged to enhance the intelligence and 

adaptability of call admission control mechanisms in 5G-Satellite HWNs, enabling 

proactive decision-making, real-time optimisation, and adaptive resource allocation 

in dynamic network environments?" 

 

1.5 RESEARCH DESIGN 

The research methodology followed a positivist approach, emphasising empirical 

observation and quantitative analysis to provide insights into CAC for load balancing 

in 5G-Satellite HWNs. Data was collected through simulation-based experiments. 

The sampling strategy used was the non-probability sampling technique to select 
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simulation scenarios based on predefined criteria such as network topology, traffic 

patterns, and algorithm parameters. 

 Data analysis was conducted using statistical techniques to analyse the numerical 

data collected from simulations and derive empirical findings Finally, a CAC 

framework for load balancing in 5G-Satellite HWNs was developed as the output of 

the research findings. A summary of the methodology is presented in the following 

table (Table 1-1).  

 

Table 1-1: Summary of the Research Methodology 

Research Classification Experimental Study 

Research Philosophy Positivism 

Research Approach Quantitative approach 

Research Strategy Numerical simulation 

Data Collection Method Simulation experiment 

Sampling Methodology Non-probability sampling 

Data Analysis Quantitative analysis 

Research Instrument Simulation tools 

Research Outputs • The importance of efficient CAC 

for load balancing in 5G-Satellite 

HWNs. 

• The key drivers behind the need 

for effective CAC for load 

balancing in 5G-Satellite HWNs. 

• The key strategies for optimising 

network performance and 

resource allocation in 5G-

Satellite HWNs. 

• A CAC assessment tools and 

methodologies for evaluating the 
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performance of the proposed 

algorithm in 5G-Satellite HWNs. 

• The development of an intelligent 

CAC framework for load 

balancing in 5G-Satellite HWNs. 

 

 

The outcomes of the study have been published in peer-reviewed journal papers and 

conferences attended by academics and practitioners. This process allowed for the 

enhancement and improvement of the research techniques used in this investigation. 

 

1.6 SCOPE AND LIMITATIONS 

Scope: 

• The scope of this research includes the development and evaluation of an 

intelligent CAC algorithm based on Enhanced Particle Swarm Optimization 

(EPSO) for load balancing in 5G-Satellite HWNs. 

• The study focused on optimising resource management by maximising call 

admission, improving network resource utilisation, reducing congestion, 

maximising throughputs, ensuring fairness, and enhancing user satisfaction. 

• The research involves numerical simulations to assess the performance of the 

EPSO-based CAC algorithm under various network conditions and traffic 

scenarios. 

• The study considered the dynamic adaptation of the CAC algorithm to 

changing network conditions and traffic loads. 

• The research compared the performance of the EPSO-based CAC algorithm 

with other benchmarked artificial intelligence and machine learning 
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algorithms, including the Artificial Bee Colony Algorithm, Simulated Annealing 

Algorithm, and Q-Learning Algorithm, in terms of call admission efficiency, 

resource utilisation, network congestion mitigation, fairness, and user 

satisfaction. 

• The implementation and performance evaluation of the EPSO-based CAC 

algorithm and the other algorithms was conducted through numerical 

experiments. 

 

Limitations: 

Despite the innovative insights provided by this research, it still has some limitations: 

• The research focused on numerical simulations and may not encompass real-

world deployment scenarios. Actual implementation in live 5G-Satellite HWNs 

may encounter additional challenges not addressed in the simulations. 

• The study considered a limited range of network scenarios and traffic 

conditions, which may not fully capture the diversity and complexity of real-

world environments. 

• The performance evaluation of the EPSO-based CAC algorithm is based on 

simulated results, which may differ from actual operational outcomes due to 

simplifications and assumptions made in the simulation model. 

• The scope of comparison with other algorithms is limited to selected AI and 

ML, and the study may not encompass all possible algorithms used in related 

literature. 

• The research may not address specific hardware or implementation 

constraints associated with deploying the EPSO-based CAC algorithm in 

practical 5G-Satellite HWNs environments. 
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• The study may not cover all aspects of network management and optimisation 

in 5G-Satellite HWNs, focusing primarily on the call admission control aspect. 

 

1.7 THESIS CONTRIBUTION 

This thesis covers the problems of resource management in 5G-Satellite HWNs and 

proposes a solution to tackle the aforementioned problem. The main contributions 

are as follows:  

Development of an Intelligent Call Admission Control (CAC) Algorithm: This 

research contributes to the field by designing and implementing an intelligent CAC 

algorithm based on EPSO algorithm specifically tailored for call admission control to 

facilitate load balancing in 5G-satellite heterogeneous wireless networks. The 

algorithm aims to optimise resource management by maximising call admission 

while maintaining QoS for existing calls, thereby addressing the challenge of efficient 

resource allocation in dynamic network environments. 

Evaluation of EPSO-based CAC Algorithm Performance: The study provides a 

comprehensive evaluation of the proposed EPSO-based CAC algorithm through 

numerical simulations. By assessing its performance under various network 

conditions and traffic scenarios, the research offers insights into the algorithm's 

effectiveness in reducing network congestion, maximising throughputs, ensuring 

fairness, and enhancing user satisfaction for 5G-Satelliet HWNs. 

Comparison with Other AI and ML Algorithms: This thesis contributes to the 

literature by comparing the performance of the EPSO-based CAC algorithm with 

other AI and ML algorithms commonly used in call admission control. Through 

rigorous evaluation and benchmarking, the research identifies the strengths and 
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weaknesses of different algorithms, thereby guiding future research and practical 

deployment decisions. 

Insights into Dynamic Resource Management: By focusing on dynamic 

adaptation to changing network conditions and traffic loads, the research provides 

valuable insights into the challenges and opportunities associated with resource 

management in 5G-Satellite HWNs. The findings contribute to the advancement of 

knowledge in network optimisation and inform the development of more adaptive and 

efficient resource allocation strategies. 

Practical Implications for 5G-Satellite Networks: This thesis offers practical 

implications for the design and implementation of call admission control mechanisms 

in 5G-Satellite HWNs. By considering factors such as computational complexity, 

scalability, and real-time decision-making requirements, the research provides 

guidance for network engineers and policymakers seeking to enhance the 

performance and reliability of next-generation wireless networks. 

Overall, the contributions of this thesis advance the state-of-the-art in intelligent CAC 

for 5G-Satellite HWNs, offering novel insights, innovative algorithms, and practical 

recommendations for optimising resource management and enhancing network 

performance. 

 

1.8 ORGANISATION OF THE THESIS  

The thesis starts with this introductory section in Chapter 1 and finishes with the 

conclusions and recommendations in Chapter 6. To begin understanding the 

structure of this thesis, Figure 1-2 shows a visual representation which indicates the 

organisation of the thesis. The rest of the thesis is organised as follows: 
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Chapter 2 – Literature Review Background. Chapter 2 offers a comprehensive 

overview of 5G Hetnets: Motivation and Vision. The chapter explores the concept of 

5G-Satellite heterogeneous wireless networks, emphasising on the integration. 

Building on this, the section elaborates on the role of satellites within 5G networks, 

highlighting their significance as well as the challenges of integrating satellite 

components into 5G networks.  

Moving forward, the chapter explores resource management methods, focusing on 

their relevance in HWNs. Subsequently, it delves into the importance of CAC in such 

networks and the need for efficient management. This section also introduces the 

concept of intelligent load balancing CAC as a solution to address resource 

allocation challenges. Additionally, it highlights the significance of AI algorithms in 

improving wireless network performance. 

Chapter 3 – CAC Framework In 5G – Satellite HWNs. This chapter provides a 

comprehensive explanation of the proposed CAC model, emphasising its 

architecture and components. Furthermore, it discusses the integration of AI 

algorithms into the CAC framework. Additionally, this section details the use of the 

EPSO algorithm for CAC and RAT selection. Lastly, it explains the practical 

implementation and operation of the proposed CAC model. 

Chapter 4 - Simulation Framework. This chapter outlines the simulation 

environment and its configuration for testing the proposed CAC model. Additionally, 

it discusses the scenarios and usage patterns considered in the simulation to 

evaluate the CAC model's performance. Furthermore, the chapter explains the 

metrics used for evaluating the performance of the CAC model. Finally, this section 

provides technical insights into the implementation of the simulation framework. 
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Chapter 5. Results and Discussion. This chapter presents the results of the 

simulations and analyses them in detail. Furthermore, it compares the performance 

of the proposed CAC model with existing AI-based algorithms. In addition, this 

chapter discusses the implications of the results on resource optimisation and 

network performance. Lastly, the chapter offers insights into the significance of the 

findings and their potential impact. 

Chapter 6. Conclusion & Future Work. This chapter summarises the 

achievements and contributions of the proposed CAC model. Additionally, it 

identifies potential future research directions and areas for improving resource 

management in 5G-Satellite networks. Lastly, the chapter concludes with closing 

remarks on the significance of the research in addressing the challenges of 5G-

Satellite heterogeneous wireless networks. 
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Figure 1-2: Thesis Structure 
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CHAPTER 2: LITERATURE REVIEW 

2.1 BACKGROUND 

The swift growth and adoption of wireless network technologies have now made it 

possible for users to connect to networks via a variety of devices, whenever they 

want from anywhere. 5G technology is anticipated to have features including low-

latency services, high-speed internet, and numerous devices connected to the 

Internet at once. The needs for various forms of communication are used to classify 

the 5G use cases [21].  

The newly developed 5G network was deployed as a result of the enormous demand 

for more bandwidth and data speeds from the growing user base. 5G networks must 

be able to support enormous device connections, increased traffic flow capacities, 

and customised user service experiences in comparison to fourth-generation (4G) 

long-term evolution advanced (LTE-A) systems [22]. 

5G technologies are bringing about a fundamental change in the architecture of the 

core and access networks. The 5G system is directly tailored and optimised to serve 

a multitude of services and applications of specialised markets, in contrast to 

previous general-purpose standards to which applications and services were 

adapted [22]. 

5G networks are expected to support higher connectivity, improved capacity, high-

speed data rates, and low latency. According to the International 

Telecommunications Union, 5G networks aim to deliver: 1,000 times higher mobile 

data volume per area; 100 times the number of connected devices; 100 times higher 

user data rate; ten times longer battery life for low-power massive-machine 

communications; and five times reduced end-to-end latency [23]. 
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It has been projected to have higher capacity and increased user data rates than 

current capabilities, to satisfy the increasing needs of users. In addition, an essential 

key objective of 5G is to offer improved resilience, continuity, and much higher 

resource efficiency including a substantial reduction in energy consumption [24]. 

In recent years, 5G technology has advanced quickly, and numerous 5G BSs have 

been installed simultaneously. As a result, 5G network communication services are 

available everywhere, including urban and metropolitan areas. However, no single 

technology will be able to meet all of these requirements, and not every 5G 

application will need every one of these features [24].  In addition, it is challenging to 

offer network connection services to people in remote regions without internet 

connection infrastructure, such as oceans, deserts, and other locations. 

Hence, to enable the vast range of use cases, including both global and local 

markets with highly diverse requirements, 5G needs to merge within the extensive 

system of all current communication technologies, utilising their particular strengths 

and services, next to the New Radio (NR) [25].  

5G will come equipped with a built-in feature for seamless handover between 

heterogeneous wireless access technologies and the simultaneous usage of several 

radio access technologies to boost capacity, availability, and reliability [7].The 5G 

infrastructure will be a framework of interconnected networks that require several 

distinct but complementary technologies to succeed and satisfy user demands [26]. 

Thus, many organisations, including the European Commission identify that a 

component of the 5G infrastructure will include satellite networks. Among others, the 

role of satellites in 5G has been studied in the European Union (EU) Technology 

Platform NetWorld2020 SatCOM WG as well as in relevant R&D projects, such as 

SPECSI, MENDHOSA and INSTINCT, CloudSat, SANSA, VITAL, RIFE, and 
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SCORSESE. Moreover, the EMEA Satellite Operators Association (ESOA) has 

released a 5G White Paper on the SatCOM services' role as an integral part of the 

5G framework. 

Satellite networks are among the most sophisticated communication technologies 

which offer specific benefits in geographically dispersed and dynamic networks. 

Utilising their inherent advantages in broadcasting capabilities, global coverage, 

decreased dependency on terrestrial infrastructure, and high security, they offer 

highly efficient, effective, and rapid network deployments [26]. 

Satellites are more suited for large-scale communications than terrestrial 

communication networks. Due to their extensive service coverage and strong 

multilink transmission capabilities, satellites offer global high-speed connectivity and 

adaptable access systems [17]. 

The convergence of 5G technology and satellite networks therefore marks a 

significant milestone in the evolution of global connectivity. As the demands for high-

speed data, ultra-low latency, and ubiquitous coverage continue to grow, the fusion 

of these two powerful communication paradigms offers a new horizon of possibilities. 

The marriage of 5G's terrestrial capabilities with the expansive reach of satellite 

networks creates a synergy that can reshape industries, reduce digital gaps, and 

connect even the most remote corners of the world. 

Thus, by intelligently allocating traffic between several RATs, the integration of 

satellites into 5G systems will improve the QoS for UDs [27]. Furthermore, this 

integration gives the 5G network extra spectrum and broadband access in remote 

and rural regions [27]. 

However, the new challenge is how to effectively manage resources in STINs so that 

users can get improved Internet services. A crucial technology that influences how 
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well STINs perform is resource allocation. According to the above 5G and satellite 

integration, a potentially poor load balancing decision could result in a reduction in 

Quality of Experience (QoE) for users and QoS for M2M [3]. In this chapter, the issue 

of resource management in 5G-Satellite HWNs is addressed. Figure 2-1 presents an 

overview of all the topics reviewed in this chapter.  

 

Figure 2-1: Literature Review Overview 
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2.2 HETNETS IN 5G: VISION AND MOTIVATION  

The evolution of wireless communication systems has been progressing rapidly, with 

the imminent launch of 5G network. The transition to 5G technology has sparked 

significant interest in the research community, particularly in the context of IoT 

applications within the 5G wireless systems [28]. The integration of heterogeneous 

network technologies in 5G networks plays a crucial role in improving spectrum 

resources and overall network capacity [29]. 5G HetNets combines various types of 

cellular base stations – macrocells (traditional large towers), small cells (microcells, 

picocells, femtocells), as well as Wi-Fi, satellite amongst others to create a seamless 

and adaptable network. 

The vision and motivation for 5G heterogeneous networks are driven by the need for 

improved performance, including high capacity, low latency, network virtualisation , 

and ubiquitous connectivity in modern wireless connectivity [30] .This technology is 

expected to support a wide range of applications, from smart homes and 

autonomous driving to health and mission-critical applications [31]. The vision and 

motivation behind HetNets in 5G encompass several key aspects: 

Enhanced Capacity: One of the primary motivations for HetNets in 5G is to 

enhance the network capacity [32]. 5G promises a massive surge in connected 

devices; however, the explosion of connected devices and exponential growth in 

data traffic will strain traditional cellular networks [33]. Traditional macrocellular 

networks alone struggle to cope with the exponential growth in data traffic. By 

integrating small cells into the network architecture, 5G HetNets can distribute traffic 

across different cell types alleviating congestion and ensuring smooth operation for 

all users.  
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Improved Coverage: 5G HetNets aim to improve coverage, especially in areas with 

high user density or where macrocellular networks face coverage challenges [34]. 

Small cells, such as femtocells and picocells, as well as other cell types such as Wi-

Fi, Satellite amongst others can be strategically deployed to fill coverage gaps, 

providing high-quality signals, improve indoor coverage, and enhance overall 

network performance [35]. This approach ensures that users experience consistent 

connectivity and high data rates across diverse environments, including urban, 

suburban, and indoor settings. 

Enhanced User Experience: 5G HetNets promises to deliver a superior user 

experience by providing faster data rates, reduced latency, and improved reliability 

[36]. By leveraging the combined coverage and capacity of macrocells and small 

cells, users can enjoy seamless connectivity and high-quality services, even in 

densely populated urban areas or indoor environments.  

Support for Diverse Applications: 5G applications span a wide range of use 

cases, from eMBB to URLLC and massive [37]. Figure 2-2 represents the main 5G 

use cases. 5G HetNets are designed to support these diverse applications by 

offering tailored network solutions optimised for specific requirements, such as high 

throughput, low latency, or massive connectivity. 
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Figure 2-2: 5G Network Use Cases 

 

Accommodating Diverse Needs: 5G caters to a wide range of applications, each 

with different requirements. 5G HetNets enable network slicing, where virtual 

networks are created on top of the physical infrastructure, allowing for customised 

performance for different services (e.g., high bandwidth for video streaming, ultra-low 

latency for autonomous vehicles) [38]. By providing low-latency, high-bandwidth 

connectivity, 5G HetNets support innovative use cases that rely on real-time 

communication, massive connectivity, and high reliability [21]. This enables new 

business opportunities and revenue streams for operators while unlocking 

transformative capabilities for industries and society as a whole.   

Improved Quality of Service (QoS): HetNets in 5G aim to enhance the QoS for 

users by optimising network resources and minimising interference [39]. By 

dynamically adjusting transmit power, resource allocation, and handover parameters, 

5G HetNets can ensure that users receive the best possible service quality, even in 
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challenging radio conditions [40]. Additionally, advanced interference management 

techniques, such as coordinated multipoint (CoMP) transmission and reception, help 

mitigate interference and improve spectral efficiency.  

Enhanced Quality of Experience (QoE): 5G HetNets aim to enhance the QoE for 

users by ensuring consistent connectivity, low latency, and high reliability [41]. By 

deploying small cells closer to users, 5G HetNets reduce signal attenuation and 

improve signal strength, resulting in better indoor coverage and higher data speeds. 

Additionally, 5G HetNets employs advanced mobility management and handover 

algorithms to maintain seamless connectivity during user mobility, ensuring 

uninterrupted service delivery and a superior user experience [42].  

Efficient Spectrum Utilization: 5G HetNets enable more efficient spectrum 

utilisation by dynamically allocating resources based on demand and traffic patterns 

[43]. By leveraging both licensed and unlicensed spectrum bands, 5G HetNets can 

optimise spectral efficiency and maximise the utilisation of available resources, 

leading to better overall network performance.  

Scalability and Flexibility: 5G HetNets provide scalability and flexibility to 

accommodate future growth and evolving network requirements [44]. The modular 

nature of HetNet architecture allows for easy deployment and expansion, enabling 

operators to adapt to changing demands and technology advancements seamlessly. 

Moreover, 5G HetNets leverages network intelligence and automation to optimise 

resource allocation, load balancing, and mobility management, enhancing overall 

network efficiency and performance [45].  

In conclusion, the vision and motivation behind HetNets in 5G revolve around 

addressing the challenges of increasing data traffic, improving network performance, 

and delivering a superior user experience across diverse applications and 
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environments. By integrating macrocells and small cells into a unified network 

architecture, 5G HetNets pave the way for a more connected, intelligent and 

responsive wireless ecosystem.   

 

2.3 5G-SATELLITE HETEROGENEOUS WIRELESS NETWORKS 

According to Ericsson, 5G networks will be carrying 45% of the world’s mobile data 

traffic by 2025 [2]. Also, 5G systems will need to achieve important Key Performance 

Indicators (KPIs), such as consistent QoS provisioning, high level of security, low 

latency, and massive device connectivity [46]. For example, 5G is anticipated to offer 

user bitrates up to 10 Gbps and to have Round-Trip Times (RTTs) as small as 1 – 10 

ms for some application scenarios [46].   

However, the available spectrum will not be able to meet this enormous demand. 

The cost of pure terrestrial coverage will soon become too expensive. Therefore, 

SatCOM will play a significant role in 5G as a complementary solution for ubiquitous 

coverage, broadcast/multicast provision, and emergency/disaster recovery thanks to 

their attractive features such as their very wide coverage area and short service 

deployment time [47]. Satellites will have unique opportunities for providing 5G 

services in remote locations.  

Additionally, satellites will support machine-type communications, paving the way for 

new applications, ranging from transportation, environmental protection, animal 

tracking, and smart agriculture, amongst others [48].   

By 2020-2025 there will be more than 100 High Throughput Satellite (HTS) systems 

using GEO orbits but also mega-constellations of LEO satellites, delivering Terabit 

per second (Tbps) of capacity across the world. These upgraded satellite systems 

are anticipated to supply RANs, also known as Satellite RANs, which will be 
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incorporated into the 5G system together with other wireless technologies, like Wi-Fi, 

cellular systems, and so forth [49]. By utilising SatCOM's diverse strengths, 5G 

systems can achieve greater range, capacity, and capabilities. 

 

2.3.1 Role of Satellite in 5G Networks 

The role of satellites in 5G networks is still evolving, but it is clear that satellites will 

play an important role in the future of 5G. Satellites can provide redundancy, support 

high-bandwidth applications, and complement and enhance the terrestrial 5G 

infrastructure and services, particularly in terms of coverage, capacity, and 

connectivity. They will address challenges related to reaching remote, rural and 

underserved areas. Below is a brief overview of the role of satellites in 5G networks. 

Figure 2-3 presents the visual overview of the Satellite roles discussed below.  
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Figure 2-3: Role of Satellites in 5G Networks 

 

Coverage Extension: Satellites provide wide-area coverage that complements the 

limited coverage of terrestrial 5G networks [50]. They can be used to extend 5G 

networks to areas that are not well served by terrestrial networks such as high 

latitudes, polar regions, oceans, air space, rural and remote areas, as well as any 

other geographically challenging areas where building extensive terrestrial 

infrastructure is not feasible. 
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Increased Capacity: Satellites can provide capacity, which is the amount of data 

that can be transmitted or received, to support various applications and services that 

require high throughput, low latency, or global reach, such as smart cities, IoT, e-

health, or public safety [51].   

Supporting high-bandwidth applications: Satellites can be used to support high-

bandwidth applications, such as Virtual Reality (VR) and Augmented Reality (AR), 

that require more bandwidth than terrestrial networks can provide [52]. 

Disaster Recovery: During natural disasters or emergencies when terrestrial 

networks are disrupted, satellites provide a reliable communication link for disaster 

response and recovery efforts [53]. 

IoT Connectivity: Satellites extend 5G's IoT capabilities by connecting devices in 

remote or hard-to-reach locations, such as sensors in remote agricultural fields or 

equipment in remote industrial sites [54]. 

Backhaul and Rural Access: Satellites can serve as a backhaul link to connect 

remote cell towers and provide connectivity to areas where terrestrial backhaul is 

challenging to deploy, especially in remote, rural or hard-to-reach areas where 

terrestrial backhaul is not available or cost-effective [55]. 

Content Delivery: Satellites can support content delivery and broadcasting by 

reaching a wide audience, including areas where terrestrial distribution is limited [56]. 

Reliability and Redundancy: Satellites can be used to provide redundancy and 

backup for 5G networks in case of a terrestrial network outage to ensure the 

reliability and availability of 5G services [57]. This is important for critical 

applications, such as emergency services and financial services. 
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Interconnected Networks: Satellites can be integrated into multi-access edge 

computing (MEC) and distributed cloud architectures to optimise data processing 

and minimise latency for remote users [58]. 

Low Latency Applications: While traditional SatCOM introduces latency due to the 

signal travel distance, certain advanced satellite constellations in LEO are designed 

to reduce latency, making them suitable for low-latency applications like remote 

surgery and autonomous vehicles [59]. 

Network Slicing and QoS: Satellites can be integrated into network slicing 

strategies to allocate dedicated slices for specific services, ensuring QoS for different 

applications [60]. 

Traffic Offloading: Satellites can offload traffic from congested terrestrial networks, 

especially during peak usage times, improving the overall user experience [61]. 

Connecting devices in motion: Satellites can be used to connect devices that are 

in motion, such as ships and aeroplanes, which are not well-served by terrestrial 

networks [62]. For instance, Satellites can offer reliable in-flight connectivity for 

passengers during air travel, enabling in-flight entertainment, internet access, and 

real-time communication. 

Security: Satellite networks can offer effective solutions for secure, highly reliable, 

rapid and resilient deployment in difficult communication situations like emergency 

response [63]. 

 

2.3.2 5G – Satellite Integration Challenges 

Integrating 5G terrestrial networks with satellite networks poses several challenges 

due to the distinct characteristics, technical differences, and operational 

considerations of both technologies. 
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Addressing these challenges requires close collaboration among terrestrial and 

satellite network operators, technology vendors, regulatory bodies, and standards 

organisations. Overcoming these hurdles is essential to create a seamless, reliable, 

and efficient 5G-Satellite integrated network ecosystem that benefits users across 

various scenarios and regions. Below are some key challenges associated with 5G-

Satellite integration. Figure 2-4 presents the visual overview of the 5G-Satellite 

integration challenges discussed below. 
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Figure 2-4: 5G-Satellite Integration Key Challenges 

 

Limited Spectrum: The radio spectrum is a finite resource, and it is becoming 

increasingly crowded as more and more devices and applications are using wireless 

communication. This makes it difficult to find new frequency bands for 5G-Satellite 

HWNs, and it also makes it difficult to harmonise frequency bands between different 

countries and regions [23]. 
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Interference Mitigation: When two or more wireless networks operate in the same 

frequency band, they can interfere with each other. This can cause problems such 

as dropped calls, degraded data rates, and even service outages. There are a 

number of techniques that can be used to mitigate interference, such as power 

control, beamforming, and frequency reuse [23]. However, these techniques can be 

complex and expensive to implement, and they may not always be effective in all 

situations. 

Seamless Handover:  Seamless handover is a critical challenge in 5G-Satellite 

HWNs. This is because the two networks have different characteristics, such as 

different propagation delays, different radio link budgets, and different mobility 

patterns [64]. This makes it difficult to ensure that a handover between the two 

networks will be smooth and seamless. 

Latency: Latency variability is a major challenge in 5G-Satellite HWNs. This is 

because the distance between the user and the satellite is much greater than the 

distance between the user and a terrestrial base station. This results in longer 

propagation delays, which can lead to higher latency [65]. 

The latency of a SatCOM link can vary depending on a number of factors, such as 

the distance between the user and the satellite, the elevation angle of the satellite, 

and the atmospheric conditions. This variability can make it difficult to maintain low 

latency for applications that are sensitive to delay, such as real-time gaming and 

video streaming [65]. 

Orbital Consideration:  Different types of satellite orbits (LEO, MEO, GEO) have 

varying latency, coverage, and bandwidth characteristics, which must be optimised 

for different use cases. The choice of satellite orbit depends on the specific 

application [66]. For example, LEO satellites are well-suited for applications that 
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require low latency, such as real-time gaming and video streaming. MEO satellites 

are well-suited for applications that require a balance of latency and coverage, such 

as maritime and aviation communications. GEO satellites are well-suited for 

applications that require large coverage areas, such as rural broadband access [66]. 

Coverage Alignment: For satellite networks, coordination of satellites in different 

orbits (LEO, MEO, GEO) to provide uniform coverage can be challenging. Aligning 

satellite coverage areas with terrestrial cells is a technical challenge [67]. This is 

because the satellite coverage areas are constantly changing due to the movement 

of the satellites. The network must be able to dynamically adjust the coverage areas 

to ensure that users always have a connection. 

Protocol Compatibility: The protocols and interfaces between terrestrial and 

satellite networks must be compatible to ensure seamless communication and 

handover [68]. This is a complex challenge, as there are many different protocols 

and interfaces in use. 

Roaming Management: Roaming management is the process of managing user 

roaming across different network types while maintaining connectivity, quality, and 

billing consistency. This is a complex challenge, as it requires the coordination of 

multiple networks [69]. 

QoS Across Networks: QoS is the ability to provide a certain level of performance 

for different types of traffic. This is important in 5G-Satellite HWNs, as users may be 

moving between terrestrial and satellite networks. It is important to ensure that the 

QoS of the service is maintained even when the user is moving between networks 

[70]. 

Network Slicing: Network slicing is the process of partitioning a network into 

multiple virtual networks, each with its own dedicated resources. This can be used to 
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allocate dedicated resources for different services across integrated networks [71]. 

Network slicing can help to improve the efficiency of the network by allocating 

resources to different services only when they are needed. 

Security:  Secure handover is the process of ensuring that data is kept confidential 

and secure when a user is handed over from one network to another. This is a 

challenge in 5G-Satellite HWNs because the two networks have different security 

protocols and mechanisms [72]. 

Authentication Complexity: Authentication is the process of verifying the identity of 

a user or device. This is a challenge in 5G-Satellite HWNs because the two networks 

have different authentication protocols and mechanisms [73]. There are a number of 

techniques that can be used to implement robust authentication mechanisms. These 

techniques include using strong passwords, two-factor authentication, and biometrics 

amongst others [72]. 

Network Management: Network management is the process of managing the 

integrated network, including resource allocation, load balancing, and real-time 

network monitoring [74]. This is a challenge because the network is heterogeneous 

and consists of different types of nodes, such as terrestrial base stations and satellite 

gateways. There are a number of techniques that can be used to manage the 

integrated network. These techniques include using software-defined networking 

(SDN), artificial intelligence and virtualisation.  

Satellite Tracking:  Satellite tracking is the process of accurately tracking the 

positions of satellites to ensure proper connectivity and handover between different 

coverage areas [75]. This is a challenge because the satellites are moving, and the 

coverage areas are constantly changing. 
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There are a number of techniques that can be used to track satellites. These 

techniques include using ground-based tracking stations, using satellite-based 

tracking systems, and using machine learning [75]. The development of these 

techniques will help to make it possible to track satellites accurately in 5G-Satellite 

HWNs. 

Cost and Investment: Deploying and maintaining heterogeneous networks can be 

complex and costly due to the need for infrastructure, equipment, and coordination 

[76]. The cost of establishing the infrastructure for 5G-Satellite HWNs is significant. 

This includes the cost of ground stations, satellite constellations, and related 

infrastructure. The operational expenses for 5G-Satellite HWNs are also significant. 

This includes the cost of operating and maintaining the ground stations, satellite 

constellations, and related infrastructure. 

Uniform User Experience: Ensuring a consistent and satisfactory user experience 

across integrated networks, regardless of whether users are on terrestrial, or satellite 

connections is a key challenge in 5G-Satellite HWNs. This is because the two 

networks have different characteristics, such as latency, bandwidth, and coverage 

[77]. There are a number of techniques that can be used to ensure a uniform user 

experience. These techniques include using network slicing, caching, QoS, AI and 

ML [70].  

Despite these challenges, 5G-Satellite HWNs have the potential to be a valuable 

asset for a variety of applications. As the technology continues to develop, it is 

expected that 5G-Satellite HWNs become more widespread and affordable. 
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2.4 RESOURCE MANAGEMENT IN HWN 

As discussed above, one of the main challenges for 5G-Satellite HWNs is radio 

resource management, which tackles the allocation of radio resources to various 

users while assuring user satisfaction. [78] argue that the primary challenge is the 

heterogeneity itself, including the number of different devices and technologies, 

different service requirements, and increasing complexity.  The combination of these 

technologies in the same network, with their complementary characteristics, to afford 

complete coverage to users can cause various challenges such as seamless 

handover, resource management and CAC. This problem emanates from the 

increasing number of users and devices sharing these available resources, the 

heterogeneity of the network, the random distribution of wireless channels, the 

scarcity of wireless spectral resources, and the dynamic behaviour of generated 

traffic.   

Resource management in HWNs is vital for optimising network performance, 

ensuring QoS, and preventing congestion. Effective management enhances user 

experiences, reduces costs, and supports the seamless operation of diverse wireless 

technologies. Poor resource management, on the other hand, leads to network 

issues, wasted resources, and an unsatisfactory user experience.  

Hence, resource management in HWN has become a hot research topic in the last 

decade. [79] proposes a radio resource management framework that can be 

supported by future network architectures to guarantee QoS requirements, reduce 

new call blocking probability, and maintain efficient resource utilization. [10] 

proposes an efficient resource allocation algorithm to address the inefficient 

allocation of available resources versus QoS challenges. The authors in [80] provide 

a comprehensive review of resource management in 6G HetNets, identifying severe 
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challenges associated with current resource management methods and proposing 

suitable solutions. One of the proposed solutions is Mode Selection (MS).  MS 

methods are essential for determining the best mode for users in cellular and D2D 

networks due to the availability of multiple communication modes, as illustrated in 

Figure 2-5. Dynamic MS methods, such as fuzzy clustering, multi-hop cellular 

network communications, and context-aware strategies have been used to improve 

network efficiency, system throughput, and network capacity. 

In [81], the authors used resource management to allocate radio resources to users 

and applications in LTE/LTE-A heterogeneous networks.  The resource allocation 

criteria are based on device priority, power, channel quality, Buffer Status Report 

(BSR), etc. This is done to ensure that all users have a good QoE. 

The authors in [82] aim to improve Wi-Balance in Wi-Fi heterogeneous networks by 

adjusting the AP load threshold and introducing two new indicators for station 

reassociation. The SDN controller gathers uplink RSSI and channel usage for each 

AP, computes total channel occupancy, and triggers user reassociation or channel 

reassignation processes based on average RSSI, AP load, and Channel Occupancy. 

The algorithm maximizes the product by selecting the best trade-off between signal 

quality and network resources used, reducing transmission time and improving 

performance. Figure 2-6 shows a scenario where this indicator triggers a 

reassociation process.  Figure 2-7 shows an AP load indicator triggering a handover 

as a condition.  Figure 2-8 shows a scenario where this indicator triggers a channel 

reassignation as the subtraction of the channel occupancy of Channel Y (the 

minimum) from the channel occupancy of Channel X (the maximum) is bigger than 

the median.  
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In [83], resource management is used to allocate spectrum, power, and other 

resources to users and applications in 5G heterogeneous networks. In 5G networks, 

resource management is used to allocate spectrum, power, and other resources to 

users and applications. This is done to meet the demands of high-speed data 

applications, such as AR and VR. 

Therefore, resource management is an important part of ensuring the efficient and 

reliable operation of HWNs. By carefully managing the available resources, it is 

possible to improve the QoS for users and applications, reduce congestion, and 

improve the overall performance of the network. 

 

Figure 2-5 : Mode Selection in Hetnet [80]  
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Figure 2-6: Average RSSI indicator triggering a handover as condition [82]  

 

 

Figure 2-7: AP Load indicator triggering a handover as condition [82]  
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Figure 2-8: Channel Occupancy indicator triggering a channel reassignation as 
condition [82]  

 

 

2.5 EVOLUTION OF RESOURCE MANAGEMENT TECHNIQUES IN 

HWN 

2.5.1 Overview 

The evolution of resource management techniques in HWNs has been a topic of 

significant interest in recent literature. The authors in [84] proposed an Enhanced 

Resource Allocation (ERA) algorithm to address inefficient resource allocation and 

QoS challenges in heterogeneous wireless networks, demonstrating significant 

improvements in bandwidth allocation, end-to end delay, bandwidth allocation, end-

to-end delay, packet loss, and throughput performance. [85] introduced the concept 

of service-oriented wireless virtualised networks, which utilize the virtualisation of 

wireless access and resources to achieve efficient operation. [86] further enhanced 

resource management in heterogeneous wireless networks by introducing the 

resource-optimised network selection (RONS) method, which focuses on load 
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balancing, dynamic slot optimisation, and tradeoffs between high performance and 

quality of experience.  [87] focused on handover management challenges in dense 

heterogeneous 5G networks, specifically addressing handover decision algorithms 

between eNB and HeNB. [88] introduced a deep learning framework for multi-

dimensional intelligent multiple access (MD-IMA) in beyond 5G and 6G wireless 

networks to meet diverse quality of service requirements efficiently. [89] proposed a 

hierarchical and modular radio resource management architecture for 5G and 

beyond to address the increasing complexity of radio resource management in 

HetNets.   

Overall, the literature review indicates a growing interest in developing innovative 

resource management techniques to improve energy efficiency, quality of service, 

and overall performance in heterogeneous wireless networks.  

 

2.5.2 Key Stages in Evolution 

The evolution of resource management techniques in heterogeneous wireless 

networks has been a fascinating journey driven by the ever-increasing demand for 

wireless connectivity and the diverse characteristics of network elements. Here's a 

brief overview of the key stages in this evolution: 

Traditional Resource Allocation: 

In the early stages, resource allocation in wireless networks was mainly based on 

fixed channel assignment and power control schemes [90]. These networks were 

homogeneous in nature, with similar devices and technologies, making resource 

management relatively simple. It focused on the basic interworking of different 

network types and simple user multi-homing solutions to improve coverage and data 

rates. 
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Introduction of Heterogeneity: 

With the proliferation of diverse wireless technologies like Wi-Fi, cellular, and 

Bluetooth, HWNs emerged [91]. These networks comprise various types of devices 

with different capabilities, coverage areas, and QoS requirements. 

Dynamic Spectrum Access (DSA): 

DSA techniques were introduced to efficiently utilise the scarce radio spectrum by 

dynamically allocating spectrum bands to users based on their needs and availability 

[92]. Cognitive radio networks are a prime example, where secondary users 

opportunistically access underutilised spectrum bands without interfering with 

primary users. 

Software-Defined Networking (SDN): 

SDN decouples the control plane from the data plane, enabling centralised control 

and programmability of network resources. In HetNets, SDN facilitates dynamic 

resource allocation and management across different access technologies, 

improving flexibility and efficiency [93]. 

Network Function Virtualisation (NFV): 

NFV abstracts network functions from dedicated hardware appliances and 

implements them as software-based virtual network functions (VNFs) running on 

commodity hardware. In HetNets, NFV enables the deployment of network functions 

(e.g., base stations, gateways) as virtualised instances, enhancing scalability and 

cost-effectiveness [94]. 

Edge Computing: 

Edge computing brings computational capabilities closer to the network edge, 

reducing latency and enhancing responsiveness. In HetNets, edge computing 
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facilitates localised resource management decisions, enabling faster response times 

and better QoS provisioning [95]. 

Machine Learning (ML) and Artificial Intelligence (AI): 

ML and AI techniques are increasingly being applied to optimise resource 

management in heterogeneous networks. These techniques can dynamically learn 

network traffic patterns and user demand, enabling intelligent decision-making based 

on real-time network conditions, traffic patterns, and user behaviours, leading to 

improved performance and user experience [96]. 

5G and Beyond: 

5G networks further enhance resource management capabilities through features 

like network slicing, which allows the creation of isolated virtual networks optimised 

for specific use cases [97]. Beyond 5G, technologies like terahertz communication 

and massive MIMO promise even greater flexibility and efficiency in resource 

management. 

Overall, the evolution of resource management techniques in HWNs has been driven 

by the need to efficiently utilise resources, accommodate diverse technologies and 

devices, and meet the ever-growing demands of users and applications. 

These advancements aim to create a more intelligent and adaptable network that 

can cater to the exploding demand for data services while ensuring a seamless and 

high-quality user experience. 

 

2.5.3 Key Challenges in Resource Management for HetNets 

Resource management in HetNets poses several challenges due to the diversity of 

network elements and the need for efficient utilisation of resources. Figure 2-9 
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presents the visual overview of the key challenges discussed below. The key 

challenges in resource management for HetNets include:  

 

Figure 2-9: Key Challenges in Resource Managements for HetNets 
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Heterogeneity:  

The primary challenge is the heterogeneity itself, with the large number of different 

devices, technologies, and service requirements, leading to increasing complexity 

[78]. 

Interference Management:   

HetNets consist of a mix of macrocells, microcells, picocells, and femtocells, leading 

to interference among neighbouring cells [98]. Signals transmitted from one device 

might interfere with other devices that communicate in the same or nearby frequency 

bands that are being used. Coordinating resource allocation to mitigate interference 

while ensuring efficient spectrum utilisation is a significant challenge. It’s crucial to 

ensure that signals from different cells do not negatively impact each other’s 

performance [99].  

Heterogeneous QoS Requirements: 

Different types of devices and applications have diverse QoS requirements in terms 

of latency, throughput, reliability, and energy efficiency [100]. Balancing these 

heterogeneous QoS requirements while optimising resource allocation poses a 

significant challenge.   

Mobility Management:   

HetNets accommodate devices with varying mobility patterns, from stationary 

sensors to high-speed vehicles. Seamless handover between different cell types and 

technologies without service disruption is crucial but challenging, especially in dense 

deployment scenarios [101], [99]. As users move across different cells and network 

types, maintaining a seamless connection and service quality requires sophisticated 

mobility management strategies.  This includes handover decisions and maintaining 

QoS during these transitions [80]. 
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Spectrum Allocation:  

Spectrum scarcity is a fundamental challenge in wireless communication, 

exacerbated by the increasing demand for bandwidth-intensive applications [102]. 

Efficiently allocating the limited available spectrum among a large number of devices 

and network nodes is another critical issue. This involves dynamic spectrum sharing 

and ensuring fair access to the spectrum for all users. 

User Association:  

In HetNets, each user is associated with one of the available networks; to choose the 

best network for the user, a user association scheme is implemented. Determining 

which network node, a device should connect to for optimal performance is a 

complex decision that involves just not signal strength but also factors like the 

current load on the node and the device’s data needs [103].  The association of the 

user is based on their demands, the distance from the BSs, and channel quality. 

User association is important to improve the spectrum efficiency, energy efficiency 

and load balancing of the network [104].  

Hence, developing effective user association schemes to optimize SINR and data 

rate, considering multiple features like channel conditions and user preferences, is 

an important challenge.  

Resource-Power Allocation:  

Allocating resources and power in an energy-efficient manner while still meeting the 

service requirements of users is a delicate balance. This includes optimising the use 

of power to extend battery life of devices and reduce the overall energy consumption 

of the network [105]. Techniques like particle swarm optimization and deep 

deterministic policy gradient algorithms have been explored to enhance energy 

efficiency while satisfying QoS requirements.  
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Load Balancing: 

In highly dense HetNets, there is a load imbalance between the cells due to the 

random positioning of the cells and the mobility of the UEs. Load imbalance within 

the network reduces network performance [99]. Hence, distributing the network load 

evenly across all the available resources to prevent congestion and ensure all users 

receive adequate service levels is a key aspect of resource management in HetNets 

[106]. Non-uniform traffic distribution across different cells and technologies can lead 

to uneven resource utilisation and congestion in certain areas [107].  

Therefore, dynamic load balancing mechanisms are required to evenly distribute 

traffic and resources among cells to optimise network performance and avoid 

overloading specific nodes. 

Handover Problems: 

 The extensive deployment of small cells in the network also brings new challenges 

that negatively impact QoS, such as interference, frequent and unnecessary 

handover, handover failure, and Ping Pong handover [107].   

Inter-cell handover occurs more frequently due to the intense deployment of huge 

numbers of small cells in HetNet. During handover operation, reciprocal signal 

packets must be sent between the source cell, the target cell, and the UE, so that 

users can be registered with the target cell by performing handover. More frequent 

occurrences of handover will create an additional signal load on the network and 

lead to more interruptions during data transfer [108]. This causes a trade-off to occur 

between the additional signal load from the frequent handover and the network 

coverage [109]. 
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Signalling Overhead:  

The increased communication between network elements due to dynamic resource 

allocation can lead to increased signalling overhead, impacting network efficiency 

[36].  

Energy Efficiency:  

HetNets include energy-constrained devices such as IoT sensors and battery-

powered mobile devices. Optimising resource allocation to minimize energy 

consumption while maintaining performance and QoS requirements is essential for 

prolonging device battery life and reducing overall energy consumption [110].  

Security and Privacy:  

HetNets introduce additional security challenges due to the heterogeneous nature of 

network elements and the increased attack surface [111]. Ensuring secure and 

private communication across different technologies while accommodating diverse 

security requirements is crucial but complex. 

Malevolent users use mutual authentication between UEs and BS to protect 

themselves from network effects such as Man-in-the-Middle attacks, Denial of 

Service attacks, impersonation attacks, and repeat attacks. Secure transport 

authentication is required to protect against these attacks and to provide reliable 

communication when moving between networks [99].  

Scalability and Manageability: 

HetNets often comprise a large number of heterogeneous network elements 

deployed in diverse environments. Scalable and manageable resource management 

mechanisms are needed to efficiently handle the complexity and scale of HetNets 

while ensuring ease of deployment and operation [112]. 
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Addressing these challenges requires innovative approaches and technologies such 

as dynamic spectrum access, ML, NFV, SDN, among others. Various research 

efforts and technological advancements aim to create more intelligent and 

autonomous networks capable of self-optimization and real-time resource 

management.  Effective resource management in HetNets is essential for delivering 

reliable, high-performance wireless connectivity across diverse use cases and 

applications. 

 

2.6 RESOURCE MANAGEMENT METHODS USED IN HWN 

Resource management in HWNs involves strategies and techniques to efficiently 

allocate and manage various network resources, such as bandwidth, spectrum, 

power, and computing capacity. These methods are essential to ensure optimal 

performance, QoS, and overall network efficiency.  

A range of resource management methods have been proposed for HWNs. [86] 

introduces the resource-optimised network selection (RONS) method, which focuses 

on load balancing and dynamic slot optimisation to enhance performance. [113] 

present a resource allocation scheme that leverages big data technology to select 

the most suitable radio access technology, considering various 

parameters. [114] proposes a data-driven joint resource allocation method that 

integrates different radio access technologies to reduce energy consumption. 

Lastly, [115] emphasises the importance of radio resource management (RRM) in 

satellite communication networks, highlighting the need for effective RRM 

approaches to maximise network performance and minimise interference. This 

section presents some resource management methods commonly used in HWNs. 
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Figure 2-10 presents the visual overview of the resource management discussed 

below. 

 

Figure 2-10: Resource Management Methods Used in HWNs 

 

Load Balancing:  

Load balancing is a resource management method that distributes network traffic 

across different network resources, such as BS, APs and servers to prevent 

congestion and ensure even resource utilization [116]. This helps to ensure that no 
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single resource is overloaded, maintain network stability, and enhance user 

experience.  

Load balancing enhances network performance, efficiency, and reliability by 

optimising throughput, distributing workload evenly, preserving node energy, and 

improving QoS by reducing congestion and interference [117]. 

 

Call Admission Control (CAC): 

Another resource management method that is commonly used in HWNs is CAC. It is 

a significant resource management method in heterogeneous wireless networks. 

CAC is responsible for controlling the admission of new connections to the network, 

ensuring that the network's resources are allocated efficiently and that QoS 

commitments are maintained [118]. 

CAC works by evaluating the current state of the network and determining whether 

or not there are enough resources available to support a new call. If there are not 

enough resources available, the call will be rejected. If there are enough resources 

available, the call will be admitted [119]. 

By regulating the number of connections and ensuring that the network is not 

overloaded, CAC plays a crucial role in managing resources such as bandwidth, 

spectrum, and computing capacity. It helps prevent congestion and maintain optimal 

performance by only admitting new connections when there are sufficient resources 

available to meet their QoS requirements. CAC aims to optimise resource utilisation 

by admitting more calls while maintaining the QoS of ongoing services [119]. 

CAC enhances network performance by efficiently allocating radio resources, 

reducing call-blocking probability, enhancing QoS for users, and supporting 

heterogeneous services across multiple wireless access technologies [120]. 
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Traffic Offloading:  

Traffic offloading is a resource management technique that transfers some of the 

data traffic from a congested or overloaded network to a less congested network 

[121]. This helps to improve the performance of the congested network and ensure 

that all users have a good experience.  Traffic offloading aims to reduce the network 

load, improve the user experience, and save the energy consumption of the network. 

Traffic offloading enhances network performance by distributing traffic among 

networks, improving user QoS through higher data rates and lower latency, and 

conserving energy through energy-efficient devices [122]. 

 

 Vertical Handover Management:  

Vertical handover management (VHM) is a resource management method that 

enables a mobile user to switch from one RAT to another without losing the 

connection or the QoS [123]. VHM aims to provide seamless and uninterrupted 

services in HWNs, especially in scenarios where the user is moving fast, or the 

network connectivity is poor [124]. This helps to ensure that the user's traffic is 

always connected to the best available RAT, regardless of their location or the traffic 

load. Vertical handovers between different wireless technologies (e.g., Wi-Fi to 

cellular) require efficient decision-making to maintain a seamless user experience. 

Algorithms consider factors such as signal strength, available bandwidth, and user 

preferences to optimize handover decisions. 

VHM enhances network performance by maintaining seamless connections, 

optimizing resource utilisation, and enhancing reliability by avoiding congestion and 

interference while optimising network coverage based on user preferences and 

bandwidth [125], [126]. 
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Dynamic Spectrum Management: 

Dynamic Spectrum Management (DSM) is a resource management method 

commonly used in heterogeneous wireless networks. It is a set of techniques that 

dynamically allocate radio spectrum resources to different users and applications 

based on their needs and requirements [127]. 

DSM can use various methods, such as cognitive radio, blockchain, and AI, to 

sense, monitor, and control spectrum usage dynamically and efficiently [128].  

Cognitive radio techniques and spectrum sensing can be used to detect unused or 

underutilised spectrum bands, allowing for more efficient utilisation of the spectrum. 

This has been used in cognitive radio networks to maximise spectrum efficiency. 

DSM is a complex and challenging problem, but it is essential for the efficient and 

effective use of spectrum in heterogeneous wireless networks. By dynamically 

allocating spectrum resources to different users and applications, DSM can improve 

the efficiency and overall performance of the network, providing better QoS to users. 

  

Power Management: 

Power management is a resource management method that aims to reduce the 

energy consumption of the network and devices such as base stations and mobile 

devices, especially wireless user equipment (UE) that have limited battery power 

[80]. Power management can improve network performance, user experience, and 

the environmental sustainability. 

Managing power resources involves optimising the transmission power of wireless 

devices to minimise interference, extend battery life, and improve overall network 

performance. It's used in cellular networks to ensure optimal coverage and capacity. 
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 Power control algorithms adjust transmit power based on factors such as distance, 

signal strength, and interference [80]. 

Power management enhances network performance by reducing device energy 

consumption, improving QoS for users, and reducing operational costs and 

environmental impact. It extends battery life, improves network QoS, and reduces 

the carbon footprint and greenhouse gas emissions of the network. 

 

Cross-Layer Optimisation:  

Cross-layer optimisation (CLO) is a technique that exploits the collaborative 

operation among the different layers of the network protocol stack, such as the 

physical layer, the MAC layer, the network layer and the application layer [129]. 

Cross-layer techniques consider parameters from multiple layers of the protocol 

stack to make resource allocation decisions. For instance, dynamic modulation 

adaptation adjusts the modulation scheme based on channel conditions. 

CLO enhances network performance by adapting to dynamic network conditions and 

user requirements. It improves resource efficiency by reducing resource wastage 

and improving QoS for users through flexible resource allocation and control 

schemes. It also increases network capacity and throughput by exploiting spatial 

diversity and multiplexing gains of MU-MIMO and OFDMA technologies [130]. 

 

Context-Aware Resource Management:  

Context-aware resource management is a technique that leverages information 

about the network, the user and the environment to optimise resource allocation and 

control in an HWN [131]. 
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The context of the network can include factors such as the traffic load, the available 

resources, and the user's location. The context of the users can include factors such 

as their QoS requirements, their battery level, and their mobility. 

This approach considers contextual information, such as user location, device 

capabilities, and application requirements, to make resource allocation decisions. 

Context-aware techniques adapt to changing conditions to provide an optimal user 

experience and provide users with the resources they need when they need them 

[131].  

 It can improve the network performance by adapting to the dynamic and diverse 

network conditions and user requirements; optimising resource allocation and 

improving QoS by providing more flexible and adaptive resource allocation based on 

user context information. It also increases network capacity and throughput through 

spectrum diversity and multiplexing gains of multi-band technologies [132]. 

Hence, resource management methods in HWNs are crucial for maintaining network 

efficiency, QoS, and user satisfaction. The choice of methods depends on the 

network's characteristics, technology diversity, and specific goals, with the ultimate 

aim of achieving optimal resource utilisation and performance. 

 

2.6.1 Comparison 

As explained earlier, managing resources efficiently in HWNs is crucial for ensuring 

seamless connectivity and optimal performance. Several resource management 

methods have been developed to address the unique challenges posed by the 

coexistence of multiple network technologies (e.g.,5G, LTE, Wi-Fi) with diverse 

characteristics. Table 2-1 shows the comparison of different resource management 

methods in heterogeneous wireless networks. 
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Table 2-1: Comparison of Resource Management Methods 

Method Key Features Use Cases Advantages Disadvantages 

Load 

Balancing 

[133] 

Distributes 

traffic evenly 

across 

different 

network 

resources. 

Congestion 

mitigation 

Improved 

resource 

utilisation 

Complexity in 

implementation 

Call 

Admission 

Control [119] 

Determines 

whether to 

admit a new 

call 

Quality of 

service (QoS) 

preservation 

QoS 

assurance, 

network 

stability 

This can lead 

to call rejection 

Traffic 

Offloading 

[134] 

Redirects 

traffic from 

one network 

to another 

Offloading 

data from 

congested 

cells 

Congestion 

relief, 

enhanced 

user 

experience 

Handover 

delays, 

network 

coordination 

Vertical 

Handover 

Management 

[135] 

Switches 

between 

different 

access 

technologies 

Seamless 

mobility 

Improved 

coverage, 

user 

experience 

Handover 

complexity, 

latency during 

handover 

Dynamic 

Spectrum 

Management 

[136] 

Optimises 

spectrum 

allocation 

dynamically 

Spectrum 

efficiency 

Efficient 

spectrum 

usage, 

reduced 

interference 

Complexity, 

coordination 

with other 

methods 

Power 

Management 

[137] 

Adjusts 

transmission 

power to 

conserve 

energy 

Battery life 

improvement 

Extended 

device battery 

life 

Potential 

coverage and 

QoS reduction 
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Cross-layer 

optimisation 

[129] 

Optimises 

network 

parameters 

across 

protocol layers 

Performance 

enhancement 

Enhanced 

end-to-end 

performance 

Implementation 

complexity, 

tuning 

challenges 

Context-

Aware 

Resource 

Management 

[131] 

Considers 

context 

information for 

resource 

allocation 

User-specific 

QoS provision 

Personalised 

QoS, 

improved user 

satisfaction 

Context data 

availability, 

overhead 

 

 

2.6.2 Importance of Resource Management: 

Optimal Utilisation: Resource management prevents wastage of limited resources 

like spectrum, bandwidth, power, and computing capacity. For example, the 

spectrum is a valuable resource, and efficient allocation allows multiple technologies 

to coexist within the same frequency bands [138]. 

QoS Assurance: Proper resource allocation guarantees that each user's QoS 

requirements are met. Users experience consistent performance regardless of their 

location or the technology they are using [139]. 

Load Balancing: Resource management techniques distribute traffic evenly across 

network nodes. This prevents congestion and ensures uniform utilisation, preventing 

certain nodes from becoming overloaded while others remain underutilised [140]. 

Network Stability: Efficient resource management prevents network instability, 

congestion, and crashes caused by resource exhaustion. It ensures a reliable and 

responsive network environment [141]. 
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Cost Efficiency: By optimising resource usage, network operators can reduce 

operational costs. For example, effectively managing power consumption can extend 

the battery life of mobile devices [142]. 

Enhanced User Experience: Proper resource allocation leads to a seamless and 

uninterrupted user experience, regardless of the user's location or the specific 

wireless technology in use [143]. 

 

2.6.3 Consequences of Poor Resource Management: 

Network Congestion: Improper resource allocation can lead to network congestion, 

resulting in slow data rates, dropped calls, and delayed communications [144]. 

QoS Degradation: Inadequate resource allocation can lead to poor QoS, affecting 

applications like video streaming or VoIP, where low latency is essential [144]. 

Uneven Utilization: Poor load balancing can cause certain nodes or APs to become 

overwhelmed, leading to performance issues for users connected to those nodes 

[145]. 

Wasted Resources: Inefficient resource usage results in wasted spectrum, 

bandwidth, and energy. This inefficiency impacts the overall network capacity and 

scalability [146]. 

Service Interruptions: Unmanaged resources can cause service disruptions and 

failures, resulting in dissatisfied users and potential revenue loss for network 

operators [147]. 

Interference: Improper spectrum allocation can cause interference between 

technologies, affecting performance and leading to a suboptimal user experience 

[148]. 
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2.7 CALL ADMISSION CONTROL IN HWN 

The study of radio resource management (RRM) is important in HWNs because 

radio resources are frequently expensive and scarce, making their effective 

utilisation an ongoing research topic [149]. 

The effective use of resources in any RAN is due to RRM solutions. According to 

[119], one of the resource management techniques that play a significant part in 

efficiently managing resources is called admission control. 

CAC schemes are central elements for resource management with QoS support in 

heterogeneous wireless systems. CAC schemes are part of networks that make 

decisions that ensure users receive services of guaranteed quality. This decision-

making process also reduces network congestion and call-blocking probabilities, 

which results in more effective resource utilisation [150]. The CAC algorithm decides 

whether or not to accept an incoming call. Additionally, it determines whether the 

existing RANs are adequate to handle incoming calls [150]. An effective CAC 

algorithm aims to maintain the ongoing connections’ QOS while also ensuring the 

best possible use of the radio spectrum.  

There have been numerous investigations on CAC in 4G and 5G, both in academia 

and industries. As a result, many ideas have been made by researchers in these 

domains. 

A novel CAC technique for VoIP is presented by the authors in [151] within the Wi-Fi 

access network environment and implemented with Unmanned Aerial Vehicles 

(UAVs) which connect to a backhaul 5G network. In response to its evaluation of the 

Wi-Fi network's level of congestion and the minimal level of VoIP call quality 

necessary, it intercepts VoIP call control signals and chooses whether to accept 

each incoming call. The CO-CAC optimises the codec settings of active calls 
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regularly to improve the number of concurrent calls by exchanging signalling with 

VoIP users. 

The authors in [152] proposed an algorithm focused mostly on minimum energy 

usage that was modelled in a CAC environment and supplied by three classes of 

services in a 5G access network. This method will support the development of the 

IoT by enabling connected, low-energy gadgets to connect to the network with a 

suitable quality of service. 

A Dynamic Handover Control Parameter for LTE-A/5G Mobile Communications was 

proposed in [153], the study presented flexible handover control variables in 

heterogeneous wireless settings with dense small cells. It seeks to improve radio link 

performance by reducing the likelihood of ping-pong handovers. 

An intelligent Call Admission Control Algorithm (CACA) is presented in [154] to 

ensure a smooth transition in 5G networks with a suitable QoS for end-users. The 

"cell breathing" phenomenon, which causes the overloaded cell coverage to 

decrease, is considered in the current CACA. The criteria used to decide whether the 

user is accepted are the minimum bit rate that must be obtained, the farthest 

distance from the base station, and the largest number of active users in the cell. 

[155] presented a flexible resource management and predictive handover algorithm 

based on the target BS’s load and data attributes of the network point of connection. 

The fundamental goal of combining different heterogeneous network connections is 

to improve handover performance and more effectively utilise radio resources, which 

improves system performance as a whole. 

To provide an effective forecast approach without placing undue strain on the mobile 

station and the whole network, the proposed work in [101] presented an innovative 

vertical handover prediction strategy. Two separate thresholds are used by the 
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prediction strategies. The first is determined by the current base station's signal 

strength, while the second is obtained by the user signal strength as detected by the 

mobile station.  

[156] suggested CAC for Real-Time and Non-real-time Traffic for Vehicular LTE 

Downlink Networks. Based on user priority, the algorithm seeks to accept or reject 

calls. Additionally, it divided calls into handoff and new calls, and real-time and non-

real-time traffic demands. 

[157] proposed an effective resource allocation and admission control technique for 

public safety communication across a 5G network slice. The authors give a general 

outline of how resource allocation and CAC can be implemented effectively in a 5G 

network. An Adaptive CAC with Bandwidth Reservation for Downlink LTE Networks 

was given by [158]. When there is a high volume of traffic, the algorithm utilises an 

adjustable threshold value to modify the network environment. Best-effort traffic (BE) 

throughput was maximised, while CBP and CDP were reduced. 

A novel vertical handover method based on a multi-attribute and neutral network for 

heterogeneous integrated networks is presented in [159]. The model’s framework is 

developed by adjusting the network environment in which the network resources are 

used to accommodate the switch between UMTS, GPRS, WLAN, 4G, and 5G for 

device connection. 

 

2.7.1 Need for CAC In HWN 

In HWNs, the need for CAC is paramount due to the complex nature of coexisting 

wireless technologies and the varying capabilities of different network components. 

CAC is a crucial mechanism that regulates the admission of new connections into 
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the network based on available resources, QoS requirements, and network 

conditions. 

As described above, CAC is a technique used to control the number of calls that are 

admitted into a wireless network. This is important to ensure that the network does 

not become overloaded and that all users have a good QoS. 

 Here are some key reasons highlighting the need for CAC in HWNs. Figure 2-11 

also presents the visual overview of the key reasons for CAC in HWNs.  
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Figure 2-11: Importance of CAC in HWNs 

 

Resource Management: Heterogeneous wireless networks consist of diverse 

access technologies, such as Wi-Fi, cellular, and satellite, each with its own set of 

resources and limitations. CAC prevents network congestion and resource 

overutilisation by ensuring that new connections are only admitted if sufficient 

resources are available to maintain acceptable QoS levels [119].  
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QoS Assurance: Different wireless technologies offer varying QoS capabilities. CAC 

helps maintain consistent QoS by admitting connections that can be supported within 

the network's available resources. This prevents the degradation of service for 

existing users due to an influx of new connections [160]. 

Interference Mitigation: In a heterogeneous environment, multiple wireless 

technologies often share the same frequency spectrum. CAC considers interference 

levels and helps prevent excessive interference caused by adding new connections 

that could disrupt existing connections and degrade network performance [161]. 

Load Balancing: CAC contributes to load balancing by distributing connections 

evenly across available access points or base stations. By controlling the number of 

connections in each area, CAC prevents certain nodes from becoming overloaded 

while others remain underutilised [162]. 

Network Stability: Effective CAC prevents network instability by avoiding scenarios 

where a sudden surge in new connections could lead to excessive traffic, 

congestion, and even network crashes. By regulating the admission of new 

connections, CAC maintains the overall stability of the network [162]. 

Service Differentiation: Heterogeneous networks serve a wide range of 

applications with diverse requirements, from real-time communication to non-real-

time data transfer. CAC allows operators to prioritize certain types of traffic and 

manage connections, accordingly, ensuring that each service class receives its 

required resources [124]. 

Efficient Spectrum Utilisation: In networks where spectrum is a limited and 

valuable resource, CAC optimizes its use by admitting connections only when 

necessary. This prevents unnecessary spectrum consumption and allows for more 

effective utilisation of available frequency bands [163]. 
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Mitigating Capacity Constraints: Different wireless technologies have different 

capacities and coverage areas. CAC prevents nodes or APs from reaching their 

capacity limits, which could lead to service degradation and dissatisfaction among 

users [164]. 

Seamless Handover Management: Heterogeneous networks often require 

seamless handovers between different technologies to maintain connectivity as 

users move. CAC plays a role in coordinating handovers by assessing the capacity 

and availability of target networks before allowing a handover [165] 

Future Network Planning: CAC data can inform network planning and expansion 

efforts. By analysing admission requests and resource utilization patterns, operators 

can better allocate resources and plan for network growth [119]. 

In conclusion, the need for CAC in HWNs is driven by the diverse range of 

technologies, QoS requirements, and resource constraints that characterize such 

networks. By regulating new connection admissions based on available resources 

and network conditions, CAC ensures a balanced and optimised network 

performance, delivering a seamless and satisfying user experience across various 

wireless technologies. 

 

2.7.2 Call Admission Control Methods In HWNs 

CAC methods in heterogeneous wireless networks are designed to effectively 

manage and regulate the admission of new connections to ensure optimal resource 

utilisation, maintain QoS requirements, and prevent network congestion. These 

methods consider the diverse nature of wireless technologies and their varying 

capabilities. Below are some common CAC methods used in heterogeneous 
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wireless networks. Figure 2-12 presents the visual overview of the CAC methods 

used in HWNs. 

 

Figure 2-12: Call Admission Control Methods 

 

Threshold-Based CAC: This method sets predefined thresholds for various network 

parameters, such as available bandwidth, SINR, and node capacity. When a new 

connection request arrives, the CAC algorithm checks whether admitting the 

connection would cause any of these parameters to exceed their thresholds. If so, 
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the request might be rejected or redirected to a less congested access point. 

Incoming connection requests are admitted if they satisfy these thresholds, ensuring 

that the network's resources are not overloaded [169]. 

Threshold-Based CAC is a simple and effective technique for managing network 

resources. It can be implemented quickly and easily in most wireless networks. It can 

help to ensure that the QoS is maintained for existing calls. However, there are also 

some disadvantages to using threshold-based CAC. It can be difficult to set the 

threshold value correctly, which can lead to either too many or too few calls being 

admitted to the network. It does not take into account the specific needs of individual 

users or applications. It can lead to a reduction in the overall capacity of the network, 

as calls are rejected when the threshold value is exceeded [119].  

 

Load Balancing CAC: This method considers load balancing across different 

network nodes or access points. The load-based CAC algorithm considers the 

current load on different access points or cells. If a certain AP is heavily loaded, the 

algorithm may redirect new connection requests to less congested APs. Incoming 

connections are admitted to nodes with lower traffic loads, ensuring even distribution 

of traffic and preventing network bottlenecks [154]. 

Load-based CAC can improve the utilisation of network resources by admitting more 

calls while maintaining the QoS of ongoing calls [167]. It can provide better 

performance than other CAC schemes in terms of call-blocking probability, handoff-

dropping probability and resource utilisation. It can handle the issue of resource 

allocation in a heterogeneous wireless environment where resources are always 

scarce.  
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However, it has some drawbacks. Load-based CAC requires a lot of computational 

power to calculate the load of the network. It can be difficult to implement load-based 

CAC in a heterogeneous wireless network due to the different types of wireless 

networks and the varying QoS requirements of multimedia applications. Load-based 

CAC can also be less effective in handling bursty traffic and may lead to congestion. 

It also requires additional network infrastructure and expertise. Hence, proper 

implementation and configuration are crucial to maximise its benefits.   

 

Guard Channel Method: In this method, a certain number of channels or resources 

are designated as "guard" channels, reserved for emergency or high-priority traffic. 

New connections are admitted if sufficient guard channels are available, preventing 

resource exhaustion during critical situations [168]. 

This leads to improved call quality, enhanced user experience, simplified network 

management, and improved network capacity.  The guard-channel method can 

reduce the rate of dropped handover calls by reserving channels specifically for 

them. It can provide better QoS for handover calls by reducing the number of 

blocked calls. It can also improve the overall network performance by reducing the 

number of handovers.  

However, it also has disadvantages, such as reduced spectrum utilisation, increased 

network complexity, potential underutilisation, and limited scalability. The guard-

channel method can increase the call-blocking rate for new calls, it can lead to 

inefficient use of network resources [169]. Also, it can be difficult to determine the 

optimal number of guard channels to use.   
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Measurement-Based CAC: This method involves real-time measurement of 

network conditions, including signal strength, interference, and load. Admission 

decisions are made based on these measurements to ensure that new connections 

can be accommodated without degrading the performance of existing connections 

[151]. 

Measurement-based CAC offers different advantages. It is more accurate than other 

methods because it uses real-time measurements to determine the available 

bandwidth and the QoS. It is flexible and can be adapted to different network 

conditions. It can handle a wide range of traffic types, including voice, video and data 

[150].  

However, it also has some disadvantages. Measurement-based methods require 

more computational resources than other methods because they need to 

continuously monitor the network [170]. They are more complex to implement than 

other methods because they require sophisticated algorithms to analyse the 

measurements.  They may not be suitable for networks with high mobility because 

the measurements may not be accurate enough to predict future network conditions.  

 

Bandwidth Reservation CAC: Bandwidth reservation CAC methods allocate a 

specific amount of bandwidth for certain types of traffic, ensuring that the reserved 

bandwidth is available when needed. This approach is particularly useful for real-

time applications with stringent QoS requirements [171]. 

The bandwidth reservation method offers several benefits. It ensures that the 

required bandwidth is reserved for the call before it is admitted into the network, 

thereby reducing the likelihood of call drops due to insufficient bandwidth. It helps to 

maintain the QoS of ongoing services by admitting only those calls that can be 
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supported by the available resources [172].  It is particularly useful in HWNs where 

the bandwidth requirements of different types of calls may vary significantly. 

However, it has some drawbacks.  It may lead to inefficient utilisation of network 

resources as the reserved bandwidth may not be fully utilised. It may result in higher 

blocking probabilities for new calls as the reserved bandwidth may not be available 

for new calls [173]. It may be difficult to implement in practice as it requires a 

mechanism for reserving bandwidth for each call. 

 

QoS-Aware CAC: QoS-aware methods consider the QoS requirements of incoming 

connection requests. The QoS-aware CAC algorithms evaluate the QoS 

requirements of incoming connection requests and compare them with the available 

resources. This algorithm ensures that new connections are admitted only if the 

network can meet its QoS demands [174]. Different access technologies may have 

varying QoS capabilities, so the algorithm needs to consider the capabilities of each 

technology when making admission decisions. If the requested QoS can be 

guaranteed without compromising existing connections, the request is granted. 

Otherwise, it may be denied or admitted with a lower priority [175]. 

QoS-aware methods for call admission control in heterogeneous wireless networks 

have both advantages and disadvantages. One of the main advantages is that they 

can provide better QoS to users by improving the rate of transmission, increasing the 

quality of signal, and reducing the rate of packet loss and delay rate of packet [176].   

However, these methods can be complex and resource-intensive to implement which 

can lead to higher costs and longer development times. Additionally, QoS-aware 

methods may not be effective in all situations, such as when there is a high degree 

of network congestion or when there are significant variations in channel quality 



73 
 

[176]. Despite these challenges, QoS-aware methods remain an important area of 

research in wireless networks, and many researchers are working to develop new 

and more effective methods for CAC. 

 

Utility-Based CAC: Utility-based CAC algorithms assign utility values to different 

connections based on factors like QoS requirements, user priorities, and available 

resources. The algorithm selects connections with higher utility values for admission, 

ensuring that connections with higher priority or better QoS requirements are given 

precedence [177]. Utility-based method for call admission control in heterogeneous 

wireless networks has its own advantages and disadvantages. One of the 

advantages is that it provides a more flexible and efficient way of managing network 

resources by taking into account the utility of different types of traffic. It allocates 

resources to calls that provide the most benefit to the network and users, potentially 

leading to higher bandwidth utilization and improved overall performance [177]. 

Different call types can be assigned different utility values based on their QoS 

requirements, ensuring that critical calls, like emergency services, are prioritised 

over less urgent ones. Also, Utility functions can be customised to reflect the specific 

needs and priorities of the network and its users, allowing for adjustments as 

network conditions or user preferences change. By considering the utility of both the 

network and individual users, utility-based CAC can promote fairer resource 

allocation compared to methods solely focused on maximising network utilisation. 

However, it has some disadvantages such as the complexity of the algorithm and the 

difficulty of determining the utility function. Defining and accurately measuring utility 

can be challenging, requiring detailed knowledge of network performance, user 

preferences, and service characteristics [178]. Assigning utility values involves 
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subjective judgment, potentially leading to biases and inconsistent decision-making. 

Also, implementing and maintaining utility-based CAC systems can require additional 

computational resources and network overhead. Users may attempt to manipulate 

the system by misrepresenting their call priorities or utility values, potentially 

impacting its effectiveness. 

 

Dynamic Pricing-Based CAC: This approach involves dynamically adjusting 

admission decisions based on pricing mechanisms. Users willing to pay more for 

better QoS might be admitted even when resources are limited. This technique can 

balance revenue generation with resource allocation [179]. 

Dynamic Pricing-Based CAC offers several benefits.  It improves resource utilisation 

by dynamically adjusting prices based on network conditions and user demand, this 

can incentivize users to choose less congested cells or adjust their call 

times, leading to more efficient use of network resources [180]. Users can benefit 

from predictable pricing based on network congestion, allowing them to make 

informed decisions about when and how long to call to avoid high charges during 

peak times. Dynamic pricing can generate additional revenue for operators by 

capturing the value of their network resources during periods of high demand. By 

discouraging excessive use during peak times, dynamic pricing can help to prevent 

network congestion and maintain call quality for all users. Dynamic pricing allows 

operators to fine-tune pricing strategies based on specific network conditions, user 

profiles, and service tiers. 

However, it also has some drawbacks.  Implementing and managing dynamic pricing 

systems can be complex, requiring sophisticated algorithms and infrastructure to 

track network conditions and user behaviour in real time [181]. Some users, such as 
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those with limited budgets or inflexible call patterns, may be disproportionately 

affected by dynamic pricing, potentially leading to accusations of unfairness. High 

prices during peak times could make essential communication services less 

accessible to low-income users, raising concerns about affordability and the digital 

divide. Users may not have complete or accurate information about network 

conditions and pricing, potentially leading to confusion and frustration. Users may try 

to game the system by finding ways to avoid high prices, such as using alternative 

networks or delaying calls until off-peak times [181]. 

 

Learning-Based CAC: Some CAC methods leverage predictive analytics and ML 

algorithms to forecast future resource availability and demand. The learning-based 

CAC algorithm uses ML techniques to adapt admission decisions based on historical 

data, user behaviour, and network conditions. These algorithms can optimize over 

time and handle complex scenarios [182]. By anticipating congestion or resource 

shortages, the network can make proactive admission decisions. 

Learning-based methods for call admission control in heterogeneous wireless 

networks have both advantages and disadvantages. One of the main advantages is 

that they can adapt to the changing network conditions and traffic patterns, which 

makes them more efficient than traditional methods. Additionally, learning-based 

methods can be used to optimise the performance of the network by predicting future 

traffic and allocating resources; accordingly, this can result in higher call success 

rates, lower call drops, and better overall network performance [183]. Also, Learning-

based methods can consider diverse factors like user priorities, service types, and 

traffic patterns to ensure fair access to network resources. This can prevent issues 

like starvation for low-priority users or congestion caused by high-bandwidth 



76 
 

applications. By analysing historical data and real-time network usage, learning 

algorithms can predict future traffic patterns and proactively adjust admission control 

thresholds. This can help prevent congestion before it occurs, leading to a more 

stable and predictable network experience. Learning-based methods can be easily 

adapted to diverse network architectures and technologies, making them suitable for 

HWNs with various cell sizes, RATs, and user devices [184]. ML algorithms can 

continuously learn and improve over time as they are exposed to new data and 

network dynamics [184]. This allows for ongoing optimization of call admission 

control strategies for better performance.  

However, one of the main disadvantages of learning-based methods is that they 

require a large amount of data to train the model, which can be difficult to obtain in 

some cases. The accuracy and effectiveness of learning algorithms depend heavily 

on the quality and quantity of available data. Insufficient or inaccurate data can lead 

to suboptimal performance or even negative consequences. 

 Furthermore, learning-based methods can be computationally expensive, especially 

for complex models; this can be a challenge for resource-constrained devices or 

networks with limited processing power [185]. This can lead to increased latency and 

reduced throughput.  Implementing and maintaining learning-based systems can be 

more complex than traditional admission control methods. This requires expertise in 

ML and network engineering, as well as access to appropriate computational 

resources. Some ML models can be difficult to interpret, making it challenging to 

understand the reasoning behind their decisions. This can raise concerns about 

transparency and fairness in CAC decisions. 
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Mobility-Aware CAC: Mobility-aware CAC algorithms consider user mobility 

patterns and handover mechanisms when making admission decisions. Users 

transitioning between different access technologies should experience smooth 

handovers without degradation of service [186].   

Mobility-Aware CAC offers some benefits.  It provides better QoS by improving the 

rate of transmission, increasing the quality of the signal and reducing the rate of 

packet loss and delay rate of the packet [187]. By predicting user 

movement, Mobility–Aware CAC can allocate resources more efficiently, preventing 

handovers during calls and reducing dropped calls. This leads to a smoother and 

more reliable user experience. It can optimize resource utilization by admitting calls 

only if the network can maintain its QoS throughout the expected user 

trajectory. This prevents overloading specific cells and ensures efficient use of 

limited spectrum. Proactive call admission based on mobility patterns helps prevent 

congestion hotspots in the network, further improving overall performance and user 

satisfaction [187]. It is sensitive to geographical constraints and to users’ common 

habits. It does not require any control message and additional load for the Mobile 

Switching Centre (MSC).  

However, this has some drawbacks and limitations. Implementing and managing 

Mobility-Aware CAC algorithms can be complex, requiring accurate user mobility 

prediction models and integration with network infrastructure. The method may not 

be effective in highly congested networks. It may require additional computational 

resources [188]. Also, it may not be suitable for real-life applications.  The 

effectiveness of Mobility-Aware CAC heavily relies on the accuracy of mobility 

prediction models. Any errors in these models can lead to suboptimal call admission 

decisions, potentially impacting QoS. Running complex mobility prediction algorithms 
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on network devices can introduce additional computational overhead, potentially 

impacting overall network performance. 

 

2.7.3 Comparison 

Table 2-2 below presents the comparison of different CAC methods in HWNs 

discussed above; showing their key features, use cases, strengths and weaknesses.  

 

Table 2-2: Comparison of CAC Methods in HWNs 

CAC Method Key Features Use Cases Advantages Disadvantages 

Threshold-

Based CAC 

[119] 

Compares 

incoming 

request 

parameters to 

predefined 

thresholds 

Resource 

allocation 

Simple 

implementation, 

resource 

protection 

May lead to 

underutilisation 

or congestion 

Load 

Balancing 

CAC [154] 

Distributes 

load evenly 

across 

network nodes 

Congestion 

management 

Efficient 

ressource 

utilisation, 

congestion 

control 

Requires 

continuous 

monitoring and 

adaptation 

Guard 

Channel 

Method [189] 

Reserves 

specific 

channels for 

handoff 

attempts 

Handover 

support 

Reduced 

handover 

failure rates, 

improved QoS 

Channel 

underutilisation, 

complexity 

Measurement-

Based CAC 

[151] 

Uses real-time 

measurements 

to determine 

admission 

QoS-

sensitive 

applications 

Accurate 

resource 

allocation, QoS 

preservation 

Requires 

reliable 

measurement 

mechanisms 
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Bandwidth 

Reservation 

CAC [190] 

Reserves 

bandwidth for 

admitted 

connections 

Multimedia 

applications 

Guaranteed 

QoS, better 

user 

experience 

Inefficient 

bandwidth 

usage, 

inflexibility 

QoS Aware 

CAC [191] 

Prioritises 

admission 

based on QoS 

requirements 

QoS-

sensitive 

applications 

Enhanced QoS, 

application 

satisfaction 

Complex QoS 

mapping, 

potential 

resource issues 

Utility-Based 

CAC [192] 

Assigns utility 

values to 

different types 

of traffic 

Traffic 

prioritisation 

Customisable 

to traffic types, 

QoS 

optimisation 

Utility function 

design 

complexity 

Dynamic 

Pricing-Based 

CAC [179] 

Adapts pricing 

based on 

network 

conditions 

Revenue 

maximisation 

Efficient 

network 

utilisation, 

revenue 

generation 

Complexity in 

pricing model 

integration 

Learning-

Based CAC 

[182] 

Uses ML to 

make 

admission 

decisions 

Adaptive 

network 

management 

Adaptive to 

changing 

conditions, 

improved QoS 

Training data 

requirement, 

model 

complexity 

Mobility-

Aware CAC 

[170] 

Considers 

user mobility 

for admission 

decisions 

Mobile 

networks 

Seamless 

mobility 

support, 

improved 

handover 

Mobility 

prediction 

challenges 

 

 

2.7.4 CAC Gap Analysis In 5G-Satellite HWNs 

In the rapidly evolving wireless communication field, the integration of 5G terrestrial 

networks with satellite systems has garnered significant attention due to its potential 

to provide seamless and ubiquitous connectivity. This integration introduces a 
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complex and dynamic environment known as 5G-Satellite HWN, where terrestrial 

BSs and satellite nodes collaborate to cater to diverse communication needs.  

5G-Satellite HWNs are expected to provide seamless and ubiquitous connectivity for 

various applications and services, such as IoT, vehicular communications, smart 

cities, and emergency communications. However, the integration of 5G and satellite 

networks poses several challenges in terms of network selection, resource 

allocation, handover management, QoS provisioning, and security. Table 2-3 shows 

some of the identified research gaps for CAC in HWN.  

However, this thesis focuses on one of the greatest challenges to address in a 5G-

Satellite HWN, which is how to allocate resources (e.g., bandwidth, power) fairly and 

efficiently to meet the QoS requirements of different users. 

Within this scenario, one critical aspect that requires further investigation is the 

efficient allocation of network resources through CAC mechanisms. While CAC 

mechanisms are well-established in terrestrial 5G networks, their adaptation and 

optimisation for 5G-Satellite HWN pose unique challenges.  

Despite some initial research in CAC for 5G-Satellite HWN, several critical research 

gaps remain unaddressed.  Most of the existing solutions for these challenges are 

either based on centralised or heuristic approaches that may not be scalable, 

efficient, or robust in dynamic and complex scenarios. They assume that the network 

parameters are static and do not consider the dynamic changes in the network 

conditions, such as traffic load, user mobility, channel quality, and network 

availability. This may lead to suboptimal performance and inefficient resource 

utilisation in the network.  

Also, another research gap is the inadequate exploration of ML and AI techniques for 

adaptive admission control that anticipate network congestion and user mobility to 
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make proactive resource allocation decisions. Therefore, there is a need to develop 

intelligent and adaptive solutions that can leverage the advantages of AI and ML 

techniques to optimize the performance and reliability of 5G-Satellite HWNs. This 

can learn the traffic patterns and network conditions and dynamically adjust the 

admission criteria and parameters according to the network conditions and user 

requirements.  

To address this research gap, a novel load balancing, adaptive, and intelligent CAC 

scheme that can dynamically adapt to the traffic and network conditions in HWNs is 

proposed. The scheme takes into account the different types of traffic, the available 

network resources, the user QoS requirements, and the characteristics of the 5G 

and satellite networks. This study seeks to enhance resource allocation efficiency, 

improve user experiences, and ultimately contribute to the realisation of a robust and 

efficient 5G-Satellite HWN.  

Addressing these research gaps is imperative to unlock the transformative 

capabilities of 5G-Satellite HWN, accommodate diverse user demands and 

applications, and pave the way for a new era of ubiquitous and interconnected 

communications. 

 

Table 2-3: Research Gap in the CAC for 5G-Satellite HWNs 

Research Gap Description 

Resource allocation How to allocate resources (e.g., bandwidth, power) 

fairly and efficiently to meet the QoS requirements of 

different users [194], [193], [80]. 

Mobility management How to manage the mobility of users seamlessly, while 

ensuring that their QoS requirements are met [195],[33]. 

Security How to secure the 5G-Satellite HWNs against 

cyberattacks. Inadequate focus on security aspects in 
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admission control protocols for 5G-satellite networks, 

such as ensuring user authentication, data 

confidentiality, and protection against potential satellite-

specific vulnerabilities [1970, [196],[73], [72]  

Interference 

management 

How to manage interference between different users 

and links in the network. Absence of comprehensive 

studies on the coexistence and interference 

management between terrestrial 5G networks and 

satellite networks in the context of call admission 

control, especially when they operate in overlapping 

frequency bands [198], [39]. 

Artificial intelligent Inadequate exploration of ML and AI techniques for 

predictive admission control that anticipates network 

congestion and user mobility to make proactive 

resource allocation decisions [199], [187] 

Handover management How to manage handovers between different networks 

(e.g., 5G, satellite) seamlessly, while ensuring that the 

QoS requirements of users are met [200], [32]. 

Energy efficiency How to design the 5G-Satellite HWNs in an energy-

efficient manner. Lack of energy-efficient call admission 

control schemes that take into account the limited 

power resources of SatCOM systems while maintaining 

acceptable QoS levels [202], [201]. 

Cost optimisation How to optimise the cost of the 5G-Satellite HWNs. 

Insufficient investigation into the economic implications 

of CAC decisions, including pricing strategies, resource 

allocation auctions, and incentives for collaboration 

between terrestrial and satellite service providers [204], 

[203]. 

Scalability and 

manageability 

Limited consideration of scalability and manageability of 

CAC mechanisms as the number of connected devices 

and satellites increases, potentially leading to 

bottlenecks and performance degradation [205], [27]. 
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2.8 AN INTELLIGENT CAC FOR LOAD BALANCING IN 5G-

SATELLITE NETWORKS 

Load balancing CAC aims to regulate the amount of call requests and balance the 

load of heterogeneous wireless networks. It can improve the network performance 

and guarantee the QoS. It is an active research topic, especially with the emergence 

of 5G networks. There are many papers published on this topic in recent years, 

proposing different algorithms and methods to improve network performance and 

QoS.  

In [206] presents a load-balancing algorithm for a multi-RAT network including an 

NTN and a TN, which performs intra-RAT and inter-RAT load balancing based on 

the relative resource utilisation ratio (RRUR) of each cell. 

In [162] presents a collaboration algorithm for CAC with load-balancing in ultra-

dense small-cell networks, which uses a fuzzy logic system to decide the call 

acceptance or rejection and a load-balancing algorithm to handover some of the UEs 

from a fully occupied cell to its neighbouring cells. 

In [150] presents a genetic neuro-fuzzy controller for CAC in 5G networks, which 

applies a hybrid approach of genetic algorithm and neuro-fuzzy system to optimise 

the call admission decision based on the QoS requirements and network conditions. 

In [154] presents a load-balancing CAC algorithm based on soft-handover in 5G 

networks, which uses a soft-handover procedure to maintain the connection of the 

UEs to the radio link and a load-balancing algorithm to distribute the traffic load 

among different cells. 

In [207] presents a multi-RAT load balancing function for 5G integrated satellite-

terrestrial networks, which uses different algorithms such as weighted fair queuing, 
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proportional fair scheduling, or max-min fairness to balance the load among different 

RATs based on the QoE requirements. 

Hence, in this thesis, an intelligent load-balancing CAC technique is used to address 

the problem of resource management in 5G-Satellite networks. This combines load 

balancing and AI methods to create an efficient mechanism for admission control 

and resource allocation.  

The load balancing CAC algorithm is an artificial intelligent algorithm which aims to 

optimise the resource utilization and QoS in 5G – Satellite HWN by balancing the 

traffic load among different cells and RATs.  

This is done by admitting calls to the network with less load and rejecting calls to the 

network with more load. The admission parameter is based on a pre-defined 

threshold for each of the network parameters (signal strength, network cost, network 

load and available bandwidth). The load balancing algorithm typically works by first 

calculating the threshold of the network based on the chosen parameter.  When a 

new connection request arrives, the CAC algorithm checks whether admitting the 

connection would cause any of these parameters to exceed their thresholds. If the 

new call meets the admission criteria, it is admitted to the cell with the least load. If 

the new call does not meet all of the admission criteria, it is rejected, this is to ensure 

that the network's resources are not overloaded. Full details of the call admission 

process are given in Chapter 3.  

The intelligent load balancing CAC algorithm can be used to improve the 

performance of a cellular network by preventing overloaded cells from becoming 

congested. It can improve the network performance by enhancing resource 

efficiency by reducing the congestion and blocking probability in overloaded cells; 

improving the QoS for users by providing more reliable and consistent service levels 
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across different cells and RATs; and increasing the network capacity and throughput 

by exploiting the diversity and flexibility of 5G-Satellite networks. 

 

2.8.1 Relevance Of Artificial Intelligent In Wireless Networks 

The application of intelligent techniques has grown significantly for complex and 

nonlinear time-varying problems that presented a major obstacle to researchers 

when using conventional approaches. 

Evolutionary approaches and other AI-related techniques have been used to 

optimise computer systems in a variety of challenging situations [208]. These 

techniques may include multidisciplinary ML methods, bioinspired algorithms, and 

fuzzy neural networks. Recursive feedback-based learning and local interactions 

make these methods very simple [208]. 

The demand for intelligence has pervaded the future of HWNs. Moreover, the need 

for mobile traffic is increasing, which is adding to the complexity of network operation 

procedures. Existing resource management approaches are often based on the 

experiences of human specialists and depend on manually pre-selected rules; they 

are neither autonomous for network access nor flexible to the dynamic wireless 

network environment. Such human task control can become challenging to execute 

as communication networks get more sophisticated. The network must be able to 

continuously change its strategy to the real environmental conditions to achieve 

network resource self-management [209]. 

Future networks will be able to use AI techniques for complicated decision-making, 

advanced learning, information finding, and performance optimisation. Strong skills 

in analysis, learning, optimisation, and intelligent recognition are present in these 

techniques [210]. 



86 
 

Modern AI techniques are being used in 5G networks to increase their capacity to 

manage traffic. When a network is overloaded, AI can help with decision-making. 

Thus, AI combined with 5G can meet both the anticipated needs and the new 

technical obstacles [211].  In [212], the authors proposed a framework which offers 

an intelligent decision-making support system based on Fuzzy Logic for mobile 

device energy conservation within an integrated LTE and Wi-Fi network; to ensure 

that users in this scenario receive a quality experience (QoE).  

A fuzzy logic-based vertical handover decision-making framework is suggested in 

[213] to accomplish seamless vertical handover in HetNets. The suggested method 

is utilised to address the issue of ping-pong handovers and enhance the networks' 

overall performance. 

In [214], handover prediction is used to address the issue of providing full mobility in 

WLAN and LTE heterogeneous networks without degrading the QoS. The model 

relies on inspecting the signal strength between the mobile user and all base stations 

in close proximity. A new prediction strategy employing a neural network model is 

given. The efficiency of the suggested plan is improved primarily by reducing the 

number of unnecessary/redundant handovers. 

While [215] uses multiple actor-learner pairs with diverse exploration techniques to 

train a DRL-based MLB (Mobility Load Balancing) algorithm in an ultra-dense 

network to learn the best load-balancing strategy. 

In recent years, reinforcement learning (RL) which develops a control strategy that 

maximises its long-term estimated reward through interactions with the environment 

has been applied to address the nonconvex problems in wireless networks. The 

agent can carry out specific activities based on the most recent information about the 

environment at a given time.  



87 
 

In [216], it was suggested to use AI techniques for energy optimization with multi-

sleeping control in 5G heterogeneous networks. This was done by using an RL for 

tiny cells that adjust their operations in response to a service delay limit. To 

determine the optimum Sleep Mode policy, the algorithm automatically acquires 

information from the environment based on the anticipated cell throughput, the cell 

buffer size and the co-channel interference.  

The authors in [217] examine the issue of distributed resource management in two-

tier heterogeneous networks, where each cell decides on its joint device association, 

spectrum allocation, and power allocation strategy solely based on information that is 

locally obtained, without the aid of a central controller. To efficiently learn the optimal 

intelligent resource management strategy, a distributed coordinated learning 

algorithm built on a multi-agent duelling deep-Q network is suggested.   

A context-aware mobility management approach using RL is proposed for small-

cellular networks in [218]; the BSs learn their long-term traffic loads and the best way 

to increase their cell range collectively, and they schedule their UDs in accordance 

with the speed and rate of historical data which is transferred in bits while also taking 

into account QoS for the users. 

The authors in [219] presented interference control and handover techniques with RL 

in HetNet to solve the problem of controlling interference between the macro-BS and 

the small cell BS. Each BS learns parameters for the transmission power, activation 

pattern, and bias to achieve the best network performance in HetNet. 

In [220], the authors introduced a deep Q-network and employed an evolution 

strategy to tackle the network’s backpropagation initial parameters, with the aim of 

maximising the system’s benefits. This improved both the complicated computations 

and the connection speed as well as the accuracy of parameter learning.  
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To address load and energy imbalance,[221] integrate two Q-learning-based 

selection techniques in HetNets. Distributed Q-learning-based selection algorithms 

are used in this case to determine bias levels and routing choices. In the downlink, a 

Q-learning model is created to choose bias values using the energy received from 

BSs and the number of outages UEs. To construct a Q-learning model which 

chooses routing targets in the uplink, neighbour energy sorting and variations of 

each mobile UE's remaining energy are utilised. 

The authors in [222] proposed a novel Clipped Double Q-Learning-based load 

balancing framework to increase total network throughput and resource block usage; 

while also improving packet loss ratio, jitter and latency. 

In [223], Deep Q-learning is used to handle load balancing in the device-to-device 

(D2D) communication scenario. In [224], the bandwidth adaptation problem in a 

network is formulated as a partially observable Markov decision process. 

A distributed optimisation strategy based on multi-agent RL was developed by the 

authors in [225] to handle the computationally expensive problem with the vast 

action space in heterogeneous cellular networks. To attain the nearly optimal policy, 

the duelling double deep Q-network method is implemented after the state, action, 

and reward functions for UEs are defined. 

In [226], an online RL-based user association strategy for vehicular networks is 

presented. [227] investigated an RL-based method to provide power control and rate 

adaptation in cellular networks. A technique for learning was examined in [228] to 

determine the optimal resource allocation and network access strategy in LAA-LTE-

based HetNets. 

An algorithm for VHO based on Q-learning was proposed by the authors in [229]. 

The QoE is further enhanced by the algorithm's suggestion of an RNN-based QoE 
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evaluation system. However, the intricate calculations render them inappropriate for 

terminal devices with constrained computer power. 

To address the problems of better mobility management and handover and to offer 

an excellent service for end users’ throughput, call dropping probability, handover 

delay and energy consumption, the authors in [230] examined the application of 

metaheuristics algorithms like grey wolf optimisation (GWO) and Mayfly optimisation 

(MFO) techniques. 

A new hybrid cuckoo search and genetic algorithm that maximises the capacity of 

heterogeneous wireless networks in terms of lowering latency, increasing 

throughput, and reducing handover failure probability was proposed in [231]. The 

performance of the suggested system is encouraging for situations where it is 

necessary to optimise the handoff mechanisms to limit regular handover as well as 

cut down on the power consumption of user equipment. 

[232] proposes an improved approach that uses an ant colony optimisation 

technique to lower the call-dropping percentage in heterogeneous wireless networks. 

Although there are numerous ways to boost network performance that have been 

suggested in the literature, an emerging area of study is how to autonomously 

control complicated mobile networks using evolutionary algorithms and methods.    

As a result, enhancing load balance and user association procedures in a HetNet 

can be accomplished by integrating bioinspired methodologies with network 

operating techniques [233]. 

Particle Swarm Optimisation (PSO) is one of the bio-inspired algorithms, it is 

straightforward in its search for the best solution in the problem area. PSO has been 

successfully applied in a variety of research and application fields. It has been 
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demonstrated that PSO can generate superior outcomes more rapidly and affordably 

than other methods [234].   

The history optimal information is mostly used by the traditional PSO technique to 

direct its optimisation. However, the traditional PSO algorithm is readily caught in a 

local optimum when it investigates high-dimensional difficult situations because 

inaccurate information about the position of the best particles can quickly cause most 

of the particles to migrate towards the incorrect space [235]. 

In this thesis, EPSO is suggested to improve the traditional PSO algorithm's 

optimisation performance. EPSO is different from other optimisation methods 

because it does not rely on the gradient or any differential form of the objective and 

simply requires the objective function [236]. Additionally, it contains a small number 

of hyperparameters, which makes implementation simpler. EPSO is a very strong 

and adaptable algorithm that may be used for a very wide range of applications. The 

information sharing of EPSO can immediately identify more accurate global and local 

information, minimising particles restricted to local optimum and increasing the 

algorithm’s precision throughout the optimisation. Therefore, EPSO is used to solve 

the CAC problem for load balancing in this thesis. 

 

 

 

 

 

 



91 
 

Table 2-4: Taxonomy of AI & ML Algorithms For Resource Management in Wireless 
Networks 

Algorithm Objective Merits Demerits Future Works 

Fuzzy Logic 

[213], [212] 

To ensure that 

users in this 

scenario receive 

a quality 

experience; to 

accomplish 

seamless 

vertical 

handover in 

HetNets  

 

 

Optimises 

mobile device 

battery life by 

balancing 

energy 

consumption 

and network 

performance; 

enables 

intelligent 

vertical 

handovers and 

real-time energy 

conservation for 

longer device 

usage times. 

 

Uncertainty, 

complexity, 

validation and 

verification, 

noise 

sensitivity, and 

scalability.  

Algorithm 

enhancement, 

machine 

learning 

integration, IoT, 

user behaviour 

analysis, multi-

criteria 

decision-

making, 

consensus 

facilitation, and 

FinTech 

applications. 

 

Neural 

Network 

Model [214] 

To address the 

issue of 

providing full 

mobility in 

WLAN and LTE 

heterogeneous 

networks 

without 

degrading the 

QoS 

 

Improves 

accuracy, 

reduces 

unnecessary 

handovers, 

enhances 

throughput, and 

adapts to 

changing 

network 

conditions. 

Complexity, 

overfitting, 

transparency, 

dynamic 

environments, 

data 

dependency, 

and resource-

intensiveness, 

necessitate 

careful 

management. 

 

Integrating 

emerging 

technologies, 

optimising deep 

learning 

algorithms, 

developing 

hybrid models, 

enhancing 

energy 

efficiency, and 

improving 

coverage and 

QoS. 

 

DRL-based 

MLB (Mobility 

Load 

Balancing) 

[215] 

To learn the 

best load-

balancing 

strategy 

 

Effectively 

manages 

complex and 

dynamic 

challenges in 

ultra-dense 

networks, 

Complexity, 

overfitting, 

stability, safety 

concerns, and 

scalability 

issues 

 

Optimisation, 

generalisation, 

scalability, 

reward function 

design, safety, 

stability, 

integration, 
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offering self-

organized 

clustering, 

optimal policy 

learning, 

efficiency, 

stability, and a 

safeguard 

mechanism. 

 

 energy 

efficiency, and 

real-world 

testing to 

improve 

practicality and 

effectiveness. 

 

Reinforcement 

Learning 

[218], [216]  

To determine 

the optimum 

Sleep Mode 

policy; to learn 

long-term traffic 

loads and the 

best way to 

increase cell 

range 

collectively  

 

 

Effective in 

wireless 

network 

optimisation due 

to their 

adaptability, 

real-time 

learning, 

resource 

efficiency, and 

user privacy, 

making them a 

promising 

approach for 

intelligent 

network 

management. 

 

Complexity, 

computational 

intensity, 

convergence 

issues, and 

non-stationarity  

5G 

advancement, 

distributed 

learning, 

resource 

management, 

security, 

optimisation, 

hardware 

implementation, 

energy 

efficiency, and 

latency 

reduction,  

Q-learning 

[221] 

To handle 

vertical 

handover 

 

Adaptability, 

ability to learn 

from the 

environment, 

and its ability to 

optimize 

handover 

decisions 

Convergence 

time, high 

overhead, and 

balancing 

exploration and 

exploitation. 

 

Convergence 

enhancement, 

time, 

computational 

overhead 

reduction, 

hyperparameter 

optimisation 

automation, 

non-stationary 

environments 

adaptability, 

integration with 

other machine 
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learning 

techniques 

Multi-agent 

Duelling 

Deep-Q 

Network [217] 

To efficiently 

learn the optimal 

intelligent 

resource 

management 

strategy 

 

Enhances 

resource 

management in 

Heterogeneous 

Networks, 

improves 

efficiency, 

reducing energy 

consumption, 

and facilitates 

precise policy 

evaluation and 

resource 

allocation 

decisions 

Complexity, 

communication 

overhead, non-

stationarity, 

scalability 

issues, partial 

observation, 

convergence, 

and 

interference 

management 

Improving 

scalability, 

communication 

efficiency, non-

stationarity, 

power control, 

interference 

management, 

meta-learning, 

and adaptive 

user 

association to 

enhance 

performance 

and efficiency 

Deep Q-

Network [220] 

To tackle the 

network’s 

backpropagation 

initial 

parameters, with 

the aim of 

maximising the 

system’s 

benefits.  

 

Enables better 

generalisation 

over high-

dimensional 

environments.  

Inefficient 

sample 

efficiency, 

overestimation 

bias, stability 

issues, 

hyperparameter 

sensitivity, and 

partial 

observability 

Improving 

adaptability, 

efficiency, and 

applicability, 

growing Q-

Networks for 

adaptive control 

resolution, 

optimising 

workload 

planning in 

cloud networks, 

and developing 

dual-

embedding-

based DQNs. 

 

Distributed Q-

Learning-

Based 

Selection 

Algorithms 

[221] 

To address load 

and energy 

imbalance   

 

Effectively 

manage load 

and energy 

imbalance in 

heterogeneous 

networks 

(HetNets)  

Computational 

complexity, 

scalability, 

robustness, 

and finding 

optimal balance 

between 

exploration and 

exploitation. 

Optimisation, 

scalability, 

communication 

efficiency, 

robustness, 

integration, 

energy 

harvesting, and 
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 advanced QoS 

management. 

 

Clipped 

Double Q-

Learning-

based [222] 

To increase total 

network 

throughput and 

resource block 

usage; while 

also improving 

packet loss 

ratio, jitter and 

latency. 

 

Optimizes 

wireless 

network 

operations, 

particularly load 

balancing, by 

addressing 

overestimation 

issues and 

enhancing 

throughput, 

resource 

utilization, and 

QoS quality 

Unpredictable 

network 

dynamics, 

overestimation 

bias, slow 

policy changes, 

and may not be 

as data efficient 

as other 

algorithms. 

 

Improving 

algorithmics, 

reducing bias, 

adapting to 

policy changes, 

enhancing data 

efficiency, and 

integrating with 

other 

techniques for 

robust solutions 

Deep Q-

Learning [223] 

To handle load 

balancing in the 

device-to-device 

(D2D) 

communication 

scenario 

 

Adaptability, 

optimization, 

predictive 

capabilities, 

autonomy, and 

performance 

improvement 

 

Complexity, 

overfitting, 

delayed 

convergence, 

non-

stationarity, and 

sample 

inefficiency,  

Improving 

adaptability, 

reducing 

complexity, 

enhancing 

sample 

efficiency, 

addressing 

non-

stationarity, 

integrating 

novel 

techniques, and 

optimising 

performance for 

device-to-

device 

communication 

Multi-agent RL 

[225] 

To handle the 

computationally 

expensive 

problem with the 

vast action 

space in 

heterogeneous 

Offers 

decentralisation, 

scalability, 

efficiency, 

adaptability, 

robustness, 

learning from 

interaction, and 

Training 

instability, 

coordination 

complexity, and 

policy 

heterogeneity, 

necessitating 

careful design 

Improve 

performance, 

reliability, and 

applicability, 

integrating with 

emerging 

technologies, 

and considering 



95 
 

cellular 

networks 

 

convergence to 

a Nash 

Equilibrium 

and 

implementation. 

 

ethical and 

societal 

impacts 

Hybrid 

Cuckoo 

Search and 

Genetic 

Algorithm 

[231] 

To maximise the 

capacity of 

heterogeneous 

wireless 

networks in 

terms of 

lowering 

latency, 

increasing 

throughput, and 

reducing 

handover failure 

probability 

 

Optimises 

wireless 

networks by 

reducing 

latency, 

increasing 

throughput, and 

minimizing 

handover failure 

probability, 

ensuring 

reliable service 

continuity. 

 

Complex, 

computationally 

intensive, and 

requires regular 

updates, 

requiring 

careful design 

and 

implementation. 

 

Optimising 

parameters, 

real-time 

applications, 

integrating with 

emerging 

technologies, 

improving 

mobility 

management, 

energy 

efficiency, 

scalability, and 

robustness to 

network 

variability. 

 

Ant Colony 

Optimisation 

[232] 

To lower the 

call-dropping 

percentage in 

heterogeneous 

wireless 

networks 

 

Efficiently finds 

optimal routing 

paths in 

wireless 

networks, 

reducing call-

dropping 

percentages 

and improving 

its robustness, 

dynamic 

adaptation, and 

real-time 

optimisation 

Computational 

complexity, 

slow 

convergence 

speed, 

resource 

constraints, 

overhead costs, 

and 

optimization 

limitations. 

 

Involve hybrid 

approaches, 

energy 

conservation, 

routing path 

optimisation, 

enhanced 

algorithms, and 

reducing 

overhead to 

improve 

coverage and 

efficiency. 

 

 

 

2.9 CONCLUSION 

This chapter provides a detailed analysis of resource management in HWNs. This 

chapter begins with an exploration of 5G HetNets: Vision and Motivation.  It then 

looks at the role of Satellite in 5G Hetnet, as well as some of the integration 
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challenges. Also, a comprehensive analysis of the different resource management 

strategies employed in HWNs to shed light on the difficulties of improving network 

efficiency and performance. The discussion then shifts to CAC, a crucial idea that 

plays a vital role in guaranteeing smooth operations in HWNs. 

The chapter highlights the critical necessity for CAC in HWNs by outlining the 

challenges and complications that arise in dynamic network environments. To 

pinpoint areas in need of enhancement and improvement, a gap analysis is 

provided. The scope is expanded to include a detailed assessment of CAC within the 

framework of the 5G-Satellite HWN paradigm. 

An innovative approach is introduced with an exploration of Intelligent Load 

Balancing CAC in 5G-Satellite Networks. To ensure a balanced and effective use of 

network resources, this part reveals a strategic integration of intelligence for load 

distribution optimisation. An effective way to improve network performance and deal 

with the problems caused by wireless networks' diverse structure is the intelligent 

load balancing mechanism. 

The final section of the chapter explores AI’s applicability to wireless networks. It 

opens the door for future advancements in resource management, CAC, and load-

balancing techniques across diverse wireless settings by recognising the 

revolutionary potential of AI.  AI integration is being positioned as a critical enabler 

for meeting the changing needs of wireless communication, including improved 

intelligence, efficiency, and agility in resource management. 

Building on this foundation, the subsequent chapters will cover more detail on the 

proposed Load-balancing CAC framework for 5G-Satellite HWN.   
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CHAPTER 3: CAC FRAMEWORK FOR LOAD BALANCING 

IN 5G-SATELLITE HETEROGENEOUS NETWORK 

3.1 OVERVIEW 

This chapter explains the load balancing framework and algorithm design. Load 

balancing is a major problem in 5G-Satellite HWNs because of the increased 

demand for data and constrained resources.  Network effectiveness and 

performance can be enhanced by using load balancing frameworks to distribute 

traffic equally across the networks.  

The load balancing framework in 5G-Satellite HWNs is a framework that aims to 

balance the traffic load among different network components, such as satellites, 

macro base stations, small cell base stations, etc. A load balancing framework can 

improve the network performance, efficiency, and reliability in 5G-Satellite HWNs.  

One of the crucial challenges in managing these networks is efficiently allocating 

network resources, ensuring QoS, and maintaining a high level of network 

performance. Load balancing in this thesis is achieved using the CAC mechanism.  

Hence, the design of the load balancing mechanism is described elaborating on the 

CAC algorithm which is used to ensure equitable distribution of traffic between the 

networks. The chapter also discusses the network architecture and proposed system 

model to be used in the thesis, the call admission policy, the performance metrics as 

well as the mathematical problem formulation in the 5G-Satellite HWNs. 
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3.2. 5G-SATELLITE NETWORK LOAD BALANCING ARCHITECTURE  

The load balancing architecture of the 5G-Satellite HWNs is a critical component for 

ensuring the performance and reliability of the network. The architecture must be 

able to distribute traffic efficiently across the different RATs in the network, while also 

taking into account the user's location and preferences. The load balancing in this 

thesis is done by using CAC to manage the flow of traffic on the 5G-Satellite 

networks.  

The CAC determines whether or not a new call can be admitted to the network. If the 

network is not able to handle the new call, it will be rejected. By rejecting calls that 

would overload the network, CAC can help to improve the performance of the 

network by preventing overload, ensuring that all users have a consistent level of 

performance, and reducing the number of dropped calls. 

The literature survey shows that three main types of architecture can be used for CAC 

in HWNs, this includes centralised architecture, distributed architecture and hybrid 

architecture [119]. 

In a centralised approach, a central entity such as a gateway or server acts as the 

central controller and is responsible for making all CAC decisions for the whole HWNs.  

Therefore the CAC algorithm is implemented in the network core. The network core 

has a global view of the network and can make more informed decisions about whether 

to admit a call [237]. This approach is typically used in small to medium-sized networks 

with predictable traffic patterns. A centralised CAC architecture has some advantages, 

such as simplicity, scalability, and global optimisation. This can be efficient because it 

eliminates the need to communicate with multiple systems servers. However, a 

centralised CAC system can be a single point of failure. If the central system server 

fails, then no new calls can be admitted to the network. It also has other disadvantages 
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such as high signalling overhead, and lack of flexibility. It involves cooperation among 

all wireless BSs and users such as the sharing of substantial data overhead, and this 

might not be possible when the networks are operated by competing operators. In 

addition, different network operators adopt a different method for transmitting the 

network; and this will also make any close cooperation among the heterogeneous 

wireless network difficult [238]. 

Another drawback with the centralised architecture is the fact the central controller 

communicates more often with all the network systems which causes overload in the 

centralised system and slows down the processing and connection time. A centralised 

architecture also has to deal with the issue of performance degradation, which causes 

network instability and rapid fluctuation [239].  

The problem of excessive communication overheads can be solved with distributed 

architecture. In this architecture, the CAC algorithm is implemented on mobile devices. 

This approach is more scalable and efficient, as it does not require the network core 

to make admission decisions for every call. Mobile users aim to improve their own 

performance by selecting the network themselves based on their preferences. A 

distributed CAC architecture has some advantages, such as low signalling overhead, 

high fault tolerance, and high flexibility. However, mobile device-based CAC can be 

less reliable, as it depends on the accuracy of the information on the mobile device. It 

also has some disadvantages, such as complexity, coordination, and suboptimal 

performance. 

In addition, the problem of load balancing emerges when the UD performs network 

selection, as users have a greedy approach, that is, they select the best network 

among the available options without taking into account the network’s actual load. It is 

also likely that the network selected does not have the bandwidth or other network 
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resources to handle the incoming call. This leads to inefficient use of resources, 

performance degradation, network instability, increased call blocking, and dropping 

probability. Therefore, a distributed architecture may not guarantee an equitable 

distribution of traffic.  

A major issue is to develop a load-balancing architecture that increases network 

efficiency and improves user satisfaction while reducing the burden of signalling and 

processing.  To tackle this issue, a hybrid architecture should be considered.  

A hybrid CAC architecture combines the benefits of centralised and distributed CAC 

systems. This is mobile device-based CAC with feedback from the network.  The 

mobile device makes an initial decision about whether to admit a call, based on its 

own local information and preferences such as battery level, signal strength, supported 

technologies, service cost etc. If the mobile device is not sure whether to admit the 

call, it can request feedback from the network core. The network core can then provide 

the mobile device with more information about the network conditions and the 

admission status, such as the signal strength of different RATs, the load on different 

RATs, the available bandwidth on different RATs and the number of active users. This 

feedback can help the mobile device to make a more informed decision about whether 

to admit the call; the UD can use this information to select the RAT that is most likely 

to provide the best experience for the user.  

The hybrid CAC architecture is a promising approach to CAC for HWNs. The proposed 

load balancing algorithm in this thesis is based on hybrid CAC. There are a number of 

benefits to providing UDs with network information. First, it allows UDs to make more 

informed decisions about which RAT to use; this can lead to improved performance 

and satisfaction for users. Second, it helps to ensure that radio resources are used 

effectively; this can help to improve the overall performance of the network. It ensures 
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fairness in the allocation of radio resources among the HWN; it can be used to support 

a variety of QoS requirements for all admitted calls and reduce call blocking /dropping 

probability. 

 

3.3 CAC ARCHITECTURE NETWORK COMPONENT 

The CAC architecture in 5G-Satellite HWNs is a complex system. However, it is 

essential for ensuring the QoS of the network. The architecture must be able to 

adapt to changes in traffic load and user QoS requirements. It must also be able to 

handle unexpected events, such as network outages. 

The following are some of the key components of the CAC architecture in 5G-

Satellite HWNs: 

5G Cellular Network: The 5G cellular network provides the primary network for the 

system. It is responsible for providing high-speed, low-latency connectivity to devices 

in urban and suburban areas. 

Satellite Network: The satellite network provides the secondary network for the 

system. It is responsible for providing connectivity to devices in remote areas and 

areas that are not served by the 5G cellular network. 

Gateway: The gateway is the point of interconnection between the 5G cellular 

network and the satellite network. It is responsible for routing traffic between the two 

networks. The gateway forwards the call request from the BS to the CAC server. It 

can be located on the ground or in space. 

User Device (UD): The UD is the device that connects to the network. It can be a 

smartphone, tablet, laptop, or other device that is capable of connecting to a wireless 

network. The UD sends a call request to the CAC server. The call request includes 
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information about the user's location, the QoS requirements of the call, and the type 

of service that the user is requesting. 

Base Station (BS): The BS is the node in the 5G cellular network that is responsible 

for communicating with the UD. It is responsible for transmitting and receiving data 

between the UD and the core network. The BS forwards the call request from the UD 

to the CAC server. BSs can be located on the ground, on rooftops, or in space. 

Satellite Ground Station:  A satellite ground station, also known as an Earth station 

or Earth terminal, is designed to communicate with satellites in orbit.  These stations 

play a crucial role in the operation of satellites, as they are responsible for sending 

commands to the satellite, receiving data from the satellite, and monitoring its status. 

Satellite ground stations are essential components of satellite operations, enabling 

communication and control of satellites for a wide range of applications, including 

Earth observation, telecommunications, scientific research, and navigation. 

Satellite: In a satellite network, the satellite is the node that is responsible for 

communicating with the UD. The satellite acts as a relay between the UD and the 

ground station. It receives data from the UD and then transmits it to the ground 

station, or vice versa. The satellite is also responsible for routing data through the 

satellite network. When the UD sends data to the ground station, the satellite will 

determine the best route for the data to take through the network. This may involve 

routing the data through other satellites or the ground station. 

Core Network: The core network is the backbone of the 5G-Satellite HWNs. It is 

responsible for routing traffic between the different parts of the network and providing 

services to the UDs. The core network forwards the call request from the gateway to 

the CAC server. 
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Control Plane: The control plane is responsible for managing the network. It 

includes functions such as CAC, handover, and resource allocation. 

User Plane: The user plane is responsible for carrying user traffic. It includes 

functions such as data delivery and QoS management. 

CAC Algorithm: The CAC algorithm is responsible for making decisions about 

whether to admit a call or not. It also decides which of the available RATs is most 

suitable to accommodate the incoming call. The CAC algorithm ensures that the 

network resources are not overloaded, which can lead to poor call quality or even 

call drops. It takes into account a number of factors, such as the current traffic load 

on the network, the type of traffic, the user’s location, as well as the user's QoS 

requirements. When a new call request is received, the CAC algorithm will first check 

to see if there are enough network resources available to support the call. If there 

are not enough resources available, the call request will be denied. Figure 3-1 shows 

a simple CAC procedure in 5G-Satellite HWNs. 

 

Figure 3-1: CAC Procedure in 5G-Satellite HWNs 



104 
 

CAC Controller: The CAC controller is a device or software application that 

implements a CAC algorithm. CAC controllers are used to control the number of calls 

that are allowed in the network. CAC controllers typically work by monitoring the 

current load on the network and the estimated bandwidth requirements of new calls. 

If there are not enough network resources available to support a new call, the CAC 

controller will deny the call request. The CAC controller executes the CAC algorithm 

and selects the most suitable RAT for the incoming call.  

CAC controllers can be used to improve the QoS in a telecommunications network. 

By limiting the number of calls that are allowed to be established, CAC controllers 

can help to prevent congestion and ensure that all calls can be completed with good 

quality.  

Handover decision-making: The handover decision-making process is also a 

critical component of load balancing in 5G-Satellite HWN. The handover decision-

making process determines when a user should be handed over from one RAT to 

another. This process must take into account the load-balancing algorithm's 

decisions about how to route traffic. A full handover event and trigger scheme are 

beyond the scope of this thesis; however, the algorithm must consider this during call 

admission. Figure 3-2 presents the CAC architecture of the 5G-Satellite HWN.  
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Figure 3-2: CAC Architecture in 5G-Satellite HWNs 

 

 

3.4 PROPOSED LOAD BALANCING FRAMEWORK 

This section discusses the proposed CAC model, the decision epoch and the call 

admission policy for the 5G-Satellite HWN.  

 

3.4.1 Call Admission Control Model 

In this section, a geographic region completely covered by two broadband RATs is 

considered: a primary RAT such as 5G and a secondary RAT serviced by Satellite; 

typically, a 5G cell will be covered with several satellite gateway links (access 

points). A common example of such coverage areas overlapping with heterogeneous 

wireless networks can be observed in urban areas, especially in busy town centres, 

train stations and marketplaces. 
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These HWNs offer different coverage, bitrates, capacity, etc. In addition, the signal 

coverage of these wireless networks overlaps. Figure 3-3 shows the 5G-Satellite 

HWNs model.  

It is assumed that the mobile users are randomly positioned at any point in the 

Satellite and 5G BS coverage area. The set of users is represented by N = {1, 2, ..., 

N}. Each user in the network has a choice between the two available RATs in the 

scenario under consideration. Additionally, it is expected that the user uses any one 

of the three service types—voice, video, and data—and the user can run any of the 

three services on their device.  

It is also assumed that the arrivals of the video, voice, and data users follow a 

Poisson distribution and the channel holding times for video, voice and data calls are 

exponentially distributed. The mean arrival rate λ is 1(calls/s) and the average call 

holding time 1/μ =100(s).  
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Figure 3-3:  5G -Satellite HWNs Model 

 

An intelligent CAC framework using the EPSO algorithm is used to balance the load 

in the 5G-Satellite HWNs. The novel hybrid CAC scheme in the HWN utilises two 

controlling entities: CCN running on the network entity, and controller at UD.  

The UD is also treated as multi-mode mobile terminals, and they can connect to a 

single network or multi-RATs simultaneously. Also, only users present within the 

overlapping coverage area of 5G, and Satellite are taken into account; users outside 

the dual coverage area of 5G BS and the Satellite AP are always connected to either 

5G or Satellite and no decision is taken in this case.  

The load balancing process starts when there is an arrival of a new call. The 

proposed CAC algorithm decides to admit or decline a call once a request is 

received from an arriving mobile user. In this way, the CAC algorithm evaluates the 

resource availability using the network attributes. Here it is assumed that there are 
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four network attributes collected by the CAC (namely signal strength, network cost, 

network load and available bandwidth) and these are used as the decision variables. 

Before the CAC can choose or admit a call, it needs to observe the information from 

the network; this is because a bad decision can lead to load imbalance, degraded 

network, and bad quality of service. The core ideas are to sample the network state 

information in a decision epoch, evaluate the defined threshold and decide if there 

are enough resources to admit the incoming call.  

In addition to the available resources, the network also considers the handover 

probability for each RAT. If the handover probability is high, it means the call is more 

likely to experience a handover. This can degrade the QoS of the call, so the 

network may be less likely to admit the call to a RAT with a high handover 

probability. By carefully considering the handover probability, the network can make 

more informed decisions about whether or not to admit new calls. It can help to 

reduce the number of dropped calls. If the network knows that a call is likely to 

experience frequent handovers, it can avoid admitting the call to a RAT that is prone 

to handovers.  Hence the network calculates the handover score for each RAT using 

the handover probability.  

Specifically, when a new call arrives, the CAC algorithm receives as input 

information of all the network's status in terms of signal strength, network cost, 

network load and available bandwidth. It then evaluates the defined network status 

value for each RAT and checks if it is ≤ ηthreshold. It also checks the handover 

score for each RAT to see if it's lower than the call’s QoS. If the network status value 

is ≤ ηthreshold and the handover call is lower than the call’s QoS, the service is 

admitted to 5G or Satellite (depending on the network that meets the threshold and 

handover requirement), the call is admitted; if none of the networks meets the 
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threshold and handover requirement, the call is blocked and the user should try to 

request that service again. 

The EPSO algorithm, embedded within the CAC framework, continuously monitors 

the network state, including parameters like signal strength, network load, and 

available bandwidth. In response to fluctuations in user density and mobility patterns, 

the algorithm dynamically reallocates network resources to ensure optimal 

performance and QoS across diverse scenarios. By leveraging information about 

user density and mobility patterns, the algorithm adjusts its parameters and 

optimization criteria to suit the specific characteristics of urban and rural areas. For 

instance, in urban areas with high user density and frequent mobility, the algorithm 

prioritizes efficient resource allocation and congestion management to prevent 

network overload and degradation of service quality; the algorithm may adopt more 

conservative admission policies to account for increased handover probability, thus 

maintaining seamless connectivity and minimizing call drops. Similarly, in rural areas 

with lower user density and potentially different mobility patterns, the algorithm 

adapts its resource allocation strategies to ensure equitable access and optimal 

utilization of available network resources. Hence, the EPSO algorithm is designed to 

be scalable and adaptable to varying network conditions, including changes in user 

density and mobility patterns over time.  

The proposed CAC scheme is designed to improve the overall performance of 

5GSatellite HWNs by reducing call blocking and improving QoS. The CAC scheme is 

also designed to be fair to all users, regardless of their location or the type of 

network they are using. Figure 3-4 shows the algorithm flowchart.   
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Figure 3-4: CAC Flowchart 
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3.4.2 Decision Epochs and Admission Control Policy  

The proposed CAC model consists of seven elements: network state, call arrival 

process, decision epoch, possible actions, call processing time, call admission policy 

and handover probability. 

(1) The call arrival process:  

The call arrival process is a stochastic process that models the arrival of calls to the 

network. The call arrival process is typically modelled as a Poisson process, which 

means that the calls arrive independently and randomly in time. The rate of the 

Poisson process, also known as the arrival rate, is the average number of calls that 

arrive at the network per unit of time. The call arrival process can be used to model 

the arrival of calls to a variety of networks, including 5G-satellite HWN. The arrival 

rate of the call arrival process can be adjusted to reflect the expected number of calls 

that will arrive on the network in a given time period. This allows the network to be 

designed to handle the expected load.  

The call arrival process is an important input to the CAC scheme. The CAC scheme 

uses the call arrival process to estimate the future load on the network and make 

decisions about whether to admit calls to the network. The CAC scheme can be 

more effective if it has a good estimate of the call arrival process.  

 

(2) States: 

The state includes all relevant information about the network environment that the 

CAC algorithm needs to know to make a decision. There are 4 network information 

used in this thesis; these are also the decision variables: signal strength, network 

cost, network load and available bandwidth. 
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3) Decision epoch: 

A decision epoch is defined as the specific time in which an arrival request occurs. 

Under the network state, the decision epochs are the points in time when the 

proposed algorithm makes a call admission decision on whether to admit the new 

call. The decision epochs are typically spaced evenly in time, but they can also be 

adaptive, depending on the traffic load of the network. 

 

(4) Actions:  

At each decision epoch, the CAC algorithm decides for each possible call arrival that 

may occur in the time. These decisions are collectively referred to as an action.  

These are sets of all possible actions that the proposed algorithm can take. The 

actions of the proposed algorithm include block the call, accept the call in 5G RAT, 

accept the call in Satellite RAT. 

 

(5) The call processing time:   

The call processing time is the time it takes for a call to be established and 

completed. The call processing time can be divided into two parts. The first part is 

the call setup time which is the time it takes for the CAC to make a decision about 

whether to admit the call and for the network to set up the call. The second part is 

the call holding time which is the time that the call is connected and active. 

 

(6) Handover Probability 

Handover probability is the likelihood that a mobile user's call will be handed over 

from one network to another.  The handover probability is important for CAC in the 

HWNs. If the network does not consider any future events, such as handovers, when 
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making this decision, this means that the network can become overloaded if there is 

a sudden influx of new calls or if a large number of calls are handed over to the 

network at the same time. Also, If the handover probability is high, then the call 

admission control algorithm needs to be more conservative to avoid blocking calls. 

This is because there is a higher chance that a call will be handed over to a different 

network and then blocked. For example, if the algorithm predicts that a handover is 

likely to occur in the near future, it might be more likely to block a new call, even if 

there is currently enough bandwidth available. This is because the algorithm knows 

that the bandwidth will be needed for the handover, and it does not want to risk 

overloading the network. 

The handover probability can be incorporated into the CAC algorithm in a number of 

ways. In this thesis, the handover probability is added to the decision-making 

process. For example, if the handover probability is high, then the CAC algorithm 

might be more conservative to avoid blocking calls.  

The handover probability is calculated using the formula below:  

Handover Probability = 1 - e^ (-(Difference in Signal Strength) / Handover Threshold) 

where: 

• Difference in Signal Strength is the difference in signal strength between the 

home network and the visited network. 

• Handover Threshold is the minimum difference in signal strength that will 

trigger a handover. 

 

It is assumed that there is a 50% chance that a user will be handed over from the 5G 

network to the satellite network.  
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(7) Call Admission Policy: 

Call admission policy in heterogeneous wireless networks is a set of rules that 

determines whether or not to admit a new call in a heterogeneous wireless network 

based on the available resources, the QoS requirements, and the network selection 

of the user. It aims to make full use of the spectrum resources in different RATs, 

under the constraint of seamless QoS. The goal of the call admission policy is to 

improve network performance such as resource utilisation, call blocking probability, 

and call dropping probability as well as ensure that the network can provide a 

satisfactory level of service to all users, while also avoiding congestion [119]. 

The call admission policy uses a decision rule which maps the action to be chosen at 

different states and decision epochs. The goal is to determine an association policy 

which maximises the total system throughput and minimises call blocking. The 

decision rule considers available resources in the network, the handover probability 

for the call and the QoS requirements of the call. The set of rules is applied to 

determine if a new call should be admitted on the network or not.   

The decision rule considers the following: 

Args: 

 handover_probability: The handover probability for the call. 

 available_resources: The available resources in the network (the four options 

considered are signal strength, network cost, network load and available bandwidth). 

 call_qos: The QoS requirements of the call. 

 

Returns:  

True if the call is admitted, False otherwise.  
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Calculate the handover score for the call. 

handover_score = handover_probability * available_resources 

 

If the handover score is greater than the call's QoS, reject the call. 

if handover_score > call_qos: return False. 

 

Otherwise, admit the call. 

return True 

 

The given code snippet above is a simplified representation of a decision-making 

process related to call handovers in 5G -Satellite HWNs where handovers might 

occur between different network segments (5G and Satellite). Below is a breakdown 

of the logic: 

1) Handover Score Calculation: 

handover_score = handover_probability * available_resources 

This formula calculates a handover score by multiplying two factors: 

handover_probability: Represents the likelihood or probability that a handover will 

be needed. It could be influenced by factors such as user mobility patterns, signal 

strength fluctuations, or other dynamic network conditions. 

available_resources: Represents the resources available in the target network 

segment, which might include bandwidth, power, or other capacity-related metrics. 

 

2) Decision Making: 

if handover_score > call_qos: return False. 
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This condition checks if the calculated handover score is greater than the QoS 

(call_qos) required for the call. The QoS is a predefined threshold representing the 

acceptable level of service quality for the ongoing call. If the handover score exceeds 

this threshold, it indicates that the target network may not have enough resources to 

maintain the desired call quality. In such a case, the decision is to reject the call 

(return False). 

 

Otherwise, admit the call: return True. 

If the handover score is equal to or below the call’s QoS, it suggests that the target 

network has sufficient resources to handle the call adequately. In this scenario, the 

call is admitted, and the function returns True. 

In conclusion, the purpose of this decision-making process is to evaluate the 

feasibility of a handover for an incoming call based on the calculated handover 

score. If the resources in the target network are deemed inadequate (as indicated by 

a high handover score), the call is rejected. Otherwise, the call is admitted to the 

network. This logic helps optimise the handover process by considering the 

probability of handover and the available resources in the target network segment, 

ensuring seamless QoS while maximising resource usage and minimising call 

blocking. 

 

3.4.3 Summary of Call Admission Process 

The call admission process is summarised below: 

1. Call Request Initiation: A new call request is initiated from the mobile device 

to the network. The request contains information about the call’s QoS 

requirements, such as desired bandwidth, latency tolerance, priority level etc. 
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2. CAC Algorithm Assessment: The CAC algorithm embedded within the 

mobile device receives the call request. The algorithm considers various 

factors, including the device’s current resources (e.g. available processing 

power, memory, battery), ongoing calls and their resource requirements. 

3. Initial Decision: The CAC algorithm evaluates whether admitting the new call 

on 5G or Satellite network is feasible without causing undue resource strain. It 

compares the QoS requirements of the new call with the available resources 

on the different RATs and ongoing call loads. 

4. Network Feedback Request: If the CAC algorithm tentatively approves the 

call, the mobile device sends a feedback request to the network. The request 

seeks real-time feedback on handover probability and the different RATs 

network conditions, including congestion levels, available bandwidth, latency 

and overall QoS metrics. 

5. Network Feedback Acquisition: The network infrastructure processes the 

feedback request from the mobile device. It gathers relevant information about 

the handover probability score and the current state of the different networks, 

such as the number of active calls, resource utilisation, and any signs of 

congestion. It identifies the available resources in the different radio access 

technologies (RATs) that can support the call. 

6. Network Selection: The network identifies the RAT that can provide the best 

QoS for the call. The network determines if the selected RAT has the lowest 

handover probability and enough resources to support the call using the call 

admission policy. 
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7. Feedback Integration: The CAC algorithm receives the network feedback 

and analyses it. The feedback provides insights into the current network 

conditions and the potential risks of admitting a new call. 

8. Dynamic Decision Adjustment: Based on the network feedback, the CAC 

adjusts its initial admission decision. If the network is experiencing congestion 

or resource scarcity, the algorithm might tighten its admission criteria to 

prevent network degradation. 

9. Final Admission Decision: The CAC algorithm makes a final decision on 

whether to admit the new call. This decision considers the handover 

probability, the mobile device’s resources and the real-time network feedback 

to ensure optimal QoS. If the selected RAT has enough resources and the 

lowest handover score, the call is admitted. If the selected RAT does not have 

enough resources and the lowest handover score, then RAT 2 is considered. 

However, if both RATs do not have enough resources to admit the call, the 

call is rejected. 

10. Admission Notification: If the call is approved, the CAC algorithm notifies 

the network infrastructure about the admission decision. The network 

reserves the necessary resources for the new call and allocates them to the 

suitable RAT. 

11. Call Session Monitoring: Throughout the call session, the mobile device 

continually monitors QoS parameters and network conditions. It tracks factors 

like latency variations, signal strength and satellite handovers. 

12. Feedback Loop Activation: If the mobile device detects any degradation in 

call quality or network conditions, it sends real-time feedback to the network. 

The network receives the feedback and assesses call quality and network 
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conditions. If required, the network undertakes actions such as adaptive 

resource allocation or handover to ensure optimal QoS.  

 

 3.5 DISCUSSION OF THE ALGORITHMS 

To achieve efficient load balancing between 5G-Satellite HWNs, an intelligent CAC 

algorithm has been proposed as part of the proposed overall load balancing 

framework. Intelligent CAC is a more advanced form of CAC that uses AI to make 

more informed decisions about whether or not to admit a call. The intelligent CAC 

takes into account factors such as the current traffic load in the network, the user's 

location, and the user's desired QoS. It is particularly important in 5G – Satellite 

HWNs because it can help to ensure that the network can handle the increased 

traffic load that is associated with these networks. It can also help to improve the 

QoS for users who are located in areas with poor cellular coverage. It is a valuable 

tool that can help to improve the performance and reliability of 5G-Satellite HWNs. 

By intelligently distributing traffic across the different network nodes, the framework 

can minimize congestion and maximize performance. This can lead to improved user 

experience and reduced costs for network operators. This section gives full details of 

the proposed algorithm as well as the benchmarking algorithms. 

 

3.5.1 Proposed Algorithm 

The EPSO algorithm is proposed in this thesis to handle the CAC. EPSO is a very 

strong and adaptable algorithm that may be used for a very wide range of 

applications. The information sharing of EPSO can immediately identify more 

accurate global and local information, minimising particles restricted to local optimum 

and increasing the algorithm’s precision throughout the optimisation. 
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EPSO utilises parameters collected using call admission policy to seamlessly admit 

new calls and choose the suitable RAT to allocate the UD, to ensure there is 

equitable distribution on the networks. The advantage of this proposed algorithm is 

that it improves throughput and fairness and reduces call blocking, enhancing 

resource allocation and network utilisation. 

Its performance is compared with three other intelligent algorithms which include: the 

Artificial Bee Colony algorithm, the Simulated Annealing algorithm and the Q-

Learning algorithm. Each of these algorithms is discussed below.  

 

3.5.1.1 Enhanced Particles Swarm Optimization 

EPSO is a variant of the standard PSO algorithm that aims to improve its 

performance and overcome its limitations [236]. PSO is a population-based 

metaheuristic algorithm that mimics the social behaviour of birds or fish to find the 

optimal solution in a search space. It is a popular algorithm for optimisation 

problems. It works by simulating the behaviour of a swarm of particles, where each 

particle represents a potential solution to the problem. The particles move around in 

the search space, and their movement is influenced by their own personal best 

solution and the best solution of the swarm. However, traditional PSO has some 

weaknesses such as high sensitivity to the initial conditions, local optima trapping, 

low density, and decline of solutions’ variety [236].   

Hence EPSO is proposed to address the weaknesses of the traditional PSO. EPSO 

is designed to improve the exploration and exploitation powers of the algorithm by 

using several strategies such as segmentation of search apace, modification of 

solution’s updating rule, using an intelligent probabilistic function, accepting and 

removing regions with poor solutions, and focusing the solutions on the local search 
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after removing all regions with poor solutions [240] . The enhancement includes 

parameter adaptation, hybridization with local search techniques, diversity 

maintenance, memory mechanisms, adaptive neighbourhood topologies, niching and 

multi-swarm approaches [241]. The parameters can be dynamically adjusted during 

the optimisation process, balancing exploration and exploitation. Local search 

techniques can be applied to refine solutions, while memory mechanisms help 

particles retain and exploit information. Adaptive neighbourhood topologies allow 

particles to adjust interactions during the optimization process, improving information 

sharing and exploration-exploitation balance. These enhancements help EPSO 

handle multimodal optimization problems more effectively. EPSO employs niching 

and multi-swarm approaches to tackle multimodal optimization problems, enabling 

particles to explore different search regions and handle multiple peaks or solutions. 

The enhancements in EPSO make it a more powerful and efficient algorithm than 

PSO. EPSO is effective in solving a variety of optimization problems in various fields 

and domains such as ML, engineering, robotics, health care, image processing, 

finance amongst others [240]. 

It has been tested on various optimisation problems and has shown superior 

performance compared to other algorithms. For example, EPSO has been used to 

solve the Probabilistic Load Flow (PLF) problem in a distribution network and has 

achieved 89% similarity of the results to those of the most accurate method i.e. 

Monte Carlo Simulation (MCS) [236]. EPSO has been used for feature selection of 

microarray data and has required less processing time to select the optimal features 

than PSO [242]. EPSO can also be adapted and enhanced in HWNs to optimise 

various parameters such as network topology, resource allocation, power control, 

and mobility management [243]), [242].  
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It is a promising solution for CAC in 5G-Satellite HWNs due to these unique features. 

EPSO's adaptive inertia weight, cognitive and social learning, randomness and 

diversity, and suitability for numerical optimization make it a strong candidate for 

CAC. Its parallel processing nature allows for faster convergence to optimal 

solutions, making it a critical choice for CAC tasks in dynamic and unpredictable 

scenarios. Additionally, EPSO's strong and convergence properties make it reliable 

for optimising CAC strategies in 5G-Satellite networks, where strong decision-

making is essential for maintaining network stability and performance. 

It models the network as a search space and the call admission policies as potential 

solutions to the problem [244].  The particles in the swarm represent different call 

admission policies, and their movement is influenced by their own personal best 

solution, the best solution of the swarm, and the current state of the network.  The 

EPSO algorithm can take into account the traffic load, the QoS requirements, the 

fairness of the call admission decision, and the utility of the call admission decision. 

The EPSO algorithm is also able to adapt to changes in the network. 

EPSO is designed to be robust and flexible, capable of adapting to evolving network 

requirements and deployment scenarios. By incorporating feedback mechanisms 

and adaptive learning capabilities, EPSO continuously improves its performance and 

adapts to changing environmental conditions, ensuring long-term scalability and 

adaptability in heterogeneous network environments. Hence EPSO algorithm can 

adapt to changes in the network. 
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3.5.1.2 Enhanced Particle Swarm Optimization Algorithm Process for CAC in 

5G-Satellite Networks 

The EPSO algorithm has emerged as a promising optimisation technique for 

addressing resource allocation and management challenges in communication 

networks. The proposed research aims to develop an EPSO algorithm tailored 

specifically for addressing the CAC problem in 5G-Satellite HWNs. The algorithm 

seeks to improve resource allocation efficiency, maximise network utilisation, and 

enhance the overall QoS for users. Below is the Enhanced Particle Swarm 

Optimization algorithm process for CAC in 5G-Satellite networks: 

1) Problem Formulation: Define the objective function to be optimized. It could 

be a utility function that considers various performance metrics like 

throughput, latency, energy efficiency, or fairness in the heterogeneous 

wireless network. 

2) Define Constraints: Consider any constraints imposed by the wireless 

network, such as limited resources or QoS requirements. Employ suitable 

mechanisms to ensure that particle updates adhere to these constraints. 

3) Initialisation: Initialise the EPSO algorithm parameters, including the number 

of particles, maximum iterations, inertia weight, cognitive and social 

parameters, and other relevant parameters. Generate a swarm of particles, 

each representing a potential call request, with random initial positions and 

velocities. 

4) Fitness Evaluation: For each particle (call request), evaluate the fitness 

based on network parameters such as available bandwidth, signal-to-noise 

ratio, congestion level, and the estimated handover probability. Incorporate 
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the handover probability as an additional parameter in the fitness evaluation, 

which affects the likelihood of successful handovers during a call's lifetime. 

5) Position and Velocity Updates: Update the particle's velocity and position 

based on the EPSO equations, which take into account the particle's current 

position, velocity, and the best positions achieved by itself and its 

neighbouring particles. Adjust the velocity and position updates to 

accommodate the handover probability as a factor in the decision-making 

process. 

6) Local and Global Best Selection: Update each particle's local best position 

based on its individual fitness evaluation. Update the global best position 

based on the best fitness values obtained by all particles in the swarm. 

7) Adaptive Inertia Weight: Calculate an adaptive inertia weight based on the 

iteration number, allowing a balance between exploration and exploitation 

during the optimisation process. Incorporate this adaptive inertia weight into 

the velocity update equation. 

8) Dynamic Neighborhood Topology: Implement a dynamic neighbourhood 

topology that defines which particles influence the position update of each 

particle. Neighbours can be selected based on their proximity in the search 

space, fostering information sharing and cooperative behaviour among 

particles. 

9) Termination Condition: Set a termination condition based on the maximum 

number of iterations or a predefined convergence criterion. If the termination 

condition is not met, return to step 2; otherwise, proceed to the next step. 

10)  Call Admission Decision: Once the EPSO algorithm converges, each 

particle's final position represents a potential call admission decision. Analyse 
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the positions of particles in terms of their fitness values to determine which 

calls should be admitted into the network. 

11)  Network Resource Allocation: Allocate network resources (e.g., bandwidth, 

power) to the admitted calls based on the corresponding particle positions 

obtained from the EPSO algorithm. Ensure that the allocated resources fulfil 

the QoS requirements of each admitted call. 

12)  Performance Evaluation: Simulate the performance of the network with the 

admitted calls and allocated resources. Evaluate performance metrics such as 

call blocking rate, handover success rate, network throughput, and resource 

utilization. 

13)  Analysis and Optimization: Analyse the performance results to understand 

the effectiveness of the EPSO algorithm for CAC in 5G-Satellite Networks 

with handover probability. Consider fine-tuning the algorithm parameters and 

handover probability modelling to optimize network performance further. 

14)  Iteration or Deployment: If the network conditions change over time, 

consider running the EPSO algorithm iteratively to adapt to dynamic changes 

in call arrival rates, network load, and handover probabilities. Alternatively, 

deploy the optimised CAC system using the learned EPSO parameters and 

strategies for ongoing network management. 
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3.5.1.3 Pseudo-code for EPSO Algorithm for Heterogeneous Wireless 

Networks 

 

Figure 3-5: EPSO Algorithm Pseudocode 
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3.5.2 Benchmark Algorithms 

The performance of the proposed algorithm is benchmarked with three other AI 

algorithms in order to evaluate its performance. Details of these algorithms are given 

below. 

 

3.5.2.1 Artificial Bee Colony Algorithm 

Artificial Bee Colony algorithm is an optimisation technique that simulates the 

foraging behaviour of honeybees [245]. It belongs to the group of swarm intelligence 

algorithms and has been successfully applied to various practical problems. It is a 

relatively simple algorithm to implement and can be easily parallelised. 

The ABC algorithm has been shown effective in solving a variety of optimisation 

problems in signal, image and video processing fields. Additionally, it has been 

applied to other optimisation problems in different areas such as engineering, 

economics and biology [246]. 

The Artificial Bee Colony algorithm can be used for CAC in HWNs by finding the 

optimal selection of RATs for each cell based on the QoS requirements and network 

conditions. It can be used to find a good solution to the CAC problem by exploring 

the search space and finding a solution that minimises the blocking probability and 

maximises the network capacity. However, it may have some limitations, such as 

slow convergence speed, premature convergence, and sensitivity to parameter 

settings [247]. 

The Artificial Bee Colony algorithm can be used for CAC in heterogeneous wireless 

networks by simulating the three types of bees in a honey bee colony: employed 

bees, onlooker bees, and scout bees. 
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• Employed bees: Employed bees are responsible for exploring the search 

space and finding new call admission policies. They start with a randomly 

generated call admission policy and then iteratively improve it by making 

small changes. 

• Onlooker bees: Onlooker bees observe the employed bees and choose the 

call admission policy that they think is most likely to have the lowest blocking 

probability and highest network capacity. They then copy the solution of the 

chosen call admission policy and make small changes to it. 

• Scout bees: Scout bees are responsible for exploring new areas of the 

search space if the employed bees do not find any good call admission 

policies. They randomly generate new call admission policies and add them to 

the population. 

 

3.5.2.1.1 Artificial Bee Colony Algorithm Process for CAC in 5G-Satellite 

Networks 

The Artificial Bee Colony algorithm is a powerful and versatile metaheuristic 

algorithm that can be used to solve the CAC problem in HWNs. This algorithm's 

ability to explore and exploit solution spaces makes it a promising candidate for 

enhancing CAC in 5G-satellite networks. Below is the Artificial Bee Colony Algorithm 

process for CAC in 5G-Satellite Networks. 

1. Problem Formulation: Define the objective function to be optimised. It could 

be a utility function that considers various performance metrics like 

throughput, latency, energy efficiency, or fairness in the heterogeneous 

wireless network. 
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2. Define Constraints: Consider any constraints imposed by the wireless 

network, such as limited resources or quality-of-service requirements. Employ 

suitable mechanisms to ensure that the constraints are adhered to. 

3. Initialization: Define the Artificial Bee Colony algorithm parameters, including 

the number of employed bees, onlooker bees, scout bees, maximum 

iterations, and others as needed. Initialise a population of potential call 

requests as solutions, represented by bee positions. 

4. Fitness Evaluation: For each employed bee (call request), calculate the 

fitness based on network parameters such as available bandwidth, signal 

quality, congestion levels, and the estimated handover probability. Integrate 

the handover probability as an additional consideration in the fitness 

evaluation to capture its impact on call quality and network performance. 

5. Employed Bee Phase: Update the positions of employed bees based on 

local search mechanisms, such as exploiting the current best solution for each 

bee. Modify the position updates to incorporate the handover probability as a 

decision factor. 

6. Onlooker Bee Phase: Allocate onlooker bees based on the quality of 

solutions (fitness values) discovered by employed bees. Determine the 

probability of selecting a particular solution for onlooker bees using fitness-

based probabilities. Update onlooker bee solutions by applying local search 

operations, considering handover probability. 

7. Scout Bee Phase: Identify solutions (call requests) that have not been 

improved after a certain number of iterations. Replace these solutions with 

new randomly generated solutions (call requests) to enhance exploration. 
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8. Termination Condition: Set a termination condition based on a predefined 

maximum number of iterations or a convergence criterion. If the termination 

condition is not met, go back to step 2; otherwise, proceed to the next step. 

9. Call Admission Decision: Once the Artificial Bee Colony algorithm 

converges, the final positions of the employed and onlooker bees represent 

potential call admission decisions. Analyse these positions considering fitness 

values and handover probabilities to determine which calls should be 

admitted. 

10. Resource Allocation: Allocate network resources (e.g., bandwidth, power) to 

the admitted calls based on the corresponding bee positions obtained from 

the ABC algorithm. Ensure that allocated resources satisfy the Quality of 

Service (QoS) requirements, considering potential handovers. 

11. Performance Evaluation: Simulate the network's performance with the 

admitted calls and allocated resources. Evaluate important performance 

metrics, such as call blocking rate, handover success rate, network 

throughput, and resource utilisation. 

12. Analysis and Optimisation: Analyse the performance results to assess the 

effectiveness of the Artificial Bee Colony algorithm for CAC in 5G-Satellite 

Networks, considering handover probability. Fine-tune algorithm parameters 

and handover probability modelling for performance optimisation. 

13. Iterative Adaptation or Deployment: Consider applying the Artificial Bee 

Colony algorithm iteratively to adapt to dynamic changes in network 

conditions over time, including call arrival rates, network load, and varying 

handover probabilities. Alternatively, deploy the optimised CAC system using 
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the learned Artificial Bee Colony parameters and strategies for ongoing 

network management. 
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3.5.2.1.2 Pseudo-code for Artificial Bee Colony Algorithm for CAC in 5G-

Satellite Networks 

 

Figure 3-6: Artificial Bee Colony Algorithm Pseudocode 
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3.5.2.2 Simulated Annealing Algorithm 

The simulated annealing algorithm is a metaheuristic algorithm inspired by the 

annealing process of metals. It is a probabilistic algorithm that can be used to find 

good solutions to optimisation problems [248]. It is a relatively simple algorithm to 

implement and can be easily parallelised. 

The simulated annealing algorithm can be used for solving various optimisation 

problems with large and complex search spaces, such as travelling salesman 

problems, image processing, machine learning etc [249].  

Simulated annealing can also be used for CAC in HWNs. It can be used to find a 

good solution to the CAC problem by exploring the search space and finding a 

solution that minimises the blocking probability and maximises the network capacity. 

Simulated annealing can be used for CAC in HWNs by simulating the annealing 

process of metals. It works by starting with a random call admission policy. It then 

repeatedly generates new call admission policies by making small changes to the 

current call admission policy. The new call admission policies are accepted if they 

are better than the current call admission policy. If the new call admission policies 

are not better than the current call admission policy, they may still be accepted with a 

certain probability. This probability decreases as the algorithm progresses, which 

helps to prevent the algorithm from getting stuck in local optima. 

The Simulated annealing algorithm works by starting with a random solution to the 

problem. It then repeatedly generates new solutions by making small changes to the 

current solution. The new solutions are accepted if they are better than the current 

solution. If the new solutions are not better than the current solution, they may still be 

accepted with a certain probability. This probability decreases as the algorithm 

progresses, which helps to prevent the algorithm from getting stuck in local optima. 
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Overall, the Simulated Annealing algorithm is a powerful and versatile metaheuristic 

algorithm that can be used to solve a variety of optimisation problems. It is simple to 

implement and understand, and it is effective in practice. However, it may also have 

some drawbacks, such as slow convergence, sensitivity to parameter settings, and 

difficulty in finding the optimal colling schedule [250].     

 

3.5.2.2.1 Simulated Annealing Algorithm Process for CAC in 5G -Satellite 

Networks 

The application of the Simulated Annealing algorithm to the CAC problem in 5G-

satellite networks holds substantial promise for optimizing resource allocation 

decisions while accommodating diverse QoS constraints. By capitalising on the 

algorithm's exploration capabilities, gradual refinement through annealing, and the 

ability to avoid local optima, the algorithm seeks to enhance the efficiency and 

effectiveness of CAC mechanisms within the evolving landscape of 5G-satellite 

networks. Below is the Simulated Annealing Algorithm process for CAC in 5G-

Satellite networks. 

1. Problem Formulation: Define the objective function to be optimised. It could 

be a utility function that considers various performance metrics like 

throughput, latency, energy efficiency, or fairness in the heterogeneous 

wireless network. 

2. Define Constraints: Consider any constraints imposed by the wireless 

network, such as limited resources or QoS requirements. Employ suitable 

mechanisms to ensure that these constraints are adhered to. 

3. Initialization: Define the initial temperature, cooling rate, maximum iterations, 

and other relevant parameters for the Simulated Annealing algorithm. 
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Generate an initial solution, where each solution represents a call admission 

decision, and initialise the current best solution. 

4. Fitness Evaluation: Evaluate the fitness of the initial solution based on 

network parameters such as available bandwidth, signal quality, congestion 

levels, and the estimated handover probability. Incorporate the handover 

probability as an additional parameter in the fitness evaluation to account for 

the potential impact of handovers. 

5. Annealing Process: Start the annealing process by iteratively exploring 

neighbouring solutions. During each iteration, generate a neighbouring 

solution by perturbing the current solution, possibly considering changes in 

call admission decisions and resource allocations while maintaining 

constraints. Calculate the fitness of the neighbouring solution, including the 

handover probability factor. 

6. Acceptance Probability: Calculate the acceptance probability based on the 

fitness difference between the current solution and the neighbouring solution, 

along with the current temperature. Decide whether to accept the 

neighbouring solution as the new current solution, considering the acceptance 

probability. A higher temperature allows more exploration. 

7. Cooling Schedule: Decrease the temperature according to the cooling rate to 

control the exploration-exploitation trade-off. A slower cooling rate allows for 

more exploration initially, which gradually shifts towards exploitation. 

8. Termination Condition: Set a termination condition based on reaching a 

predefined maximum number of iterations or a convergence criterion. If the 

termination condition is not met, repeat steps 3 to 5; otherwise, proceed to the 

next step. 
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9. Call Admission Decision: Once the Simulated Annealing algorithm 

converges, the final solution represents a set of call admission decisions. 

Analyze the solution based on fitness values and handover probabilities to 

determine which calls should be admitted into the network. 

10. Resource Allocation: Allocate network resources (e.g., bandwidth, power) to 

the admitted calls based on the solution obtained from the SA algorithm. 

Ensure that allocated resources meet the QoS requirements, considering 

potential handovers. 

11. Performance Evaluation: Simulate the network's performance with the 

admitted calls and allocated resources. Evaluate key performance metrics, 

such as call blocking rate, handover success rate, network throughput, and 

resource utilization. 

12. Analysis and Optimisation: Analyse the performance results to assess the 

effectiveness of the Simulated Annealing algorithm for CAC in 5G-Satellite 

Networks with handover probability. Fine-tune algorithm parameters and 

handover probability modelling for optimisation. 

13. Iterative Adaptation or Deployment: Consider applying the Simulated 

Annealing algorithm iteratively to adapt to dynamic changes in network 

conditions, including call arrival rates, network load, and varying handover 

probabilities. Alternatively, deploy the optimised CAC system using the 

learned Simulated Annealing parameters and strategies for ongoing network 

management. 
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3.5.2.2.2 Pseudo-code for Simulated Annealing Algorithm for CAC in 5G-

Satellite Networks 

 

Figure 3-7: Simulated Annealing Algorithm Pseudocode 
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3.5.2.3 Q-Learning Algorithm 

Reinforcement Learning (RL) is a machine-learning concept, where agents learn 

through trial-and-error interactions with their environment the strategies that work 

best over the long term [251]. The Q-learning algorithm is the most prominent RL 

algorithm [252]. Q-learning is a model-free reinforcement learning algorithm that 

learns the value of an action in a particular state. The Q-learning algorithm allows 

agents to learn the best actions in an environment by the table of Q-values 

continuously. Q-values define the expected cumulative reward of taking a particular 

action in a given state. The algorithm also uses an exploration-exploitation trade-off, 

which is a balance between choosing random actions to explore new states and 

choosing greedy actions to exploit known values [253]. 

Q-learning algorithm is frequently employed because it does not require knowledge 

of the state transition probability. By using less prior knowledge of the environment, 

the Q-learning approach can determine the best policy to solve intelligent decision 

problems [254]. The goal is to maximise the expected reward by seeking the best of 

all possible actions. 

Q-learning can be applied to a variety of problems that involve sequential decision-

making under uncertainty. Some examples of Q-learning applications are Pathfinding 

in a maze, Robot Navigation, Game playing, Traffic light control amongst others. 

The Q-learning algorithm has also been applied in HWNs to solve the problem of 

resource management [255], [256], [258].  Q-learning has been shown to be 

effective in solving the CAC problem in heterogeneous wireless networks. It can find 

policies that minimise the blocking probability and maximise the network capacity 

[259], [260]. 
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Hence, Q-learning can be used for call admission control (CAC) in 5G-Satellite 

HWNs by modelling the network as a Markov decision process (MDP). The idea is to 

use Q-learning to learn the optimal admission policy that balances the trade-off 

between blocking new requests and dropping ongoing requests, while considering 

the network conditions, traffic characteristics and user preferences [260]. 

 The states of the MDP would represent the current state of the network, such as the 

number of users in each cell, the amount of available bandwidth, and the traffic load. 

The actions of the MDP would represent the decisions that the CAC algorithm can 

make, such as whether to admit a call or not. The rewards of the MDP would 

represent the cost of admitting a call, such as the cost of dropping a call or the cost 

of increasing the blocking probability. The Q-learning algorithm can then be used to 

find a policy that maximises the expected reward over time, which would be the 

policy that minimizes the cost of admitting calls.   

 The algorithm would start by randomly initialising the Q-values. Then, it would 

repeatedly iterate through the following steps: 

1. Choose an action in the current state based on the Q-values. 

2. Take the action and observe the reward and next state. 

3. Update the Q-values for the current state and action using the equation 

above. 

4. Go to step 1. 

The algorithm would continue to iterate until it converges to a policy that minimises 

the cost of admitting calls. 

Overall, Q-learning is a powerful algorithm that can be used to solve the CAC 

problem in HWNs. It is relatively simple to implement and can be easily parallelised. 

Q-learning is suitable for 5G-Satellite HWNs due to its dynamic environment, multi-
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connectivity, and balance between exploration and exploitation. Q-learning's iterative 

learning process allows the agent to continuously adapt to evolving network states 

and make optimal decisions. The process is repeated iteratively, allowing the agent 

to learn optimal actions over time. The update rule modifies the Q-values and 

iteratively applies this rule to learn which actions lead to the most rewarding 

outcomes in the complex world of 5G-Satellite HWNs. However, it can be slow to 

converge to a good policy, especially for large networks. 

 

3.5.2.3.1 Key Components of the Q-Learning  

As discussed in the previous section, Q-learning involves a state, action, reward, and 

Q-table, which store expected rewards for each state-action pair.  The learning 

process involves initialising Q-values for all state-action pairs, exploring the 

environment, selecting actions randomly or based on best-known actions, taking an 

action, receiving an immediate reward, and transitioning to a new state. The reward 

obtained from the selected action and the resulting state transition is calculated 

afterwards using the Q-Learning equation. The agent updates the Q-values in its 

table based on these experiences. 

The key components of the Q-Learning equation include the Q-Value (Q (s, a)), 

Learning Rate (α), Immediate Reward (r), Permanence Reward (r (s, a)), and 

Discount Factor (γ). A brief detail of these components is given below. 

Q-Value (Q (s, a)): Represents the expected cumulative reward of taking action 'a' in 

state 's.' It is updated iteratively based on the agent's experience. The state is the 

current situation the agent is in (e.g., network resources, network 

congestion, available RAT). The action is the possible decisions the agent can make 

(e.g. admit call, block call). 
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Learning Rate (α): Denotes the rate at which the agent updates its Q-values. A 

higher learning rate allows for quicker adaptation to new information, but it may lead 

to instability. A lower rate provides stability but may slow down adaptation. 

Immediate Reward (r): The immediate feedback the agent receives after taking an 

action in a given state (e.g., improved data speed, reduced delay).  It is a crucial 

factor influencing the update of Q-values. If an action leads to a good reward, its Q-

value increases, making it more likely to be chosen again in similar situations. If an 

action results in a negative reward, its Q-value decreases, discouraging the agent 

from repeating it. 

Discount Factor (γ): Represents the importance of future rewards. A higher 

discount factor emphasises long-term rewards, encouraging the agent to consider 

future consequences when making decisions. 

 

3.5.2.3.2 Q-learning Algorithm Process for CAC in 5G-Satellite Networks 

The Q-learning algorithm is a central component of reinforcement learning which 

enables agents to learn optimal strategies through interactions with their 

environment, aiming to maximize cumulative rewards over time. This adaptability 

and learning capability make Q-learning a viable candidate for enhancing CAC in the 

context of 5G-satellite networks. By harnessing the algorithm's learning and 

adaptation capabilities, the Q-learning approach aims to enhance the efficiency and 

effectiveness of CAC mechanisms within the dynamic landscape of 5G-satellite 

networks. Below is the Q-learning algorithm process for CAC in 5G-Satellite 

networks: 

1. Initialisation: Define the state space, action space, and initial Q-values for 

the Q-learning algorithm. States represent network conditions, and actions 
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correspond to call admission decisions. Initialise the Q-table with zeros or 

small random values. 

2. State Representation: Represent the state of the network based on features 

like available bandwidth, signal quality, congestion levels, and estimated 

handover probability. Discretise the continuous state space into discrete 

states for efficient learning. 

3. Action Selection: Select an action (call admission decision) based on the Q-

values associated with the current state. Employ exploration-exploitation 

strategies (e.g., ε-greedy) to balance between trying new actions and 

selecting the best-known actions. 

4. Fitness Evaluation: Evaluate the fitness of the selected action based on 

network parameters. Integrate the handover probability as an additional factor 

in the fitness evaluation to account for the potential impact of handovers. 

5. Q-value Update: Calculate the reward obtained from the selected action and 

the resulting state transition. Update the Q-value for the current state-action 

pair using the Q-learning update equation, considering the handover 

probability factor. 

The standard Q-learning update equation without considering handover probability 

is:  

Q (s, a) =  (1−α) ⋅ Q(s,a) + α ⋅ (r + γ ⋅ 𝑚𝑎𝑥𝑎 Q(s′,a)) 

 

where: 

Q (s, a) is the Q-value of state s and action a. 

α is the learning rate, determining the balance between new and old information. 

r is the immediate reward obtained from taking action a in state s. 
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γ is the discount factor, indicating the importance of future rewards. 

s' is the next state after taking action a in state s 

𝑚𝑎𝑥𝑎 Q(s′,a)) is the maximum Q-value for all possible actions a in the next state s' 

 

 To incorporate the handover probability factor, you can modify the reward r as 

follows: 

r = FitnessEvaluation(s,a) x (1 – HandoverProbability(s,a)) 

where: 

FitnessEvaluation (s, a) calculated fitness of tracking action a in state s based on 

network parameters. 

HandoverProbability (s, a) estimates the handover probability associated with the 

action a in state s. 

 

Substituting the modified reward into the Q-learning update equation: 

Q (s, a) = (1 -  α). Q(s,a) + α 

FitnessEvaluation(s,a) x (1 – HandoverProbability(s,a)) + γ.  𝑚𝑎𝑥𝑎 Q(s',a) 

This equation updates the Q-value for the current state-action pair, considering the 

impact of handover probability on the immediate reward. 

 

6. Transition to Next State: Transition to the next state based on the action 

taken and the network dynamics. Update the state representation based on 

the new network conditions. 

7. Termination Condition: Set a termination condition based on a predefined 

number of iterations or a convergence criterion. If the termination condition is 

not met, repeat steps 3 to 6; otherwise, proceed to the next step. 



144 
 

8. Call Admission Decision: Once the Q-learning algorithm converges, the Q-

values represent the learned policy for call admission decisions. Determine 

the call admission decisions by selecting actions with the highest Q-values for 

each state. 

9. Resource Allocation: Allocate network resources (e.g., bandwidth, power) to 

the admitted calls based on the Q-learning policy obtained. Ensure allocated 

resources meet QoS requirements, considering potential handovers. 

10. Performance Evaluation: Simulate the network's performance with the 

admitted calls and allocated resources. Evaluate key performance metrics, 

such as call blocking rate, handover success rate, network throughput, and 

resource utilization. 

11. Analysis and Optimisation: Analyse the performance results to assess the 

effectiveness of the Q-learning algorithm for CAC in 5G-Satellite Networks 

with handover probability. Fine-tune algorithm parameters and handover 

probability modelling for optimization. 

12. Iterative Adaptation or Deployment: Consider applying the Q-learning 

algorithm iteratively to adapt to dynamic changes in network conditions, 

including call arrival rates, network load, and varying handover probabilities. 

Alternatively, deploy the optimised CAC system using the learned Q-values 

and strategies for ongoing network management. 
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3.5.2.3.3 Pseudo-code for Q-Learning Algorithm for CAC in 5G-Satellite 

Networks 

 

Figure 3-8: Q-Learning Algorithm Pseudocode 

 

 

3.5.3 Comparison Of Algorithms  

Below is a comparison table of the four algorithms discussed above. 
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Table 3-1: Algorithm Comparison 

Algorithm Nature Optimization 

Type 

Exploration 

vs 

Exploitation 

Handling 

Discrete 

Variables 

Handling 

Uncertainty 

Parameter 

Sensitivity 

EPSO Swarm-based 

optimization 

Continuous Balanced Limited Limited High 

ABC Swarm-based 

optimization 

Continuous Balanced Limited Limited Moderate 

Simulated 

Annealing  

Probabilistic 

optimization 

Continuous 

& Discrete 

Exploration 

early, 

Exploitation 

later 

Yes Yes Moderate 

Q-learning Reinforcement 

learning 

Sequential 

Decision 

Exploration 

and 

Exploitation 

Yes Yes Moderate 

 

 

3.6 CONCLUSION 

This chapter provides a detailed description of the proposed load balancing 

framework using the CAC model. The network architecture is explained in the 

beginning and major components in the architecture have been described.  

The proposed CAC model for load balancing in 5G – Satellite HWN using an 

intelligent hybrid CAC algorithm is a promising approach that can achieve better 

network performance, reliability, and cost-effectiveness. The intelligent CAC scheme 

in HWN utilises two controlling entities: CCN running in the network entity, and 

controller at UD.  



147 
 

As the call admission process is a vital part of the load balancing framework, 

therefore a detailed explanation of the process is given, which is also illustrated 

using a flow chart. The proposed EPSO along with the three benchmark algorithms; 

ABC algorithm, Simulated Annealing algorithm and the Q-Learning algorithm are 

discussed. Details of the processes of these algorithms for CAC as well as the 

pseudocode are provided.  

Overall, the proposed system model is a promising approach to optimising the 

performance of 5G-Satellite HWNs. The use of AI allows the proposed framework to 

make more informed decisions about how to admit new calls to ensure equal 

distribution of traffic between the two networks. This can lead to significant 

improvements in the performance of the heterogeneous wireless network. 
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CHAPTER 4: SIMULATION FRAMEWORK 

4.1 OVERVIEW 

This chapter describes the simulation framework developed to study the 

performance of the proposed EPSO-CAC framework. Its performance is compared 

with three other AI algorithms namely the Artificial Bee Colony algorithm, Simulated 

Annealing algorithm and Q- Learning Algorithm. This chapter also presents different 

simulation scenarios and parameters. To evaluate performance, a series of tests in 

various settings are used. The suggested algorithm’s performance is evaluated using 

four key metrics: throughput, call-blocking probability, fairness and user satisfaction. 

Finally, this chapter presents a detailed analysis of the obtained results for the 

various simulation scenarios. 

 

4.2 SIMULATION SET UP 

Numeric simulation is performed for a heterogeneous wireless network consisting of 

5G and Satellite networks. The performance of the EPSO Algorithm for CAC is 

illustrated using Visual Basic for Applications (VBA) and Python programming 

language and representation as a platform for simulation and experimentation; and a 

Windows operating system with an Intel Core i3-6100U, 8GB RAM, 128GB SSD and 

Nvidia GeForce 940M. The VBA is used to model the call arrival and decision rule, 

while Python is used to model the algorithms using the decision rule results.  

A 5G multi-RAT network including a satellite RAT and a 5G RAT is considered. It is 

assumed that SatCOM uses either several LEO satellites or a single GEO satellite to 

accomplish coverage, the specifics are outside the scope of this paper. The RANs 

have different coverage areas. Only resource management in the common area is 
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considered, which means that all users in this area have two RANs from which to 

choose.   

In this thesis, an urban hotspot scenario is considered, where a 5G cell will be 

covered with several satellite gateway links.  The mobility of UDs leads to the 

dynamic of the network load. No interference is assumed between 5G and Satellite 

networks, given different spectrum bandwidths are used between the two networks.  

The approximated simulation area size is 1000 x 1000 𝑚2  with BS randomly 

deployed. In this thesis, 200 UEs are considered and the required data rates for 

each UD were 5 Mbps to 30 Mbps. These data rate requirements reflect the diverse 

communication needs of different UDs in the urban hotspot scenario. As UDs move 

within the urban hotspot, their data rate requirements may change, leading to 

dynamic fluctuations in network load. Meeting the data rate requirements ensures 

that the network can provide the necessary resources to fulfil the diverse 

communication needs of UDs. Each mobile node represents a mobile device 

equipped with two radio interfaces, one simulating 5G and the other one simulating 

Satellite. 

The simulation parameters are listed in Table 4-1.  
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Table 4-1: Simulation Parameters 

Parameter Value 

Simulation area size 1000 x 1000 𝑚2 

Confidence Level 95% 

Number of runs 30 

Number of users 200 

Data rate per user 5 – 30 Mbps 

User’s distribution Random 

Lower Bound -5 – 6 

Upper Bound 0 – 15 

inertia coefficient (w) 1.4 

cognitive coefficient (c1) 0.5 

social coefficient (c2) 1.6 

Gamma 0.4 

Alpha 0.99 

Beta 0.95 

Simulation time 6000s 
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4.3 SIMULATION TOOLS 

The simulation setup for evaluating the performance of the proposed algorithm as 

well as the other benchmarked algorithms involves the use of both VBA and Python 

programming languages.  The experiment is a numerical simulation and most of the 

data are generated via code (VBA and Python) which modelled a real-life telecoms 

data gotten from kaggle.com. A detailed explanation of how these tools are used is 

provided in the following sub-sections: 

 

4.3.1 VBA 

In the simulation setup, VBA serves as a pivotal component for modelling various 

aspects of the call admission process and the random distribution of users within the 

heterogeneous wireless network. It handles the logic related to when calls arrive, 

how they are processed, and the decision-making process for call admission. These 

functionalities collectively contribute to the realistic representation of network 

behaviour and performance, enabling comprehensive analysis and evaluation of 

resource management strategies within heterogeneous wireless networks. 

Detailed functionality of the VBA is provided below:  

 

Modelling Call Arrival: 

VBA is responsible for simulating the arrival of calls within the network. The call 

arrival rate is modelled using Poisson distribution, this call pattern emulates real-life 

scenarios where users initiate calls at different times and frequencies. 

The call arrival process modelled by VBA determines when new calls are introduced 

into the network, influencing the overall network load and resource utilisation. 
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Modelling Call Admission: 

VBA governs the call admission process; wherein incoming calls are evaluated 

against predefined criteria to determine whether they should be admitted into the 

network or rejected. 

The call admission decision, based on factors such as network capacity, QoS 

requirements, and resource availability, is formulated within the VBA script. This 

decision-making process ensures efficient utilisation of network resources while 

maintaining QoS standards. 

Additionally, VBA may implement specific call admission policies or algorithms to 

govern the admission of users based on dynamic network conditions and 

performance metrics. 

Random Distribution of Users: 

VBA facilitates the random distribution of users within the simulation environment, 

simulating the spatial distribution of mobile devices or UDs across the coverage 

area. 

By randomly deploying users within the network coverage area, VBA creates a 

realistic representation of user mobility patterns and spatial distribution, crucial for 

evaluating network performance and resource management strategies. 

This random distribution of users ensures that the simulation reflects the dynamic 

nature of wireless networks, where users move within the coverage area, impacting 

network load and resource allocation. 

Predefined Call Admission Policy: 

The call admission policy, predefined within the VBA script, outlines the criteria and 

thresholds for admitting users into the network. 
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This policy includes parameters such as signal strength, available bandwidth, 

network load, and network costs. 

By adhering to the predefined call admission policy, VBA ensures consistency and 

repeatability in the simulation experiments, enabling systematic evaluation of 

network performance under various conditions. 

 

4.3.2 Python 

 Python is used to model the Algorithms for CAC and to analyse the results obtained 

from the VBA simulation. Python allows for the implementation of complex 

algorithms, such as EPSO, and facilitates data analysis and visualisation. 

Detailed below is how the Python code is customised for the specific use case of call 

admission in 5G-satellite networks: 

VBA Output as Python Input: 

The output generated by the VBA script, including data related to call arrivals, 

admission decisions, and user distribution, serves as the input data for the Python 

simulation implemented in the Anaconda development environment. 

This input data is typically formatted in a structured manner using CSV files and 

import CSV library in Python. Python code reads and processes this input data to 

perform further analysis, optimisation, and visualisation tasks relevant to the 

simulation scenario. 

Customisation of Python Code: 

While Python libraries such as NumPy, Matplotlib amongst others provide 

foundational tools for numerical computation and data visualisation, the actual code 

implementation is written from scratch and customised to suit the specific 

requirements of call admission scenarios in 5G-Satellite networks. 
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Custom functions and algorithms are developed in Python to handle tasks such as 

optimising resource allocation, evaluating network performance metrics, and 

visualising simulation results. 

The Python code is tailored to integrate seamlessly with the output generated by the 

VBA script, ensuring compatibility and continuity in the simulation workflow. 

Specific parameters and constraints unique to 5G-satellite networks, such as dual-

radio interfaces, dynamic network load, and QoS requirements, are incorporated into 

the Python code logic. 

Integration of VBA and Python: 

The integration between VBA and Python facilitates a cohesive simulation framework 

where VBA handles the initial setup, call admission modelling, and basic data 

processing, while Python performs advanced analysis and optimisation tasks. 

Output data generated by VBA, such as user locations, call admission decisions, and 

network performance metrics, are seamlessly passed to Python for further 

processing and analysis. 

Python code leverages the input data to execute complex algorithms, visualise 

simulation results, and derive insights into network behaviour, thereby enhancing the 

overall simulation capability and accuracy. 

This collaborative workflow ensures a holistic approach to simulating and optimising 

call admission in 5G-satellite networks, leveraging the strengths of both VBA and 

Python to achieve comprehensive simulation outcomes. 

 

4.4 CASE STUDY 

Below is an urban hotspot scenario for critical communication in an overlapping 

scenario for 5G-satellite networks: 
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A major city is hosting large-scale outdoor event, such as a music festival or 

marathon. It is anticipated that the city's 5G network will be overloaded with 

participant and spectator traffic. The city has installed a satellite network to offer 

more capacity and coverage to address this. Because the satellite network is 

situated in a geostationary orbit, it stays fixed on the Earth. Because of this, it's 

perfect for covering a big region, like a city. 

In the vicinity of the event, the satellite network is set up to overlap with the city’s 5G 

network. This makes it possible for critical communication users, such as first 

responders and event organizers, to seamlessly switch between the two networks 

depending on which one has a stronger signal. 

Here is an example of how this might work: 

A paramedic is attending to a medical emergency at the event. Their device is linked 

to the 5G network in the city. As they get closer to the scene of the emergency, the 

5G signal strength weakens. After identifying the satellite network with the strongest 

signal, their device switches to it. Without interfering with their service, the paramedic 

can keep in contact with dispatch and other first responders present at the scene. 

The 5G-satellite network also provides additional capacity for critical communication 

users. This means that more users can access the network simultaneously, which is 

important in emergencies where there may be a high demand for critical 

communication services. 

Overall, the deployment of a 5G-satellite network in an urban hotspot can 

significantly improve the reliability and capacity of critical communication 

infrastructure. This can be essential in life-or-death situations. A 5G-satellite HWNs 

can help to ensure that first responders and other critical communication users have 

the resources they need to stay connected and coordinate their response. 
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4.5 SCENARIO  

To evaluate the proposed mechanism performance four simulation scenarios are 

used. The time of decision is always the arrival time of any type of call and possible 

actions in these moments are 0 (reject the call), 1(accept the call on 5G Network) 

and 2 (accept the call on Satellite Network). CAC plays a crucial role in ensuring 

network efficiency and user satisfaction by determining when to accept or reject 

incoming calls. The four scenarios examine different aspects of decision-making and 

their impact on throughput, fairness, and call blocking. 

 

Scenario 1: Variation in network resources 

The network resources used in this thesis are signal strength, network cost, network 

load and available bandwidth. Hence the admission of a new call into the network is 

based on the availability of these resources. This scenario aims to assess how 

variations in these factors affect CAC outcomes. This scenario is evaluated in two 

parts. The first part focuses on using a single network resource as a decision 

variable for call admission.  The second part introduces variations in network 

conditions by combining multiple network resources as decision variables. Network 

resources which include signal strength, network cost, network load, and available 

bandwidth are incorporated into the decision-making process.  This scenario 

evaluates if the algorithm is algorithm is resource-efficient, maintains accuracy, and 

scales appropriately as network conditions become more complex.  

This scenario evaluates the impact of these variations on throughput, call blocking, 

and fairness shedding light on the trade-offs involved in using multiple decision 

variables for CAC. 
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Scenario 2: Variation in the Number of Users 

In the second scenario, how changes in the number of users influence fairness 

within the network is explored. The number of devices from 10 to 200 is gradually 

increasing, providing insights into the scalability of our CAC approach and its ability 

to maintain fairness as the user population grows. 

 

Scenario 3: Variation in Network Load 

The impact of network load variation on user satisfaction in a heterogeneous 

wireless network like the 5G-satellite scenario can be significant. User satisfaction is 

closely tied to the QoS they receive, and network load fluctuations can directly 

influence this. 

In this scenario, the user starts in the stadium with a congested 5G network and is 

redirected to the satellite network for their call. The simulation introduces varying 

levels of network congestion and load throughout the user's time at the stadium. The 

CAC algorithm continually assesses and adjusts the network selection, 

demonstrating its ability to adapt to changing network conditions in real-time. As the 

user eventually leaves the stadium, the simulation illustrates the seamless transition 

back to the 5G network once it becomes the optimal choice, ensuring user 

satisfaction and high-quality calls throughout the dynamic network environment. 

 

Scenario 4: Dynamic QoS-Based Admission Control 

In this scenario, you explore the dynamic adjustment of call admission decisions 

based on QoS metrics. Instead of primarily considering resource availability and 

handover probability, the CAC algorithm can adaptively control admissions by 

continuously monitoring and optimizing for QoS parameters such as network load, 
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signal strength, and bandwidth. The scenario assesses how dynamic QoS-based 

admission control affects network performance and user satisfaction. 

  

4.6 PROBLEM FORMULATION  

Since there are limited amounts of resources, an inaccurate distribution of resources 

could affect both the network’s performance and the users’ satisfaction. Therefore, to 

achieve the main goal of balancing the load across several networks while making 

sure QoS prerequisites are fulfilled, it is important to build a mathematical model that 

incorporates the user’s specification and network constraints. The goal of the 

considered CAC problem is to maximise the throughput of all UDs, maximise 

fairness and minimise call dropping.  

In this section, the mathematical model's variables, functions, and parameters are 

defined, along with a solution that provides an ideal load distribution across the 5G-

Satellite networks while adhering to QoS requirements. 

 

4.6.1 Throughput 

The number of data/ packets that successfully reach their destination is referred to 

as throughput. Packet arrival within a network is necessary for high-performance 

service. Low throughput suggests problems like packet loss, which hinders or slows 

down networks.   Having a high network throughput increases the speed and 

reliability of data transmission; reduces latency, or delay between data sent and 

received; and reduces the risk of packet loss or other errors due to slow transmission 

speeds. 

Due to the importance of the network's overall throughput, load balancing is required 

to boost the data rate for each user connected to 5G and satellite heterogeneous 



159 
 

networks. By doing load balancing, the objective is to increase throughput per user, 

and as a result, throughput on the entire network will be efficiently raised. Both 

operators and users will gain from this. 

The variable 𝑅𝑖 is defined as the expected data rate (Maximum throughput) for a 

user i for a time period t. Equation (1) can be used to determine the maximum 

throughput ratio ( 𝑀𝑖) for a given time interval t [3]. 

.𝑟𝑖(𝑡)5𝑔: Data rate in 5G for time period t 

 𝑟𝑖(𝑡)𝑠𝑎𝑡 : Data rate in Satellite for time period t 

𝑀𝑖(t)  =   
 𝑟𝑖 (𝑡)5𝑔 

     +   𝑟𝑖(𝑡)𝑠𝑎𝑡 
 

𝑅𝑖
 - (1) 

The maximum throughput ratio is extended for all users and all channels. For a 

particular time period, a user may be connected to either 5G or Satellite or may not 

be connected to any network.  The following variables are defined. 

 

 𝑋𝑖
𝑐

5𝑔
(t)              0 or 1 { 0: No 5G Access, 1: 5G Access available} 

𝑋𝑖
𝑐

𝑠𝑎𝑡
(t)            0 or 1 { 0: No Satellite Access, 1: Satellite Access available} 

TTN          Total throughput of the network (which includes 5G and Satellite) 

TTN = ∑ ∑ [𝑐𝑖  𝑥𝑖
𝑐 (𝑡)𝑠𝑎𝑡   [

𝑟𝑖 (𝑡)𝑠𝑎𝑡

𝑅𝑖 (𝑡)
 ] +  𝑥𝑖

𝑐(𝑡)5𝑔  [
𝑟𝑖(𝑡)5𝑔

𝑅𝑖 (𝑡)
 ] ]     - (2) 

 

 

Date rate in 5G 

This variable represents the rate at which data can be transmitted over the 5G 

network for that particular user at the given time interval. To calculate or estimate  
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𝑟𝑖(𝑡)5𝑔, factors such as the available bandwidth, modulation scheme, signal 

quality, and other parameters that affect the data transfer rate in a 5G network are 

considered. 

 

Data rate in Satellite 

This variable represents the rate at which data can be transmitted over the satellite 

link for that particular user at the given time interval. The specific formula for 

calculating the data rate in a satellite system would depend on various factors, 

including the characteristics of the satellite link, modulation and coding schemes, 

signal propagation conditions, and other parameters. It's common to use metrics 

such as satellite link efficiency, available bandwidth, and SINR to estimate the 

achievable data rate. 

 

Maximum Throughput Ratio 

This equation essentially calculates the ratio of the sum of data rates in 5G and 

satellite to the expected maximum throughput for that user. It gives you an indication 

of how efficiently the user is utilizing the available network resources. 

If  𝑀𝑖(t) is close to 1, it suggests that the user is achieving close to the expected 

maximum throughput. If it's significantly less than 1, it may indicate that the user is 

not fully utilizing the available resources, possibly due to network conditions or other 

factors. 
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Total Throughput of the Network 

This equation calculates the total throughput of the network by summing up the 

contributions from all users and channels. It takes into account whether a user is 

connected to 5G or Satellite, and the associated data rates are adjusted based on 

the expected maximum throughput for each user. 

TTN represents the combined throughput from both 5G and Satellite for all users in 

the network, considering their connectivity status and the data rates in the respective 

channels. 

 

4.6.2 Load Balancing: Jain’s Index Functions  

Achieving a balanced distribution of UDs among cells is the goal of load balancing. It 

would be ideal to have a system or index that could be used to quantify the level of 

fairness. Fairness is a term frequently used in numerous study domains, including 

those in wireless networks, to refer to "equality" in the distribution of resources. 

The fairness of resource distribution among networks can be measured using Jain's 

Index function, which can provide a precise assessment of how evenly distributed 

the network load is in the cellular system. 

Fairness is a value between 0 and 1, where a value closer to 0 indicates an 

unbalanced load in the system, whilst a value near 1 indicates a fairer resource 

distribution, and 1 means perfect fairness.  

This function can be formulated as follows: 

(∑ 𝑥1
𝑛
𝑖=1 )2

∑ 𝑥1
2𝑛

𝑖=1
       - (3)  
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4.6.3 Call Blocking 

Call-blocking probabilities are one of the most important performance indicators in 

mobile communication. Some calls in a cellular network system are lost. When a 

user requests service, there is a minimal call set-up time and if a channel is 

available, the user has immediate access to it.  A call is deemed to be blocked and 

lost if all channels are busy when it attempts to connect. Although the user does not 

have access to any service, they are free to try again later. All blocked calls are 

returned immediately to the user set.  

Call Blocking (𝐶𝑏) :  

=  

𝐸𝑚

𝑚!

∑
𝐸𝑖

𝑖!
𝑚
𝑖=0

   - (4) 

where  

E = total traffic offered 

m = number of resources in the service system  

 

4.6.4 User Satisfaction 

User satisfaction is a crucial metric in telecommunications that directly reflects the 

QoS experienced by users. It encompasses a user's overall contentment with their 

call experience, including factors like call quality, call setup time, call success rate, 

and network responsiveness. In this scenario, the primary aim is to investigate how 

CAC decisions affect user satisfaction, shedding light on the critical relationship 

between network performance and user experience. 

For this scenario, user satisfaction is categorized into two values: "1" for successfully 

admitted calls and "0" for blocked calls. This binary classification simplifies user 
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satisfaction assessment while allowing for differentiation between satisfied and 

dissatisfied users. 

Successfully Admitted Call (1) represents user satisfaction when a call is 

successfully admitted, indicating that the user is content with the call quality and 

overall experience. Blocked Call (0) reflects user dissatisfaction due to call blocking, 

signifying disappointment with the network's performance and the inability to make 

the desired call. 

 

4.6.4 Constraints 

In this model, several constraints are considered to ensure that it may be adapted to 

work with real-world networks. Some constraints are connected to QoS 

specifications, while others are to service connectivity. 

 

4.6.4.1 QoS constraints 

There are four QoS parameters considered in the modelling: Signal Strength, 

Network Cost, Network Load and Available Bandwidth. However, it is important to 

remark that the model can be extended by including any other QoS requirements. 

The QoS parameters are limited, therefore it is essential to check that  

the network service is within the specified threshold before a new call may be 

accepted. If it is not, the network must decline the connection. 

 

A) Received Signal Strength 

The Received Signal Strength Indication (RSSI) is the corresponding signal strength 

received in a wireless environment. It determines the power level being received by 

the antenna; hence, when the value of the RSSI is very high, this indicates the 
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received signal is very strong. A receiver in wireless communication needs a strong 

signal. The optimal received signal strength for a cellular connection depends on 

several factors including the technology being used (e.g., 3G, 4G, 5G), the network 

provider, the distance from the nearest cell tower, and the presence of obstacles or 

interference [261]. However, for 4G LTE networks, a good signal strength is typically 

-85 dBm to -95 dBm, while for 5G networks, it's -80 dBm to -90 dBm. These values 

may vary slightly depending on network conditions, the specific device being used 

and activity type. Voice calls require less bandwidth and can function with weaker 

signals. Streaming video requires strong signals for uninterrupted playback. Web 

browsing and social media use moderate bandwidth. Factors like phone models, 

network congestion, and obstructions can affect signal strength. 

 In general, when the RSSI value is closer to zero, this means the received signal 

strength is stronger. However, even with slightly weaker signals, users can still 

maintain a usable connection depending on their needs and the quality of service 

provided by the network operator. In reality, the received signal power determines 

the quality of calls made or received, i.e., at −113 dBm RSRP; a call can probably go 

uninterrupted, while when the signal fluctuates below −119 dBm, the request is 

dropped but reconnected after re-dial in a few seconds [261]. 

 In this thesis, the threshold for the received signal strength is set at <= -80dbm.  If 

this value is below the predefined threshold RSSIth, it is assumed that the quality of 

the connection between the base station and the mobile is very bad. 

Therefore, calls will be forwarded to the RAT that has the received signal strength <= 

-80dbm.  If the chosen RAT is unable to accommodate the call, another RAT will be 

chosen. The call will be blocked if none of the RATs can handle it. 
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B) Network Cost 

The decision on which RAT to assign a call to is based on minimizing the total cost 

associated with both network and user aspects. Calls will be assigned to the RAT 

that has the lowest total cost. This ensures efficient resource utilization and 

potentially improves user experience by considering factors like battery life and call 

quality. Hence, If the chosen RAT does not have sufficient resources to 

accommodate the call, another RAT will be chosen. If there is no RAT available to 

admit the call, it will be declined. 

The cost of allocation is calculated by the following equation: 

C = 𝐶𝑁 + 𝐶𝑈 

Total_Cost = min (C_N_5G + w_5G * C_U, C_N_Satellite + w_Satellite * C_U) 

where C is the cost function for the allocation of radio resources.  

𝐶𝑁 is the cost of network.  

𝐶𝑈 is the cost of user.  

C_N_5G is the network cost for 5G 

w_5G is the weighting factor for 5G 

C_N_Satellite is the network cost for Satellite 

w_Satellite is the weighting factor for Satellite 

The Network Cost (C_N) refers to the cost incurred by the network operator in 

allocating resources for a call. It encompasses various factors like energy 

consumption, spectrum usage, backhaul capacity, and signalling overhead.  

The User Cost (C_U) represents the cost experienced by the user for making the 

call. It can include device battery consumption, call quality, and data charges. 

The weighting factors between 0 and 1 reflect the relative importance of user cost 

for each network in the decision-making. These weights can be adjusted based on 
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user’s priorities. For example, if minimising user cost like battery consumption is 

crucial, a higher weight to C_U might be assigned in both terms. 

 

C) Network Load 

The amount of data transmitted over a network at any given time is known as the 

network load. The network is an essential element in network control, traffic 

monitoring, and simulation. The QoS in a particular network is ensured by properly 

managing the network load. Load balancing helps to reduce resource breakdown 

created by resource congestion by distributing network traffic equally.  

The UD accesses the network load status through feedback provided by the 

network. There is a periodic exchange of signalling messages between the UD and 

the network, such as measurement reports, which include information about the 

current network conditions, including load. These reports may contain metrics like 

signal strength, signal quality, and network congestion levels, which collectively 

provide insights into the network load. Additionally, network protocols may 

incorporate mechanisms for the UE to query the network directly for load information.  

Therefore, calls will be assigned to the RAT that has the lowest network load. If the 

RAT that was initially chosen lacks the resources to accept the call, a different RAT 

will be picked. If none of the RATs can handle the call, it will be blocked. 

 

D) Available Bandwidth 

Network bandwidth is an essential network measurement for figuring out how fast 

and reliable a network is. Network bandwidth is a measurement that connotes the 

largest capacity of a wireless communications link to transfer data over a network 
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connection in a specified period. The higher the bandwidth for data connectivity, the 

higher the data it can send and receive at one time. 

The bandwidth is also a limited resource; therefore, it is important to check that all 

the selected networks have enough bandwidth to accept the call; otherwise, the 

network must reject the connection. 

 

4.6.4.2 Actived Services Constraint  

This constraint confirms that all activated services of each user’s device D must be 

connected to some network in N. 

 

4.6.4.3 Connectivity Constraint  

Through this constraint, it is guaranteed that each service used by the user’s device 

D is connected to only one network. 

 

Objective Function Summary 

A summary of the objective function is presented as follows: 

 

Maximise  

TTN = 

∑ ∑ [𝑐𝑖  𝑥𝑖
𝑐 (𝑡)𝑠𝑎𝑡   [

𝑟𝑖 (𝑡)𝑠𝑎𝑡

𝑅𝑖 (𝑡)
 ] +  𝑥𝑖

𝑐(𝑡)5𝑔  [
𝑟𝑖(𝑡)5𝑔

𝑅𝑖 (𝑡)
 ] ]     -  (2) 

 

Maximise 

f(x) = 
(∑ 𝑥1

𝑛
𝑖=1 )2

∑ 𝑥1
2𝑛

𝑖=1
   -  (3) 
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Minimise 

𝐶𝑏    =  

𝐸𝑚

𝑚!

∑
𝐸𝑖

𝑖!
𝑚
𝑖=0

   - (4) 

 

4.7 CONCLUSION 

This chapter has provided a comprehensive overview of the simulation framework 

developed to assess the performance of the proposed ESPO-CAC framework in 

comparison to other AI algorithms. The simulation setup, including the network 

configuration, and programming languages used, has been detailed. The urban 

hotspot scenario for critical communication in an overlapping 5G-satellite network 

has been presented as a case study, illustrating the practical application of the 

proposed framework. 

Four simulation scenarios were introduced to evaluate the ESPO-CAC mechanism, 

each focusing on different aspects of decision-making and their impact on network 

performance. These scenarios cover variations in network resources, the number of 

users, network load, and dynamic QoS-based admission control, providing a 

thorough examination of the proposed framework's capabilities. 

The problem formulation section defined the goals of the CAC problem, emphasising 

the importance of balancing network load, maximising throughput, ensuring fairness, 

and minimizing call dropping. Mathematical models and constraints were presented, 

including throughput calculation, Jain's Index for load balancing, call-blocking 

probability, and user satisfaction metrics. Constraints, ensure that the model aligns 

with real-world network conditions. 

In conclusion, this chapter has laid the foundation for the subsequent analysis by 

presenting a well-defined simulation framework, scenarios, and mathematical 
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models. The following chapters will delve into the results and analysis of the 

simulation experiments, providing insights into the performance of the proposed 

ESPO-CAC framework in various practical scenarios. 
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CHAPTER 5: RESULTS AND DISCUSSION 

5.1 OVERVIEW 

To analyse the performance of the CAC algorithm in the 5G-Satellite heterogeneous 

network, three scenarios have been simulated. This chapter examines the effect of 

the number of users, network information and user satisfaction to determine the 

CAC's effectiveness in improving the system's performance. Finally, this chapter 

presents a detailed analysis of the obtained results for the various simulation 

scenarios. 

 

5.2 RESULTS 

This section presents the results obtained for the scenarios simulated to evaluate the 

proposed algorithm's performance.  Also, in order to assess the performance of the 

suggested load-balancing algorithm, three other existing load-balancing algorithms 

have been used for benchmarking.  

The figures demonstrate the results for different performance parameters such as 

throughput, call blocking, and fairness. The results are cross-compared in order to 

study the performance of each algorithm with respect to each other. 

 

5.2.1 Impact On Throughput 

Throughput represents the amount of data conveyed by the system in a given time. 

When the throughput is high, this means the transmission capability of the system is 

also high. It is a crucial performance indicator of the network.  

The simulation aims to measure the effect of the CAC algorithms on throughput. The 

objective function of these algorithms which is stated in Equation 1 is to maximise 

throughput. 
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The figures show the throughput results under the four types of CAC algorithms; 

EPSO, Artificial Bee, Simulated Annealing and Q-Learning when users were 

admitted using the single-decision variable as well as multiple-decision variables and 

how these algorithms maximised throughput using the decision variables. The 

decision variables as discussed in Chapter 4 are the network resources which 

include signal strength, network cost, network load, and available bandwidth. These 

decision variables are varied during simulation to obtain different results. Also, 200 

users were simulated on the network for 6000 seconds. The total number of users on 

the network is varied every minute following Poisson distribution and call arrival rate 

as discussed in Chapter 4.   

Figure 5-1 shows the total throughput result for the single decision call admission 

scenario based on signal strength, network cost, network load and available 

bandwidth. Figures 5-2 and 5-3 show the total throughput result for the multiple 

decision call admission scenario based on network cost and available bandwidth; 

network cost and network load; network cost and signal strength; network load and 

available bandwidth; signal strength and network load; signal strength and available 

bandwidth; network cost, network load and available bandwidth.   

In the single decision scenarios (Figure 5-1), because of the simplicity of the call 

admission process, the throughput increases because the networks could 

accommodate more users. The network only considers one decision variable at the 

point of admission.  However, with multiple decision scenarios (Figures 5-2 & 5-3), 

because of the variation in the network resources which added to the complexity of 

the decision-making, it shows there is a decrease in the total throughput maximised. 

The network had to combine multiple decision variables at the point of call 
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admission. However, the result shows that the proposed EPSO algorithm always has 

the highest throughput in all the scenarios.  

 

Figure 5-1: Throughput Results 1 
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Figure 5-2:  Throughput Results 2 
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Figure 5-3:  Throughput Results 3 

 

5.2.2 Impact On Call Blocking 

Call Blocking is another important indicator of the scheme.  In this section, the 

impact of call blocking is presented, Figure 5-4 to 5-6 shows the results of call 

blocking. The result is evaluated based on the single-call admission scenario, and 

the multiple-call admission scenario while simulating 200 users on the network for 

6000 seconds. The total number of users on the network is varied every minute 

following Poisson distribution and call arrival rate as discussed in Chapter 4.  The 

objective of the algorithms which is stated in equation 2 is to minimise call blocking. 

Figure 5-4 shows the total throughput result for the single decision call admission 

scenario based on signal strength, network cost, network load and available 



175 
 

bandwidth. Figures 5-5 & 5-6 show the total throughput result for the multiple 

decision call admission scenario based on network cost and available bandwidth; 

network cost and network load; network cost and signal strength; network load and 

available bandwidth; signal strength and network load; signal strength and available 

bandwidth; network cost, network load and available bandwidth.   

However, EPSO has the best overall performance in all the scenarios as it has the 

lowest call-blocking instances as well as the lowest number of calls blocked. 

 

 

Figure 5-4:  Call Blocking Results 1 
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Figure 5-5: Call Blocking Results 2 
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Figure 5-6:  Call Blocking Results 3 

 

 

5.2.3 Impact On Fairness With Different Numbers Of Users  

The effect of increasing numbers of UDs in the network on the different approaches 

to fairness is examined. The impact on fairness is evaluated based on the single and 

multiple-call admission decisions made as well as the varied number of users. The 

objective of the algorithms which is stated in equation 3 is to maximise fairness.  

Tables 5-1 to 5-11 show the fairness computed using Jain’s index for the four 

algorithms; this is evaluated based on the increasing number of users accessing the 

network for the different decision variables.  
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Jain’s fairness index is a metric for evaluating the fairness of resource allocation 

among participants. It is a value between 0 and 1, where 1 means perfect fairness 

and 0 means complete unfairness.  

Figures 5-7 to 5-9 show the fairness performance of the four algorithms when the 

number of users is increased is increased from 10 – 200, as well as varied decision 

variables. Figure 5-7 shows the fairness result for the call admission scenario based 

on single decision variables - signal strength, network cost, network load and 

available bandwidth. Figure  5-8 & 5-9 shows the fairness result for the call 

admission scenario based on multiple decision variables - network cost and available 

bandwidth; network cost and network load; network cost and signal strength; network 

load and available bandwidth; signal strength and network load; signal strength and 

available bandwidth; network cost, network load and available bandwidth the signal 

strength and network load. 

The x-axis of the graphs represents the number of users simulated for each 

scenario, while the y-axis represents Jain’s Fairness Index.   The results show that 

the EPSO algorithm has the best performance compared to the other algorithm, it 

has a perfect fairness value of 1 in all the scenarios and the increasing number of 

users does not affect its performance.  Artificial Bee Colony algorithm and Simulated 

Annealing also have good fairness index in some of the scenarios, however, their 

performance is affected by the increasing number of users as the value dropped 

when users increased. Q-Learning has the lowest index value among all the 

algorithms and its performance is mostly affected by the increasing number of users.  

EPSO achieves a steady and consistently high performance of 100% for the fairness 

metric in the simulation environment because it converges faster and stably to an 

optimal solution than the other algorithms. The algorithm's convergence behaviour is 
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influenced by factors like the swarm size, inertia weight, and acceleration 

coefficients. A well-balanced setting of these parameters contributes to consistent 

and reliable performance. EPSO’s inherent properties, such as the ability to explore 

and exploit the solution space effectively, enable it to align perfectly with the 

characteristics of the simulation. Also, its adaptability to the dynamic nature of the 

network and its robustness to variations in network conditions contribute to its 

consistent high performance. Random initialisation and sensitivity to network 

characteristics also contribute to its success. 

 

Table 5-1: Computed Jain’s Index For CAC Based On Signal Strength 

No of users Enhanced 

Particles 

Artificial Bee Simulated 

Annealing 

Q-Learning 

10 1 0.90 0.85 0.62 

20 1 0.90 0.87 0.49 

30 1 0.88 0.83 0.54 

50 1 0.88 0.83 0.53 

70 1 0.88 0.88 0.51 

100 1 0.90 0.87 0.48 

120 1 0.90 0.92 0.46 

150 1 0.90 0.92 0 

170 1 0.92 0.92 0.47 

200 1 0.92 0.92 0.46 
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Table 5-2: Computed Jain’s Index For CAC Based On Network Load 

No of Users Enhanced 

Particles 

Artificial Bee Simulated 

Annealing 

Q-Learning 

10 1 0.820 0.880 0.616 

20 1 0.838 0.876 0.574 

30 1 0.867 0.833 0.576 

50 1 0.860 0.851 0.504 

70 1 0.879 0.867 0.512 

100 1 0.853 0.840 0.474 

120 1 0.866 0.854 0.487 

150 1 0.871 0.880 0.481 

170 1 0.872 0.868 0.467 

200 1 0.896 0.877 0.475 

 

 

 

Table 5-3: Computed Jain’s Index For CAC Based On Available Bandwidth 

No of Users Enhanced 

Particles 

Artificial Bee Simulated 

Annealing 

Q-Learning 

10 1 0.983 0.879 0.646 

20 1 0.957 0.991 0.634 

30 1 0.949 0.898 0.619 

50 1 0.905 0.932 0.643 

70 1 0.935 0.930 0.564 
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100 1 0.916 0.950 0.551 

120 1 0.925 0.938 0.544 

150 1 0.929 0.939 0.526 

170 1 0.923 0.933 0.530 

200 1 0.931 0.936 0.538 

 

 

Table 5-4: Computed Jain’s Index For CAC Based On Network Cost 

No of Users Enhanced 

Particles 

Artificial Bee Simulated 

Annealing 

Q-Learning 

10 1 0.998 0.968 0.766 

20 1 0.968 0.910 0.641 

30 1 0.943 0.973 0.650 

50 1 0.881 0.934 0.515 

70 1 0.894 0.906 0.475 

100 1 0.882 0.894 0.494 

120 1 0.901 0.897 0.488 

150 1 0.903 0.934 0.494 

170 1 0.910 0.935 0.492 

200 1 0.933 0.915 0.505 
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Table 5-5: Computed Jain’s Index For CAC Based On Network Cost and Network 

Load 

No of Users Enhanced 

Particles 

Artificial Bee Simulated 

Annealing 

Q-Learning 

10 1 0.936 0.889 0.517 

20 1 0.941 0.895 0.400 

30 1 0.856 0.868 0.405 

50 1 0.824 0.840 0.312 

70 1 0.850 0.906 0.303 

100 1 0.828 0.851 0.276 

120 1 0.827 0.847 0.262 

150 1 0.831 0.824 0.245 

170 1 0.795 0.793 0.193 

200 1 0.820 0.811 0.243 

 

 

 

Table 5-6: Computed Jain’s Index For CAC Based On Network Cost and Signal 

Strength 

No of Users Enhanced 

Particles 

Artificial Bee Simulated 

Annealing 

Q-Learning 

10 1 0.970 0.942 0.616 

20 1 0.988 0.738 0.185 

30 1 0.852 0.874 0.328 

50 1 0.979 0.828 0.167 



183 
 

70 1 0.797 0.837 0.187 

100 1 0.775 0.831 0.267 

120 1 0.769 0.833 0.200 

150 1 0.795 0.806 0.211 

170 1 0.775 0.782 0.199 

200 1 0.792 0.771 0.194 

 

 

Table 5-7: Computed Jain’s Index For CAC Based On Network Cost and Available 

Bandwidth 

No of Users Enhanced 

Particles 

Artificial Bee Simulated 

Annealing 

Q-Learning 

10 1 0.996 0.976 0.616 

20 1 0.875 0.876 0.458 

30 1 0.892 0.911 0.463 

50 1 0.872 0.872 0.404 

70 1 0.829 0.867 0.290 

100 1 0.851 0.863 0.317 

120 1 0.842 0.866 0.309 

150 1 0.848 0.839 0.280 

170 1 0.830 0.823 0.268 

200 1 0.855 0.843 0.309 
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Table 5-8: Computed Jain’s Index For CAC Based On Network Load and Available 

Bandwidth 

No of Users Enhanced 

Particles 

Artificial Bee Simulated 

Annealing 

Q-Learning 

10 1 0.987 0.927 0.616 

20 1 0.947 0.952 0.530 

30 1 0.875 0.871 0.542 

50 1 0.878 0.862 0.445 

70 1 0.893 0.902 0.454 

100 1 0.875 0.895 0.413 

120 1 0.871 0.917 0.412 

150 1 0.802 0.801 0.374 

170 1 0.838 0.833 0.351 

200 1 0.837 0.838 0.354 

 

 

Table 5-9:  Computed Jain’s Index For CAC Based On Signal Strength and Available 

Bandwidth 

No of Users Enhanced 

Particles 

Artificial Bee Simulated 

Annealing 

Q-Learning 

10 1 0.919 0.853 0.616 

20 1 0.817 0.890 0.534 

30 1 0.823 0.781 0.504 

50 1 0.835 0.807 0.423 

70 1 0.767 0.771 0.392 
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100 1 0.877 0.837 0.350 

120 1 0.862 0.844 0.353 

150 1 0.784 0.785 0.309 

170 1 0.843 0.836 0.299 

200 1 0.882 0.894 0.277 

 

 

Table 5-10: Computed Jain’s Index For CAC Based On Signal Strength and Network 

Load 

No of Users Enhanced 

Particles 

Artificial Bee Simulated 

Annealing 

Q-Learning 

10 1 1 0.794 0 

20 1 0.951 0.795 0.261 

30 1 0.803 0.842 0.250 

50 1 0.763 0.743 0.220 

70 1 0.819 0.740 0.252 

100 1 0.827 0.820 0.257 

120 1 0.798 0.770 0.237 

150 1 0.797 0.780 0.205 

170 1 0.783 0.795 0.168 

200 1 0.761 0.759 0.158 
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Table 5-11: Computed Jain’s Index For CAC Based On Network Cost, Network Load 

and Available Bandwidth 

No of Users Enhanced 

Particles 

Artificial Bee Simulated 

Annealing 

Q-Learning 

10 1 0.929 0.856 0.517 

20 1 0.886 0.891 0.400 

30 1 0.811 0.832 0.405 

50 1 0.782 0.829 0.236 

70 1 0.732 0.755 0.083 

100 1 0.762 0.750 0.084 

120 1 0.648 0.648 0 

150 1 1 0.602 0 

170 1 1 1 0 

200 1 0.988 0.503 0 

 

 

 



187 
 

 

Figure 5-7: Fairness Results 1 
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Figure 5-8: Fairness Results 2 



189 
 

 

Figure 5-9: Fairness Results 3 

 

5.3 PERFORMANCE COMPARISON 

This section presents a detailed comparison of the performance of the proposed 

load-balancing algorithms and the three benchmarking algorithms presented in the 

previous section. The results of all the load-balancing algorithms are compared and 

the percentage difference is calculated to prove that the proposed algorithm 

outperforms the other algorithms significantly. 
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A) Throughput Comparison 

Table 5-12 to 5-14 compares the performance of the proposed algorithm EPSO with 

the benchmarking algorithms - Artificial Bee Colony, Simulated Annealing and Q-

Learning respectively for Throughput results using the absolute percentage 

difference and relative performance difference. The absolute and relative difference 

is calculated for each of the scenarios. 

The results show there is a significant increase in the performance of the proposed 

algorithm compared to the other algorithms.  

For absolute difference, the EPSO improvement rate is on average 12% higher than 

the Artificial Bee Colony algorithm; 26% higher than the Simulated Annealing 

algorithm; and 60% higher than the Q-Learning algorithm.  For relative difference, 

the EPSO improvement rate is on average 12% higher than artificial bee; 21% higher 

than the simulated annealing algorithm; and 40% higher than the Q-Learning 

algorithm. The findings demonstrate that the proposed algorithm offers a significant 

performance advantage over the other three benchmarking algorithms. 
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Table 5-12:  Artificial Bee Colony vs EPSO (Throughput Performance Comparison) 

Decision Variables Absolute Difference (%) Relative Difference (%) 

Available Bandwidth 6% 6% 

 

Network Cost    7% 

 

7% 

 

Network Load 8% 

 

7% 

 

Signal Strength 8% 

 

8% 

 

Network Cost and 

Available Bandwidth 

12% 

 

12% 

 

Network Cost and 

Network Load 

18% 

 

17% 

 

Network Cost and Signal 

Strength 

20% 

 

18% 

 

Network Load and 

Available Bandwidth 

12% 

 

12% 

 

Signal Strength and 

Available Bandwidth 

19% 

 

17% 

 

Signal Strength and 

Network Load 

26% 

 

23% 

 

Network Cost, Network 

Load and Available 

Bandwidth 

0% 

 

0% 
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Table 5-13: Simulated Annealing vs EPSO (Throughput Performance Comparison) 

Decision Variables Absolute Difference (%) Relative Difference (%) 

Available Bandwidth 8% 

 

7% 

 

Network Cost 10% 

 

9% 

 

Network Load 11% 

 

10% 

 

Signal Strength 11% 

 

10% 

 

Network Cost and 

Available Bandwidth 

17% 

 

16% 

 

Network Cost and 

Network Load 

22% 

 

20% 

 

Network Cost and Signal 

Strength 

29% 

 

25% 

 

Network Load and 

Available Bandwidth 

15% 

 

14% 

 

Signal Strength and 

Available Bandwidth 

25% 

 

22% 

 

Signal Strength and 

Network Load 

29% 

 

25% 

 

Network Cost, Network 

Load and Available 

Bandwidth 

108% 

 

70% 
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Table 5-14: Q-Learning vs EPSO (Throughput Performance Comparison) 

Decision Variables Absolute Difference (%) Relative Difference (%) 

Available Bandwidth 20% 

 

19% 

 

Network Cost 23% 

 

21% 

 

Network Load 25% 

 

22% 

 

Signal Strength 26% 

 

23% 

 

Network Cost and 

Available Bandwidth 

41% 

 

34% 

 

Network Cost and 

Network Load 

57% 

 

44% 

 

Network Cost and Signal 

Strength 

63% 

 

48% 

 

Network Load and 

Available Bandwidth 

35% 

 

30% 

 

Signal Strength and 

Available Bandwidth 

47% 

 

38% 

 

Signal Strength and 

Network Load 

75% 

 

54% 

 

Network Cost, Network 

Load and Available 

Bandwidth 

183% 

 

95% 

 

 

 

B) Call Blocking Comparison 

Table 5-15 to 5-17 compares the performance of the proposed algorithm EPSO with 

the benchmarking algorithms - Artificial Bee Colony, Simulated Annealing and Q-

Learning respectively for Call Blocking results using the absolute percentage 
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difference and relative performance difference. The absolute and relative difference 

is calculated for each of the scenarios. 

The results show there is a significant increase in the performance of the proposed 

algorithm compared to the other algorithms.  

For absolute difference, the EPSO improvement rate is on average 17% higher than 

the ABC algorithm; 20% higher than the Simulated Annealing algorithm; and 30% 

higher than the Q-Learning algorithm.  For relative difference, the EPSO 

improvement rate is on average 19% higher than the ABC algorithm; 23% higher 

than the simulated annealing algorithm; and 37% higher than the Q-Learning 

algorithm. The findings depict that the proposed algorithm outperforms other 

algorithms in terms of call blocking. When compared with the other three algorithms, 

it shows it offers a significant performance advantage. 
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Table 5-15: Artificial Bee Colony vs EPSO (Call Blocking Instances Performance 

Comparison) 

Decision Variables Absolute Difference (%) Relative Difference (%) 

Available Bandwidth 18% 

 

20% 

 

Network Cost 26% 

 

30% 

 

Network Load 18% 

 

20% 

 

Signal Strength 33% 

 

40% 

 

Network Cost and 

Available Bandwidth 

15% 

 

16% 

 

Network Cost and 

Network Load 

13% 

 

13% 

 

Network Cost and Signal 

Strength 

15% 

 

17% 

 

Network Load and 

Available Bandwidth 

14% 

 

15% 

 

Signal Strength and 

Available Bandwidth 

15% 

 

16% 

 

Signal Strength and 

Network Load 

11% 

 

11% 

 

Network Cost, Network 

Load and Available 

Bandwidth 

12% 

 

13% 
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Table 5-16: Simulated Annealing vs EPSO (Call Blocking Instances Performance 

Comparison) 

Decision Variables Absolute Difference (%) Relative Difference (%) 

Available Bandwidth 33% 

 

40% 

 

Network Cost 26% 

 

30% 

 

Network Load 26% 

 

30% 

 

Signal Strength 33% 

 

40% 

 

Network Cost and 

Available Bandwidth 

21% 

 

24% 

 

Network Cost and 

Network Load 

13% 

 

13% 

 

Network Cost and Signal 

Strength 

15% 

 

17% 

 

Network Load and 

Available Bandwidth 

18% 

 

20% 

 

Signal Strength and 

Available Bandwidth 

15% 

 

16% 

 

Signal Strength and 

Network Load 

11% 

 

11% 

 

Network Cost, Network 

Load and Available 

Bandwidth 

14% 

 

15% 
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Table 5-17 Q-Learning vs EPSO (Call Blocking Instances Performance Comparison) 

Decision Variables Absolute Difference (%) Relative Difference (%) 

Available Bandwidth 57% 

 

80% 

 

Network Cost 26% 

 

30% 

 

Network Load 26% 

 

30% 

 

Signal Strength 52% 

 

70% 

 

Network Cost and 

Available Bandwidth 

31% 

 

36% 

 

Network Cost and 

Network Load 

21% 

 

23% 

 

Network Cost and Signal 

Strength 

26% 

 

30% 

 

Network Load and 

Available Bandwidth 

37% 

 

45% 

 

Signal Strength and 

Available Bandwidth 

25% 

 

28% 

 

Signal Strength and 

Network Load 

13% 

 

14% 

 

Network Cost, Network 

Load and Available 

Bandwidth 

20% 

 

23% 
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C) FAIRNESS COMPARISON 

Table 5-18 to 5-20 compares the performance of the proposed algorithm EPSO with 

the benchmarking algorithms – Artificial Bee Colony, Simulated Annealing and Q-

Learning respectively for Fairness results using the absolute percentage difference 

and relative performance difference. The absolute and relative difference is 

calculated for each of the scenarios. 

The results show there is a significant increase in the performance of the proposed 

algorithm compared to the other algorithms.  

For absolute difference, the EPSO improvement rate is on average 14% higher than 

the ABC algorithm; 16% higher than the Simulated Annealing algorithm; and 93% 

higher than the Q-Learning algorithm.  For relative difference, the EPSO 

improvement rate is on average 13% higher than the Artificial Bee Colony algorithm; 

15% higher than the simulated annealing algorithm; and 61% higher than the Q-

Learning algorithm.  From the findings, the performance advance of EPSO over the 

other three benchmarking algorithms is significant. The proposed load balancing 

algorithm ensures that users are evenly distributed in the 5G-Satellite HWNs.  
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Table 5-18 Artificial Bee Colony vs EPSO (Fairness Performance Comparison) 

Decision Variables Absolute Difference (%) Relative Difference (%) 

Available Bandwidth 7% 

 

6% 

 

Network Cost 8% 

 

8% 

 

Network Load 15% 

 

14% 

 

Signal Strength 11% 

 

10% 

 

Network Cost and 

Available Bandwidth 

14% 

 

13% 

 

Network Cost and 

Network Load 

16% 

 

15% 

 

Network Cost and Signal 

Strength 

17% 

 

15% 

 

Network Load and 

Available Bandwidth 

13% 

 

12% 

 

Signal Strength and 

Available Bandwidth 

17% 

 

16% 

 

Signal Strength and 

Network Load 

19% 

 

17% 

 

Network Cost, Network 

Load and Available 

Bandwidth 

17% 

 

15% 
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Table 5-19 Simulated Annealing vs EPSO (Fairness Performance Comparison) 

Decision Variables Absolute Difference (%) Relative Difference (%) 

Available Bandwidth 7% 

 

7% 

 

Network Cost 8% 

 

7% 

 

Network Load 15% 

 

14% 

 

Signal Strength 13% 

 

12% 

 

Network Cost and 

Available Bandwidth 

14% 

 

13% 

 

Network Cost and 

Network Load 

16% 

 

15% 

 

Network Cost and Signal 

Strength 

19% 

 

18% 

 

Network Load and 

Available Bandwidth 

13% 

 

12% 

 

Signal Strength and 

Available Bandwidth 

19% 

 

17% 

 

Signal Strength and 

Network Load 

24% 

 

22% 

 

Network Cost, Network 

Load and Available 

Bandwidth 

28% 

 

23% 
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Table 5-20: Q-Learning vs EPSO (Fairness Performance Comparison) 

Decision Variables Absolute Difference (%) Relative Difference (%) 

Available Bandwidth 53% 

 

42% 

 

Network Cost 59% 

 

45% 

 

Network Load 64% 

 

48% 

 

Signal Strength 79% 

 

54% 

 

Network Cost and 

Available Bandwidth 

93% 

 

63% 

 

Network Cost and 

Network Load 

105% 

 

68% 

 

Network Cost and Signal 

Strength 

121% 

 

74% 

 

Network Load and 

Available Bandwidth 

77% 

 

55% 

 

Signal Strength and 

Available Bandwidth 

86% 

 

59% 

 

Signal Strength and 

Network Load 

135% 

 

80% 

 

Network Cost, Network 

Load and Available 

Bandwidth 

150% 

 

83% 
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5.4 CONCLUSION 

Chapter 5 has delved into an in-depth analysis of the results obtained from 

simulating the CAC algorithm in the 5G-Satellite HWNs. The evaluation focused on 

three key scenarios, assessing the impact of the number of users, network 

information, and user satisfaction on the effectiveness of the CAC algorithm in 

enhancing system performance. 

This chapter offered a comprehensive view of the algorithm's performance across 

various parameters, including throughput, call blocking, and fairness. The 

investigation into the impact on throughput revealed in Figures 5-1 to 5-3 that the 

proposed EPSO algorithm consistently outperformed other algorithms in both single 

and multiple decision scenarios. The detailed comparisons provided in Tables 5-12 

to 5-14 underscored the superiority of EPSO, showcasing its effectiveness in 

maximizing throughput across different decision variables. The results show there is 

a significant increase in the performance of the proposed algorithm compared to the 

other algorithms.  

Examining call blocking, Figures 5-4 to 5- 6 demonstrated that EPSO exhibited the 

lowest instances of call blocking and the fewest number of calls blocked, reinforcing 

its robust performance in preventing service denials even as the number of users 

increased. Comparative analyses in Tables 5-15 to 5–17 confirmed the significant 

advantages of EPSO over other algorithms in minimizing call blocking.  

Furthermore, the examination of fairness, as outlined in Figures 5-7 to 5-9 

showcased EPSO's ability to maintain a high level of fairness, with Jain's fairness 

index consistently reaching a perfect value of 1. The comparisons presented in 

Tables 5-18 to 5–20 reinforced the notion that EPSO outperformed Artificial Bee 
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Colony, Simulated Annealing and Q-Learning in achieving fair resource allocation, 

even as the number of users in the network increased.  

The comprehensive performance comparison in Section 5.3 reinforced the 

conclusion that the proposed EPSO algorithm consistently outperformed 

benchmarking algorithms, including Artificial Bee, Simulated Annealing, and Q-

Learning. The detailed assessments across throughput, call blocking, and fairness 

revealed that EPSO offered significant improvements. For throughput, the 

performance gain of the EPSO algorithm on average when compared with the 

Artificial Bee Colony algorithm, Simulated Annealing and Q-Learning algorithm is 

12%, 23% and 46% respectively. For call blocking, the performance gain of the 

EPSO algorithm on average when compared with the Artificial Bee Colony algorithm, 

Simulated Annealing and Q-Learning algorithm is 18%, 22% and 34% respectively. 

For fairness, the performance gain of the EPSO algorithm on average when 

compared with the Artificial Bee Colony algorithm, Simulated Annealing and Q-

Learning algorithm is 13%, 15% and 77% respectively.  

In conclusion, the findings of this chapter underscore the effectiveness of the 

proposed EPSO algorithm in optimizing the performance of the 5G-Satellite 

heterogeneous network. The consistent performance across various scenarios and 

performance metrics position EPSO as a promising solution for enhancing system 

efficiency, maximising throughput, minimizing call blocking, ensuring fairness, and 

ultimately maximizing user satisfaction in dynamic and complex network 

environments. 
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CHAPTER  6: CONCLUSION AND FUTURE WORK 

6.1 CONCLUSION 

The aim of this research work is to design an intelligent CAC algorithm for load 

balancing in 5G-Satellite HWNs which satisfies the following requirements: 

• Maximises the number of calls that can be admitted to the network while 

ensuring that the QoS for existing calls is not degraded.  

• Improves utilisation of network resources in 5G – Satellite HWNs.  

• Reduce the congestion in the networks by sharing the load between co-

located wireless networks; hence minimises call dropping.  

• Maximises throughputs to ensure efficient use of resources, improved data 

transmission rates and heightened user satisfaction. 

• Maximises fairness to ensure equitable distribution of resources among the 

users. 

In this thesis, the resource management and load balancing problem in 5G-Satellite 

heterogeneous wireless networks is solved by CAC. The different components of the 

proposed load balancing CAC framework running on the mobile node with assisted 

feedback from the network, work together to efficiently balance the load between co-

located HWNs. The architecture of the 5G-Satellite HWNs is shown in Figure 3-2 The 

mobile device makes an initial decision about whether to admit a call, based on its 

own local information and preferences such as battery level, signal strength, supported 

technologies, service cost etc. If the mobile device is not sure whether to admit the 

call, it can request feedback from the network core. The network core can then provide 

the mobile device with more information about the network conditions and the 

admission status, such as the signal strength of different RATs, the load on different 

RATs, the available bandwidth on different RATs and the number of active users. This 
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feedback can help the mobile device to make a more informed decision about whether 

to admit the call; the UD can use this information to select the RAT that is most likely 

to provide the best experience for the user.  

There are a number of benefits to providing UDs with network information. First, it 

allows UDs to make more informed decisions about which RAT to use; this can lead 

to improved performance and satisfaction for users. Second, it helps to ensure that 

radio resources are used effectively; this can help to improve the overall 

performance of the network. It ensures fairness in the allocation of radio resources 

among the HWN. 

An intelligent EPSO algorithm for CAC is proposed to admit users' calls as well as 

select the most suitable RAT to ensure equal distribution of users on the network 

and avoid congestion. The proposed strategy takes into consideration network 

attributes such as signal strength, network cost, available bandwidth and network 

load to aid in decision-making for call admission.  

The study evaluates the EPSO-based CAC algorithm through numerical simulations, 

comparing its performance with other AI and ML algorithms which include Artificial 

Bee Colony Algorithm, Simulated Annealing Algorithm and Q-Learning Algorithm; 

and offering insights into dynamic resource management. The proposed scheme 

provides better results for maximising throughput, fairness, user satisfaction and 

minimizing call blocking. 

For throughput, the improvement rate of the EPSO algorithm on average when 

compared with the Artificial Bee Colony algorithm, Simulated Annealing and Q-

Learning algorithm is 12%, 23% and 46% respectively. For call blocking, the 

improvement rate of the EPSO algorithm on average when compared with the 

Artificial Bee Colony algorithm, Simulated Annealing and Q-Learning algorithm is 
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18%, 22% and 34% respectively. For fairness, the improvement rate of the EPSO 

algorithm on average when compared with the Artificial Bee Colony algorithm, 

Simulated Annealing and Q-Learning algorithm is 13%, 15% and 77% respectively. 

Hence, the findings contribute to network optimization and inform the development of 

more adaptive and efficient resource allocation strategies. The thesis offers practical 

implications for 5G-satellite network design and implementation. 

However, it is essential to acknowledge the limitations of the research, such as 

simplified network models, parameter sensitivity, and practical deployment 

challenges. Addressing these limitations and collaborating with stakeholders in 

academia, industry, and network operators will further refine the framework and pave 

the way for its practical implementation in real-world scenarios. 

The overall conclusions of these algorithms are as follows: 

 

EPSO: 

The EPSO algorithm serves as a fundamental component of the intelligent CAC 

scheme. EPSO, inspired by the flocking behaviour of birds and fish, was chosen due 

to its simplicity and suitability for solving complex optimization problems. 

Furthermore, EPSO is renowned for its rapid convergence, a crucial attribute in 

dynamic network environments. Its capability to swiftly converge to near-optimal 

solutions ensures network adaptability to changing conditions, effectively preventing 

congestion and ensuring seamless user experiences. 

In addition to rapid convergence, another noteworthy aspect of the algorithm is its 

low complexity. This simplicity, both in terms of parameter tuning and 

implementation, renders it a practical choice for resource management in large-scale 
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5G-Satellite networks. Its ease of implementation further enhances its real-world 

applicability. 

Building upon these performance characteristics, EPO's efficient resource allocation 

significantly contributes to the overall effectiveness of the CAC system. This ensures 

that resources are optimally allocated while maintaining minimal computational 

overhead. 

Furthermore, as an integral part of the CAC framework, EPSO aligns with the core 

objectives of maximizing network throughput, minimising call blocking and ensuring 

fairness among users. By intelligently admitting user calls and selecting the most 

suitable RAT, EPSO facilitates efficient resource utilization and equitable user 

distribution across the network. 

Additionally, the successful implementation and evaluation of the EPSO-based CAC 

scheme in simulations set the stage for its potential real-world applicability. The 

algorithm's scalability and adaptability position it as a promising candidate for 

addressing resource management challenges in large-scale 5G-Satellite networks. 

However, it has disadvantages such as parameter sensitivity, limited handling of 

constraints, and dependency on initialization. The algorithm's success depends on 

factors like parameter settings, problem structure, and search space characteristics. 

It is also susceptible to suboptimal choices, which can affect convergence and 

solution quality. The effectiveness of EPSO for call admission control in 5G-satellite 

networks depends on the specific problem and network environment, and careful 

tailoring is essential to ensure effective application.  

Hence, these contributions advance the understanding and practical implementation 

of resource management strategies in 5G-Satellite networks, ultimately benefiting 

both users and network operators. 
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Artificial Bee Colony Algorithm: 

The Artificial Bee Colony algorithm made a significant contribution to the research by 

providing an exploration and optimization technique inspired by the foraging 

behaviour of bees. It played a crucial role in dynamically allocating network 

resources within the intelligent CAC scheme. 

 Artificial Bee Colony's population-based approach enabled the exploration of 

multiple resource allocation solutions simultaneously. This characteristic allowed it to 

effectively search for optimal solutions in complex and dynamic network 

environments. 

Through rigorous simulations, the Artificial Bee Colony algorithm's performance was 

compared with other AI-based algorithms, including EPSO. This comparative 

analysis provided valuable insights into the strengths and weaknesses of the 

Artificial Bee Colony algorithm in the context of resource management and load 

balancing.  

Artificial Bee Colony is simple, easy to implement and less sensitive to initial values. 

It is known for global optimization capabilities, parallelizability and adaptability.  

However, it has slower convergence speed, parameter tuning, and difficulty 

achieving an exploration-exploitation balance. It also lacks memory for past solution 

information, which can be disadvantageous in dynamic network scenarios.  

 

Simulated Annealing Algorithm: 

Simulated Annealing contributed by offering a global search strategy based on the 

principles of annealing in metallurgy. This strategy allowed the algorithm to explore a 

wide solution space, potentially identifying globally optimal resource allocation 

configurations. 
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Simulated Annealing's unique feature of adjusting temperatures during the search 

process contributed to its adaptability. It was able to balance exploration and 

exploitation effectively, making it suitable for dynamically changing network 

conditions. 

 Simulated Annealing's performance was evaluated alongside other algorithms in the 

simulation environment. The results of this evaluation provided insights into the 

algorithm's efficacy in managing network resources and optimizing the CAC system. 

The algorithm is easy to implement and can provide optimal solutions for CAC in 5G-

Satellite HWNs. Simulated Annealing can be used to find the optimal allocation of 

resources that maximises throughput while minimising delay and the blocking 

probability. However, it suffers from a slow convergence rate. It requires a large 

number of iterations to converge to the optimal solution which can be 

computationally expensive affecting real-life performance [249]. It also suffers from 

improper parameter tuning which can lead to sub-optimal performance or network 

instability. As network size and complexity increase, scalability may become an 

issue, necessitating exploring alternative mechanisms. Simulated annealing's 

heuristic nature does not guarantee finding the global optimal solution. 

 

Q-Learning Algorithm: 

Q-Learning, a reinforcement learning algorithm, made a distinctive contribution to the 

research by introducing a learning-based approach to resource management. This 

approach allowed the algorithm to adapt its resource allocation decisions based on 

network feedback. 
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 Q-Learning learned from past interactions and optimized resource allocation 

strategies over time. It adapted to changes in network conditions and user 

behaviour, which is crucial in ensuring consistent QoS for users. 

 Q-Learning's performance was systematically compared with EPSO, Artificial Bee 

Colony, and Simulated Annealing in the simulation environment. This analysis 

helped identify how the reinforcement learning approach stacked up against other 

optimization techniques in the 5G-Satellite HWNs. 

It offers advantages such as adaptability to dynamic environments, learning from 

experience, optimal decision-making, decentralized decision-making, and versatility. 

However, it also has disadvantages such as the exploration-exploitation trade off, 

training time, convergence issues, state and action space complexity, high 

dimensionality, initial policy dependency, and limited incorporation of domain 

knowledge. It is not suitable for systems with large states and actions, as the Q-table 

size grows exponentially. It is not guaranteed to converge to the optimal policy, and it 

may not converge to a suboptimal policy or not at all. 

 

 

6.2 FUTURE WORK AND RECOMMENDATION 

The research work presented in this thesis provides the foundation for future studies 

in load-balancing CAC for 5G-Satellite heterogeneous wireless networks. This work 

may be extended, and further research studies can be done to improve and enhance 

the scope of this research. Some of the potential directions following this research 

are discussed as follows: 

Dynamic AI-driven Resource Management: Future work can focus on enhancing 

the proposed intelligent CAC scheme by integrating more advanced AI algorithms 
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such as deep reinforcement learning, graph neural networks or federated learning for 

other resource management techniques such as handover, interference 

management, traffic engineering etc. These algorithms can adapt in real-time to 

changing network conditions and user behaviour, providing even more efficient 

resource management. 

Multi-Objective Optimization: Extend the research to consider multiple conflicting 

objectives in resource management, such as optimizing energy efficiency, reducing 

latency, and maximizing network throughput simultaneously. Investigate how multi-

objective optimization techniques can be incorporated into the CAC framework to 

balance these competing goals. 

Machine Learning for Network Anomaly Detection: Develop machine learning 

models for proactive network anomaly detection and fault prediction in 5G-Satellite 

networks. By identifying issues before they impact service quality, these models can 

contribute to more reliable and resilient network operations. 

Energy-Efficient Communication: Investigate energy-efficient communication 

strategies, especially in satellite components, to address the sustainability 

challenges associated with increased data traffic. Explore energy-efficient 

transmission protocols and low-power satellite technologies. 

Profiling of User Traffic: Investigate how AI-driven approaches can predict the 

nature of a user’s traffic, and this can be incorporated to make smart decisions. 

Real-World Deployment: Conduct field trials and real-world deployments of the 

intelligent load balancing framework in collaboration with network operators to 

evaluate its performance and scalability in live 5G-Satellite HWNs. 

 



212 
 

BIBLIOGRAPHY 

[1] Li, Y., Zhang, Y., Luo, K., Jiang, T., Li, Z. and Peng, W., 2018. Ultra-dense 

hetnets meet big data: Green frameworks, techniques, and approaches. IEEE 

Communications Magazine, 56(6), pp.56-63. 

[2] Ericson Mobility Report 2022. Available at : Ericsson Mobility Report June 2022   

[3] Subburayalu, N., Natarajan, S. and Das, D., 2019, January. Dynamic Load 

Balancing across Multi-radio Access Bearers in 5G. In 2019 11th International 

Conference on Communication Systems & Networks (COMSNETS) (pp. 306-311). 

IEEE. 

[4] Slalmi, A., Kharraz, H., Saadane, R., Hasna, C., Chehri, A. and Jeon, G., 2019, 

November. Energy efficiency proposal for IoT call admission control in 5G network. 

In 2019 15th International Conference on Signal-Image Technology & Internet-Based 

Systems (SITIS) (pp. 396-403). IEEE. 

[5] Khaturia, M., Jha, P. and Karandikar, A., 2020. Connecting the unconnected: 

Toward frugal 5G network architecture and standardization. IEEE Communications 

Standards Magazine, 4(2), pp.64-71. 

[6] Matinkhah, S.M., Khorsandi, S. and Yarahmadian, S., 2017. A load balancing 

system for autonomous connection management in heterogeneous wireless 

networks. Computer Communications, 97, pp.111-119. 

[7] Giambene, G., Kota, S. and Pillai, P., 2018. Satellite-5G integration: A Network 

Perspective. IEEE Network, 32(5), pp.25-31. 

[8] Yin, Y., Huang, C., Wu, D.F., Huang, S., Ashraf, M., Guo, Q. and Zhang, L., 2022. 

Deep Reinforcement Learning-Based Joint Satellite Scheduling and Resource 

Allocation in Satellite-Terrestrial Integrated Networks. Wireless Communications and 

Mobile Computing, 2022. 

https://www.ericsson.com/en/press-releases/2022/6/ericsson-mobility-report-5g-to-top-one-billion-subscriptions-in-2022-and-4.4-billion-in-2027


213 
 

[9] Wang, Z., Huang, J., Gong, S., Wu, J. and Jiang, H., 2019, May. Handoff 

mechanism considering growth benefit for LEO Satellite and Terrestrial Hybrid 

Network. In 2019 IEEE 5th Intl Conference on Big Data Security on Cloud 

(BigDataSecurity), IEEE Intl Conference on High Performance and Smart 

Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security 

(IDS) (pp. 245-250). IEEE. 

[10] Santos Escriche, E., Vassaki, S. and Peters, G., 2023. A comparative study of 

cellular traffic prediction mechanisms. Wireless Networks, 29(5), pp.2371-2389. 

[11] Mathonsi, T.E., Tshilongamulenzhe, T.M. and Buthelezi, B.E., 2019, October. 

An efficient resource allocation algorithm for heterogeneous wireless networks. 

In 2019 Open Innovations (OI) (pp. 15-19). IEEE. 

[12] Wu, D., Li, J., Ferini, A., Xu, Y.T., Jenkin, M., Jang, S., Liu, X. and Dudek, G., 

2023. Reinforcement learning for communication load balancing: approaches and 

challenges. Frontiers in Computer Science, 5, p.1156064. 

[13] Satapathy, P. and Mahapatro, J., 2021, April. Energy-efficient vertical handover 

in heterogeneous networks. In 2021 IEEE International IOT, Electronics and 

Mechatronics Conference (IEMTRONICS) (pp. 1-7). IEEE. 

[14] Navaratnarajah, S., Dianati, M. and Imran, M.A., 2017. A novel load-balancing 

scheme for cellular-WLAN heterogeneous systems with a cell-breathing 

technique. IEEE Systems Journal, 12(3), pp.2094-2105. 

[15] Ghatak, G., De Domenico, A. and Coupechoux, M., 2018. Coverage analysis 

and load balancing in HetNets with millimeter wave multi-RAT small cells. IEEE 

Transactions on Wireless Communications, 17(5), pp.3154-3169. 



214 
 

[16] Aghazadeh, Y., Kalbkhani, H., Shayesteh, M.G. and Solouk, V., 2018. Cell 

selection for load balancing in heterogeneous networks. Wireless Personal 

Communications, 101, pp.305-323. 

[17] Han, J., 2022. Recent Progress and Future Development in Satellite 

Communication. Highlights in Science, Engineering and Technology, 27, pp.38-45. 

[18] Adeogun, R.O., 2018. A novel game theoretic method for efficient downlink 

resource allocation in dual band 5G heterogeneous network. Wireless Personal 

Communications, 101, pp.119-141. 

[19] Shao, G., Wu, W., Yin, L. and Ding, C., 2019, August. A Load Balancing Vertical 

Handoff Algorithm Considering QoS of Users for Heterogeneous Networks in Power 

Communication. In Journal of Physics: Conference Series (Vol. 1302, No. 2, p. 

022099). IOP Publishing. 

[20] Shami, T.M., Grace, D., Burr, A. and Vardakas, J.S., 2019. Load balancing and 

control with interference mitigation in 5G heterogeneous networks. EURASIP Journal 

on Wireless Communications and Networking, 2019(1), pp.1-12. 

[21] Sefati, S.S. and Halunga, S., 2023. Ultra‐reliability and low‐latency 

communications on the internet of things based on 5G network: Literature review, 

classification, and future research view. Transactions on Emerging 

Telecommunications Technologies, 34(6), p.e4770. 

[22] Khedkar, A., Musale, S., Padalkar, G., Suryawanshi, R. and Sahare, S., 2023. 

An Overview of 5G and 6G Networks from the Perspective of AI 

Applications. Journal of The Institution of Engineers (India): Series B, pp.1-13. 

[23] Salahdine, F., Han, T. and Zhang, N., 2023. 5G, 6G, and Beyond: Recent 

advances and future challenges. Annals of Telecommunications, pp.1-25. 



215 
 

[24] Liolis, K., Geurtz, A., Sperber, R., Schulz, D., Watts, S., Poziopoulou, G., Evans, 

B., Wang, N., Vidal, O., Tiomela Jou, B. and Fitch, M., 2019. Use cases and 

scenarios of 5G integrated satellite‐terrestrial networks for enhanced mobile 

broadband: The SaT5G approach. International Journal of Satellite Communications 

and Networking, 37(2), pp.91-112. 

[25] Corici, M., Liolis, K., Politis, P., Geurtz, A., Cahil, J., Bunya, S., Schlichter, T., 

Völk, F. and Kapovits, A., 2020. Satellite Is 5G—SATis5 Whitepaper. ESA. 

[26] Völk, F., Liolis, K., Corici, M., Cahill, J., Schwarz, R.T., Schlichter, T., Troudt, E. 

and Knopp, A., 2019. Satellite integration into 5G: Accent on first over-the-air tests of 

an edge node concept with integrated satellite backhaul. Future Internet, 11(9), 

p.193. 

[27] Darwish, T., Kurt, G.K., Yanikomeroglu, H., Bellemare, M. and Lamontagne, G., 

2022. LEO satellites in 5G and beyond networks: A review from a standardization 

perspective. IEEE Access, 10, pp.35040-35060. 

[28] Chettri, L. and Bera, R., 2019. A comprehensive survey on Internet of Things 

(IoT) toward 5G wireless systems. IEEE Internet of Things Journal, 7(1), pp.16-32. 

[29] Han, S., 2020. Congestion-aware WiFi offload algorithm for 5G heterogeneous 

wireless networks. Computer Communications, 164, pp.69-76. 

[30] Kodavati, B. and Ramarakula, M., 2021. Asynchronous gateway reallocation 

communication in heterogeneous 5G networks. International Journal of 

Communication Systems, 34(6), p.e4542. 

[31] Leonard, A.T., Nnamdi, O.A., Chiemezie, O.E., Obinna, I.E. and Uchenna, E.N., 

2020. 5G Applications in Heterogeneous Network Issues and Challenges. Int. J. 

Comput. Sci. Mob. Comput, 9(9), pp.94-102. 



216 
 

[32] Ullah, Y., Roslee, M.B., Mitani, S.M., Khan, S.A. and Jusoh, M.H., 2023. a 

survey on handover and mobility management in 5G HetNets: current state, 

challenges, and future directions. Sensors, 23(11), p.5081. 

[33] Sultan, M.T. and El Sayed, H., 2023. QoE-aware analysis and management of 

multimedia services in 5G and beyond heterogeneous networks. IEEE Access. 

[34] Alam, M.J., Hossain, M.R., Azad, S. and Chugh, R., 2023. An overview of 

LTE/LTE‐A heterogeneous networks for 5G and beyond. Transactions on Emerging 

Telecommunications Technologies, 34(8), p.e4806. 

[35] Salahdine, F., Han, T. and Zhang, N., 2023. 5G, 6G, and Beyond: Recent 

advances and future challenges. Annals of Telecommunications, 78(9), pp.525-549. 

[36] Rehman, A.U., Roslee, M.B. and Jun Jiat, T., 2023. A survey of handover 

management in mobile HetNets: current challenges and future directions. Applied 

Sciences, 13(5), p.3367. 

[37] Dao, N.N., Tu, N.H., Hoang, T.D., Nguyen, T.H., Nguyen, L.V., Lee, K., Park, L., 

Na, W. and Cho, S., 2024. A review on new technologies in 3GPP standards for 5G 

access and beyond. Computer Networks, p.110370. 

[38] Abood, M.S., Wang, H., He, D., Kang, Z. and Kawoya, A., 2023. Intelligent 

network slicing in V2X networks–A comprehensive review. Journal of Artificial 

Intelligence and Technology, 3(2), pp.75-84. 

[39] Pons, M., Valenzuela, E., Rodríguez, B., Nolazco-Flores, J.A. and Del-Valle-

Soto, C., 2023. Utilization of 5G technologies in IoT applications: Current limitations 

by interference and network optimization difficulties—A review. Sensors, 23(8), 

p.3876. 



217 
 

[40] Alraih, S., Nordin, R., Samah, A.A., Shayea, I. and Abdullah, N.F., 2023. A 

survey on handover optimization in beyond 5G mobile networks: Challenges and 

solutions. IEEE Access. 

[41] Priya, B. and Malhotra, J., 2023. 5GhNet: an intelligent QoE aware RAT 

selection framework for 5G-enabled healthcare network. Journal of Ambient 

Intelligence and Humanized Computing, 14(7), pp.8387-8408. 

[42] Khan, W.U., Javed, M.A., Zeadally, S., Lagunas, E. and Chatzinotas, S., 2023. 

Intelligent and secure radio environments for 6G vehicular aided HetNets: Key 

opportunities and challenges. IEEE Communications Standards Magazine, 7(3), 

pp.32-39. 

[43] Mughees, A., Tahir, M., Sheikh, M.A., Amphawan, A., Meng, Y.K., Ahad, A. and 

Chamran, K., 2023. Energy-efficient joint resource allocation in 5G HetNet using 

multi-agent parameterized deep reinforcement learning. Physical 

Communication, 61, p.102206. 

[44] Imam-Fulani, Y.O., Faruk, N., Sowande, O.A., Abdulkarim, A., Alozie, E., 

Usman, A.D., Adewole, K.S., Oloyede, A.A., Chiroma, H., Garba, S. and Imoize, 

A.L., 2023. 5G frequency standardization, technologies, channel models, and 

network deployment: Advances, challenges, and future 

directions. Sustainability, 15(6), p.5173. 

[45] Zaidi, S.M.A., Farooq, H., Rizwan, A., Abu-Dayya, A. and Imran, A., 2023. A 

framework to address mobility management challenges in emerging networks. IEEE 

Wireless Communications, 30(4), pp.90-97. 

[46] Carcel, J.L., Mouhouche, B., Fuentes, M., Garro, E. and Gomez-Barquero, D., 

2019, June. IMT-2020 key performance indicators: Evaluation and extension towards 



218 
 

5G new radio point-to-multipoint. In 2019 IEEE International Symposium on 

Broadband Multimedia Systems and Broadcasting (BMSB) (pp. 1-5). IEEE. 

[47] Battisti, G., Marini, G., Sulli, V., Rinaldi, C., De Marcellis, A., Santucci, F. and 

Faccio, M., 2023, March. Early Power Estimation of FPGA-based Digital Transparent 

Processors for 5G-satcom. In 2023 IEEE Aerospace Conference (pp. 1-9). IEEE. 

[48] Kota, S. and Giambene, G., 2019, March. Satellite 5G: IoT use case for rural 

areas applications. In Proceedings of the Eleventh International Conference on 

Advances in Satellite and Space Communications-SPACOMM (pp. 24-28). 

[49] Marchese, M., Patrone, F. and Guidotti, A., 2023. The Role of Satellite in 5G 

and Beyond. In A Roadmap to Future Space Connectivity: Satellite and 

Interplanetary Networks (pp. 41-66). Cham: Springer International Publishing. 

[50] Sattarzadeh, A., Liu, Y., Mohamed, A., Song, R., Xiao, P., Song, Z., Zhang, H., 

Tafazolli, R. and Niu, C., 2021. Satellite-based non-terrestrial networks in 5G: 

Insights and challenges. IEEE Access, 10, pp.11274-11283. 

[51] Wei, T., Feng, W., Chen, Y., Wang, C.X., Ge, N. and Lu, J., 2021. Hybrid 

satellite-terrestrial communication networks for the maritime Internet of Things: Key 

technologies, opportunities, and challenges. IEEE Internet of things journal, 8(11), 

pp.8910-8934. 

[52] Kua, J., Loke, S.W., Arora, C., Fernando, N. and Ranaweera, C., 2021. Internet 

of things in space: a review of opportunities and challenges from satellite-aided 

computing to digitally-enhanced space living. Sensors, 21(23), p.8117. 

[53] Carreras-Coch, A., Navarro, J., Sans, C. and Zaballos, A., 2022. 

Communication technologies in emergency situations. Electronics, 11(7), p.1155. 



219 
 

[54] Marchese, M., Moheddine, A. and Patrone, F., 2020, March. UAV and satellite 

employment for the Internet of Things use case. In 2020 IEEE Aerospace 

Conference (pp. 1-8). IEEE. 

[55] Turk, Y. and Zeydan, E., 2019. Satellite backhauling for next generation cellular 

networks: Challenges and opportunities. IEEE Communications Magazine, 57(12), 

pp.52-57. 

[56] Pfandzelter, T. and Bermbach, D., 2021, May. Edge (of the earth) replication: 

Optimizing content delivery in large LEO Satellite communication networks. In 2021 

IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing 

(CCGrid) (pp. 565-575). IEEE. 

[57] Bacco, M., Davoli, F., Giambene, G., Gotta, A., Luglio, M., Marchese, M., 

Patrone, F. and Roseti, C., 2019, September. Networking challenges for non-

terrestrial networks exploitation in 5G. In 2019 IEEE 2nd 5G World Forum 

(5GWF) (pp. 623-628). IEEE. 

[58]  Xie, R., Tang, Q., Wang, Q., Liu, X., Yu, F.R. and Huang, T., 2020. Satellite-

terrestrial integrated edge computing networks: Architecture, challenges, and open 

issues. IEEE Network, 34(3), pp.224-231. 

[59] Kodheli, O., Lagunas, E., Maturo, N., Sharma, S.K., Shankar, B., Montoya, 

J.F.M., Duncan, J.C.M., Spano, D., Chatzinotas, S., Kisseleff, S. and Querol, J., 

2020. Satellite communications in the new space era: A survey and future 

challenges. IEEE Communications Surveys & Tutorials, 23(1), pp.70-109. 

[60] Drif, Y., Chaput, E., Lavinal, E., Berthou, P., Tiomela Jou, B., Gremillet, O. and 

Arnal, F., 2021. An extensible network slicing framework for satellite integration into 

5G. International Journal of Satellite Communications and Networking, 39(4), 

pp.339-357. 



220 
 

[61] Wang, P., Zhang, J., Zhang, X., Yan, Z., Evans, B.G. and Wang, W., 2019. 

Convergence of satellite and terrestrial networks: A comprehensive survey. IEEE 

access, 8, pp.5550-5588. 

[62] Abo-Zeed, M., Din, J.B., Shayea, I. and Ergen, M., 2019. Survey on land mobile 

satellite system: Challenges and future research trends. IEEE Access, 7, pp.137291-

137304. 

[63] Corici, M., Gheorghe-Pop, I., Cau, E., Liolis, K., Politis, C., Geurtz, A., 

Burkhardt, F., Covaci, S., Koernicke, J., Völk, F. and Kapovits, A., 2018, October. 

SATis5 solution: A comprehensive practical validation of the satellite use cases in 

5G. In Proceedings of the 24th Ka and Broadband Communications Conference, 

Niagara Falls, ON, Canada (pp. 15-18). 

[64] Zhang, Y., Deng, R.H., Bertino, E. and Zheng, D., 2019. Robust and universal 

seamless handover authentication in 5G HetNets. IEEE Transactions on 

Dependable and Secure Computing, 18(2), pp.858-874. 

[65] Sathya, V., Kala, S.M. and Naidu, K., 2023. Heterogenous networks: From small 

cells to 5G NR-U. Wireless Personal Communications, 128(4), pp.2779-2810. 

[66] Pelton, J.N., 2017. Satellite orbits for communications satellites. Handbook of 

satellite applications, p.99. 

[67] Kuang, L., Jiang, C., Qian, Y. and Lu, J., 2018. Terrestrial-satellite 

communication networks. Cham, Switzerland: Springer. 

[68] King, D. and Wang, N., 2021. Integrated Space-Terrestrial Networking and 

Management. Future Networks, Services and Management: Underlay and Overlay, 

Edge, Applications, Slicing, Cloud, Space, AI/ML, and Quantum Computing, pp.245-

260. 



221 
 

[69] Nguyen, C.T., Nguyen, D.N., Hoang, D.T., Pham, H.A., Tuong, N.H., Xiao, Y. 

and Dutkiewicz, E., 2021. Blockroam: Blockchain-based roaming management 

system for future mobile networks. IEEE Transactions on Mobile Computing, 21(11), 

pp.3880-3894. 

[70] De Santis, E., Giuseppi, A., Pietrabissa, A., Capponi, M. and Delli Priscoli, F., 

2022. Satellite integration into 5G: deep reinforcement learning for network 

selection. Machine Intelligence Research, 19(2), pp.127-137. 

[71] Chochliouros, I.P., Spiliopoulou, A.S., Lazaridis, P., Dardamanis, A., Zaharis, Z. 

and Kostopoulos, A., 2020. Dynamic network slicing: Challenges and opportunities. 

In Artificial Intelligence Applications and Innovations. AIAI 2020 IFIP WG 12.5 

International Workshops: MHDW 2020 and 5G-PINE 2020, Neos Marmaras, Greece, 

June 5–7, 2020, Proceedings 16 (pp. 47-60). Springer International Publishing. 

[72] Alezabi, K.A., Hashim, F., Hashim, S.J., Ali, B.M. and Jamalipour, A., 2020. 

Efficient authentication and re-authentication protocols for 4G/5G heterogeneous 

networks. EURASIP Journal on Wireless Communications and Networking, 2020(1), 

pp.1-34. 

[73] Liu, T., Wu, F., Li, X. and Chen, C., 2021. A new authentication and key 

agreement protocol for 5G wireless networks. Telecommunication Systems, 78, 

pp.317-329. 

[74] Cisco 2022. What Is Network Management? Available at : What Is Network 

Management? - Cisco 

[75] Rouzegar, H., Nasirian, M. and Ghanbarisabagh, M., 2017. Novel algorithm for 

tracking LEO satellites using doppler frequency shift technique. Wireless Personal 

Communications, 96, pp.2161-2178. 

https://www.cisco.com/c/en/us/solutions/enterprise-networks/what-is-network-management.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/what-is-network-management.html


222 
 

[76] Guidotti, A., Cioni, S., Colavolpe, G., Conti, M., Foggi, T., Mengali, A., Montorsi, 

G., Piemontese, A. and Vanelli-Coralli, A., 2020. Architectures, standardisation, and 

procedures for 5G Satellite Communications: A survey. Computer Networks, 183, 

p.107588. 

[77] Gures, E., Shayea, I., Alhammadi, A., Ergen, M. and Mohamad, H., 2020. A 

comprehensive survey on mobility management in 5G heterogeneous networks: 

Architectures, challenges and solutions. IEEE Access, 8, pp.195883-195913. 

[78] Bosch, P., De Schepper, T., Zeljković, E., Famaey, J. and Latré, S., 2020. 

Orchestration of heterogeneous wireless networks: State of the art and remaining 

challenges. Computer Communications, 149, pp.62-77. 

[79] Omheni, N., Gharsallah, A. and Zarai, F., 2018. An enhanced radio resource 

management-based MIH policies in heterogeneous wireless 

networks. Telecommunication Systems, 67(4), pp.577-592. 

[80] Alhashimi, H.F., Hindia, M.N., Dimyati, K., Hanafi, E.B., Safie, N., Qamar, F., 

Azrin, K. and Nguyen, Q.N., 2023. A Survey on Resource Management for 6G 

Heterogeneous Networks: Current Research, Future Trends, and 

Challenges. Electronics, 12(3), p.647. 

[81] Singh, U., Dua, A., Tanwar, S., Kumar, N. and Alazab, M., 2021. A survey on 

LTE/LTE-A radio resource allocation techniques for machine-to-machine 

communication for B5G networks. IEEE Access, 9, pp.107976-107997. 

[82] Gómez, B., Coronado, E., Villalón, J., Riggio, R. and Garrido, A., 2020, May. 

User association in software-defined wi-fi networks for enhanced resource allocation. 

In 2020 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 

1-7). IEEE. 



223 
 

[83] Manap, S., Dimyati, K., Hindia, M.N., Talip, M.S.A. and Tafazolli, R., 2020. 

Survey of radio resource management in 5G heterogeneous networks. IEEE 

Access, 8, pp.131202-131223. 

[84] Mathonsi, T.E., Tshilongamulenzhe, T.M. and Buthelezi, B.E., 2020. Enhanced 

resource allocation algorithm for heterogeneous wireless networks. Journal of 

Advanced Computational Intelligence and Intelligent Informatics, 24(6), pp.763-773. 

[85] Hu, Y., Chang, Z., Chen, Y. and Han, Z., 2021. Service-oriented wireless 

virtualized networks: an intelligent resource management approach. IEEE Vehicular 

Technology Magazine, 17(1), pp.57-65. 

[86] Nayakwadi, N. and Fatima, R., 2023. Resource optimization-based network 

selection model for heterogeneous wireless networks. IAES International Journal of 

Artificial Intelligence, 12(1), p.357. 

[87] Ahmad, R., Sundararajan, E.A. and Khalifeh, A., 2020. A survey on femtocell 

handover management in dense heterogeneous 5G networks. Telecommunication 

Systems, 75(4), pp.481-507. 

[88] Liu, Y., Wang, X., Mei, J., Boudreau, G., Abou-Zeid, H. and Sediq, A.B., 2021. 

Situation-Aware Resource Allocation for Multi-Dimensional Intelligent Multiple 

Access: A Proactive Deep Learning Framework. IEEE Journal on Selected Areas in 

Communications, 39(1), pp.116-130.  

[89] Dryjanski, M. and Kliks, A., 2020. A hierarchical and modular radio resource 

management architecture for 5G and beyond. IEEE Communications 

Magazine, 58(7), pp.28-34. 

[90] Jayaraman, R., Manickam, B., Annamalai, S., Kumar, M., Mishra, A. and 

Shrestha, R., 2023. Effective resource allocation technique to improve QoS in 5G 

wireless network. Electronics, 12(2), p.451. 



224 
 

[91] Salama, R., Altrjman, C., Al-Turjman, F., Yadav, S.P. and Vats, S., 2023, 

November. Heterogeneous Wireless Access Networks for IoT and E-Health-A 

Survey. In 2023 3rd International Conference on Advancement in Electronics & 

Communication Engineering (AECE) (pp. 383-389). IEEE. 

[92] Chang, I., Ji, T., Zhu, R., Wu, Z., Li, C. and Jiang, Y., 2023. Towards an Efficient 

and Dynamic Allocation of Radio Access Network Slicing Resources for 5G 

Era. IEEE Access. 

[93] Tyagi, V. and Singh, S., 2023. Network resource management mechanisms in 

SDN enabled WSNs: A comprehensive review. Computer Science Review, 49, 

p.100569. 

[94] Addad, R.A., Bagaa, M., Taleb, T., Dutra, D.L.C. and Flinck, H., 2019. 

Optimization model for cross-domain network slices in 5G networks. IEEE 

Transactions on Mobile Computing, 19(5), pp.1156-1169. 

[95] Sarah, A., Nencioni, G. and Khan, M.M.I., 2023. Resource Allocation in Multi-

access Edge Computing for 5G-and-beyond networks. Computer Networks, 227, 

p.109720. 

[96] Yazici, İ., Shayea, I. and Din, J., 2023. A survey of applications of artificial 

intelligence and machine learning in future mobile networks-enabled 

systems. Engineering Science and Technology, an International Journal, 44, 

p.101455. 

[97] Ebrahimi, S., Bouali, F. and Haas, O.C., 2024. Resource Management from 

Single-Domain 5G to End-to-End 6G Network Slicing: A Survey. IEEE 

Communications Surveys & Tutorials. 

[98] Naidu, K. and Sathya, V., 2024. Efficient Power Allocation in HetNets. Wireless 

Personal Communications, pp.1-28. 



225 
 

[99] Agarwal, B., Togou, M.A., Marco, M. and Muntean, G.M., 2022. A 

comprehensive survey on radio resource management in 5G HetNets: Current 

solutions, future trends and open issues. IEEE Communications Surveys & 

Tutorials, 24(4), pp.2495-2534. 

[100] Waqas Haider Shah, S. and Qaraqe, M., 2023. Energy‐efficient machine type 

communication in HetNets under statistical QoS guarantees. Transactions on 

Emerging Telecommunications Technologies, 34(12), p.e4848. 

[101] Hosny, K.M., Khashaba, M.M., Khedr, W.I. and Amer, F.A., 2019. New vertical 

handover prediction schemes for LTE-WLAN heterogeneous networks. PloS 

one, 14(4), p.e0215334. 

[102] Alsaedi, W.K., Ahmadi, H., Khan, Z. and Grace, D., 2023. Spectrum options 

and allocations for 6G: A regulatory and standardization review. IEEE Open Journal 

of the Communications Society. 

[103] Malik, A.A., Jamshed, M.A., Nauman, A., Iqbal, A., Shakeel, A. and Hussain, 

R., 2024. Performance evaluation of handover triggering condition estimation using 

mobility models in heterogeneous mobile networks. IET Networks. 

[104] Furqan, M. and Goswami, B., 2022. Satellite communication 

networks. Handbook of Real-Time Computing; Tian, Y.-C., Levy, DC, Eds, pp.1-22. 

[105] Seyoum, Y.T., Shahid, S.M., Cho, E.S. and Kwon, S., 2023. Distributed load 

balancing algorithm considering QoS for next generation multi-RAT 

HetNets. Computer Networks, 229, p.109758. 

[106] Iqbal, M.U., Ansari, E.A., Akhtar, S., Farooq-i-Azam, M., Hassan, S.R. and Asif, 

R., 2023. Optimal learning paradigm and clustering for effective radio resource 

management in 5G HetNets. IEEE Access. 



226 
 

[107] Gures, E., Shayea, I., Alhammadi, A., Ergen, M. and Mohamad, H., 2020. A 

comprehensive survey on mobility management in 5G heterogeneous networks: 

Architectures, challenges and solutions. IEEE Access, 8, pp.195883-195913. 

[108] Haghrah, A., Abdollahi, M.P., Azarhava, H. and Niya, J.M., 2023. A survey on 

the handover management in 5G-NR cellular networks: aspects, approaches and 

challenges. EURASIP Journal on Wireless Communications and 

Networking, 2023(1), p.52. 

[109] Lei, W., Soong, A.C., Jianghua, L., Yong, W., Classon, B. and Xiao, W., & 

Saboorian, T.(2020). 5G Fundamental Air Interface Design. 5G System Design: An 

End-to-End Perspective, 35-225. 

[110] Yang, J., Shah, A.A. and Pezaros, D., 2023. A Survey of Energy Optimization 

Approaches for Computational Task Offloading and Resource Allocation in MEC 

Networks. Electronics, 12(17), p.3548. 

[111] Khan, A., Ahmad, S., Ali, I., Hayat, B., Tian, Y. and Liu, W., 2024. Dynamic 

mobility and handover management in software‐defined networking‐based fifth‐

generation heterogeneous networks. International Journal of Network Management, 

p.e2268. 

[112] Ali, S.A., Elsaid, S.A., Ateya, A.A., ElAffendi, M. and El-Latif, A.A.A., 2023. 

Enabling Technologies for Next-Generation Smart Cities: A Comprehensive Review 

and Research Directions. Future Internet, 15(12), p.398. 

[113] Mirzaei, A., Barari, M. and Zarrabi, H., 2021. An Optimal Load Balanced 

Resource Allocation Scheme for Heterogeneous Wireless Networks based on Big 

Data Technology. arXiv preprint arXiv:2101.02666. 



227 
 

[114] Lin, K., Li, C., Rodrigues, J.J., Pace, P. and Fortino, G., 2020. Data-driven joint 

resource allocation in large-scale heterogeneous wireless networks. IEEE 

Network, 34(3), pp.163-169. 

[115] Raja, C., Ramachandran, M., Ramu, K. and Sivaji, C., 2023. Radio resource 

management Satellite Communication Networks MCDM Method. Technology, 1, p.2. 

[116] Mondal, R.K., Ray, P. and Sarddar, D., 2016. Load balancing. Int. J. Res. 

Comput. Appl. Inf. Technol, 4(1), pp.01-21. 

[117] Pourghebleh, B. and Hayyolalam, V., 2020. A comprehensive and systematic 

review of the load balancing mechanisms on the Internet of Things. Cluster 

Computing, 23, pp.641-661. 

[118] Jain, M. and Mittal, R., 2016. Adaptive call admission control and resource 

allocation in multi-server wireless/cellular network. Journal of Industrial Engineering 

International, 12, pp.71-80. 

[119] Raja, S.K.S. and Louis, A.B.V., 2021. A review of call admission control 

schemes in wireless cellular networks. Wireless Personal Communications, 120(4), 

pp.3369-3388. 

[120] Slalmi, A., Chaibi, H., Saadane, R. and Chehri, A., 2021. Call Admission 

Control Optimization in 5G in Downlink Single-Cell MISO System. Procedia 

Computer Science, 192, pp.2502-2511. 

[121] Elgendi, I., Munasinghe, K.S., Sharma, D. and Jamalipour, A., 2016. Traffic 

offloading techniques for 5G cellular: a three-tiered SDN architecture. Annals of 

Telecommunications, 71, pp.583-593. 

[122] Agamy, A. and Mohamed, A.M., 2021. Impact of offloading on the efficiency of 

wireless access networks. International Journal of Wireless Information 

Networks, 28, pp.134-146. 



228 
 

[123] Ndegwa, S., Nyachionjeka, K. and Mharakurwa, E.T., 2023. User Preference-

Based Heterogeneous Network Management System for Vertical Handover. Journal 

of Electrical and Computer Engineering, 2023. 

[124] Beshley, M., Kryvinska, N. and Beshley, H., 2023. Quality of service 

management method in а heterogeneous wireless network using Big Data 

technology аnd mobile QoE application. Simulation Modelling Practice and 

Theory, 127, p.102771. 

[125]: Abu-Ain, T., Ahmad, R., Wazirali, R. and Abu-Ain, W., 2023. A New SDN-

Handover Framework for QoS in Heterogeneous Wireless Networks. Arabian 

Journal for Science and Engineering, pp.1-17. 

[126] Miyim, A.M., Ismail, M. and Nordin, R., 2017. Performance analysis of multi-

level vertical handover in wireless heterogeneous networks. Wireless Personal 

Communications, 95, pp.1109-1130. 

[127] Kaur, A. and Kumar, K., 2020. Intelligent spectrum management based on 

reinforcement learning schemes in cooperative cognitive radio networks. Physical 

Communication, 43, p.101226. 

[128] Liang, Y.C., 2020. Dynamic spectrum management: from cognitive radio to 

blockchain and artificial intelligence (p. 166). Springer Nature. 

[129] Lee, K.H. and Kim, D., 2021. Cross-layer optimization for heterogeneous MU-

MIMO/OFDMA networks. Sensors, 21(8), p.2744. 

[130] Coskun, A., Eris, F., Joshi, A., Kahng, A.B., Ma, Y., Narayan, A. and Srinivas, 

V., 2020. Cross-layer co-optimization of network design and chiplet placement in 2.5-

D systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and 

Systems, 39(12), pp.5183-5196. 



229 
 

[131] Tripathi, S., Puligheddu, C., Chiasserini, C.F. and Mungari, F., 2021. A context-

aware radio resource management in heterogeneous virtual RANs. IEEE 

Transactions on Cognitive Communications and Networking, 8(1), pp.321-334. 

[132] Sharma, S. and Singh, B., 2020. Context aware autonomous resource 

selection and Q-learning based power control strategy for enhanced cooperative 

awareness in LTE-V2V communication. Wireless Networks, 26, pp.4045-4060. 

[133] Hossen, A.A., Mungur, A., Armoogum, S. and Pudaruth, S., 2022. An 

Analytical Review of Load Balancing in Heterogeneous Networks. In Proceedings of 

the Future Technologies Conference (FTC) 2021, Volume 3 (pp. 225-236). Springer 

International Publishing. 

[134] Du, J. and Jiang, C., 2022. Traffic offloading in heterogeneous networks. 

In Cooperation and Integration in 6G Heterogeneous Networks: Resource Allocation 

and Networking (pp. 17-44). Singapore: Springer Nature Singapore. 

[135] Pandian, M.D., 2019. Enhanced network selection and handover schema for 

heterogeneous wireless networks. Journal of ISMAC, 1(01), pp.160-171. 

[136] Mihovska, A. and Prasad, R., 2021. Spectrum sharing and dynamic spectrum 

management techniques in 5G and beyond networks: A survey. Journal of Mobile 

Multimedia, pp.65-78. 

[137] Li, J., Wen, J. and Sheng, M., 2021. Intelligent Power Control Algorithm in 

Heterogeneous Wireless Cellular Networks. IEEE Transactions on Vehicular 

Technology, 70(9), pp.8823-8837. 

[138] Zahoor, S. and Mir, R.N., 2021. Resource management in pervasive Internet of 

Things: A survey. Journal of King Saud University-Computer and Information 

Sciences, 33(8), pp.921-935. 



230 
 

[139] Ghorbanzadeh, M., Abdelhadi, A., Ghorbanzadeh, M. and Abdelhadi, A., 2022. 

Quality of Service and Resource Allocation in Communication Systems. Practical 

Channel-Aware Resource Allocation: With MATLAB and Python Code, pp.1-16. 

[140] Tharaperiya Gamage, A., 2018. Resource management for heterogeneous 

wireless networks. Springer. 

[141] Sunassee, S., Mungur, A., Armoogum, S. and Pudaruth, S., 2021, April. A 

comprehensive review on congestion control techniques in networking. In 2021 5th 

International Conference on Computing Methodologies and Communication 

(ICCMC) (pp. 305-312). IEEE. 

[142] Abusubaih, M., 2022. Intelligent wireless networks: challenges and future 

research topics. Journal of Network and Systems Management, 30(1), p.18. 

[143] Li, C., Zhang, Y. and Luo, Y., 2021. Deep reinforcement learning-based 

resource allocation and seamless handover in multi-access edge computing based 

on SDN. Knowledge and Information Systems, 63, pp.2479-2511. 

[144] Latif, G., Saravanakumar, N., Alghazo, J., Bhuvaneswari, P., Shankar, K. and 

Butt, M.O., 2020. Scheduling and resources allocation in network traffic using 

multiobjective, multiuser joint traffic engineering. Wireless Networks, 26, pp.5951-

5963. 

[145] Shiwei, G., 2021, November. Load Balancing Algorithm for Heterogeneous 

Wireless Networks Based on Motion State Estimation. In 2021 IEEE 9th International 

Conference on Information, Communication and Networks (ICICN) (pp. 175-178). 

IEEE. 

[146] Liu, R., Sheng, M. and Wu, W., 2018. Energy-efficient resource allocation for 

heterogeneous wireless network with multi-homed user equipments. IEEE Access, 6, 

pp.14591-14601. 



231 
 

[147] Denedo, D.O., Vien, Q.T. and Phan, C.V., 2021. Time-based resource 

allocation for downlink in heterogeneous wireless cellular 

networks. Telecommunication Systems, 78(3), pp.463-475. 

[148] Gao, D., Wang, L. and Hu, B., 2022. Spectrum efficient communication for 

heterogeneous IoT networks. IEEE Transactions on Network Science and 

Engineering, 9(6), pp.3945-3955. 

[149] Akhtar, T., Tselios, C. and Politis, I., 2021. Radio resource management: 

approaches and implementations from 4G to 5G and beyond. Wireless 

Networks, 27, pp.693-734. 

[150] Al-Maitah, M., Semenova, O.O., Semenov, A.O., Kulakov, P.I. and Kucheruk, 

V.Y., 2018. A hybrid approach to call admission control in 5G networks. Advances in 

Fuzzy Systems, 2018, pp.1-7. 

[151] Mayor, V., Estepa, R. and Estepa, A., 2023. CO-CAC: A new approach to Call 

Admission Control for VoIP in 5G/WiFi UAV-based relay networks. Computer 

Communications, 197, pp.284-293. 

[152] Slalmi, A., Chaibi, H., Saadane, R., Chehri, A. and Jeon, G., 2021. 5G NB‐IoT: 

Efficient network call admission control in cellular networks. Concurrency and 

Computation: Practice and Experience, 33(22), p.e6047. 

[153] Alhammadi, A., Roslee, M., Alias, M.Y., Shayea, I. and Alraih, S., 2018, 

November. Dynamic handover control parameters for LTE-A/5G mobile 

communications. In 2018 Advances in Wireless and Optical Communications 

(RTUWO) (pp. 39-44). IEEE. 

[154] Zreikat, A.I., 2022, January. Load balancing call admission control algorithm 

(CACA) based on soft-handover in 5G Networks. In 2022 IEEE 12th Annual 



232 
 

Computing and Communication Workshop and Conference (CCWC) (pp. 0863-

0869). IEEE. 

[155] Huey, R.S., Lin, T.M. and Hsu, C.K., 2022, April. Predictive Handover 

Approach for Dynamic Resource Management in 5G Heterogeneous Networks using 

Grey Fuzzy Logical Control. In 2022 8th International Conference on Applied System 

Innovation (ICASI) (pp. 187-192). IEEE. 

[156] Maharazu, M., Hanapi, Z.M., Abdullah, A. and Muhammed, A., 2018. Call 

admission control for real-time and non-real-time traffic for vehicular LTE downlink 

networks. In Mobile and Wireless Technologies 2017: ICMWT 2017 4 (pp. 46-53). 

Springer Singapore. 

[157] Othman, A. and Nayan, N.A., 2019. Efficient admission control and resource 

allocation mechanisms for public safety communications over 5G network 

slice. Telecommunication Systems, 72, pp.595-607. 

[158] Mamman, M., Hanapi, Z.M., Abdullah, A. and Muhammed, A., 2017. An 

adaptive call admission control with bandwidth reservation for downlink LTE 

networks. IEEE Access, 5, pp.10986-10994. 

[159] Tan, X., Chen, G. and Sun, H., 2020. Vertical handover algorithm based on 

multi-attribute and neural network in heterogeneous integrated network. EURASIP 

Journal on Wireless Communications and Networking, 2020(1), pp.1-21. 

[160] Kulshrestha, R. and Agarwal, A., 2019, March. An Adaptive Fractional Guard 

Channel Based CAC Scheme for Heterogeneous Traffic in Wireless Cellular 

Networks. In 2019 6th International Conference on Computing for Sustainable Global 

Development (INDIACom) (pp. 1260-1264). IEEE.  



233 
 

[161] Ntuli, E., Du, C. and Mekuria, F., 2019, August. Review of Interference 

Mitigation Techniques for White Space Networks. In 2019 IEEE 2nd Wireless Africa 

Conference (WAC) (pp. 1-6). IEEE. 

[162] Hasan, M.M., Kwon, S. and Kim, S.K., 2018, October. Collaboration of Call 

Admission Control with Load-balancing in Small-cell Networks. In 2018 International 

Conference on Information and Communication Technology Convergence 

(ICTC) (pp. 1230-1232). IEEE. 

[163] Ali, M., Yasir, M.N., Bhatti, D.M.S. and Nam, H., 2022. Optimization of 

spectrum utilization efficiency in cognitive radio networks. IEEE Wireless 

Communications Letters, 12(3), pp.426-430. 

[164] (Amjad et al. 2019) : Amjad, M., Musavian, L. and Rehmani, M.H., 2019. 

Effective capacity in wireless networks: A comprehensive survey. IEEE 

Communications Surveys & Tutorials, 21(4), pp.3007-3038. 

[165] Sumathi, D., Prakasam, P., Nandakumar, S. and Balaji, S., 2022. Efficient 

seamless handover mechanism and mobility management for D2D communication in 

5G cellular networks. Wireless Personal Communications, 125(3), pp.2253-2275. 

[166] Jadhav, V.S. and Kolekar, U.D., 2019. Fuzzy-based decisive approach for call 

admission control in the LTE networks. Evolutionary Intelligence, pp.1-18. 

[167] Saidu, I., Roko, A., Shinkafi, N.A. and Yese, S., 2019. Congestion Control Call 

Admission Control (CC-CAC) Algorithm for Mobile Broadband Networks. European 

Journal of Electrical Engineering and Computer Science, 3(5). 

[168] Kulshrestha, R., Jain, M. and Shruti, 2020. Performance Analysis of Fractional 

Guard Channel Scheme with Buffer for Cellular Mobile Networks. Proceedings of the 

National Academy of Sciences, India Section A: Physical Sciences, 90, pp.739-747. 



234 
 

[169] Akpan, I.J., Simeon, O. and Constance, K., 2020. Development Of a Guard 

Channel-Based Prioritized Handoff Scheme With Channel Borrowing Mechanism For 

Cellular Networks. Journal of Multidisciplinary Engineering Science and Technology 

(JMEST), 7(2). 

[170]: Gures, E., Shayea, I., Saad, S.A., Ergen, M., El-Saleh, A.A., Ahmed, N.M.S. 

and Alnakhli, M., 2023. Load balancing in 5G heterogeneous networks based on 

automatic weight function. ICT Express. 

[171] Saidu, I., Subramaniam, S., Jaafar, A. and Zukarnain, Z.A., 2015. A QoS-

aware CAC with bandwidth reservation and degradation scheme in IEEE 802.16 e 

networks. Wireless Personal Communications, 82, pp.2673-2693. 

[172] Mamman, M., Hanapi, Z.M., Abdullah, A. and Muhammed, A., 2017. An 

adaptive call admission control with bandwidth reservation for downlink LTE 

networks. IEEE Access, 5, pp.10986-10994. 

[173] Halabian, H., Rengaraju, P., Lung, C.H. and Lambadaris, I., 2015. A 

reservation-based call admission control scheme and system modeling in 4G 

vehicular networks. EURASIP Journal on Wireless Communications and 

Networking, 2015(1), pp.1-12. 

[174] Biradar, P., Shweta, P., Padmanaban, K., Suresh, A., Bakhar, M. and Yeshitla, 

A., 2022. Active Learning Assisted Admission and Bandwidth Management in HWN 

for Facilitating Differential QoS under Multicriteria Factors. Scientific 

Programming, 2022. 

[175] Umar, M.M., Mohammed, A., Roko, A., Tambuwal, A.Y. and Abdulazeez, A., 

2019, December. QoS-aware call admission control (QA-CAC) scheme for LTE 

networks. In 2019 15th International Conference on Electronics, Computer and 

Computation (ICECCO) (pp. 1-5). IEEE. 



235 
 

[176] Nath, R., 2023. QoS Aware Service Provisioning and Resource Distribution in 

4G/5G Heterogeneous Networks. In Deep Learning Technologies for the Sustainable 

Development Goals: Issues and Solutions in the Post-COVID Era (pp. 41-49). 

Singapore: Springer Nature Singapore. 

[177] Goyal, R.K., Kaushal, S. and Sangaiah, A.K., 2018. The utility based non-linear 

fuzzy AHP optimization model for network selection in heterogeneous wireless 

networks. Applied Soft Computing, 67, pp.800-811. 

[178] Wu, X. and Du, Q., 2016. Utility-function-based radio-access-technology 

selection for heterogeneous wireless networks. Computers & Electrical 

Engineering, 52, pp.171-182. 

[179] Chen, X., Chen, Y., Liao, W., Zhou, Z., Gu, B. and Wang, X., 2018. Optimal 

pricing strategy for resource allocation in 5G heterogeneous cellular 

networks. Transactions on Emerging Telecommunications Technologies, 29(10), 

p.e3437. 

[180] Passas, V., Miliotis, V., Makris, N. and Korakis, T., 2020. Pricing based 

distributed traffic allocation for 5G heterogeneous networks. IEEE Transactions on 

Vehicular Technology, 69(10), pp.12111-12123. 

[181] Chen, S., Chen, B., Tao, X., Xie, X. and Li, K., 2022. An online dynamic pricing 

framework for resource allocation in edge computing. Journal of Systems 

Architecture, 133, p.102759. 

[182] Gures, E., Shayea, I., Ergen, M., Azmi, M.H. and El-Saleh, A.A., 2022. 

Machine learning based load balancing algorithms in future heterogeneous 

networks: A survey. IEEE Access. 



236 
 

[183] Raaijmakers, Y., Mandelli, S. and Doll, M., 2021, December. Reinforcement 

learning for admission control in 5g wireless networks. In 2021 IEEE Global 

Communications Conference (GLOBECOM) (pp. 1-6). IEEE. 

[184] Chakraborty, S. and Sivalingam, K.M., 2023. DRL-based admission control and 

resource allocation for 5G network slicing. Sādhanā, 48(3), p.155. 

[185] Nayak, N.K.S. and Bhattacharyya, B., 2021. Machine Learning-Based Medium 

Access Control Protocol for Heterogeneous Wireless Networks: A Review. 2021 

Innovations in Power and Advanced Computing Technologies (i-PACT), pp.1-6. 

[186] Keramidi, I., Moscholios, I., Sarigiannidis, P. and Logothetis, M., 2021, 

October. Blocking Probabilities in a Mobility-Aware CAC Algorithm of a Vehicular 

WiFi Network. In 2021 IEEE Microwave Theory and Techniques in Wireless 

Communications (MTTW) (pp. 177-181). IEEE. 

[187] Palle, S. and Shankar, S., 2021. Mobility prediction assisted call admission 

control model for mobile heterogeneous cellular network. International Journal of 

Communication Networks and Distributed Systems, 26(2), pp.219-244. 

[188] Aljeri, N. and Boukerche, A., 2020. Mobility management in 5G-enabled 

vehicular networks: Models, protocols, and classification. ACM Computing Surveys 

(CSUR), 53(5), pp.1-35. 

[189] Akpan, I.J., Simeon, O. and Constance, K., 2020. Development Of a Guard 

Channel-Based Prioritized Handoff Scheme With Channel Borrowing Mechanism For 

Cellular Networks. Journal of Multidisciplinary Engineering Science and Technology 

(JMEST), 7(2). 

[190] Keshav, K., Pradhan, A.K., Srinivas, T. and Venkataram, P., 2021, July. 

Bandwidth allocation for interactive multimedia in 5g networks. In 2021 6th 



237 
 

International Conference on Communication and Electronics Systems (ICCES) (pp. 

840-845). IEEE. 

[191] Hussain, M.I., Ahmed, N., Ahmed, M.Z.I. and Sarma, N., 2022. QoS 

provisioning in wireless mesh networks: A survey. Wireless Personal 

Communications, 122(1), pp.157-195. 

[192] Addali, K.M., Melhem, S.Y.B., Khamayseh, Y., Zhang, Z. and Kadoch, M., 

2019. Dynamic mobility load balancing for 5G small-cell networks based on utility 

functions. IEEE Access, 7, pp.126998-127011. 

[193] Al-Harbi, A., Bahnasse, A., Louhab, F.E. and Talea, M., 2021. Towards an 

efficient resource allocation based on software-defined networking 

approach. Computers & Electrical Engineering, 92, p.107066. 

[194] Akiyoshi, S., Taenaka, Y., Tsukamoto, K. and Lee, M., 2022, August. Resource 

Allocation Method for Fairness and Efficient Utilization of Network and 

Computational Resources in Edge Networks. In International Conference on 

Intelligent Networking and Collaborative Systems (pp. 463-474). Cham: Springer 

International Publishing. 

[195] Gaber, A., ElBahaay, M.A., Mohamed, A.M., Zaki, M.M., Abdo, A.S. and 

AbdelBaki, N., 2020, October. 5G and satellite network convergence: Survey for 

opportunities, challenges and enabler technologies. In 2020 2nd Novel Intelligent 

and Leading Emerging Sciences Conference (NILES) (pp. 366-373). IEEE. 

[196] El Idrissi, Y.E.H., Zahid, N. and Jedra, M., 2017. An efficient authentication 

protocol for 5G heterogeneous networks. In Ubiquitous Networking: Third 

International Symposium, UNet 2017, Casablanca, Morocco, May 9-12, 2017, 

Revised Selected Papers 3 (pp. 496-508). Springer International Publishing. 



238 
 

[197] Sindhushree, K. and Naik, D.C., 2023, July. Advancements and Challenges in 

5G Networks. In 2023 International Conference on Smart Systems for applications in 

Electrical Sciences (ICSSES) (pp. 1-6). IEEE. 

[198Miao, X. and Yang, M., 2020, July. Interference Analysis Between Satellite and 

5G Network. In International Conference in Communications, Signal Processing, and 

Systems (pp. 1257-1261). Singapore: Springer Singapore. 

[199] Liu, W., Hossain, M.A., Ansari, N., Kiani, A. and Saboorian, T., 2024. 

Reinforcement Learning-Based Network Slicing Scheme for Optimized UE-QoS in 

Future Networks. IEEE Transactions on Network and Service Management. 

[200] Jain, A., Lopez-Aguilera, E. and Demirkol, I., 2018, September. Improved 

handover signaling for 5G networks. In 2018 IEEE 29th Annual International 

Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (pp. 

164-170). IEEE. 

[201] Kaur, P., Garg, R. and Kukreja, V., 2023. Energy-efficiency schemes for base 

stations in 5G heterogeneous networks: a systematic literature 

review. Telecommunication Systems, 84(1), pp.115-151. 

[202] Arshad, R., Farooq-i-Azam, M., Muzzammel, R., Ghani, A. and See, C.H., 

2023. Energy Efficiency and Throughput Optimization in 5G Heterogeneous 

Networks. Electronics, 12(9), p.2031. 

[203] Ouamri, M.A., Oteşteanu, M.E., Isar, A. and Azni, M., 2020. Coverage, handoff 

and cost optimization for 5G heterogeneous network. Physical communication, 39, 

p.101037. 

[204] Galli, A., Moscato, V., Romano, S.P. and Sperlí, G., 2023. Playing With a Multi 

Armed Bandit to Optimize Resource Allocation in Satellite-Enabled 5G 

Networks. IEEE Transactions on Network and Service Management. 



239 
 

[205} Naous, T., Itani, M., Awad, M. and Sharafeddine, S., 2023. Reinforcement 

learning in the sky: A survey on enabling intelligence in ntn-based 

communications. IEEE Access, 11, pp.19941-19968. 

[206] Shahid, S.M., Seyoum, Y.T., Won, S.H. and Kwon, S., 2020. Load balancing 

for 5G integrated satellite-terrestrial networks. IEEE Access, 8, pp.132144-132156. 

[207] Giuseppi, A., Shahid, S.M., De Santis, E., Won, S.H., Kwon, S. and Choi, T., 

2020, October. Design and Simulation of the Multi-RAT Load-balancing Algorithms 

for 5G-ALLSTAR Systems. In 2020 International Conference on Information and 

Communication Technology Convergence (ICTC) (pp. 594-596). IEEE. 

[208] Telikani, A., Tahmassebi, A., Banzhaf, W. and Gandomi, A.H., 2021. 

Evolutionary machine learning: A survey. ACM Computing Surveys (CSUR), 54(8), 

pp.1-35. 

[209] Wu, D., Kang, J., Xu, Y.T., Li, H., Li, J., Chen, X., Rivkin, D., Jenkin, M., Lee, 

T., Park, I. and Liu, X., 2021, December. Load Balancing for Communication 

Networks via Data-Efficient Deep Reinforcement Learning. In 2021 IEEE Global 

Communications Conference (GLOBECOM) (pp. 01-07). IEEE. 

[210] Ahmed, F. and Chowdhury, M.Z., 2021, September. Artificial Intelligence 

Based Network Selection in Heterogeneous Wireless Networks. In 2021 International 

Conference on Electronics, Communications and Information Technology 

(ICECIT) (pp. 1-4). IEEE. 

[211] Nassef, O., Sun, W., Purmehdi, H., Tatipamula, M. and Mahmoodi, T., 2022. A 

survey: Distributed Machine Learning for 5G and beyond. Computer Networks, 207, 

p.108820. 

[212] Coqueiro, T., Jailton, J., Carvalho, T. and Francês, R., 2019. A fuzzy logic 

system for vertical handover and maximizing battery lifetime in heterogeneous 



240 
 

wireless multimedia networks. Wireless Communications and Mobile 

Computing, 2019, pp.1-13. 

[213] Driouache, S., Naja, N. and Jamali, A., 2021. Fuzzy logic based intelligent 

vertical handover decision in heterogeneous networks. In Artificial Intelligence and 

Industrial Applications: Artificial Intelligence Techniques for Cyber-Physical, Digital 

Twin Systems and Engineering Applications (pp. 99-109). Springer International 

Publishing. 

[214] Hosny, K.M., Khashaba, M.M., Khedr, W.I. and Amer, F.A., 2020. An efficient 

neural network-based prediction scheme for heterogeneous networks. International 

Journal of Sociotechnology and Knowledge Development (IJSKD), 12(2), pp.63-76. 

[215] Xu, Y., Xu, W., Wang, Z., Lin, J. and Cui, S., 2019. Load balancing for 

ultradense networks: A deep reinforcement learning-based approach. IEEE Internet 

of Things Journal, 6(6), pp.9399-9412. 

[216] El Amine, A., Chaiban, J.P., Hassan, H.A.H., Dini, P., Nuaymi, L. and Achkar, 

R., 2022. Energy optimization with multi-sleeping control in 5G heterogeneous 

networks using reinforcement learning. IEEE Transactions on Network and Service 

Management. 

[217] Yang, H., Zhao, J., Lam, K.Y., Xiong, Z., Wu, Q. and Xiao, L., 2022. Distributed 

Deep Reinforcement Learning-Based Spectrum and Power Allocation for 

Heterogeneous Networks. IEEE Transactions on Wireless Communications, 21(9), 

pp.6935-6948. 

[218] Niasar, F.A., Aghdam, M.J., Nabipour, M. and Momen, A., 2021, January. 

Mobility management in HetNets consider on QOS and improve Throughput. In 2021 

IEEE 11th Annual Computing and Communication Workshop and Conference 

(CCWC) (pp. 1354-1359). IEEE. 



241 
 

[219] Lee, Y., Park, L., Noh, W. and Cho, S., 2020, January. Reinforcement learning 

based interference control scheme in heterogeneous networks. In 2020 International 

Conference on Information Networking (ICOIN) (pp. 83-85). IEEE. 

[220] Amiri, R., Mehrpouyan, H., Fridman, L., Mallik, R.K., Nallanathan, A. and 

Matolak, D., 2018, May. A machine learning approach for power allocation in 

HetNets considering QoS. In 2018 IEEE International Conference on 

Communications (ICC) (pp. 1-7). IEEE. 

[221] Jialing, C., Mingxi, Y., Xiaohui, D. and Bingli, J., 2020, May. Q-learning based 

selection strategies for load balance and energy balance in heterogeneous networks. 

In 2020 5th International Conference on Computer and Communication Systems 

(ICCCS) (pp. 728-732). IEEE. 

[222] Iturria-Rivera, P.E. and Erol-Kantarci, M., 2021, October. QoS-Aware Load 

Balancing in Wireless Networks using Clipped Double Q-Learning. In 2021 IEEE 

18th International Conference on Mobile Ad Hoc and Smart Systems (MASS) (pp. 

10-16). IEEE. 

[223] Barros, P.H., Cardoso-Pereira, I., Foschini, L., Corradi, A. and Ramos, H.S., 

2019, June. Load balancing in D2D networks using reinforcement learning. In 2019 

IEEE Symposium on Computers and Communications (ISCC) (pp. 1-6). IEEE. 

[224] Jang, S., Shin, K.G. and Bahk, S., 2018. Post-CCA and Reinforcement 

Learning Based Bandwidth Adaptation in 802.11 ac Networks. IEEE Transactions on 

Mobile Computing, 17(02), pp.419-432. 

[225] Zhao, N., Liang, Y.C., Niyato, D., Pei, Y., Wu, M. and Jiang, Y., 2019. Deep 

reinforcement learning for user association and resource allocation in heterogeneous 

cellular networks. IEEE Transactions on Wireless Communications, 18(11), pp.5141-

5152. 



242 
 

[226] Li, Z., Wang, C. and Jiang, C.J., 2017. User association for load balancing in 

vehicular networks: An online reinforcement learning approach. IEEE Transactions 

on Intelligent Transportation Systems, 18(8), pp.2217-2228. 

[227] Ghadimi, E., Calabrese, F.D., Peters, G. and Soldati, P., 2017, May. A 

reinforcement learning approach to power control and rate adaptation in cellular 

networks. In 2017 IEEE International Conference on Communications (ICC) (pp. 1-

7). IEEE 

[228] Tan, J., Xiao, S., Han, S. and Liang, Y.C., 2018, May. A learning-based 

coexistence mechanism for LAA-LTE based HetNets. In 2018 IEEE International 

Conference on Communications (ICC) (pp. 1-6). IEEE. 

[229] Chen, J., Wang, Y., Li, Y. and Wang, E., 2018. QoE-aware intelligent vertical 

handoff scheme over heterogeneous wireless access networks. IEEE Access, 6, 

pp.38285-38293. 

[230] Patil, M.B. and Math, L., 2022. A novel approach for optimization of handover 

mechanism using metaheuristics algorithms. Measurement: Sensors, 24, p.100467. 

[231] Jha, K., Gupta, A., Alabdulatif, A., Tanwar, S., Safirescu, C.O. and Mihaltan, 

T.C., 2022. CSVAG: Optimizing Vertical Handoff Using Hybrid Cuckoo Search and 

Genetic Algorithm-Based Approaches. Sustainability, 14(14), p.8547. 

[232] Mahajan, P., 2022, March. Ant Colony Optimization for the Call Drops 

Reduction in Wireless Heterogeneous Networks. In 2022 International Conference 

on Communication, Computing and Internet of Things (IC3IoT) (pp. 1-6). IEEE. 

[233] Kuribayashi, H.P., De Souza, M.A., Gomes, D.D.A., Silva, K.D.C., Da Silva, 

M.S., Costa, J.C.W.A. and Francês, C.R.L., 2020. Particle swarm-based cell range 

expansion for heterogeneous mobile networks. IEEE Access, 8, pp.37021-37034. 



243 
 

[234] Wang, F., Zhang, H. and Zhou, A., 2021. A particle swarm optimization 

algorithm for mixed-variable optimization problems. Swarm and Evolutionary 

Computation, 60, p.100808. 

[235] Houssein, E.H., Gad, A.G., Hussain, K. and Suganthan, P.N., 2021. Major 

advances in particle swarm optimization: theory, analysis, and application. Swarm 

and Evolutionary Computation, 63, p.100868. 

[236] Bagheri Tolabi, H., Lashkar Ara, A. and Hosseini, R., 2021. An enhanced 

particle swarm optimization algorithm to solve probabilistic load flow problem in a 

micro-grid. Applied Intelligence, 51, pp.1645-1668. 

[237] Sagar, V., Chandramouli, R. and Subbalakshmi, K.P., 2016. Software defined 

access for HetNets. IEEE Communications Magazine, 54(1), pp.84-89. 

[238] (Duong D. Nguyen et al, 2018).: Nguyen, D.D., Nguyen, H.X. and White, L.B., 

2018. Evaluating performance of RAT selection algorithms for 5G Hetnets. IEEE 

Access, 6, pp.61212-61222. 

[239] Zarin, N. and Agarwal, A., 2018, May. A centralized approach for load 

balancing in heterogeneous wireless access network. In 2018 IEEE Canadian 

Conference on Electrical & Computer Engineering (CCECE) (pp. 1-5). IEEE. 

[240] Gad, A.G., 2022. Particle swarm optimization algorithm and its applications: a 

systematic review. Archives of computational methods in engineering, 29(5), 

pp.2531-2561. 

[241] Ning, Y., Peng, Z., Dai, Y., Bi, D. and Wang, J., 2019. Enhanced particle 

swarm optimization with multi-swarm and multi-velocity for optimizing high-

dimensional problems. Applied Intelligence, 49, pp.335-351. 



244 
 

[242] Xie, H., Zhang, L., Lim, C.P., Yu, Y. and Liu, H., 2021. Feature selection using 

enhanced particle swarm optimisation for classification models. Sensors, 21(5), 

p.1816. 

[243] El-Saleh, A.A., Shami, T.M., Nordin, R., Alias, M.Y. and Shayea, I., 2021. Multi-

objective optimization of joint power and admission control in cognitive radio 

networks using enhanced swarm intelligence. Electronics, 10(2), p.189. 

[244] Liu, Z. and Nishi, T., 2022. Adaptive heterogeneous particle swarm 

optimization with comprehensive learning strategy. Journal of Advanced Mechanical 

Design, Systems, and Manufacturing, 16(4), pp. JAMDSM0035-JAMDSM0035. 

[245] Agarwal, S.K. and Yadav, S., 2019. A comprehensive survey on artificial bee 

colony algorithm as a frontier in swarm intelligence. Ambient Communications and 

Computer Systems: RACCCS-2018, pp.125-134. 

[246] Sun, L., Wu, Y., Liang, X., He, M. and Chen, H., 2019. Constraint consensus 

based artificial bee colony algorithm for constrained optimization problems. Discrete 

Dynamics in Nature and Society, 2019, pp.1-24. 

[247] Wang, C., Shang, P. and Shen, P., 2022. An improved artificial bee colony 

algorithm based on Bayesian estimation. Complex & Intelligent Systems, 8(6), 

pp.4971-4991. 

[248] Amine, K., 2019. Multiobjective simulated annealing: Principles and algorithm 

variants. Advances in Operations Research, 2019. 

[249] Guilmeau, T., Chouzenoux, E. and Elvira, V., 2021, July. Simulated annealing: 

A review and a new scheme. In 2021 IEEE Statistical Signal Processing Workshop 

(SSP) (pp. 101-105). IEEE. 

[250] Delahaye, D., Chaimatanan, S. and Mongeau, M., 2019. Simulated annealing: 

From basics to applications. Handbook of metaheuristics, pp.1-35. 



245 
 

[251] Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. 

MIT press. 

[252] Yu, Y., Wang, T. and Liew, S.C., 2019. Deep-reinforcement learning multiple 

access for heterogeneous wireless networks. IEEE journal on selected areas in 

communications, 37(6), pp.1277-1290. 

[253] Neustroev, G., Ponnambalam, C.T., de Weerdt, M.M. and Spaan, M.T., 2020. 

Interval Q-Learning: Balancing Deep and Wide Exploration. In Adaptive and 

Learning Agents Workshop 2020. 

[254] Jang, B., Kim, M., Harerimana, G. and Kim, J.W., 2019. Q-learning algorithms: 

A comprehensive classification and applications. IEEE access, 7, pp.133653-

133667. 

[255] Wang, J., Jiang, C., Zhang, K., Hou, X., Ren, Y. and Qian, Y., 2019. Distributed 

Q-learning aided heterogeneous network association for energy-efficient IIoT. IEEE 

Transactions on Industrial Informatics, 16(4), pp.2756-2764. 

[256] Abubakar, A.I., Ozturk, M., Hussain, S. and Imran, M.A., 2019, September. Q-

learning assisted energy-aware traffic offloading and cell switching in heterogeneous 

networks. In 2019 IEEE 24th International Workshop on Computer Aided Modeling 

and Design of Communication Links and Networks (CAMAD) (pp. 1-6). IEEE. 

[257] Messaoud, S., Bradai, A. and Atri, M., 2020, July. Distributed Q-learning 

based-decentralized resource allocation for future wireless networks. In 2020 17th 

International Multi-Conference on Systems, Signals & Devices (SSD) (pp. 892-896). 

IEEE. 

[258] Ma, M., Zhu, A., Guo, S. and Yang, Y., 2021. Intelligent network selection 

algorithm for multiservice users in 5G heterogeneous network system: Nash Q-

learning method. IEEE Internet of Things Journal, 8(15), pp.11877-11890. 



246 
 

[259] Wang, X., Su, X. and Liu, B., 2019, April. A novel network selection approach 

in 5G heterogeneous networks using Q-learning. In 2019 26th International 

Conference on Telecommunications (ICT) (pp. 309-313). IEEE. 

[260] Iqbal, M.U., Ansari, E.A., Akhtar, S. and Khan, A.N., 2022. Improving the QoS 

in 5G HetNets through cooperative Q-learning. IEEE Access, 10, pp.19654-19676.  

[261] Karanja, H.S., Misra, S. and Atayero, A.A.A., 2023. Impact of Mobile Received 

Signal Strength (RSS) on Roaming and Non-roaming Mobile Subscribers. Wireless 

Personal Communications, 129(3), pp.1921-1938. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



247 
 

APPENDIX A 

 

Code Base 

The code and data used in this thesis are available as follows: 

 

1) Enhanced Particles Swarm Optimization (EPSO) Algorithm 

https://github.com/bebetemmy/epso 

 

2) Artificial Bee Colony (ABC) Algorithm 

https://github.com/bebetemmy/abc 

 

3) Simulated Annealing Algorithm 

https://github.com/bebetemmy/sa 

 

4) Q-Learning Algorithm 

https://github.com/bebetemmy/qlearning 

 

https://github.com/bebetemmy/epso
https://github.com/bebetemmy/abc
https://github.com/bebetemmy/sa
https://github.com/bebetemmy/qlearning

