6,484 research outputs found

    HEVC based Stereo Video codec

    Get PDF
    Development of stereo video codecs in latest multi-view extension of HEVC (MV-HEVC) with higher compression efficiency has been an active area of research. In this paper, a frame interleaved stereo video coding scheme based on MVHEVC standard codec is proposed. The proposed codec applies a reduced layer approach to encode the frame interleaved stereo sequences. A frame interleaving algorithm is developed to reorder the stereo video frames into a monocular video, such that the proposed codec can gain advantage from inter-views and temporal correlations to improve its coding performance. To evaluate the performance of the proposed codec; three standard multi-view test video sequences, named “Poznan_Street”, “Kendo” and “Newspaper1”, were selected and coded using the proposed codec and the standard MV-HEVC codec at different QPs and bitrates. Experimental results show that the proposed codec gives a significantly higher coding performance to that of the standard MV-HEVC codec at all bitrates

    Mixed-Resolution HEVC based multiview video codec for low bitrate transmission

    Get PDF

    Metrics for Stereoscopic Image Compression

    Get PDF
    Metrics for automatically predicting the compression settings for stereoscopic images, to minimize file size, while still maintaining an acceptable level of image quality are investigated. This research evaluates whether symmetric or asymmetric compression produces a better quality of stereoscopic image. Initially, how Peak Signal to Noise Ratio (PSNR) measures the quality of varyingly compressed stereoscopic image pairs was investigated. Two trials with human subjects, following the ITU-R BT.500-11 Double Stimulus Continuous Quality Scale (DSCQS) were undertaken to measure the quality of symmetric and asymmetric stereoscopic image compression. Computational models of the Human Visual System (HVS) were then investigated and a new stereoscopic image quality metric designed and implemented. The metric point matches regions of high spatial frequency between the left and right views of the stereo pair and accounts for HVS sensitivity to contrast and luminance changes in these regions. The PSNR results show that symmetric, as opposed to asymmetric stereo image compression, produces significantly better results. The human factors trial suggested that in general, symmetric compression of stereoscopic images should be used. The new metric, Stereo Band Limited Contrast, has been demonstrated as a better predictor of human image quality preference than PSNR and can be used to predict a perceptual threshold level for stereoscopic image compression. The threshold is the maximum compression that can be applied without the perceived image quality being altered. Overall, it is concluded that, symmetric, as opposed to asymmetric stereo image encoding, should be used for stereoscopic image compression. As PSNR measures of image quality are correctly criticized for correlating poorly with perceived visual quality, the new HVS based metric was developed. This metric produces a useful threshold to provide a practical starting point to decide the level of compression to use

    Verticalization of bacterial biofilms

    Full text link
    Biofilms are communities of bacteria adhered to surfaces. Recently, biofilms of rod-shaped bacteria were observed at single-cell resolution and shown to develop from a disordered, two-dimensional layer of founder cells into a three-dimensional structure with a vertically-aligned core. Here, we elucidate the physical mechanism underpinning this transition using a combination of agent-based and continuum modeling. We find that verticalization proceeds through a series of localized mechanical instabilities on the cellular scale. For short cells, these instabilities are primarily triggered by cell division, whereas long cells are more likely to be peeled off the surface by nearby vertical cells, creating an "inverse domino effect". The interplay between cell growth and cell verticalization gives rise to an exotic mechanical state in which the effective surface pressure becomes constant throughout the growing core of the biofilm surface layer. This dynamical isobaricity determines the expansion speed of a biofilm cluster and thereby governs how cells access the third dimension. In particular, theory predicts that a longer average cell length yields more rapidly expanding, flatter biofilms. We experimentally show that such changes in biofilm development occur by exploiting chemicals that modulate cell length.Comment: Main text 10 pages, 4 figures; Supplementary Information 35 pages, 15 figure

    Deep Video Color Propagation

    Full text link
    Traditional approaches for color propagation in videos rely on some form of matching between consecutive video frames. Using appearance descriptors, colors are then propagated both spatially and temporally. These methods, however, are computationally expensive and do not take advantage of semantic information of the scene. In this work we propose a deep learning framework for color propagation that combines a local strategy, to propagate colors frame-by-frame ensuring temporal stability, and a global strategy, using semantics for color propagation within a longer range. Our evaluation shows the superiority of our strategy over existing video and image color propagation methods as well as neural photo-realistic style transfer approaches.Comment: BMVC 201

    Compression and Subjective Quality Assessment of 3D Video

    Get PDF
    In recent years, three-dimensional television (3D TV) has been broadly considered as the successor to the existing traditional two-dimensional television (2D TV) sets. With its capability of offering a dynamic and immersive experience, 3D video (3DV) is expected to expand conventional video in several applications in the near future. However, 3D content requires more than a single view to deliver the depth sensation to the viewers and this, inevitably, increases the bitrate compared to the corresponding 2D content. This need drives the research trend in video compression field towards more advanced and more efficient algorithms. Currently, the Advanced Video Coding (H.264/AVC) is the state-of-the-art video coding standard which has been developed by the Joint Video Team of ISO/IEC MPEG and ITU-T VCEG. This codec has been widely adopted in various applications and products such as TV broadcasting, video conferencing, mobile TV, and blue-ray disc. One important extension of H.264/AVC, namely Multiview Video Coding (MVC) was an attempt to multiple view compression by taking into consideration the inter-view dependency between different views of the same scene. This codec H.264/AVC with its MVC extension (H.264/MVC) can be used for encoding either conventional stereoscopic video, including only two views, or multiview video, including more than two views. In spite of the high performance of H.264/MVC, a typical multiview video sequence requires a huge amount of storage space, which is proportional to the number of offered views. The available views are still limited and the research has been devoted to synthesizing an arbitrary number of views using the multiview video and depth map (MVD). This process is mandatory for auto-stereoscopic displays (ASDs) where many views are required at the viewer side and there is no way to transmit such a relatively huge number of views with currently available broadcasting technology. Therefore, to satisfy the growing hunger for 3D related applications, it is mandatory to further decrease the bitstream by introducing new and more efficient algorithms for compressing multiview video and depth maps. This thesis tackles the 3D content compression targeting different formats i.e. stereoscopic video and depth-enhanced multiview video. Stereoscopic video compression algorithms introduced in this thesis mostly focus on proposing different types of asymmetry between the left and right views. This means reducing the quality of one view compared to the other view aiming to achieve a better subjective quality against the symmetric case (the reference) and under the same bitrate constraint. The proposed algorithms to optimize depth-enhanced multiview video compression include both texture compression schemes as well as depth map coding tools. Some of the introduced coding schemes proposed for this format include asymmetric quality between the views. Knowing that objective metrics are not able to accurately estimate the subjective quality of stereoscopic content, it is suggested to perform subjective quality assessment to evaluate different codecs. Moreover, when the concept of asymmetry is introduced, the Human Visual System (HVS) performs a fusion process which is not completely understood. Therefore, another important aspect of this thesis is conducting several subjective tests and reporting the subjective ratings to evaluate the perceived quality of the proposed coded content against the references. Statistical analysis is carried out in the thesis to assess the validity of the subjective ratings and determine the best performing test cases

    Acting rehearsal in collaborative multimodal mixed reality environments

    Get PDF
    This paper presents the use of our multimodal mixed reality telecommunication system to support remote acting rehearsal. The rehearsals involved two actors, located in London and Barcelona, and a director in another location in London. This triadic audiovisual telecommunication was performed in a spatial and multimodal collaborative mixed reality environment based on the 'destination-visitor' paradigm, which we define and put into use. We detail our heterogeneous system architecture, which spans the three distributed and technologically asymmetric sites, and features a range of capture, display, and transmission technologies. The actors' and director's experience of rehearsing a scene via the system are then discussed, exploring successes and failures of this heterogeneous form of telecollaboration. Overall, the common spatial frame of reference presented by the system to all parties was highly conducive to theatrical acting and directing, allowing blocking, gross gesture, and unambiguous instruction to be issued. The relative inexpressivity of the actors' embodiments was identified as the central limitation of the telecommunication, meaning that moments relying on performing and reacting to consequential facial expression and subtle gesture were less successful

    Videos in Context for Telecommunication and Spatial Browsing

    Get PDF
    The research presented in this thesis explores the use of videos embedded in panoramic imagery to transmit spatial and temporal information describing remote environments and their dynamics. Virtual environments (VEs) through which users can explore remote locations are rapidly emerging as a popular medium of presence and remote collaboration. However, capturing visual representation of locations to be used in VEs is usually a tedious process that requires either manual modelling of environments or the employment of specific hardware. Capturing environment dynamics is not straightforward either, and it is usually performed through specific tracking hardware. Similarly, browsing large unstructured video-collections with available tools is difficult, as the abundance of spatial and temporal information makes them hard to comprehend. At the same time, on a spectrum between 3D VEs and 2D images, panoramas lie in between, as they offer the same 2D images accessibility while preserving 3D virtual environments surrounding representation. For this reason, panoramas are an attractive basis for videoconferencing and browsing tools as they can relate several videos temporally and spatially. This research explores methods to acquire, fuse, render and stream data coming from heterogeneous cameras, with the help of panoramic imagery. Three distinct but interrelated questions are addressed. First, the thesis considers how spatially localised video can be used to increase the spatial information transmitted during video mediated communication, and if this improves quality of communication. Second, the research asks whether videos in panoramic context can be used to convey spatial and temporal information of a remote place and the dynamics within, and if this improves users' performance in tasks that require spatio-temporal thinking. Finally, the thesis considers whether there is an impact of display type on reasoning about events within videos in panoramic context. These research questions were investigated over three experiments, covering scenarios common to computer-supported cooperative work and video browsing. To support the investigation, two distinct video+context systems were developed. The first telecommunication experiment compared our videos in context interface with fully-panoramic video and conventional webcam video conferencing in an object placement scenario. The second experiment investigated the impact of videos in panoramic context on quality of spatio-temporal thinking during localization tasks. To support the experiment, a novel interface to video-collection in panoramic context was developed and compared with common video-browsing tools. The final experimental study investigated the impact of display type on reasoning about events. The study explored three adaptations of our video-collection interface to three display types. The overall conclusion is that videos in panoramic context offer a valid solution to spatio-temporal exploration of remote locations. Our approach presents a richer visual representation in terms of space and time than standard tools, showing that providing panoramic contexts to video collections makes spatio-temporal tasks easier. To this end, videos in context are suitable alternative to more difficult, and often expensive solutions. These findings are beneficial to many applications, including teleconferencing, virtual tourism and remote assistance
    • 

    corecore