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Abstract

In recent years, three-dimensional television (3D TV) has been broadly considered
as the successor to the existing traditional two-dimensional television (2D TV) sets.
With its capability of offering a dynamic and immersive experience, 3D video (3DV)
is expected to expand conventional video in several applications in the near future.
However, 3D content requires more than a single view to deliver the depth sensation
to the viewers and this, inevitably, increases the bitrate compared to the corre-
sponding 2D content. This need drives the research trend in video compression field
towards more advanced and more efficient algorithms.

Currently, the Advanced Video Coding (H.264/AVC) is the state-of-the-art video
coding standard which has been developed by the Joint Video Team of ISO/IEC
MPEG and ITU-T VCEG. This codec has been widely adopted in various applica-
tions and products such as TV broadcasting, video conferencing, mobile TV, and
blue-ray disc. One important extension of H.264/AVC, namely Multiview Video
Coding (MVC) was an attempt to multiple view compression by taking into consid-
eration the inter-view dependency between different views of the same scene. This
codec H.264/AVC with its MVC extension (H.264/MVC) can be used for encoding
either conventional stereoscopic video, including only two views, or multiview video,
including more than two views.

In spite of the high performance of H.264/MVC, a typical multiview video se-
quence requires a huge amount of storage space, which is proportional to the number
of offered views. The available views are still limited and the research has been de-
voted to synthesizing an arbitrary number of views using the multiview video and
depth map (MVD). This process is mandatory for auto-stereoscopic displays (ASDs)
where many views are required at the viewer side and there is no way to transmit
such a relatively huge number of views with currently available broadcasting tech-
nology. Therefore, to satisfy the growing hunger for 3D related applications, it is
mandatory to further decrease the bitstream by introducing new and more efficient
algorithms for compressing multiview video and depth maps.

This thesis tackles the 3D content compression targeting different formats i.e.
stereoscopic video and depth-enhanced multiview video. Stereoscopic video com-
pression algorithms introduced in this thesis mostly focus on proposing different
types of asymmetry between the left and right views. This means reducing the
quality of one view compared to the other view aiming to achieve a better subjec-
tive quality against the symmetric case (the reference) and under the same bitrate
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ii Abstract

constraint. The proposed algorithms to optimize depth-enhanced multiview video
compression include both texture compression schemes as well as depth map cod-
ing tools. Some of the introduced coding schemes proposed for this format include
asymmetric quality between the views.

Knowing that objective metrics are not able to accurately estimate the subjec-
tive quality of stereoscopic content, it is suggested to perform subjective quality
assessment to evaluate different codecs. Moreover, when the concept of asymmetry
is introduced, the Human Visual System (HVS) performs a fusion process which is
not completely understood. Therefore, another important aspect of this thesis is
conducting several subjective tests and reporting the subjective ratings to evaluate
the perceived quality of the proposed coded content against the references. Statisti-
cal analysis is carried out in the thesis to assess the validity of the subjective ratings
and determine the best performing test cases.
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Chapter 1

Introduction

Currently a large quantity of video material is distributed over broadcast chan-
nels, digital networks, and personal media due to the ever increasing trend in video
consumption. Such increase in popularity of the video content demands higher res-
olution and quality of the provided material. An obvious requirement for such a
growing appetite is a more intelligent and efficient coding algorithms enabling the
end users to access content with the highest subjective quality while respecting the
limitations in the broadcasting and storage facilities. This is further complicated
while changing the dimension of the video from conventional 2D to 3D, resulting
in an increase in the number of pixels to be coded for the equivalent content to
provide the subjects with depth perception of the scene similar to what is expe-
rienced in daily life. This is an inevitable trend in video content acquisition and
creation since typically the user satisfaction increases while switching to 3D con-
tent from the traditional 3D content. The vast research and industrial activities
on improving the 3D display technology, 3D acquisition, 3DV compression, and 3D
movie making confirms the desire of the users in this regard. Since the evolution of
content production, video acquisition/rendering, and display technologies is much
faster than the networks and the broadcasting capabilities, an obvious requirement
for the new video coding standard is identified. Such a new standard should target
outperforming the current state-of-the-art H.264/AVC (the same as MPEG-4 Part
10) [117].

3D perception can be achieved by providing each eye with a slightly different
view. These two views can be the reference views, i.e. the views which have been
transmitted or can be output of some rendering algorithm applied to the reference
views. In multiview video format several cameras capture the same scene from dif-
ferent points of view. Stereoscopic video is a subset of multiview format where only
two of the views are utilized or generated. In the case of traditional stereoscopic
video, MVC [29], as an annex to H.264/AVC, is the state-of-the-art and exploits
inter-view redundancies while encoding different views. Several approaches are pro-
posed to increase the efficiency of MVC e.g. harmonizing the views by removing the
introduced noise during the capturing process [9], reducing the spatial resolution of
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2 Chapter 1.

all or a subset of views targeting lower complexity and reduced required bitrate to
encode the same content, or applying low-pass filter (LPF) to all or some of the views
targeting less accuracy in high frequency components (while maintaining acceptable
subjective quality) and hence, bitrate required for compression process [7].

Compared to conventional frame-compatible stereoscopic video coding as well
as multiview video coding, depth-enhanced multiview video coding provides more
flexibility in 3D displaying at the user side. While the availability of the two de-
coded texture views provides the basic 3D perception of traditional stereoscopic
displays, it has been discovered that disparity adjustment between views is needed
for adapting the content on different displays and for various viewing conditions,
as well as bringing satisfaction to different individual presences [138]. Furthermore,
since autostereoscopic display (ASD) typically requires a relatively large number of
views simultaneously, it is not possible to transmit or broadcast such a huge amount
of data under the current network capabilities. Therefore, the multiview video plus
depth (MVD) format [141] is considered where each texture view is associated with
a respective depth map, and only few depth-enhanced views are transmitted and the
rest of the required views are rendered in the playback device using the depth image
based rendering (DIBR) algorithms [86]. Depth-enhanced multiview video coding
schemes can also benefit from possible approaches introduced for MVC as well as
removing a subset of potential redundant depth views from the MVD package, as
long as no significant drop in the subjective quality of the rendered views is intro-
duced, targeting a bitrate reduction due to the smaller number of depth views to be
encoded. Different formats used in this thesis to present 3D content are depicted in
Figure 1.1.

Figure 1.1: Different formats to present 3D content



1.1. Objectives and outline of the thesis 3

One promising scheme to encode both stereoscopic and multiview content is to
encode the views asymmetrically, i.e. the quality of all views is not degraded to
the same extent and some views face more artifacts compared to other views. In
this case, attributed to binocular suppression theory [15], the HVS is expected to
fuse the perceived content in such a way that the higher quality view contributes
more to the final observed subjective quality. However, despite abundant research
and experiments, this concept is not still well comprehended and depends on several
factors, e.g. the limits of asymmetry introduced to the views, the type of quality
asymemtry, the viewing distance, and the degradation level applied to the views.
Therefore, depending on the target applications and considering the content, the
parameters tuning the asymmetry should be selected wisely to achieve the aimed
performance.

All new coding proposals are conventionally compared to the state-of-the-art
codec objectively, to reveal whether they provide a higher performance than the
already available codec or not. Objective metrics are usually reliable and estimate
accurately the subjective quality, however, they do not necessarily align with the
HVS preference. This means, there might be a case where some content has a
higher subjective quality while the objective metrics fail to estimate such a higher
quality due to their potential limitations in estimating the HVS fusion process.
For example, when a small spatial movement in the content grid happens or in
the case where some high frequency components which are not subjectively visible
are removed, non-perceptual objective metrics report a misleading estimation of
subjective quality. Moreover, exploiting objective metrics ignores the conditions,
the display, and the setup under which the content is perceived. Especially in the
case of 3DV, where two views are provided, no objective metric is known to be able
to precisely approximate the fusion process of our HVS and hence, it is obligatory to
perform subjective quality assessment to assure a relatively more accurate evaluation
of the proposed algorithms.

1.1 Objectives and outline of the thesis

This thesis focuses on various approaches in compression of different formats of
3D content and several potential techniques added to the reference codecs have
been introduced/evaluated targeting a better efficiency compared to the reference
codecs excluding the proposed techniques. A major contribution of the experiments
and research presented in this thesis deals with the concept of asymmetry on video
content where some of the views have a lower quality compared to the other view. A
major objective of this thesis is to show that under different 3DV formats, targeting
different types of displays, transmitting some views with coarser encoding techniques
can provide users with a similar subjective quality compared to that offered by
symmetric views. Obviously, this is achieved under some constraints on the level of
asymemtry between views which is also discussed in this thesis.
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The research presented in this thesis can be categorized into two categories. One
category is to evaluate the proposed coding scheme on conventional stereoscopic
video, containing only two views, targeting the highest subjective quality. This
was achieved with different approaches including several asymmetric schemes. It
was concluded that in general the evaluated asymmetric schemes present a promis-
ing approach to reduce the bitrate while maintaining the subjective quality of the
corresponding symmetric video. The second category focuses on depth-enhanced
multiview video targeting a higher objective and/or subjective quality for the stere-
opair created with coded and synthesized views. In this thesis, I am not targetring
any view synthesis algorithm and always the state-of-the-art scheme is being used
for both proposed and reference codecs. This includes novel algorithms for better
compression of depth maps and new methods and schemes allowing more efficient
encoding of texture views. Both categories in general deal with the compression of
3D content but in different formats and the stereoscopic video compression can be
considered as a subset of the multiview video compression,

Some of the proposed schemes in this thesis have been evaluated objectively.
However, since the concept of asymmetry in several studies has been utilized and
the objective metrics were found unable to well estimate the perceived quality of
asymmetric quality stereoscopic video [53], several subjective quality assessments
were conducted in this thesis. The subjective evaluation results consistently con-
firmed that the proposed schemes outperform the analogous symmetric cases under
the same bitrate constraint, or equivalently, they are able achieve similar subjec-
tive quality while decreasing the required bitrate. This is an important objective
of this thesis to confirm a higher performance of the proposed encoding algorithms
subjectively to guarantee accurate quality assessment.

The thesis is organized as follows. In chapter 2 HVS is described with a focus
on the related concepts to this thesis. Following this brief overview, different types
of displays, covering the targeted end-user devices related to the encoding methods
proposed in this thesis, are introduced in chapter 3. In chapter 4, the quality eval-
uation of 3D content is explained by describing several objective metrics as well as
subjective test criteria. Moreover, the subjective quality of 3D content displayed
on traditional stereoscopic displays is analyzed when perceived with or without
glasses. The concept of asymmetry in video compression is described in chapter 5.
This chapter covers different types of asymmetry and justifies their utilization while
discussing the criteria by which the level of asymmetry between views are limited.
The conclusions based on the conducted subjective tests on asymmetric stereoscopic
video are reported at the end of this chapter. In chapter 6, the depth-enhanced mul-
tiview video format is introduced to be used in DIBR algorithms for synthesizing
views and it is explained how the quality of synthesized views varies based on the
quality of the used texture and depth views. The compression of depth-enhanced
multiview format is further discussed in this chapter with an emphasis on having
asymmetric quality between the views. Moreover, the subjectively confirmed con-
clusions regarding this 3D content format are presented at the end of this chapter.
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Finally, conclusions and future works are drawn in chapter 7.

1.2 Publications and author’s contribution

This thesis is based on the publications that represent original work in which the
thesis author has been the essential contributor. Considering that all publications
included in the thesis are the outcome of team work, the author’s contribution
to each publication is described in the following paragraphs. All publications are
written mainly by the thesis author while reviews, comments, and modifications
are provided by co-authors. Moreover, all simulations required for publications are
performed by thesis author except for [P4].

In [P1], a novel non-linear method, co-invented by thesis author, Miska Han-
nuksela, and Dmytro Rusanovskyy, for depth map resampling is introduced. Thesis
author has implemented the idea and written the paper.

[P2] proposes a novel technique to present the content of 3D displays so that
subjects with and without glasses are able to simultaneously perceive high quality
3D and 2D content, respectively. Such proposal has not been introduced to the
research community before and is considered to have a potential bright future for
researchers working in this field. Thesis author co-invented the idea with Miska
Hannuksela and the algorithm was implemented by the thesis author. A software
was implemented by Hamed Sarbolandi to conduct the subjective tests. Thesis
author has analyzed the subjective scores and written the paper.

We gathered a summary of previous publications written by thesis author on
subjective quality assessment of asymmetric stereoscopic video in [P3] by introducing
a more comprehensive deepened analysis of the statistics and results. A set of
conclusions are drawn in this article and hence, it is considered to be a proper
reference for future subjective quality evaluation research concerning asymmetric
quality in stereoscopic video compression. Thesis author has written the paper.

A new MVD format to represent the multiview plus depth 3D content is in-
troduced in [P4] and thesis author has performed the required modifications to
infrastructure to enable the support for the proposed format. Paper is written by
thesis author.

In [P5], a new asymmetric scheme for multiview video content is proposed by
authors and changes in the test software to support such scheme were implemented
by thesis author and Wenyi Su. Thesis author has written the paper.

Targeting a new MR asymmetric scheme, thesis author, Miska Hannuksela, and
Moncef Gabbouj co-invented a format which is introduced in [P6]. The subjective
evaluation compares the quality of this format with conventional MR scheme and
FR stereoscopic video. Subjective assessment is conducted by Maryam Homayouni
while rating analysis and writing the paper was done by thesis author.

Considering the amount of high frequency components in the texture views, a
new method is presented in [P7], aiming to decide which spatial resolution enables
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a more efficient encoding for multiview 3D content. Thesis author has proposed the
algorithm and implemented it. Subjective tests are performed in Human-Centered
Technology of Tampere University of Technology and the thesis author has written
the paper.

We propose a scheme consisting of asymmetric quality among different views in
a depth-enhanced video in [P8] and considering lower quality of some views, lower
bitrate compared to anchor, where all views have full-resolution (FR), is achieved.
The subjective quality assessments were conducted in Human-Centered Technology
of Tampere University of Technology and the thesis author has written the paper.

In [P9] a new mixed-resolution (MR) scheme is proposed where sample value
quantization and spatial resolution adjustment are used together to create asym-
metry between views of stereoscopic video targeting better compression. Miska
Hannuksela and thesis author have proposed the algorithm and thesis author has
implemented it. The subjective tests were conducted by department of media tech-
nology in Aalto univeristy and the paper was written by thesis author.

A new model to estimate the subjective quality of MR stereoscopic video is
proposed by thesis author in [P10] and he has evaluated the efficiency of the proposed
metric taking into account the results of two sets of subjective tests under different
test setups. The subjective tests were performed by department of media technology
in Aalto University and the thesis author has written the paper.



Chapter 2

Human Visual System

The HVS consists of several organs, e.g. the eyes, the nerves, and the brain. The
whole concept of the HVS can be discussed from two different points of view, the
visual perception and visual cognition. Visual perception is a subject of anatomy
[62, 167] while visual cognition as a higher level processing function of the brain is
studied in psychology [26,167].

The functioning of a camera is often compared with the workings of the eye;
both focus light from external objects in the visual field onto a light-sensitive screen.
Analogously to a camera that sends a message to produce a film, the lens in the eye
refracts the incoming light onto the retina. Several optical and neural transforma-
tions are required to provide visual perception. The retina is made up by millions of
specialized photoreceptors known as rods and cones. Rods are responsible for vision
at low light levels (scotopic vision). They do not mediate color vision and have
a low spatial acuity and hence, are generally ignored in the HVS modeling [167].
Cones are active at higher light levels (photopic vision). They are capable of color
vision and are responsible for high spatial acuity. There are three types of cones
which are generally categorized to the short-, middle-, and long-wavelength sensi-
tive cones i.e. S-cones, M-cones, and L-cones, respectively. These can be thought
by an approximation to be sensitive to blue, green, and red color components of the
perceived light. Each photoreceptor reacts to a wide range of spectral frequencies,
with the peak sensitivity at approximately 440nm (blue) for S-cones, 550nm (green)
for M-cones, and 580nm (red) for L-cones. The brain has the ability to fetch up
the whole color spectrum from these three color components. This theory known as
trichromaticism [153] allows one to construct a full-color display using only a set of
three components. Despite the fact that perception in typical daytime light level is
dominated by cone photoreceptors, the total number of rods in the human retina (91
million [102]) far exceeds the number of cones (roughly 4.5 million [102]). Hence, the
density of rods is much greater than cones throughout most of the retina. However,
this ratio changes dramatically in the fovea placed in the center of the projected
image which is the highly specialized region of the retina measuring about 1.2 mil-
limeters in diameter. The increased density of cones in the fovea is accompanied by

7
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(a) (b)

Figure 2.1: Cones and rods in the retina

a sharp decline in the density of rods. This is depicted in Figure 2.1. For further
information regarding the structure of the retina readers are referred to [64].

The optic nerves leave the eye in a special region of the retina commonly known
as the blind spot where no photoreceptors are available. As a result, there is no
response to the light stimulus at this point and hence, the brain gets no information
from the eye about this particular part of the projected picture. Light entering the
eye is refracted as it passes through the cornea and the amount of light is adjusted
by the pupil (controlled by the iris). This optical system of the eye in collaboration
with a sensitivity adaptation mechanism in the retinal cells enables the eye to work
over a wide range of the luminance values. In general, the eye is sensitive only
to the relative luminance change (i.e. contrast), rather than absolute luminance
values [87].

Light strikes the rod and cone cells causing electrical impulses to be transduced
and transmitted to the bipolar cells. The processing in the retina includes the
formation of bipolar and ganglion cells in the retina, as well as the convergence and
divergence from photoreceptor to the bipolar cell. In addition, other neurons in
the retina, particularly horizontal and amacrine cells, transmit information laterally
(from a neuron in one layer to an adjacent neuron in the same layer), resulting in
more complex respective fields that can be either indifferent to color and sensitive
to motion or sensitive to color and indifferent to motion. The reticular activating
system and bipolar cells in turn transmit electrical activity to the central nervous
system from blind spot (where long ganglion cell axons exit the eye) and through the
optic nerve [64] (see Figure 2.1). Each eye has about one million fibers [47]. Most
of the fibers of the optic nerve terminate in the lateral geniculate nucleus (LGN)
from where information is relayed to the visual cortex.

There are two main types of cells in the LGN: the first set of the cells are
substantially larger than the other type of cells and are called magno cells. The main
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inputs to these cells are the retinal rods and the magno ganglion cells. The cells in
the magnocellular layers seem to be mainly responsible for transmitting information
about motion and flicker perception, stereopsis, and high contrast targets (high
temporal and low spatial resolution). The other type includes cells which are smaller
and are called parvo cells. The main input to these cells is the retinal cones and the
parvo ganglion cells. These cells are mainly responsible for transmitting information
about the visual acuity, the form vision, the color perception, and the low contrast
targets (slow response but high resolution in space). Such separation of cell types
allows LGN to encode the motion information using a temporal resolution of as little
as 10 to 12 frames per second [113].

2.1 Binocular human vision

Binocular vision is the ability to perceive visual information through two eyes. Hu-
man eyes are separated horizontally by a distance of approximately 6.3 cm on aver-
age [62]. Such positioning enables each eye to see the world from a slightly different
perspective (Figure 2.2). There are 6 muscles that control the movement of the
eye [23]. Four of the muscles control the movement in the cardinal directions i.e. up,
down, left, and right. The remaining two muscles control the adjustments involved
in counteracting head movement. To maintain single binocular vision when viewing
an object, a simultaneous movement of both eyes toward each other is needed to
enable convergence. Tracking describes the ability of the eyes to converge and hold
on to an object even when the object is moving.

(a) Left View (b) Right View

Figure 2.2: Left and right perspective of stereoscopic content

The HVS perceives color images using receptors on the retina of the eye which
respond to three broad color bands in the regions of red, green and blue (RGB) in
the color spectrum as explained in the previous section. The HVS is much more
sensitive to the overall luminance changes than to color changes. The major chal-
lenge in understanding and modeling visual perception is that what people see is not
simply a translation of the retinal stimuli (i.e., the image on the retina). Moreover,
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the HVS has a limited sensitivity; it does not react to small stimuli, it is not able to
discriminate between signals with an infinite precision, and it also presents satura-
tion effects. In general one could say that the HVS achieves a compression process in
order to keep the visual stimuli for the brain within an interpretable range. While
presenting different views for each eye (stereoscopic presentation), the subjective
result is usually binocular rivalry where the two monocular patterns are perceived
alternately [174]. In particular cases, one of the two stimuli dominates the field.
This effect is known as binocular suppression [74, 165]. It is assumed according to
the binocular suppression theory that the HVS fuses the two images such that the
perceived quality is close to that of the higher quality view at any time.

Binocular rivalry affords a unique opportunity to discover aspects of perceptual
processing that transpires outside of the visual awareness. In a stereoscopic presen-
tation, the brain registers slight perspective differences between the left and right
views to create a stable, 3D representation incorporating both views. In other words,
the visual cortex receives information from each eye and combines this information
to form a single stereoscopic image. Left- and right-eye image differences along
any one of a wide range of stimulus dimensions are sufficient to instigate binocular
rivalry. These differences include changes and variations in color, luminance, con-
trast polarity, form, spatial resolution, or velocity. Rivalry can be triggered by very
simple stimulus differences or by differences between complex images. Stronger,
high-contrast stimuli lead to stronger perceptual competition. Rivalry can even oc-
cur under dim viewing conditions, when light levels are so low that they can only
be detected by the rod photoreceptors of the retina. Under some conditions, rivalry
can be triggered by physically identical stimuli that differ in appearance owing to
simultaneous luminance or color contrast. Therefore, the problem of how an image
may be perceived when it is viewed with both eyes as a stereoscopic image is not
fully understood yet. If both views are provided with equal quality, the perceived
quality of the stereoscopic image is proportional to the quality of both views. On
the other hand, if the quality or other factors of the left and right views differ, the
HVS plays the main rule on defining the perceived quality of the stereoscopic image
and dominating it with more details from a selected respective view.

2.2 Spatial perceptual information

Different contents are subject to different spatial complexities. The ITU-T Rec-
ommendation P.910 [114] proposes the metric Spatial Information (SI) to measure
the spatial perceptual detail of a picture (2.1) . The value of this metric usually
increases for more spatially complex scenes. Based on this recommendation and
utilization of the Sobel filter (2.2), SI along the vertical or horizontal direction can
be measured separately. SI includes the quantity and the strength of the edges in
different directions.
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SI = maxtime {stdspace[Sobel(Fn)]} (2.1)

HSobel =

−1 0 1
−2 0 2
−1 0 1

 (2.2)

The functional model of the binocular vision is shown in Figure 2.3. When the
eye is relaxed and the interior lens is the least rounded, the lens has its maximum
focal length for distant viewing. As the muscle tension around the ring of muscle
is increased and the supporting fibers are thereby loosened, the interior lens rounds
out to its minimum focal length. This enables the eye to focus on objects at various
distances. This process is known as accommodation [158], and the refractive power
is measured in diopters. Accommodation can be defined as the alteration of the
lens to focus the area of interest on the fovea, a process that is primarily driven by
blur [148,150]. Vergence deals with obtaining and maintaining a single binocular vi-
sion by moving both eyes, mainly in opposite directions. Naturally, accommodation
and vergence systems are reflexively linked [21,108,123,127]. The amount of accom-
modation required to focus on an object, changes proportionally with the amount
of vergence needed to fixate that same object in the center of the eyes. The cornea
provides two third of the refractive power of the eye and the rest is provided by the

Figure 2.3: Functional model of binocular vision
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lens. However, our eye tends to change the curvature of the lens rather than that
of the cornea. Normally, when our ciliary muscles are relaxed, parallel rays form
distant objects will converge onto the retina. If our eye is maintained at the above
state, and a near object is put before it, light rays will converge behind the retina.
As the sharp image is behind the retina, our brain can only detect a blurry image.
To bring the image into focus, the eye performs accommodation. In cases where the
optical system is unable to provide a sharp projected image, the blurring artifact is
modeled as a low-pass filter characterized by a point spread function (PSF) [179].
When focusing near an object, the ciliary muscle contracts, and suspends the eye.
As a result, surfaces of the cornea and the lens become more curved and thus the
eye focuses on the nearby object. When two different perspectives of the scene
are available in retinas of each eye, we call this binocular disparity [62]. The HVS
utilizes binocular disparity to deduce information about the relative depth between
different objects. The capability of the HVS to calculate depth for different objects
of each scene is known as stereovision. For a certain amount of accommodation and
vergence, there is a small range of distances at which an object is perfectly focused
and a deviation in either direction gradually introduces blur. An area defining an
absolute limit for disparities that can be fused in the HVS is known as Panum’s fu-
sional area [32,112]. It describes an area, within which different points projected on
the left and right retina produce binocular fusion and sensation of depth. Panum’s
fusional areas are basically elliptical having their long axes located in horizontal
direction [91]. This is depicted in Figure 2.4.

The limits of Panum’s fusional area are not constant over the retina, but expand

Figure 2.4: Panum’s fusional areas
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while increasing the eccentricity from the fovea. The limit of fusion in the fovea
is equal to the maximum disparity of only one-tenth of a degree, whereas at an
eccentricity of 6 degrees, the maximum value is limited to one-third of a degree
[61, 173] and at 12 degrees of eccentricity without eye movements the maximum
disparity is about two-third of a degree [104].

Considering the amount of light entering the eye and the sensitivity adaptation of
the retina, our eye is able to work over a wide range of intensities between 10−6 and
1018 cd/m2. The fact that the eye is sensitive to a luminance change (i.e. contrast)
rather than the absolute luminance is known as light adaptation and is modeled
by a local contrast normalization [171]. The light projected onto the fovea that
comes from the visual fixation point and has the highest spatial resolution is called
foveal vision. The resolution of the surrounding vision to the foveal vision decreases
rapidly and is known as the peripheral vision. Usually a non-regular grid is used to
resample the image in a process known as foveation [73]. Due to different algorithms
with which the visual information is processed, the HVS has a different sensitivity to
patterns with different densities. The minimum contrast that can reveal a change in
the intensity is called a threshold contrast and depends on the pattern density with
a contrast sensitivity function (CSF) [167,179]. The neurons in the visual cortex are
sensitive to particular combinations of the spatial and temporal frequencies, spatial
orientation, and directions of motion. This is well-approximated by two dimensional
Gabor functions [167,179]. To perceptually optimize the compression of images, the
spatially dependent CSF is used [2].

The LGN receives information directly from the ascending retinal ganglion cells
via the optic tract and from the reticular activating system. Both the LGN in the
right hemisphere and the LGN in the left hemisphere receive input from each eye.
However, each LGN only receives information from one half of the visual field, as
illustrated in Figure 2.3. This occurs due to axons of the ganglion cells from the
inner halves of the retina (the nasal sides) decussating (crossing to the other side
of the brain) through the optic chiasm. The axons of the ganglion cells from the
outer half of the retina (the temporal sides) remain on the same side of the brain.
Therefore, the right hemisphere receives visual information from the left visual field,
and the left hemisphere receives visual information from the right visual field. This
information is further processed inside LGN.

The number of visual nerves going out of the LGN is about 1% of the neurons
entering LGN. This suggests that in LGN a huge de-correlation of the visual infor-
mation is performed including binocular masking and extraction of binocular depth
cues. LGN fuses two input views to one output view called cyclopean image rep-
resenting the scene from a point between the eyes. This image is then carried by
the LGN axons fanning out through the deep white matter of the brain as the optic
radiations, which will ultimately travel to the primary visual cortex (V1), located
at the back of the brain. The binocular suppression theory and also anatomical
evidence suggest that a small part of the visual information received in each eye
might be delivered to V1 without being processed in LGN.
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2.3 Binocular suppression theory

This section deepens the concept introduced in section 2.1 and further describes the
conditions under which binocular suppression happens.

Binocular fusion occurs when a single binocular percept is produced by similar
lights striking corresponding parts of each retina. The mechanism of the underlying
fusion is imperfectly understood. One held interpretation of fusion assumes that the
monocular inputs contribute equally to the production of an emergent single percept.
Another alternative interpretation is the binocular suppression theory asserting that
fusion results from the suppression or inhibitory interaction of the monocular images.

The binocular rivalry as a type of perceptual processing is resolved early in the
visual pathway, resulting from mutual inhibition between monocular neurons in the
primary visual cortex [16].The perceptual dominance is influenced by the strength of
each stimulus i.e. the amount of motion or contrast in each view. This is sometimes
termed Levelt’s 2nd proposition [16, 75]. Moreover, an addition of a contextual
background can increase the predominance of the inconsistent target. Multiple
stages of mutual inhibition between neural populations happen in the HVS. The
neurons generating the dominant image inhibit the neurons corresponding to the
suppressed image, but over time the system fatigues and the strength of inhibition
reduces allowing the suppressed image to become dominant. This process continues
indefinitely [16,177].

In normal vision, there is some additional fusion to impulses from corresponding
points of the two retinas. The correspondence of the retinal elements is completely
rigid and un-changing; however, one of a pair of the corresponding points always
suppresses the other. In the presence of a contour, the suppressing power of retinal
elements on its sides is enhanced. In places where there is disparity of the contour
in one eye, then the eye retinal elements on both sides of this contour will suppress
corresponding points in the other eye. Diplopia happens when the extent of the
suppression is smaller than the disparity between the contours, but still depth per-
ception is expected. If the extent of the suppression is greater than the disparity
between the contours, one contour is suppressed and single vision occurs with depth
perception. It is possible that the contour of one part of the image may be dominant
in one eye, and that of another part may be dominant in the other eye. According
to the suppression theory, one of a pair of corresponding points always suppresses
the other, and it would consequently be anticipated that binocular mixtures of col-
ors could not occur. This is attributed to the widely believed assumption of the
binocular suppression theory [15], which claims that the stereoscopic vision in the
HVS fuses the images of a stereopair so that the visual perceived quality is closer to
that of the higher quality view.

Several subjective quality evaluation studies have been conducted to research the
utilization of the binocular suppression theory in asymmetric quality stereoscopic
video [11,20,105,142,152]. We shall return to this topic in more details in chapter 5.



Chapter 3

3D Content Visualization

This chapter provides information about scene characteristic and introduces different
3D displays describing how they are used for different required scenarios. A variety of
display devices providing 3D experience have been commercialized. Among the 3D
display solutions are stereoscopic displays requiring the use of polarizing or shutter
glasses, and multiview ASDs, where the views seen depend on the position of the
viewer relative to the display without requirement of viewing glasses.

3.1 Scene characteristics

Each scene can be characterized from several different perspectives. One point of
view is the 3D visualization, describing the content with different depth sensations
compared to the position of the viewer. This is one of the most familiar concepts
for scene visual assessment and is experienced daily by all of us. The result is to see
what happens around us knowing that e.g. how close is some particular object to us
and whether it is moving toward or from us. Recently, considering the improvements
in 3D visualization, many companies and research centers are actively involved in
3D video exploiting especially the need of users to watch movies, play games, and
communicate with devices in 3D. This is due to the fact that these devices provide
analogous feeling to users as if they were actually in the location of the scene, since
a similar depth perception feeling is created.

There has been some effort on providing an efficient technique to enhance 3D
videos by reducing the feeling of artificial clarity (including motion and disparity
information of 3D contents) which can be experienced by the viewers [186]. The
authors in [96] accomplish such aim by taking into account some characteristics of
the human visual perception to define a joint motion-disparity processing approach,
which is employed to enhance 3DV contents by reducing the feeling of artificial
clarity, and thus resulting in an improved user acceptance and satisfaction. In the
following sections different 3D displays are introduced and briefly explained.

15
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3.2 3D displays

An important first step towards a high quality 3D display system is defining the
requirements for its hardware and the images shown on it. Binocular vision provides
humans with the advantage of depth perception derived from the small differences
in the location of the similar points of the scene on the retina of the left and right
eyes. Precise information of the depth relationships of the objects in the scene are
provided by stereopsis. The HVS also utilizes other depth cues to help interpret
the two images. These include monocular depth cues, also known as pictorial [51]
and empirical [98] cues, whose significance is learnt over time, in addition to the
stereoscopic cue [98].

People with monocular vision are able to perform well when judging depth in
the real world. Therefore, 3D displays should be aware of the major contribution
of monocular 2D depth cues to depth perception and aim to provide at least as
good a basic visual performance as 2D displays. In [45] it is suggested that this
should include levels of contrast, brightness, resolution, and viewing range that
match a standard 2D display with the addition of the stereoscopic cue providing
depth sensation through a separate image for each eye.

Wheatstone in 1838 [174] demonstrated that the stereoscopic depth feeling could
be recreated by showing each eye a separate 2D image. Wheatstone was able to
confirm this feeling by building the first stereoscope and many devices have been
invented since then for stereoscopic image presentation having their own optical
configurations. Reviews of these devices and the history of stereoscopic imaging are
available in several sources, [13, 58,72,80,161].

3.3 Stereoscopic displays

Stereoscopic displays require users to wear a device, such as analyzing glasses, to
ensure that left and right views are seen by the correct eye. Many stereoscopic
display designs have been proposed and there are reviews of these in numerous re-
ports [13,58,80,84,161]. Most of these are mature systems and have already become
established in several markets, as stereoscopic displays are particularly suited to
multiple observer applications such as cinema and group presentation. Hence, it
seems that the display solutions based on glasses are more mature for mass markets
and many such products are entering the market currently or soon.

The lenses of polarizing glasses used for stereoscopic viewing have orthogonal
polarity with respect to each other. The polarization of the emitted light corre-
sponding to pixels in the display is interleaved. For example, odd pixel rows might
be of a particular polarity, while even pixel rows are then of the orthogonal polar-
ity. Thus, each eye sees different pixels and hence perceives different pictures. The
shutter glasses are based on active synchronized alternate-frame sequencing. There
is a synchronization signal emitted by the display and received by the glasses. The
synchronization signal controls which eye gets to see the picture on the display and
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for which eye the active lens blocks the eye sight. The left and right view pictures are
alternated in such a rapid pace that the HVS perceives the stimulus as a continuous
stereoscopic picture and therefore, depth sensation is provided.

3.3.1 Passive displays

Passive 3D displays require glasses with special lenses that filter images associated
to each eye to produce a 3D sensation. The two pictures are shown superimposed
on each other, with a filter on the screen to make the two pictures distinct. Watch-
ing such a display, the filters in the glasses guarantee that each eye only sees the
respective image that it is supposed to see. Viewing glasses are classified to different
categories based on the type of filters used. One solution is to exploit different filters
with usually chromatically opposite colors. This is known as anaglyph 3D glasses
and when the filtered content passes through the glasses, an integrated stereoscopic
image is revealed to the HVS. Another more popular type of glasses is polarizing
glasses where the glasses contain a pair of different polarizing filters. Each filter only
passes the light that has been similarly polarized and blocks the light polarized in
the opposite direction. Either orthogonal or circular polarizing filters for separating
the left and right eye view are utilized in polarized glasses.

Polarized glasses have the advantage that full color and refresh rate is perceived,
but the disadvantage is that special display hardware is required. In row interlaced
polarized displays, every other row is presenting the content of the left or right
view. Hence, since the vertical spatial resolution of the polarized display should be
divided between the left and right views, the perceived spatial resolution of each view
is half of the actual vertical resolution. Therefore, depending on the content, display
technology, and the software playing the 3D content, if a proper low-pass filtering
is not applied prior to the presentation of each view with half vertical resolution of
the display, an annoying aliasing artifact [33] might be visible.

Passive displays are more independent compared to active displays and do not
require any output device to synchronize their refresh rate. Passive displays require
polarized glasses which do not have any electronics or power needs, and therefore,
they are very light and inexpensive; but initial cost of the display itself is often
greater than the equivalent active 3D display. Moreover, as long as the cost is the
main factor, the passive method of displaying stereoscopic images is better suited
for large groups, since the expensive technology is primarily in the display rather
than in the glasses.

3.3.2 Active displays

Active 3D displays require glasses with electronic shutters that flicker in time, syn-
chronized with the frequency of the display, to separate the picture into two images
(or frames). The screen rapidly shows the left and right pictures, and a built-in
infrared emitter or radio transmitter tells the glasses how fast they have to shutter
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Figure 3.1: Auto-stereoscopic display

to make sure each respective image is delivered only to the corresponding eye. Each
image is only visible to a one eye, giving the effect of depth to the viewer.

The glasses are electronic devices including a receiver and power supply, so they
tend to be bulkier, less comfortable, and more expensive compared to passive glasses.
They mostly eliminate the cross-talk [71] which might be present in passive displays,
and as a result the same content is expected to have a higher subjective quality and
3D perception in active displays compared to passive ones. However, active glasses
have the advantage that the 3D content is perceived with the FR and color, but the
disadvantage is the necessity of active glasses and displays with very high refresh
rates to guarantee nonexistence of flicker. If, for instance, the display supports
frequency of 120 Hz, each view will have a refresh rate of 60 Hz.

3.4 Auto-stereoscopic displays

ASDs offer the viewer 3D realism close to what is experienced in the real world. In
real life we gain 3D information from a variety of cues. Two important cues are
stereo parallax i.e. seeing a different image with each eye, and movement parallax
i.e. seeing different images when we move our heads. ASDs combine the effects of
both stereo and movement parallax in order to produce the perceived effect similar
to that of a white light hologram [37]. Figure 3.1 shows the viewing space in front
of an ASD divided into a finite number of horizontal zones. In each zone only one
stereo pair of the scene is visible. However, each eye sees a different image and the
images change when the viewer moves his head between zones.

ASDs are a class of 3D displays which create depth effect without requiring
the observer to wear special glasses. Such displays use additional aligned optical
elements on the surface of the screen, ensuring that the different images are delivered
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to each eye of the observer. Typically, ASDs can present multiple views to the viewer,
each one seen from a particular viewing angle along the horizontal direction, creating
a comfortable viewing zone in front of the display for each pair of views. However,
the number of views comes at the expense of resolution and brightness loss. One key
element that influences the perceived performance of ASDs is the subjective quality
of the viewing windows that can be produced at the nominal viewing position.
The quality of respective viewing windows can degrade due to unresolved issues
in the optical design leading to flickering in the image, reduced viewing freedom,
and increased inter-channel cross-talk. These can reduce the quality of viewing
experience for observers in comparison to the stereoscopic 3D displays.

In general, due to the use of glasses, the 3D perception quality in ASDs is lower
compared to stereoscopic displays. Considering the number of views provided by
ASDs, they are categorized in two different classes, as explained in the following
sub-sections.

3.4.1 Dual-view auto-stereoscopic displays

In Dual-view ASD, two images are transmitted and each is visible from a different
perspective. There exist several observation angles and if correctly positioned, the
observers are able to see the 3D content from different viewing zones. Figure 3.1
shows a typical dual-view ASD where a finite number of zones in which a stereopair
is perceived, are created in front of the display.

To enable one display beaming two different images, several approaches have
been proposed of which the most common approach is to put an additional layer in
front of the thin film transistor liquid crystal display (TFT-LCD) [66,103,147]. This
layer alters the visibility of display sub-pixels, and makes only half of them visible
from a given direction. This layer, known as optical filter [159] has two common
types: lenticular sheet [162] and parallax barrier [159]. Lenticular sheet is an array
of magnifying lenses, designed to refract the light to different directions as shown
in Figure 3.2a [163]. Parallax barrier consists of a fine vertical grating placed in
front of a specially designed image, so it is basically blocking the light in certain
directions as shown in Figure 3.2b [66]. In both optical filter types, considering
that only half of the available sub-pixels on display are perceived with each eye, the
resolution of the perceived view by each eye is lower than the 2D resolution of the
display.

3.4.2 Multiview auto-stereoscopic displays

Multiview ASDs typically work in a similar way to the spatially-multiplexed dual-
view ASDs. However, instead of dividing the sub-pixels to only two views, typically
8 to 28 views are created. As for light distribution techniques, the same lenticular
sheets [162] or parallax barrier [159] are utilized. Lenticular sheet refracts the light
while parallax barrier blocks the light in certain directions, as shown in Figures 3.2a
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(a) (b)

Figure 3.2: Optical filters for auto-stereoscopic displays: a) Lenticular sheet, b)
Parallax barrier

and 3.2b, respectively.

Applying the optical filter limits the maximum perceived brightness of each sub-
pixel to a certain angle called optimal observation angle for that sub-pixel. The
optical observation angles of different sub-pixels for the same view are designed to
intersect in a narrow spot in front of the display. This spot tends to have the highest
brightness for that view. Moving sideways from this spot, still the view is visible
with a diminished brightness. The window in which the view is still visible is called
visibility zone of the view and in most multiview displays the visibility zones are
located horizontally in front of the display. In the horizontal structure, visibility
zones appear in fan shaped configuration similar to what is shown in Figure 3.1.
The last view of each visibility zone is followed by the first view of the adjacent
visibility zone. Hence, one central set of visibility zones are created directly in front
of the display and a number of identical sets are repeated.

Considering that the number of pixels available in the display is limited, there
exists a trade-off between the resolution of each view and the number of views
provided by the display. Since generally depth cues are perceived in the horizontal
direction, many multiview display producers do not allocate pixels for extra vertical
views [39,147,159,162]. The advantages of such an approach is that the viewers are
free to place their head anywhere within the visibility zone, while still perceiving
a 3D image. Also, the viewer can “look around” objects in the scene simply by
moving the head. Moreover, multiple viewers can be supported, each seeing 3D from
a desired own point of view (see Figure 3.3), discarding the requirement to head-
tracking with all its associated complexity. However, there are a few disadvantages
for multiview ASDs, from which we can mention the difficulty of building a display
with many views and also the problem of generating all the views simultaneously [25],
because each view is always being displayed regardless whether or not it is seen by
anyone. The behavior of an ideal multiview ASD is completely determined by four
parameters: the screen width, the visibility zone width, the number of views, and
the optimal viewing distance [38]. Considering the glasses-free approach used in
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ASDs and further improvements introduced in multiview ASDs providing the users
with more freedom to select an appropriate viewing point in front of the display,
multiview ASDs tend to be a potentially promising choice for future 3D displays.

(a)

(b)

Figure 3.3: Optical filters for multiview auto-stereoscopic displays: a) Lenticular
sheet , b) Parallax barrier
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Quality Assessment of 3D Video

Digital images typically undergo a wide variety of distortions from acquisition to
transmission and display, which usually result in the degradation of the subjective
quality. Hence, image quality assessment (IQA) is an essential approach to calculate
the extent of the quality loss. Moreover, IQA is used to evaluate the performance of
processing systems e.g. different codecs and enables the selection of different tools
and their associated parameters to optimize the processing steps. There has been
extensive research introducing new objective metrics [31, 79, 181] to evaluate the
subjective quality of images.

For the majority of processed digital images, the HVS is the ultimate receiver
and is the most reliable way of performing the IQA and evaluate their quality based
on subjective experiments (defined in ITU-R Recommendation BT.500 [115]). Sub-
jective evaluation is in general time consuming, expensive, and cannot be repeated.
Hence, the usage of subjective evaluation is limited and cannot be conducted for
the majority of the assessment scenarios. However, subjective quality assessment
is still the most trustable approach to evaluate different processing algorithms and,
for the cases where objective metrics fail to accurately estimate the visual quality or
there is need of more precise evaluations, it remains the only choice. Yet, the exis-
tence of the limitations mentioned above has triggered a trend to develop objective
IQA measures that can be easily embedded in the current systems. Some of these
objective metrics are introduced and discussed in the next section.

While objective metrics are unable to accurately estimate the subjective quality
of single-view images, this problem is boosted when stereoscopic images are to be
assessed due to the presence of two different images. This is because the HVS fusion
makes the final stereo content perceivable as described in chapter 2, the complete
HVS fusion process is not fully comprehended. Hence, other than the quality of the
left and the right views and also the introduced disparity between them, the structure
of the HVS becomes essential in evaluating the perceived quality of stereoscopic
content. Driven both by the entertainment industry and scientific applications in
the last decade, an important research topic in IQA, hereafter called 3D QA, is
the quality evaluation of stereoscopic videos. Although 3D QA has been studied
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abundantly recently [10,12,17,22,54,60,111,126,130,132,133,168,187], yet it remains
relatively unexplored and there is no widely accepted and used objective metric in
the research community. However, it is mandatory to evaluate the subjective quality
of stereoscopic videos in several test cases and experiments especially when aiming
to standardize a new codec targeting 3D content compression [3].

In a special case where asymmetric quality between the views is introduced, it
has been shown that the available objective metrics face some ambiguity on how
to approximate the perceived quality of asymmetric stereoscopic video [53]. As a
result, while in this thesis the asymmetric concept has been exploited frequently
in different experiments and studies, subjective evaluation of stereoscopic content
becomes an important issue and, hence it will be further explored in section 4.2.

4.1 Objective metrics

Objective IQA is accomplished through a mathematical model which is used to eval-
uate the image or video quality so that it reflects the HVS perception. The goal of
such a measure is to estimate the subjective evaluation of the same content as ac-
curately as possible. However, this is quite challenging due to the relatively limited
understanding of the HVS and its complex structure as explained in sections 2.2
and 2.3. Yet, considering that the objective metric is a fast and cheap approxima-
tion for the visual quality of the content and can be repeated for different processed
content easily, it has become a fair substitute of subjective quality assessment in
many applications. Therefore, researchers who do not have the resources to conduct
systematic subjective tests suffice to report only the objective evaluation of their
processing algorithm. However, in several cases e.g. stereoscopic content and es-
pecially asymmetric stereoscopic content, subjective tests remain the only trustable
option.

The objective quality assessment metrics are traditionally categorized to three
classes of full-reference (FRef), reduced-reference (RRef), and no-reference (NRef)
[31, 160, 180]. This depends on whether a reference, partial information about a
reference, or no reference is available and used in evaluating the quality, respectively.

FRef metrics In these metrics, the level of degradation in a test video is measured
with respect to the reference which has not been compressed or processed in general.
Moreover, it imposes precise temporal and spatial alignment as well as calibration of
color and luminance components with the distorted stream. However, in real time
video systems, the evaluation with full- and reduced-reference methods are limited
since the reference is not available and in most cases no information other than the
distorted stream is provided to the metric. Objective quality evaluations reported
in this thesis are all using FRef metrics.
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NRef metrics These metrics mostly make some assumptions about the video con-
tent and types of distortion and based on that, try to separate distortions from
the content. Since no explicit reference video is needed, this scheme is free from
alignment issues and hence, it is not as accurate as FRef metrics.

RRef metrics These metrics are a tradeoff between FRef and NRef metrics in
terms of availability of the reference information. These metrics extract a number
of features from the reference video and perform the comparison only on those
features. This approach keeps the amount of reference information manageable in
several applications while avoiding some assumptions of NRef metrics.

There exist several different proposals on how to measure the objective qual-
ity through automated computational signal processing techniques. In this section
several of these metrics are introduced.

The simplest and most popular IQA scheme is the mean squared error (MSE) and
Peak-Signal-to-Noise (PSNR) (which is calculated based on MSE). MSE and PSNR
are widely used due to the fact that they are simple to calculate, have clear physical
meanings, and are mathematically easy to deal with for optimization purposes e.g.
MSE is differentiable. However, they have been widely criticized for not correlating
well with the perceptual quality of the content, particularly when distortion is not
additive in nature [41, 44, 50, 71, 156, 169, 170, 178]. This is expected as MSE is
simply the average of the squared pixel differences between the original and distorted
images. Hence, targeting automatic evaluation of image quality so that it is HVS-
oriented (agrees with the human perceptual judgment), regardless of the distortion
type introduced to the content, several other objective measures are proposed [27,
31, 42, 59, 79, 92, 116, 129, 134, 171, 182] and are claimed to correlate more with the
HVS perception. Some other well-known objective metrics are briefly explained in
the following paragraphs.

SSIM Structural Similarity Index [171]. This metric compares local patterns of
pixel intensities that have been normalized for the luminance and the contrast. SSIM
expression is presented in (4.1) and has been used in [P3].

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4.1)

where
σ = standard deviation
µ = mean value of each signal
C1 = constant C1 is included to avoid instability when µ2

x +µ2
y is very close to 0

C2 = constant C1 is included to avoid instability when σ2
x + σ2

y is very close to 0

VQM Video Quality Metric [116]. This metric benefits from several steps. Briefly
described, this measure includes 1) sampling of the original and processed video
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streams, 2) calibration of both sets of samples, 3) extraction of perception-based
features, 4) computation of video quality parameters, and 5) calculation of the
general model. The used general model tracks the quality of the perceptual changes
presented as distortion in all components of the digital video transmission system
(e.g., encoder, digital channel, decoder). There is no simple mathematical way to
express the metric, and for more details, the reader is referred to [116].

PSNR-HVS-M PSNR Human Visual System Masking [109]. This metric takes
into account a model of visual-between contrast masking of the DCT basis functions
based on the HVS and the contrast sensitivity function. In this approach first the
weighted energy of DCT coefficients for a block with size 8x8 are calculated as shown
in (4.2).

Ew(X) =
7∑
i=0

7∑
i=0

X2
ijCij (4.2)

where
Xij is a DCT coefficient with indices i,j
Cij is a correcting factor determined by the CSF.
However, since the value of masking effect (Ew(X)/16) as presented in (4.2) can

be too large if an image block belongs to an edge,a new masking effect is proposed
in (4.3).

Em(D) = Em(D)δ(D)/16 (4.3)

where
δ(D) = (V (D1) + V (D2) + V (D3) + V (D4))/4V (D)
V (D) = variance of the pixel values in block D
The values of Cij are calculated as presented in [166].
Now considering the maximal masking effect Emax calculated asmax(Em(Xc), Em(Xd))

where Xc and Xd are the DCT coefficients of an original and impaired image block,
respectively, the visible difference between Xc and Xd is determined as (4.4).

X∆ij =


Xeij −Xdij , i = 0, j = 0
0 , |Xeij −Xdij| ≤ Enorm/Cij
Xeij −Xdij − Enorm/Cij , Xeij −Xdij > Enorm/Cij
Xeij −Xdij + Enorm/Cij , otherwise

(4.4)

where Enorm is
√
Emax/64

PSNR-HVS PSNR Human Visual System [42]. This measure is based on PSNR
and universal quality index (UQI) [169] which has been modified to take into account
the HVS properties. The modification considers removing the mean shifting and
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the contrast stretching using a scanning window according to the method described
in [169]. Moreover, MSE is calculated taking into account the HVS according to the
approach described in [169]. This is done by first removing the mean shifting and
the contrast stretching using a scanning window acocrging to the method described
in [169]. Then modified PSNR is defined as in (4.5).

PSNR−H = 10log(
2552

MSEH
) (4.5)

where MSEH is calculated taking into account the HVS according to the ap-
praoch described in [97] and shown in (4.6).

MSEH = K

I−7∑
i=1

J−7∑
j=1

8∑
m=1

8∑
n=1

((X[m,n]ij −X[m,n]eij)Tc[m,n])2 (4.6)

where
I,J denote image size
K = 1/[(I − 7)(J − 7)× 64]
Xij are DCT coefficients of 8x8 blocks
Xe
ij are DCT coefficients of the corresponding block in original image

Tc is the matrix of the correcting factors

VSNR Visual Signal-to-Noise Ratio [27]. This metric operates via a two-stage
approach. In the first stage, contrast thresholds for detecting distortions in the
presence of natural images are computed. If the distortions are below this threshold,
the image is dimmed to have perfect visual fidelity and no further analysis is required.
However, if the distortions are higher than the threshold, a second stage based on the
low-level visual property of the perceived contrast and the mid-level visual property
of the global precedence is applied. These two properties are modeled as euclidean
distances in the distortion-contrast space and VSNR is computed based on a linear
sum of these distances. For mathematical expressions the reader is referred to [27].

WSNR Weighted Signal-to-Noise Ratio [36]. In this metric, a degraded image is
considered as an original image that has been subject to linear frequency distortion
and additive noise injection. Then, these distortions are decoupled and the effect
of the frequency distortion and the noise quality degradation are calculated via
the distortion measure (DM) and the noise quality measure (NQM), respectively.
The NQM is based on Peli’s contrast pyramid and DM follows three steps of 1)
finding the frequency distortion, 2) computing the deviation of that frequency from
an all-pass response of unity gains, and 3) weighting the deviation by a model of
the frequency response of the HVS. Briefly said, WSNR is defined as the ratio of
the average weighted signal power to the average weighted noise power. Since the
mathematical way to express the metric is complicated, the reader is referred to [36]
for further information.
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VIF Visual Information Fidelity [134]. This metric quantifies the loss of image
information during the degradation process and explores the relationship between
the image information and the visual quality. The model calculates the information
that is presented in the reference image and based on how much of this reference
information can be extracted from the distorted image, the subjective quality of the
processed image is estimated. For respective equations reader is referred to [134].

MS-SSIM Multi-Scale Structural Similarity Index [172]. This method considers
the assumption that the HVS is highly adapted for extracting structural information
from the scene. Therefore, the proposed method is a multi-scale structural similarity
method (more flexible than single scale methods) exploiting an image synthesis
algorithm to calibrate the parameters that define the relative importance of different
scales. This is briefly described in (4.7).

SSIM(x, y) = [lM(x, y)]αM .

M∏
j=1

[cj(x, y)]βj [sj(x, y)]γj (4.7)

where

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

(4.8)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

(4.9)

s(x, y) =
σxy + C3

σxσy + C3

(4.10)

where

C1, C2, and C3 are small constants similar to those introduced in (4.1)

αM , βj, and γj are used to adjust the relative importance of different components

All metrics listed above, except VQM, are computed on the luma component of
the frame and the final index value for the whole sequence is averaged across the
results of frames.

The accuracy of PSNR and some other objective quality metrics to measure
the subjective quality has been studied recently with stereoscopic viewing [56, 57].
While no perfect correlation between any objective metric and the subjective results
were found, PSNR and some other FRef objective metrics were found to provide a
reasonable correlation with subjective ratings. Since there were no drastic differences
between different objective metrics, other than the conducted subjective experiments
in this thesis, PSNR or SSIM has been utilized as the objective quality evaluation
experiments in several publications [P1], [P3], [P4], [P5], and [P8].
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4.2 Subjective quality assessment

The subjective video quality assessment methods are based on one or several groups
of näıve or trained subjects viewing the video content, and scoring the quality of the
shown content [115]. Moreover, these tests should meet the ITU-T recommendations
for subjective quality assessment and hence, the tests must follow strict conditions
e.g. room illumination, viewing distance, test duration, content presentation, and
evaluators’ selection [114]. However, as subjective tests involve a separate rating for
each and every stimulus by all users, it is in general quite time consuming, especially
for a large set of test material. Therefore, it is not always possible to conduct such
a test and mostly it is limited to the cases where a reliable and vital decision needs
to be made. Considering the duration of the test, it cannot be used in cases where a
fast judgment needs to be made, e.g. the decisions which are made at the encoder to
optimize the coding parameters. Despite these drawbacks, as the results are quite
precise, subjective quality assessment is the most common approach used for formal
quality evaluation [3].

As discussed previously in 3D QA, since the HVS fusion is involved, the best
method is subjective assessment. Moreover, if asymmetry is used in the left and
right view, the objective evaluation schemes perform even worse in estimating the
subjective quality. Hence, in this thesis for several research topics [P2], [P3], [P6],
[P7], [P8], [P9], and [P10], subjective test evaluation were carried out to obtain
reliable quality assessment of stereoscopic content.

4.2.1 Test procedure

There are several methodologies to conduct a subjective test [106] and the interna-
tional recommendations for subjective video quality assessment e.g. ITU-R BT.500-
11 [115] specify how to perform different types of subjective quality assessments. In
general, these tests can be divided into two types, namely Single Stimulus Impair-
ment Scale (SSIS) and Double Stimulus Impairment Scale (DSIS) [115]. In SSIS,
viewers only evaluate the quality of impaired stimulus i.e. observing only the pro-
cessed content and rating them. On the other hand, in DSIS there is a reference
where subjects rate the quality or change in the quality while switching from the
reference to the video content being evaluated. In this approach, each impaired
video is accompanied with its reference video so the subjects can always evaluate
the respective quality of the processed content compared to the anchor. Each ap-
proach has its own advantages e.g. DSIS method is claimed to be less influenced by
content. In other words, ratings in DSIS, evaluation is less sensitive to the quality
drop level and also presentation order of impaired content as they are constantly
compared to the reference and hence, are evaluated more robustly. On the other
hand, it has been claimed that a more representative quality estimate for quality
monitoring applications results by considering SSIS [106]. DSIS [115] has been used
in [P2], [P3], [P6], [P7], [P8], [P9], and [P10].
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Subjects attending each subjective test can be selected from näıve or expert/
experienced users, depending on the target of the quality investigation. In most
cases, un-experienced users in the video coding field are selected, as mostly the
output of the encoding is to be observed by all types of subjects and is not limited
to a specific group of users. However, in some cases the target of an experiment
is to assess the presence and severity of some specific coding artifact, e.g. blurring
or blocking artifacts, and hence, experts are selected as subjects to evaluate the
subjective quality.

Prior to performing each subjective test, several visual tests should be conducted
for all participants to confirm that they are eligible to attend the test. Specifically,
subjects are first tested for far and near visual acuity, stereoscopic acuity (Randot
test), contrast sensitivity (Functional Acuity Contrast Test), horizontal and vertical
phoria (Maddox wing test [120]), near point of accommodation and convergence
RAF gauge test [95], and the interpupillary distance. For stereoscopic quality eval-
uation, stereo vision is also evaluated to confirm that the subjects are capable of
evaluating 3D content. In all experiments, viewers who are not found to have nor-
mal visual acuity and stereopsis are rejected. Different prior visual evaluations are
used and presented in different experiments presented in this thesis. Moreover, at
the beginning of each test we started the evaluation with a combination of anchor-
ing and training. Participants were shown both extremes of the quality range of
the stimuli to familiarize them with the test task, the contents, and the variation
in quality they could expect in the actual tests that followed. We presented each
video sequence twice and in a random order for all test experiments to achieve more
accurate scores from each subject.

4.2.2 Analyzing subjective scores

In subjective evaluations, conventionally the results are reported based on the aver-
age subjective scores and the 95% Confidence Interval (CI). The 95% CI reports the
interval in which 95% of the scores are located and hence, is a good representative
on how close the subjective scores were. So, if the relative length of CI is small
compared to the used scale, it shows accuracy of quality estimation from subjects
and increases the reliability of the results. The amount of overlap between confi-
dence intervals of subjective scores for two test cases is an indicator whether they
are significantly different or not. However, it is not always possible to evaluate the
significance difference between the quality of two test cases based on subjective score
figures and further mathematical analysis is required. This concept is handled typ-
ically by considering the raw scores from different subjects and different test cases
and making the comparison over those values rather than only considering the mean
score and 95% CI for each test case. Wilcoxon’s test [175] is one method to measure
differences between two related and ordinal data sets as used in [34]. Conventionally
a significance difference level of p ≤ 0.05 is used to separate the subjective scores
for different test cases, i.e. when p > 0.05 then the test cases are supposed not to
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have subjectively significant difference; otherwise, their subjective quality is consid-
ered distinguishable. In publications [P2], [P6], and [P8] included in this thesis such
analysis was used to make statistical conclusions about the preference of subjects.

4.3 Subjective quality of 3D video

In the recent years, an increase in the number of 3D movies and applications, e.g.
3D gaming and hand-held devices featuring a 3D display, is observed. Moreover,
few television channels are commercially broadcasting stereoscopic video content
while several user devices are already capable of processing stereoscopic content.
One of the principal methods to extract 3D content is to watch the content with
shutter glasses or polarized glasses (as explained in section 3.3). However, there are
several cases where 3D content is playing on a display but viewers are not necessarily
using viewing glasses and cannot be considered as active 3D viewers. The recently
opened Sky 3D pubs in Ireland and UK [4] are examples of such situation where
some costumers are active 3D viewers while others, e.g. the staff or other costumers
are just momentarily peeking at the display showing 3D content. To evaluate the
subjective quality of a stereoscopic video, we consider two cases where in the first
case, users wear viewing glasses and in the second case, they watch the same content
without viewing glasses. These are discussed in the following sub-sections.

4.3.1 Viewing 3D content with glasses

Subjects observing the stereoscopic content with glasses expect good general quality
of the content (i.e. no encoding artifacts) as well as an acceptable depth sensation.
High quality of the content can be achieved with an optimized encoding of the
views considering the available budget for the bitstream while depth perception can
be handled based on the disparity between the views. In other words, increasing
the disparity between the left and right views increases the depth perception while
decreasing the disparity causes less depth feeling and hence, lower 3D sensation.

An annoying artifact while watching 3D content with glasses is cross-talk [70].
This artifact is perceived as shadow or double contours due to imperfect optical
separation between the left and the right views by filters of passive glasses or small
lack of synchronization between shutters on active glasses and the displayed left and
right views on the display [144]. Under this condition, the opposite view, which
should have been blocked by the viewing glasses, is observed by the non-respective
eye causing a cross-talk. This has been reported as one of the main disturbing
perceptual effects while watching stereoscopic content with viewing glasses [65].
The extreme case of such an artifact happens in the case when viewing glasses are
not used to observe the 3D content. In this condition, both the left and right views
are equally visible to both eyes and the subjective quality of the content becomes
unpleasant and not acceptable. This topic is further covered in the next sub-section.
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4.3.2 Viewing 3D content without glasses

3D video observation on stereoscopic display without glasses sounds quite annoying
since each eye sees both views simultaneously. This effect is called ghosting artifact
in this thesis where one view appears as a ghost besides the other view and since both
eyes observe both views simultaneously and with the same quality and intensity,
a double edge effect due to ghosting artifact is observed. In this case, the 3D
perception can be improved by decreasing the visibility of one view and increasing
the similarity of its presentation to the other view. This can be done through
some modifications and renderings applied to one of the views taking into account
the characteristics of both views and the stereoscopic video in general. Hence, the
ghosting artifact is reduced and subjects can view a more pleasant content which
is modified to present a more aligned content with one of the two views as in 2D
presentation. However, it should be noted that this rendering should not sacrifice
the depth sensation of the same content when viewed with glasses.

A new algorithm has been introduced in [P2] to render two views is such a way
that one view is selected as the dominant view while the other is marked as the
non-dominant view. The non-dominant view was modified to become more similar
to the dominant view and a threshold between the 2D and 3D presentation was
found through a series of subjective tests. This threshold defines how and to what

Figure 4.1: Simultaneous 2D and 3D presentation of 3D content as introduced in
[P2]
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extent the non-dominant view can be modified so that both 2D and 3D perceived
qualities remain satisfactory. The novel technique is represented in Figure 4.1,
while Figure 4.2 presents few sample images comparing the 2D presentation of the
original and modified stereoscopic content with the algorithm proposed in [P2]. In
these images the manipulated stereopairs tend to be more similar to 2D views while
the 3D perception and depth feeling is preserved to an acceptable extent. However,
in the 2D presentation, the relative increase in the subjective quality of stereoscopic
content rendered with the proposed algorithm compared to the quality of the original
stereoscopic content is considerably higher when shown on a 3D display compared
to what is presented in Figure 4.2.
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(a) (b)

Figure 4.2: 2D presentation of stereoscopic video combinations from (a) original
stereopair and (b) proposed rendered stereopair
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Asymmetric Stereoscopic Video

5.1 Introduction

In stereoscopic videos two synchronized, monoscopic video streams are included and
normally the left and the right views have similar quality, i.e., both views have the
same spatial resolution and have been identically encoded. In some cases, the quality
of one view is intentionally degraded compared to the other one. This is attributed
to the widely believed assumption of the binocular suppression theory [15] that the
HVS fuses the two images in such a way that the perceived quality is closer to that
of the higher quality view. The general presentation of an asymmetric stereoscopic
video is depicted in Figure 5.1 where the encoding has decreased the quality of the
left view compared to the right view.

Considering that asymmetric stereoscopic video deals with quality reduction in
one view, one might ask what are the criteria to decide which view should have the
lower quality and on which factors does this decision depend. One important related

(a) Lower quality view (b) Higher quality view

Figure 5.1: Asymmetric stereoscopic video

35
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Figure 5.2: Average subejctive ratings and 95% confidence intervals for different eye
dominant subjects

topic is the eye dominance of viewers. Approximately 70% of the world population
is right eye dominant [110] while the rest are left eye dominant. This assures that
if eye dominance has an effect on the perceived quality of asymmetric video, it is
better to provide the left view with a lower quality, since the majority of viewers
are right eye dominant. One approach to test this is to conduct an experiment
with asymmetric stereoscopic sequences where in half of the sequences, the left view
has a lower quality, while in the other half, the right view has a lower quality. A
group of left and right eye dominant subjects are then asked to view these sequences
and rank them subjectively. The relevance of eye dominance can then be evaluated
for asymmetric stereoscopic video. In [8] such an experiment was performed and
it was discovered that subjective ratings of asymmetric quality sequences are not
statistically impacted by eye dominance. This conclusion was achieved for different
video sequences while the same outcome has also been confirmed in the literatures,
e.g., [88,130] for still images. The experiments included using MR stereoscopic video
where in half of the test material the left view was downsampled with ratios 1

2
, 3

8
,

and 1
4

in the horizontal and vertical directions and in the other half, the right view
was downsampled with the same ratios. Moreover, half of the subjects were right
eye dominant while the other half was left eye dominant. All subjects assessed the
quality of both asymmetric video sequences. The results of the mean subjective
scores and the associated 95% CI are depicted in Figure 5.2. Considering very close
mean subjective scores and largely overlapping 95% CI, it was concluded that eye
dominance of the viewers and the perceived subjective quality based on the direction
of asymmetry (left view or right view having a lower quality) are not statistically
related.
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5.2 Types of asymmetry

There are several approaches to achieve asymmetry between the two views of a
stereoscopic video. Different techniques are depicted in Figure 5.3, while two or
more methods can be combined and used to obtain asymmetric videos.

Mixed-resolution (MR) stereoscopic video. MR was first introduced in [105] and
is also referred to as resolution-asymmetric stereoscopic video. In this scheme, one
of the views is low-pass filtered and hence has a smaller amount of spatial details.
Furthermore, the low-pass filtered view is usually sampled with a coarser sampling
grid, i.e., represented by fewer pixels. This view should be upsampled to the FR
i.e. the same resolution as the other view before being displayed. Therefore, the
combination of LPF and subsampling causes blurring effect on the manipulated
view.

Mixed-resolution chroma sampling. The chroma pictures of one view are repre-
sented by fewer samples than the respective chroma pictures of the other view [11].
It has been shown [11] that downsampling chroma components does not affect the
subjective quality of asymmetric video compared to symmetric video provided that
the downsampling ratio is properly selected, as it depends on the image size and the
image content.

Asymmetric sample-domain quantization. The sample values of the two views
are quantized with a different step size [P9]. For example, the luma samples of one
view may be represented with the range of 0 to 255 (i.e., 8 bits per sample) while the
range may be scaled to 0 to 159 for the second view. Thanks to fewer quantization
steps, the second view can be compressed with a higher ratio compared to the first
view. Different quantization step sizes may be used for luma and chroma samples.
As a special case of asymmetric sample-domain quantization, one can refer to bit-
depth-asymmetric stereoscopic video when the number of quantization steps in each
view matches a power of two.

Asymmetric transform-domain quantization. The transform coefficients of the
two views are quantized with a different step size. As a result, one of the views has
a lower fidelity and may be subject to a greater amount of visible coding artifacts,
such as blocking and ringing. This type of asymmetry has been studied in [P3]
and [130].

A combination of different encoding techniques. An example of such a combina-
tion is illustrated in 5.3.e. This technique combines MR and asymmetric transform
domain quantization was explored further in [P3], [P9], and [20,152].
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Figure 5.3: Examples of different types of asymmetric stereoscopic video coding

Each method brings some efficiency and higher performance while potential
drawbacks are introduced to the codec too. In the next section the performance
of each asymmetric approach is analyzed in more detail by presenting the compari-
son results with the anchor symmetric schemes.

5.3 Motivation for using asymmetric stereoscopic video

In this section, we go through different types of asymmetric schemes introduced
in the previous section and justify their utilization. First a general introduction to
low-pass filtering and down/upsampling processes is provided, as they are commonly
used in some of the proposed methods.

5.3.1 Low-pass filtering

Low-pass filtering the texture views targets removing the high frequency components
while keeping the spatial resolution and general structure of the image untouched.
This enables the compression of the same content with reduced number of bits since
less detail (high frequency components) need to be encoded. In the case where videos
are presented in polarized displays, a downsampling with ratio 1

2
along the vertical

direction is applied to the content. This is because the vertical spatial resolution of
the display is divided between the left and right view and hence, each one has half
the vertical resolution (as described in sub-section 3.3.1). In such cases, depending
on the display and content, a huge aliasing artifact [33] might be introduced while
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perceiving the stereoscopic content. However, applying LPF reduces such artifact
considerably since the high frequency components responsible for the creation of
aliasing are removed in a pre-processing stage [52]. Therefore, in several cases such
as [1], low-pass filtering is applied before spatial downsampling the image to reduce
aliasing. The down/up sampling algorithms are further discussed in the next sub-
section.

5.3.2 Down/up sampling

Downsampling or subsampling in signal processing reduces the sampling rate of a
signal. This is usually done to reduce the data rate or the size of the data. Image
downsampling is performed by selecting a specific number of pixels, based on the
downsampling ratio, out of the total number of pixels in the original image. This
will result in presenting the original image with a lower respective spatial resolution.

Downsampling in image/video coding is basically applied in one of the first steps
to reduce the complexity of the next steps introduced in the coding scheme. The
complexity reduction refers to a decrease in number of operations per pixel required
to encode the original image. Hence, if an encoding algorithm is used to compress
an image with size W (width) and H (height), after downsampling the image to res-
olution W ′ and H ′ (where W ′ ≤ W and H ′ ≤ H), the required number of operation
per pixel are kept constant while the total number of operations required to encode
the downsampled image are reduced by factor W ′

W
× H′

H
. This is an important issue in

several cases where a limited power is available for the codec, e.g. in mobile or other
handheld devices which work with battery. Figure 5.4 illustrates the execution time
required to encode one view with full and quarter resolution for several sequences
with 3DV-ATM software [5]. The simulations were performed on Windows OS with
a quad-core CPU with a clock rate of 2.8GHz. These results are in agreement with
those reported in our experiments in [P3] and show a substantial execution time
reduction while encoding the lower resolution content. Furthermore, by downsam-
pling it is possible to reduce the needed storage memory and bandwidth required
for transmission and/or broadcasting. After storage, manipulation, or transmission,
the downsampled content will be upsampled to the original resolution for displaying.

Other than downsampling ratio, the format of the video should be considered
while downsampling too. Depending on whether it has e.g. YUV or RGB format,
downsampling should be applied to different components in such a way that the out-
come is well presented by the same format. Simple subsampling is the easiest method
to downsample a video by selecting one pixel value to represent a group of pixels.
There are numerous filters proposed and analyzed by researchers [55,93,128,183], to
perform the required down/up sampling but the filters presented in [1] are the stan-
dardized approach utilized widely by researchers. In this approach the anti-aliasing
filter will be applied before downsampling and upsampling is based on interpolating
the missing pixel values by a 6-tap filter. This state-of-the-art resampling technique
is designed specifically for best perceived quality of video after down/up sampling
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Figure 5.4: Encoding times for full and quarter resolution views

and provides a higher PSNR for subsampled texture views compared to other similar
proposed algorithms.

5.3.3 Performance analysis of different asymmetric types

In this sub-section, we review the efficiency of different asymmetric stereoscopic
types and report the results and previous art concerning each scheme.

Mixed-resolution (MR) stereoscopic video coding This is one of the commonly
used and well-studied types of asymmetry between the views. A major force behind
many research activities in video coding is to reduce the complexity of the straight-
forward encoder and decoder implementation as decreasing the spatial resolution
of one view results in reducing the number of pixels involved in the encoding and
decoding compared to the case where FR content is used. In return, two steps are
added to the whole process from encoding the original input video until display-
ing the content for the end user. These steps are downsampling the original FR
frame using the associated downsampling ratio prior to encoding and upsampling
the decoded frame to have FR frames in both views of the final stereoscopic video.
This is depicted in Figure 5.5. However, the downsampling and upsampling per-
form considerably smaller number of operations per pixel compared to encoding and
decoding and hence, is expected to yield substantial reduction in complexity [P3]
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Figure 5.5: Block diagram illustrating the placement of down and upsampling blocks
for different applications

and [20,43].

Another benefit of MR stereoscopic video coding is the bitrate reduction due
to the smaller number of pixels to be encoded compared to the FR case. If the
left and right views are encoded in simulcast mode (no inter-view prediction) the
bitrate needed to encode MR with the same quantization parameter (QP) as FR
stereoscopic video is reduced as a smaller number of pixles is encoded. The amount
of bitrate reduction depends on the downsampling ratio and video content. However,
this comes at the price of degrading the subjective quality of the view with the lower
spatial resolution. The subjective quality of MR scheme has been extensively studied
in the literature [P5], [P6], [P10], and [20, 142, 152]. The results confirm that the
perceived quality of the MR videos is closer to that of the higher resolution view.

The subjective impact of uncompressed MR sequences at downsampling ratios of
1
2

and 1
4

applied both horizontally and vertically was studied in [142]. A combination
of a data projector and shutter glasses were used as the viewing equipment with a
viewing distance equal to 4H (where H is the height of the frame). It was found
that the perceived sharpness and the subjective image quality of the MR image
sequences were nearly transparent at the downsampling ratio of 1

2
in both directions

but dropped slightly at the ratio of 1
4
.

In [152], it was confirmed that the perceived quality of MR video was closer to the
subjective quality of the view with the higher resolution. In this thesis also a series
of subjective tests was performed to evaluate the perceived quality of compressed
MR stereo video compared to FR stereo video. Results in [P3] showed that in
most cases, if one view is downsampeld with a ratio of 1

2
along both coordinate

axes, the subjective quality will not degrade considerably compared to FR scheme,
under the same bitrate constraint. In addition to confirming the results of [152],
conclusions in [P3] reveal than most compressed MR video sequences where one view
is downsampled with a ratio 1

2
provide a similar subjective quality to FR scheme,

while decreasing this ratio to 3
8

introduces severe quality degradation that rejects
the idea of exploiting such downsampling ratio in MR format.

To increase the coding performance, and as introduced in H.264/MVC [29],
inter-view prediction can be enabled. An implementation of MR scheme includ-
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ing inter-view prediction enabled is presented in [20]. However, in this case, since
the spatial resolution of the left and right views is not the same, the performance
of inter-view prediction is lower compared to FR scheme where both views have
the same resolution. Authors in [20] performed two sets of subjective studies for
full- and mixed-resolution stereo video on a 32-inch polarization stereo display and
on a 3.5-inch mobile device. In MR scheme, the spatial resolution of one view was
downsampled to half in both directions. The results revealed that the higher the
resolution, the smaller the subjective difference is between FR and MR stereoscopic
video. An equivalent result was also discovered as a function of the viewing dis-
tance by changing the distance from 1 to 3 meters. The conclusion was that the
greater the viewing distance, the smaller the subjective difference becomes between
FR and MR. Moreover, the study showed that the performance of the encoding
process differed based on the direction of the inter-view prediction. It was shown
that the prediction from the high resolution to the low resolution view, outperforms
the prediction from the low to the high resolution view.

Asymmetry achieved with MR scheme does not always have to include down-
sampling one view while keeping the other view with FR. In this thesis, it has been
shown that downsampling different views along different directions may result in
a better subjective quality compared to the conventional MR schemes [P6]. This
scheme, called cross-asymmetric MR, considers the SI and characteristics of each
view and chooses the direction in which each view should be downsampled and
hence, one view is downsampled in vertical direction while the other view is down-
sampled in horizontal direction. The subjective results [P6] show that this scheme
outperforms conventional MR scheme and this is because of performing automatic
downsampling based on the content of each view and preserving the spatial resolu-
tion of views in the directions where they have the higher SI. Moreover, the number
of pixels involved in the encoding and decoding process decreases in the proposed
scheme.

Another research conducted in this thesis based on the principle of MR asym-
metric texture is introduced in [P5] wherein a depth-enhanced multiview scenario
including 3 views, the spatial resolution of the side views is reduced to quarter the
resolution of the central view and hence, an average 4% and 14.5% delta bitrate
reduction (using Bjontegaard delta bitrate and delta luma PSNR metrics [14]) for
coded and synthesized views is achieved, respectively. This topic is further discussed
in sub-section 6.6.2.

In general, it can be concluded that MR stereoscopic video is a promising ap-
proach to decrease the bitrate and complexity and yet achieve comparable quality
compared to FR scheme. However, the downsampling ratio and the type of MR
scheme should be selected based on the targeted application and the video content
to provide the highest efficiency.

Mixed-resolution chroma sampling. Changing the spatial resolution of the chroma
component was already discussed with the MR stereoscopic video. However, [11]
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perform analysis on stereo images and reports that if downsampling is only applied
to chroma components, the subjective quality of the decoded data is not degraded
much on a stereosocpic display. This approach also benefits from the lower bitrate
consumption for the encoding and also the complexity decrease both at the encoder
and decoder.

Asymmetric sample-domain quantization. In this approach, the pixel values of
the left and right views are quantized utilizing a different quantization step size [P9].
This is done by changing the scaling range e.g. following the same algorithm used
for the weighted prediction mode of the H.264/AVC standard [117]. This is reported
in (5.1):

q = round(
i× w

2d
) = (i× w + 2d−1)� d (5.1)

where:

q is the quantized sample value

round is a function returning the closest integer

i is the input value of the luma sample

w is the explicit integer weight ranging from 1 to 127

d is the base 2 logarithm of the denominator for weighting (fixed to 8 in our
experiments)

This equation is the same formula used in H.264/AVC weighted prediction and
w
2d

is referred to as the luma value quantization ratio.

Inverse quantization of sample values to their original value range is achieved by
(5.2):

r = round(q′ × 2d

w
) (5.2)

where:

r is the inverse-quantized output value

q′ is the scaled value of the luma sample as output by the transform-based decoder

Other parameters are the same values as used in the sample value quantization
(5.1).

Applying such quantization prior to encoding guarantees a relatively lower bi-
trate compared to the case where quantization is not applied. However, a tradeoff
between the subjective quality degradation and the bitrate reduction should be con-
sidered when exploiting this type of asymmetry.

Considering our scheme presented in [P9], we studied in which conditions MR
stereoscopic video coding outperforms symmetric stereoscopic video coding. The
results were presented over both MR coding and MR coding applied together with
asymmetric sample-domain quantization. These results were reported in [P9]; how-
ever, here the conclusions of those results are further analyzed statistically.
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Table 5.1: Spatial resolution of the sequences for different downsampling rates

Full 5
6

3
4

1
2

Undo Dancer 960x576 800x480 720x432 480x288
Others 768x576 640x480 576x432 384x288

The simulations were performed with four sequences: Undo Dancer, Kendo,
Newspaper, and Pantomime. A display capable of standard definition (SD) televi-
sion or wide SD was the target display in these experiments. Hence, the sequences
were downsampled from their original resolutions to the lower resolution (Full) as
mentioned in Table 5.1.

For each sequence, the left view was coded using H.264/AVC [117] while three
pre/post processing methods i.e. downsampling, sample value quantization, and
transform coefficient quantization, were applied to the right view, which was also
coded with H.264/AVC. The comparison was made so that the bitrate of the left
and the right views for different combinations was always kept the same. The coding
methods included in the subjective comparison were the following:

1. Symmetric stereoscopic video coding. No downsampling or quantization of
luma sample values.

2. MR stereoscopic video coding.
3. Combined MR and asymmetric sample-domain quantization.
In order to have a representative set of options for MR coding, three bitstreams

per sequence and bitrate were generated, each having a different downsampling ratio
for the lower-resolution view. The subjective results achieved for stereoscopic video
in [8] motivated us to use downsampling ratios equal to or greater than 1

2
. Hence,

downsampling was applied to obtain a spatial resolution of 1
2
, 3

4
, and 5

6
relative to

the FR along both coordinate axes. Table 5.1 presents the spatial resolution used
for different sequences.

As the number of potentially useful combinations for the downsampling ratio
and the luma value quantization ratio is large, their joint impact on the subjec-
tive quality was studied first through expert viewing to select particular values for
the downsampling ratio and the luma value quantization ratio for the subsequent
formal subjective quality evaluation. The following subset of asymmetric parame-
ter combinations was found to be performing well and hence selected to be tested
systematically:

1. MR stereoscopic video coding, downsampling ratio 1
2

2. MR stereoscopic video coding, downsampling ratio 3
4

3. MR stereoscopic video coding, downsampling ratio 5
6

4. MR stereoscopic video coding, downsampling ratio 3
4 , combined with asym-

metric sample-domain quantization with ratio 5
8 i.e. d = 3 and w = 5.

In order to compare the selected coding schemes, bitstreams with an equal bitrate
were generated. In order to keep the duration of the subjective viewing session
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(a) (b)

Figure 5.6: Subjective test results for (a) low bitrate and (b) high bitrate sequences

reasonable, only two bitrates were selected and used for the formal subjective test
experiment. The QP selection of different methods is reported in Table 5.2 while
the tested bitrates are presented in Table 5.3. Moreover, Table 5.3 includes the
PSNR values that were achieved with symmetric coding in order to provide a rough
quality characterization of the tested sequences.

12 subjects attended this experiment. Their age varied from 19 to 32 years with
an average age of 23.6 years. Figure 5.6 shows the average subjective viewing

Table 5.2: QP selection of different methods for the left view (right views are iden-
tical for different coding methods of each sequence)

QP of Lower - Higher bitrate
Resolution 1

1
1
2

3
4

5
6

3
4

Sample-domain quantization 1
1

1
1

1
1

1
1

5
8

Pantomime 44 - 35 35 - 28 40 - 32 41 - 33 36 - 30
Undo dancer 45 - 32 35 - 24 40 - 28 42 - 30 36 - 26
Kendo 45 - 38 34 - 29 40 - 34 42 - 35 36 - 30
Newspaper 45 - 33 35 - 26 40 - 30 42 - 31 36 - 26

Table 5.3: Tested bitrate values per view and the respective PSNR values achieved
by symmetric stereoscopic video coding with H.264/AVC

Sequence Bitrate (Kbps) - PSNR (dB)
Pantomime 445.8 - 31.93 343.9 - 30.0
Undo dancer 301.5 - 29.2 224.6 - 27.73
Kendo 280.3 - 33.25 238.5 - 32.0
Newspaper 148.0 - 30.0 115.4 - 28.3
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Table 5.4: Statistical significance differences (SSD) of asymmetric methods against
FR symmetric(1 = there is SSD, 0 = No SSD)

Sequence
Quality Asymmetric coding Undo Dancer Kendo Pantomime Newspaper

Lower bitrate

MR 1
2 1 1 0 1

MR 3
4 1 1 0 1

MR 5
6 1 1 0 0

MR 3
4 + SDQ 5

8 1 1 0 1

Higher bitrate

MR 1
2 0 0 0 0

MR 3
4 0 0 0 0

MR 5
6 0 0 0 0

MR 3
4 + SDQ 5

8 0 1 0 0

experience ratings for all bitstreams. It can be concluded from Figure 5.6a that the
asymmetric subjective results outperformed the FR symmetric approach in 3 out of
4 cases in the lower bitrate. On the other hand, Figure 5.6b suggests that at a higher
bitrate, no asymmetric coding method significantly outperformed the FR symmetric
case. These observations were confirmed with statistical significance comparison
results achieved by the Wilcoxon signed-rank test [175] as presented in Table 5.4. In
this flag table, 1 presents statistical significant differences (SSD) between subjective
scores while 0 shows no SSD between the ratings. In Table 5.4 all subjective scores
of MR schemes is compared against FR scheme while no SSD among the different
MR methods was observed. Considering that the quality difference of the lower
and higher bitrates was only 1.58 dB in average luma PSNR (see Table 5.3), we
believe that there exists a threshold which governs whether the subjective quality
dominance switches between symmetric and asymmetric compression methods. This
threshold appeared to be sequence dependent as seen from the PSNR values reported
in Table 5.3 and hence, should be further studied. Yet, it is an informative indicator
on the existence of such fine threshold separating the dominance of symmetric and
asymmetric content under tested conditions.

Asymmetric transform-domain quantization This is mostly done by applying
different quantization steps to transform coefficients of the left and right views.
This approach has been extensively studied in the literature [19, 125, 145, 152] and
the general conclusion is that the perceived quality of the quality-asymmetric videos
is approximately equal to the average of the perceived qualities of the two views.
This conclusion has also been confirmed in one experiment presented in [P3] where
the subjective scoring of symmetric and quality-asymmetric stereoscopic videos were
found to be similar.
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Combining different asymmetric schemes A presentation of different combina-
tions of asymmetry is illustrated in Figure 5.3e. In this scheme, one view is not
manipulated; however, the other view is impaired using more than one processing
phase e.g. a combination of spatial resolution reduction, chroma downsampling,
increasing the QP applied to the transform coefficients, and/or sample value quan-
tization. The performance of such a combination should be verified on different
content as it has been shown that there might exist a threshold which by crossing
it, the preference between symmetric and asymmetric stereoscopic content switches.
Research results on MR and asymmetric transform domain quantization is presented
in [P3], [P9] and [20,152].

5.4 Limits of asymmetry

While confirmed in the literature that different types of asymmetric stereoscopic
video in several cases visually outperform symmetric stereoscopic videos [P3], [P6]
and [8,20,124], the amount of this asymmetry remains ambiguous. Many researchers
have done excessive experiments to determine the limits for different types of asym-
metry between the left and right view of a stereopair so that the quality decrease is
not visible to viewers, and yet a higher encoding performance is achieved compared
to the symmetric case.

One general conclusion for the asymmetric subjective quality of stereoscopic
video as a function of the viewing distance is that by increasing the viewing distance,
the perceived difference between MR and FR stereopair decreases [P10] and [20].
This is due to the fact that the high frequency components removed from one view,
due to LPF applied before downsampling the spatial resolution, are not visible from
a further distance while they might be more noticeable when the viewer is closer to
the display.

In MR asymmetric stereoscopic videos, a downsampling ratio applied to one view
has a critical rule in the final subjective quality of the content. In this thesis, the
impact of downsampling ratio in MR stereoscopic video was studied [P3]. Down-
sampling ratios 1

2
, 3

8
, and 1

4
were applied vertically and horizontally and stereo video

sequences were played on a 24-inch polarized display. A correlation comparison be-
tween the subjective results and the average luma PSNR showed that under our test
condition, there exists a breakdown point between downsampling with ratios 1

2
and

3
8
, at which the lower-resolution view becomes dominant in the subjective quality.

Another research studied the subjective impact of uncompressed MR sequences
at downsampling ratios of 1

2
and 1

4
along both coordinate axes [142]. It was found

that the perceived sharpness and the subjective image quality of the MR image
sequences were nearly transparent at the downsampling ratio of 1

2
but dropped

slightly at the downsampling ratio of 1
4
.

Different qualities between the left and right view can be achieved using different
quantization steps too, resulting in different PSNR values for the views. However, it
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is not clear what should be the level of this asymmetry. Extensive subjective tests
conducted in [125] show that when the reference view is encoded at a sufficiently
high quality, encoding the auxiliary view above a low-quality threshold, guarantees
that the subjective quality of such asymmetric stereoscopic video can be perceived
without a noticeable degradation. It was shown that the low-quality threshold
may depend on the 3D display. The subjective results confirm that this threshold
should be 21 dB for parallax barrier display and 33 dB for polarized projection
display. The authors in [125] further confirmed that at higher bitrates, SNR scaling
yields more favorable results compared to spatial resolution reduction. However, the
blockiness caused by SNR scaling proved to be more noticeable than blurring caused
by downsampling below the mentioned low-PSNR threshold for the auxiliary view.
Hence, a conclusion was made that the MR asymmetric coding performs better than
asymmetric quality coding at lower bitrates. This is in agreement with previously
reported results [20,143]. This low-quality threshold may depend on the 3D display;
e.g. it is about 31 dB for a parallax barrier display and 33 dB for a polarized
projection display. Subjective tests conducted in [125] showed that, above this
PSNR threshold value, users prefer SNR reduction over spatial resolution reduction
on both parallax barrier and polarized projection displays.

5.5 Modeling subjective ratings

To reduce the heavy burden of conducting subjective tests, many researchers have
considered proposing new algorithms to estimate the subjective quality for both
2D [31,59,79,92,129,171,182] and 3D [10,12,17,22,53,54,60,111,126,130,132,133,
168,187] video content. However, this is still an active and open research topic since
no widely accepted and used metric is introduced and agreed between scientists in
the research community.

In this thesis, we tried to estimate the subjective quality ratings of MR stereo-
scopic video presented in [P3], [P10]. A logarithmic relationship between the sub-
jective viewing experience rating and the angular resolution of the lower-resolution
view, measured in pixels per degree (PPD) of viewing angle, was observed. As re-
ported in [P10], across all test sequences, high Pearson correlation coefficients were
obtained confirming a good estimate of subjective ratings using the logarithmic
estimator.

We have also considered using Batch Video Quality Metric (BVQM) software [85]
to estimate the subjective scores in this thesis. This software estimates the subjective
quality of the input content reporting seven parameters, namely si loss, hv loss,
hv gain, si gain, chroma spread, chroma extreme, and ct ati gain. These parameters
are shortly described in the following paragraphs while further detailed descriptions
of these parameters are presented in [107].

si loss detects a decrease or loss of SI e.g. when blurring artifact is introduced.

hv loss detects a shift of edges from horizontal and the vertical orientation to
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diagonal orientation. For example in the cases where diagonal edges suffer less from
blurring effect than horizontal or vertical edges.

hv gain detects a shift from diagonal edges to the horizontal and vertical ones.
This may happen, e.g. when processed video includes tiling or blocking artifacts.

si gain reports the quality improvement that may result from edge sharpening
or enhancements.

chroma spread detects introduced changes in the way that two-dimensional
color samples are spread.

ct ati gain detects severe localized impairments e.g. those produced by digital
transmission errors.

chroma extreme considers the contrast and the temporal information of the
input and measures the amount of spatial detail and motion.

In [107], a general video quality metric (VQM) is introduced consisting of a
linear combination of these seven parameters. This equation is presented in (5.3).
However, it has been shown that si loss, hv loss, hv gain, and si gain contribute most
to the estimation of subjective quality [119]. Hence, a simpler equation considering
only these four parameters is introduced in [119] to calculate VQM, as presented in
(5.4).

V QM =− 0.2097× si loss + 0.5969× hv loss + 0.2483× hv gaint

+ 0.0192× chroma spread− 2.3416× si gain

+ 0.0431× ct ati gain + 0.0076× chroma extreme

(5.3)

V QMmodified =− 0.2097× si loss + 0.5969× hv loss

+ 0.2483× hv gain− 2.3416× si gain
(5.4)

Subjective results reported in [P3] were exploited in this experiment using BVQM
software and VQM metric and averaging over both views. The sequences and their
associated bitrates used in this experiment are depicted in Table 5.5. Four test
cases have been considered in this experiment:

FR Symmetric: Full-resolution and same quality for both views
FR Asymmetric: Full-resolution for both views and asymmetric quality be-

tween views by differing the QP values

Table 5.5: Bitrate selection for different sequences

Bitrate (Kbps)
Undo Dancer 1081 1644 2854 5510
Dog 388 598 1078 2000
Newspaper 407 610 1075 2073
Pantomime 1132 1725 3052 5407
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Table 5.6: Pearson correlation coefficient between VQM values and mean subjective
scores

FR Symmetric FR Asymmetric MR 1
2

MR 3
8

Undo Dancer 0.972 0.969 0.939 0.761
Dog 0.928 0.964 0.976 0.834
Newspaper 0.930 0.942 0.965 0.843
Pantomime 0.956 0.939 0.938 0.792

MR 1
2
: Mixed-resolution where one view been downsampled with ratio 1

2
along

both directions

MR 3
8
: Mixed-resolution where one view has been downsampled with ratio 3

8

along both directions

All test cases have been encoded and compared under the same bitrate constraint.
VQM is calculated according to the modified VQM (5.4) and the mean value scores
have been considered as subjective measures. To ease the similarity of the values, all
mean subjective scores have been increased by 3 to become positive and then inversed
to have the same characteristics as VQM values. In Figure 5.7 a linear estimate that
best fitted the objective and subjective scores has been derived for all sequences. For
all test cases except MR 3

8
, there is a clear high correlation between the objective and

subjective scores. This was further confirmed by calculating the Pearson correlation
coefficient for all test cases. These values are reported in Table 5.6. The conclusion
reported in [P3] was that the subjective quality of MR 1

2
is similar to that of FR

cases while MR 3
8

underperforms FR schemes. In this experiment, we confirmed that
VQM metric can be used for FR symmetric, FR asymmetric, and MR 1

2
schemes but

is unable to well estimate the subjective experiment scores of MR 3
8

scheme which
has a clearly lower subjective quality compared to the rest of sequences. Therefore,
one can conclude that VQM metric presented in [119] can be utilized to estimate the
subjective quality of symmetric and asymmetric FR schemes as well as MR scheme
with downsampling ratio of 1

2
along each direction.

5.6 Summary

Considering that several encoding approaches and asymmetric stereoscopic schemes
were introduced and/or evaluated subjectively in this thesis, a summary of the main
conclusions is provided next.

[P6] presents a new MR scheme based on the amount of the SI available in the left
and right views of each stereoscopic video. In this scheme, one view is downsampled
in the horizontal direction while the other view is downsampled in vertical direction.
In this study, each view is evaluated separately and the amount of SI [114] along
each direction (vertical and horizontal) is calculated. Comparing these values a
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(a) Undo Dancer

(b) Dog

(c) Newspaper

(d) Pantomime

Figure 5.7: Correlation between subjective scores and objective estimates
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decision is made for the downsampling direction of each view keeping the maximum
accumulated amount of information for the left and right views. Subjective test
ratings compare the proposed cross-asymmetric MR scheme with conventional MR
(where one view has FR and the other view is downsampled in both directions) and
symmetric FR schemes. The results confirm that the proposed method outperforms
other schemes and hence, can be considered as a potential MR scheme as it also
decreases the number of pixels involved in the encoding and decoding process.

A new asymmetric stereoscopic video coding method is presented in [P9]. This
algorithm benefits from two steps: 1) sample domain quantization which in this
study is a linear luma value quantization with rounding, and 2) spatial resolution
reduction. The quality of the proposed technique was compared subjectively with
two other coding techniques: FR symmetric and MR stereoscopic video coding. In
most cases (six out of eight) the proposed method achieved a higher mean value for
subjective rating compared to the other schemes.

Considering that it has always been required to estimate the subjective quality
of videos by an objective metric, in this thesis we considered the results from two
sets of experiments presented in [P3] and [P10] and tried to model the subjective
ratings with an objective estimate. In this analysis, three downsampling ratios 1

2
, 3

8
,

and 1
4

were used to create the lower resolution view in the asymmetric stereoscopic
content. PPD values were calculated and used in the estimation process as they
differ for different resolutions. A logarithmic relation was introduced in [P10] to
estimate the subjective rating as a function of PPD of a lower resolution view for
different sequences and different test setups. The estimated values and actual ratings
resulted in high Pearson correlation coefficients, showing that this metric estimats
well the subjective ratings under both test conditions and for all test sequences.
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Depth-Enhanced Multiview Video
Compression

6.1 Introduction

The current state of the art multiview video coding standard, MVC [29], is the
extension of the H.264/AVC [117]. H.264/AVC and MVC reference softwares [5]
were used in some simulations carried out in this thesis. However, conventional
frame-compatible stereoscopic video coding techniques, such as the MVC, enable
less flexible 3DV displaying at the receiving or playback devices when compared to
depth-enhanced MVC. While two texture views, as in the stereoscopic presentation
of 3D content, provide a basic 3D perception, it has been discovered that disparity
adjustment between views is required for adapting the content to different viewing
conditions and also different display types. Moreover, based on personal preferences,
it might be desired to have different disparities on the display [138]. Furthermore,
ASD technology, as discussed in section 3.4, typically requires the availability of
many high-quality views at the decoder/display side prior to displaying. Due to the
natural limitations of content production and broadcasting technologies, there is no
way that a large number of views can be delivered to the user with the existing video
compression standards. In the majority of cases these views are to be rendered in
the playback device from the received views. Such needs can be served by coding
3DV data in the MVD format [90, 141] and exploiting the decoded MVD data as
input for DIBR [46, 86]. In MVD format, each texture view is accompanied by
a respective depth view presenting pixel based associated depth, from which new
views can be synthesized using any DIBR algorithm. The encoding process and
displaying of depth-enhanced multiview video is presented in Figure 6.1. In the
case of stereoscopic presentation, the desired views for the selected disparity and
hence the depth perception will be chosen from the decoded and synthesized views
at the display side. Moreover, considering the ASD presentation, based on the
required number of views, a subset of the total decoded and synthesized views will
be utilized.
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Figure 6.1: Encoding and synthesis process for a depth-enhanced multiview video

Considering that MVC was not targeting depth-enhanced multiview format, it is
not optimized to encode both texture and depth maps. As a result, there have been
standardization efforts towards depth-enhanced video coding and MPEG issued a
Call for Proposals (CfP) for 3DV coding technology in March 2011 [3]. The target
of this CfP was to satisfy the following two ideas: (1) enabling a variety of 3D
applications and display types including a varying baseline to adjust the depth
perception, (2) supporting multiview ASDs.

Two projects covered by CfP are described in the following paragraphs.

The CfP invited submissions in two categories, the first is compatible with
H.264/AVC and the second is compatible with the High Efficiency Video Cod-
ing (HEVC) [146] standard. A depth-enhanced extension for MVC, abbreviated
MVC+D, specifies the encapsulation of MVC-coded texture and depth views into a
single bitstream [30, 149]. The utilized coding technology is identical to MVC, and
hence MVC+D is backward-compatible with MVC and the texture views of MVC+D
bitstreams can be decoded with an MVC decoder. The MVC+D specification was
finalized technically in January 2013. The reference software [5] implementation of
MVC+D has been used in several simulations in this thesis [P1], [P4], and [P5].

Joint Collaborative Team on 3D Video (JCT-3V) is an organization targeting
ongoing video coding development extension of H.264/AVC, referred here to as 3D-
AVC. This development exploits redundancies between texture and depth and in-
cludes several coding tools that provide a compression improvement over MVC+D.
The specification requires that the base texture view is compatible with H.264/AVC
and compatibility of dependent texture views to MVC may optionally be provided.
3D-AVC is planned to be finalized technically in November 2013. The reference
software implementation of H.264/AVC has been used in few publications in this
thesis [P7] and [P8].
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6.2 Depth map

A depth map presents the values related to the distance of the surfaces of the scene
objects from the view point of the recording camera or observer. Depth maps are
usually presented with gray scale images (8 bits per pixel) where closer objects to
the camera are represented with larger values and objects farthest away from the
camera are represented with the smallest value, i.e. they appear as black (0 gray
level) pixels in the depth image. Another approach to represent the depth values
of different views in the stereoscopic or multiview case is to report the disparity
between pixels of each view to the adjacent view instead of the actual depth values.
The following equation (6.1) shows how depth values are converted to disparity:

D = f × l ×
(

d

2N − 1
×
(

1

Znear
− 1

Zfar

)
+

1

Zfar

)
(6.1)

where:
D = disparity value
f = focal length of capturing camera
l = translational difference between cameras
d = depth map value
N = number of bits representing the depth map values
Znear and Zfar are the respective distances of the closest and farthest objects in

the scene to the camera (mostly available from the content provider), respectively.
In most of the experiments carried out in the thesis, depth maps are considered

unless the use of disparity is explicitly described. Depth maps can be considered
approximately piecewise planar surfaces consisting of highly homogeneous regions
separated by strong contours. As a result, one can conclude that preserving better
the contours increases the usefulness of depth maps in virtual view synthesis. This is
due to the fact that small miss-adjustments in an area having a similar depth might
not have an annoying effect as it could have along a strong contour separating the
foreground and the background of a picture. This can be confirmed while observing
the ongoing research on both segmentation based compression methods applied to
depth maps [67,99,121] and edge adaptive algorithms that target to preserve edges
as accurately as possible [135,136].

A number of approaches have been proposed for representing depth picture se-
quences, including the use of auxiliary depth map video streams, MVD [90], and
layered depth video (LDV) [131], which are described briefly in the sequel. The
depth map video stream for a single view can be regarded as a regular monochro-
matic video stream and is coded with any video codec. The essential characteristics
of the depth map stream, such as the minimum and maximum depth in world co-
ordinates, can be indicated in messages formatted according to the MPEG-C Part
3 standard [18]. In the MVD representation, the depth picture sequence for each
texture view is coded with any video codec, such as MVC. In the LDV representa-
tion, the texture and depth of the central view are coded conventionally, while the
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texture and depth of the other views are partially represented and cover only the
dis-occluded areas required for correct view synthesis of intermediate views.

6.3 Synthesizing virtual views

The term view synthesis (or view rendering) refers to the generation of a new view
based on one or more existing or received views. Although differing in details, most
of the view synthesis algorithms utilize 3D warping based on explicit geometry, i.e.,
depth images. Typically in depth images each texture pixel is associated with a
depth pixel indicating the distance or the z-value from the camera to the physical
object from which the texture pixel was sampled. Different basic algorithms for view
synthesis are proposed. McMillan’s approach [86] uses a non-Euclidean formulation
of the 3D warping, which is efficient under the condition that the camera parameters
are unknown or the camera calibration is poor. Mark’s approach [83], however,
strictly follows the Euclidean formulation, assuming that the camera parameters for
the acquisition and view interpolation are known. For virtual view rendering, one
pair of neighboring original camera views and their associated depth maps are used
to render arbitrary virtual views on a specified camera path between them. Depth
images are used to assist in correct synthesis of the virtual views.

The relation between points in a 3D scene space and the values available in a
depth map are defined by the projection matrix. In the first step, for each camera
the depth maps are unprojected, resulting in a colored 3D particle cloud. Then, in
the location of each virtual camera a projection matrix is calculated from the two
projection matrices of cameras by spherical linear interpolation (SLERP) [140] and
linear interpolation (LERP) [35]. Using the projection matrix of virtual cameras we
have the ability to render the virtual view weighting according to the position of the
virtual camera. Figure 6.2 shows the high level scheme of view synthesis.

Occlusions, pinholes, and reconstruction errors are the most common artifacts
introduced in the 3D warping process [83]. These artifacts occur more frequently in
the object edges, where pixels with different depth levels may be mapped to the same
pixel location in the virtual image. When those pixels are averaged to reconstruct
the final pixel value at the pixel location in the virtual image, an artifact might be
generated, since pixels with different depth levels usually belong to different objects.
There exist several different techniques to perform view synthesis and filling holes
and disoccluded areas e.g. [68, 100,155,164,191].

In all conventional schemes each texture view is accompanied with a depth view
which is used in the view synthesis process. However, in publication [P4] it has
been shown that it is redundant to have the same number of depth views as tex-
ture views and the number of depth views can be reduced without sacrificing the
quality of stereoscopic views. The simulation results confirm the efficiency of the
proposed format reporting 1% to 7% of Bjontegaard delta bitrate reduction [14] for
the baseline, and disparity adjustments from 50% to 100% of the coded baseline.
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Figure 6.2: A synthesized view

6.4 Quality dependency of rendered views

The quality of rendered views depends on both texture views and depth maps as
well as the rendering algorithm used. Clearly more accurate texture views compared
to the original views provide rendered views with a higher quality. However, this is
not always the case for depth maps. A visualization of this concept is presented in
Figure 6.3 where the same texture along with different depth maps for rendering is
used. For synthesizing these views the VSRS ver 3.5 [154] is used. In Figure 6.3a,
the original depth map is used, while in Figure 6.3b, the depth map was low-pass
filtered to smooth the edges prior to rendering. Comparing the subjective quality of
the two frames, one concludes that depth maps with sharper edges produce a higher
quality rendered views around edges, while areas where no depth change occurs
remain unchanged.
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To provide a general view about the quality dependency of synthesized views on
the amount of spatial resolution of texture and depth maps, two sets of experiments
were conducted in this thesis. For a depth-enhanced multiview test set including 7
sequences (as specified by MPEG Common Test Conditions (CTC) [6]) and three
views (reference views) per sequence, view synthesis using VSRS ver 3.5 [154] be-
tween the reference views was performed creating three equally spaced virtual views
for each couple of reference views resulting into six virtual views in total. No com-
pression was applied to the texture or depth views while in one set of experiments,
the spatial resolution of texture views was reduced to half along each direction (QR
Texture) and in the other case the same spatial resolution reduction was applied to
only the depth views (QR Depth). In both cases the PSNR of the synthesized views
was calculated against the same views synthesized from the original FR texture and
the depth views. The average PSNR over 6 synthesized views is reported in Ta-
ble 6.1. The result of these experiments shows that while texture spatial resolution
drastically affects the PSNR of synthesized views, the spatial resolution of the depth

(a)

(b)

Figure 6.3: Rendered view from (a) original depth map and (b) low-pass filtered
depth map
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Table 6.1: PSNR of synthesized views based on spatial resolution of reference texture
and depth views

PSNR (dB)
Sequence QR Texture QR Depth
Poznan Hall2 44.18 52.30
Poznan Street 39.14 47.99
Undo Dancer 32.55 38.38
Ghost Town Fly 35.47 43.79
Kendo 45.77 49.79
Balloons 44.58 48.49
Newspaper 40.15 42.93

views has also a considerable effect on the quality of the synthesized views.

6.5 Depth map compression

In different 3DV scenarios, depth maps are used as supplementary data along with
texture views, for synthesizing new images but not to be directly observed by the
users. Thus, in depth map compression, the goal is to maximize the perceived visual
quality of the synthesized views rather than improving the visual quality of the depth
maps themselves [89]. Traditional video coding methods have been designed to
operate through a Rate-Distortion Optimization (RDO) of coded data and a pixel-
based distortion introduced by the codec, e.g. Sum of Absolute Differences (SAD)
or Mean Square Error (MSE). However, it has been shown that coding distortions
introduced to depth maps typically have a non-linear impact on the visual quality
of the synthesized views [69]. Therefore, depth map compression using traditional
RDO algorithms might result in suboptimal performance of 3DV coding systems [69].
In the following sub-sections, two traditional and commonly used pre- and post-
processing methods applied to depth maps are presented.

As described in section 6.4, the quality of the synthesized views depends on the
quality of the depth map coding and the quality of the coding applied to the original
color view used as a reference. As for depth maps, errors in the depth map close to
a sharp edge, having considerable different depth values on the sides, can result in
severe rendering artifacts, while errors on a smooth and homogenous area may have
negligible subjective influence on the quality of the synthesized view. These ideas
are exploited in several active research studies where either an encoding algorithm
based on depth map segmentation is introduced [67, 99, 121] or an edge adaptive
algorithm is proposed [135,136]. Considering the structure of depth maps, it is wise
to spend more bits to encode the edges and try to preserve them as much as possible
while sacrificing the relative quality of the homogeneous areas. This claim is well
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illustrated in Figure 6.3.

6.5.1 Depth map filtering

Considering the nature of depth maps as described in section 6.2, it has been shown
that smoothing the depth maps prior to utilization in DIBR algorithms for synthe-
sizing virtual views can increase the subjective quality [151]. Depth information
may be generated using a specific depth sensor [76, 190] or it can be generated in a
per-pixel depth estimation process based on texture views. In both cases such filter-
ing will decrease the existing noise and artifacts which can result in poorer quality of
synthesized views. Moreover, authors in [151] conducted a series of subjective tests
concluding that increasing levels of smoothing applied to depth maps increased the
perceived image quality scores.

6.5.2 Depth down/up sampling

Traditional image downsampling techniques use linear filters, whereas depth down-
sampling should preserve sharp edges of the depth data. Hence, edge-preserving
downsampling for depth has been considered. For example, in [157, 176], the me-
dian value of a NxN window was chosen as the most representative value to be used
at reduced-resolution depth map (where the factor N specifies the downsampling
ratio along each direction).

Similarly to downsampling, also upsampling should preserve depth edges. In
various works, e.g. [118, 176], cross-component bi-lateral filtering has been used for
depth upsampling or filtering. In a cross-component bi-lateral filter, the similarity
of co-located texture samples is used to derive filter weights for depth in addition
to the conventional filtering window applied spatially for the depth samples.

Another approach for depth upsampling was used in [157]. For the reconstruction
process, the decoded depth data is first up-sampled using a nearest neighbor filter,
which is followed by post-processing using a median filter, a frequent-low-high filter
and a cross-component bi-lateral filter. The 2D median filter is used to smooth
blocking artifacts caused by depth down-sampling. The frequent-low-high filter is a
non-linear filter used to recover object boundaries, which results into selecting either
the most frequently occurring sample value below or above the median sample value
within a filter window. More information on the frequent-low-high filter is available
in [101]. The bilateral filter is used to eliminate the errors still present after both
filtering procedures. In [157], all post-processing filters were applied with a 7x7
window size.

In [94], a cross-trilateral filter was used as a post-processing step for depth es-
timation to improve the quality of the estimated depth maps. The proposed filter
adds a depth based weight to a conventional cross-component bi-lateral filtering
approach. The depth based weight depends on both the depth similarity and the
confidence of the depth value correctness, where the confidence is derived from the
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(a) (b)

(c)

Figure 6.4: Resampled depth maps (a) original, (b) proposed method in [P1], (c)
JSVM

correlation of the disparity/depth estimations obtained from left-to-right and right-
to-left correspondences.

In this thesis a novel non-linear resampling approach for depth maps is presented
[P1]. Figure 6.4 depicts the performance of the proposed non-linear depth map
down/up sampling introduced in [P1] by showing the original, resampled depth
maps using the resampling in the reference JSVM software [1], and the resampled
depth maps using the proposed method. In both resampling cases (Figures 6.4b
and 6.4c), the original depth map has been down sampled with ratio 1

2
along each

direction and then upsampeld to FR. This figure presents an example of depth map
edge preserving during the resampling process since as illustrated in Figure 6.3, the
quality of synthesized views, using resampled depth maps with more accurate edges,
is considerably higher compared to the quality of synthesized views rendered from
depth maps having smooth edges.
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6.6 Using asymmetry in multiview video compression

In section 5.3, we explained the advantages of exploiting asymmetry in stereoscopic
video compression. The same idea can be applied to multiview video as well. Several
cases of asymmetric multiview video compression are described in the following sub-
sections.

6.6.1 Asymmetric quality

In a three-view video format, asymmetry between views can be easily achieved by
applying coarser quantization steps to some views compared to the other views.
This will result in a bitrate reduction in the asymmetric views and hence a decrease
in the total bitrate required to encode the 3D video. In publication [P8], the two
side-views of the three-view format of a depth-enhanced multiview video were en-
coded with a higher QP compared to the central view. Furthermore, several views
were synthesized in between the coded views and among them a stereopair was se-
lected having a suitable baseline for conventional stereoscopic displays. A subjective
comparison was conducted between the stereopair from the proposed scheme and
the stereopair from the scheme where all views were encoded using the same QP
as that of the central view in the proposed scheme. The results confirmed that in
average 20% bitrate reduction can be achieved by exploiting such an asymmetric
scheme. Furthermore, in [P8] the usability of such scheme for ASD utilization was
objectively confirmed.

6.6.2 Mixed-resolution texture

As explained in detail in section 5.3, asymmetric quality with different presentations
and implementations can be exploited to increase the coding efficiency in the com-
pression of stereoscopic video content. However, in this sub-section, the same idea
is deployed in a depth-enhanced multiview scheme, where more than two views are
involved, e.g., a test scenario where three texture views and three associated depth
maps are encoded and several virtual views are rendered in between the coded views.
In this case the quality of all coded views and rendered views is of importance de-
pending on the application in which the codec is used. Namely, if a stereoscopic
display is targeted and the baseline separation is similar to those between the coded
views, there is no need to render any virtual views. However, if the target is ASD
or a baseline adjustable stereoscopic content, the rendering process is inevitable.

In publication [P5], a test scheme where the resolution of the side views is reduced
to half along each direction is introduced. Therefore, both side views have quarter
spatial resolution compared to the central view. Moreover, two inter-view prediction
schemes are introduced and the results confirm that on average 4% and 15% delta
bitrate reduction are achieved.
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6.7 Video compression artifacts

There exist several different coding artifacts due to compression applied to the video
content [188]. In general these artifacts can be divided to two categories:

1 Spatial artifacts e.g. blocking, blurring, and ringing.

2 Temporal artifacts e.g. color bleeding, temporal artifacts, false edges, motion
jerkiness, mosquito noise, flickering, and bumping.

In this thesis the distortions introduced to the content based on the blocking
and blurring artifacts are mainly considered since variable quantization steps and
downsampling ratios are applied for further compression of the video sequences.
There have been several post processing algorithms proposed to remove blocking ar-
tifacts in the spatial domain [24,40,49,77,81,185,189] or in the transformed domains
e.g., discrete cosine domain (DCT) domain [28, 82] or wavelet domain [63, 78, 184].
Compared to extensive research to remove blocking artifact as a post processing
technique, the de-blurring process is mainly focused on optimized downsampling
and upsampling filters [48, 137, 139]. The blurring is mostly introduced to images
because of low-pass filtering or alternatively down sampling prior to encoding and
upsampling after decoding. In the video compression field and especially when sub-
jective quality assessment is required, knowledge about these artifacts is vital as
they do not necessarily provide similar subjective and objective quality degrada-
tions. Figure 6.5 depicts blocking and blurring artifact to the same input. The
subjective preference and hence, compromise between these two artifacts has been
studied in publications [P3], [P6], [P7], and [P9].

6.8 Summary of subjectively assessed experiments

Considering that several encoding approaches and asymmetric stereoscopic schemes
were introduced and/or evaluated subjectively in this thesis, the main findings are
summarized next.

In [P7], the aim was to develop a proper technique to decide which downsampling
ratio should be applied to texture views prior to encoding to increase the subjective
quality of the decoded videos under the same bitrate constraint. Two methods are
presented in [P7]: 1) an MSE based technique, and 2) a frequency based technique.
Considering the results of the conducted subjective tests on different resolutions,
we found out that the MSE based metric is weakly correlated with the resolution
selection based on the subjective quality. However, the frequency-based distortion
metric was able to well estimate the selection of downsampling ratios in agreement
with the selection based on the subjective test. Hence, the proposed method can be
considered as a potential candidate metric to assure the best perceived quality by a
proper selection of the texture view resolution prior to encoding.
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(a) (b)

Figure 6.5: Encoding artifacts(a) blocking and (b) blurring

Random noise in captured multiview content is a source of inconsistency between
views. In [122] a locally adaptive filtering in 3D DCT domain was introduced and
utilized in the pre-processing stage to improve the encoding performance. In [9],
we applied the de-noising algorithm introduced in [122] to a 3-view multiview test
scenario comparing the perceived subjective quality of synthesized views from those
three views with non-denoised original synthesized views. A set of subjective tests
confirmed that up to 11.7% average bitrate reduction can be achieved without any
noticeable subjective quality degradation. Hence, it was subjectively assured that
applying the proposed de-noising algorithm prior to encoding is capable of decreas-
ing the required bitrate for coding the same content while negligible reduction in
subjective quality is introduced.

In [P8], we presented an asymmetric quality three-view scenario for depth-
enhanced multiview targeting a lower bitrate under the same subjective quality
constraint. In this study, out of three texture views, the side views were coded with
coarser quantization steps and hence, had lower quality compared to the central
view. Following this, taking into account a suitable baseline for conventional 3D
displays, a suitable stereopair was selected from synthesized views between refer-
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ence views and the perceived quality of this stereopair was subjectively assessed.
The results confirmed that on average 20% bitrate reduction can be achieved with
a negligible penalty on the subjective quality of the sequences. Moreover, we ob-
jectively evaluated the performance of the same asymmetric scheme to be used on
ASDs confirming that it is also beneficial when the same content is targeting ASDs
compared to the case where the symmetric encoding scheme is used.





Chapter 7

Conclusion and Future Work

In this thesis 3DV compression was tackled considering different formats, namely,
stereoscopic video and depth-enhanced multiview video. In general the methods
utilized for stereoscopic video compression can be extended to multiview video com-
pression. Moreover, higher efficiency in depth-enhanced multiview video compres-
sion will result in better performance for multiview ASD too. Hence, Stereoscopic
video compression can be considered as a basis of 3D content compression while
targeting different applications and a broad variety of display devices.

The research carried out in this thesis introduced novel compression techniques
for 3D content and investigated several related topics, e.g., estimation of the sub-
jective scoring with objective calculations, simultaneous presentation of the same
content for both 2D and 3D perception, and depth map resampling targeting higher
quality for synthesized views. All schemes introduced in the thesis achieved a higher
performance compared to the conventional reference under the same criteria e.g.
obtaining better subjective quality or less bitrate under equal bitrate or the same
subjective quality constraint, respectively.

A large part of the thesis focused on exploring different types of asymmetry in
3D video compression. A number of different asymmetric schemes for 3DV compres-
sion were introduced and evaluated. The conclusions for all methods confirmed that
asymmetric video compression is a promising technique, where the required bitrate
or the coding complexity was reduced. Since no standardized or widely used objec-
tive metric for evaluating the perceived quality of asymmetric quality 3D content is
known to the research community, in this thesis several formal and systematic sub-
jective test experiments were conducted to evaluate the quality of the codec being
tested.

Finally, the combination of objective and subjective assessments reported in
this thesis confirmed that the proposed algorithms are superior to conventional ap-
proaches from bitrate reduction and complexity points of view. Moreover, new
schemes and formats for presentation of 3D content have been introduced and eval-
uated, targeting for specific applications.
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7.1 Future work

Future work includes deeper studies on the HVS and the reaction of its fusion system
to different quality changes introduced between stereoscopic views. Moreover, the
proposed methods and algorithms in this thesis can be extended considering different
tuning parameters than those already used. This will evaluate the robustness of the
proposed methods and potentially enables the introduction of higher performance
schemes.

The different types of asymmetry introduced in this thesis can be extended by
introducing and evaluating new schemes as well as exploiting different combinations
of the schemes presented in this thesis (e.g. sample value quantization and LPF or
Chroma sampling and LPF).

Considering the large amount of subjective quality assessments conducted in this
thesis, a proper database is available to authors for further research and analysis
investigating different available objective metrics. Moreover, since all test material
and details of the test setup are known, it is possible to produce new objective
metrics targeting accurate estimation of available subjective scores and to verify
their validity under different conditions.

Furthermore, the subjective results reported in this thesis should be confirmed
under different test setups (e.g. viewing distance, display resolution, viewing condi-
tions, and/or test duration), alternative view synthesis algorithms, or test material
(e.g. different bitrates and varied content by duration, resolution, or frame rate).

Considering the ever increasing demand to view 3D content without glasses, an
important future continuation of this thesis is to test the usability of the proposed
technique for simultaneous 2D and 3D visualization of stereoscopic content when
used in ASD. This includes depth-enhanced compression techniques introduced in
this thesis as they are able to feed the ASD with arbitrary required number of views
at the decoder side. This thesis lacks subjective quality evaluation performed with
ASD and hence, the conclusions obtained with objective metrics, can be further
confirmed by conducting subjective tests on the same content.
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Abstract— Depth-enhanced 3D video coding includes coding of 

texture views and associated depth maps. It has been observed 

that coding of depth map at reduced resolution provides better 

rate-distortion performance on synthesized views comparing to 

utilization of full resolution (FR) depth maps in many coding 

scenarios based on the Advanced Video Coding (H.264/AVC) 

standard. Conventional techniques for down and upsampling do 

not take typical characteristics of depth maps, such as distinct 

edges and smooth regions within depth objects, into account. 

Hence, more efficient down and upsampling tools, capable of 

preserving edges better, are needed. In this letter, novel non-

linear methods to down and upsample depth maps are presented. 

Bitrate comparison of synthesized views, including texture and 

depth map bitstreams, is presented against a conventional linear 

resampling algorithm. Objective results show an average bitrate 

reduction of 5.29% and 3.31% for the proposed down and 

upsampling methods with ratio ½, respectively, comparing to the 

anchor method. Moreover, a joint utilization of the proposed 

down and upsampling brings up to 20% and on average 7.35% 

bitrate reduction. 

Index Terms—MVC, depth map, resampling, non-linear. 

I. INTRODUCTION 

The multiview video plus depth (MVD) format [1], where 

each video data pixel is associated with a corresponding depth 

map value, is one of the most promising methods for 

providing 3D video services flexible for different types of 

multiview displays as well as user adaptation at disparity 

between rendered views. The MVD format allows reducing 

the input data for the 3DV systems significantly, since most of 

the views will be rendered from the available decoded views 

and depth maps using a Depth Image Based Rendering 

(DIBR) [2] algorithm.  

3D video coding (3DV) standardization by the Moving 

Picture Experts Group (MPEG) is a recent activity targeting at 

enabling a variety of display types and preferences including 

varying baseline to adjust the depth perception. Another 

important target of the MPEG 3DV standardization is the 

support for multiview auto-stereoscopic displays, thus many 

high-quality views shall be available in decoder/display side 

prior to displaying. As the existing video compression 

standards were found to be sub-optimal to achieve these 

targets, MPEG issued a Call for Proposals for 3D video 

coding (hereafter referred to as the 3DV CfP) [3] to kick off 

the 3DV standardization activity targeting to provide 3D 

enhancement to the existing the Multiview Video Coding 

extension of the Advanced Video Coding standard, 

H.264/MVC [4], as well as to the ongoing High Efficiency 

Video Coding (HEVC) standardization. As one consequence 

of the 3DV CfP, a H.264/MVC-based test model [5] 

(hereafter referred to as 3DV-ATM) was chosen and has been 

further developed by MPEG as collaborative standardization 

effort. In addition to exploiting temporal and inter-view 

correlation among texture or depth views to achieve high 

coding efficiency, 3DV-ATM provides means to encode depth 

maps into the same bitstream with texture and enhances 

H.264/MVC with coding tools utilizing the correlation 

between depth and texture data. 

In 3D video applications, depth maps are used for 

synthesizing new images but not to be directly viewed by end 

users. Thus, when coding depth maps, the goal is to maximize 

the perceived visual quality of the rendered virtual color 

views instead of the visual quality of the depth maps 

themselves [6]. Traditional video coding methods have been 

designed to operate through a Rate-Distortion Optimization 

(RDO) of coded data and a pixel-based distortion introduced 

by codec, e.g. Sum of Absolute Differences (SAD). However, 

coding distortions of a depth map typically have a non-linear 

impact on the visual quality of rendered views [7]. For 

example, errors in the depth map close to a sharp edge can 

result in severe rendering artifacts, while errors on a smooth 

area may have negligible subjective influence on the final 

quality. Therefore, utilization of traditional RDO for depth 

map compression may result in suboptimal performance of a 

3D video coding system [7].   

As demonstrated in many of the responses to the 3DV CfP 

and enabled in 3DV-ATM, coding of depth map data at a 

reduced resolution is a viable solution for improving the rate-

distortion performance of the complete 3D video coding 

system. In such systems, depth map data is downsampled 

prior to the encoding and upsampled to the original FR after 

decoding. Obviously, downsampling of depth maps, which is 

performed in combination with low-pass filtering for aliasing 

suppression, may lead to smoothed edges and therefore to a 

significant distortion in rendered views. 

In this letter, a novel algorithm for non-linear down and 

upsampling of depth map is presented. The proposed 



algorithm preserves edges in processed depth map data and 

provides quality improvement in synthesized images.  

The rest of the letter is organized as follows. Section II 

provides a review of depth map resampling methods. The 

proposed down and upsampling methods are introduced in 

section III while the simulation setup and results are presented 

in section IV. Finally, the letter concludes in section V.   

II. DEPTH MAP RESAMPLING 

Downsampling traditionally includes low pass filtering, 

which suppresses high frequency components in the depth 

map and therefore leads to over-smooth edges. The 

consequent quality reduction due to resampling causes 

significant visual artifacts in synthesized views particularly at 

object boundaries. Hence, edge-preserving downsampling for 

depth map should be considered even though traditional 

image downsampling techniques use linear filters not 

designed to preserve edges. For example, in [8] and [9], the 

median value of an N×N window was chosen as the most 

representative value to be used at reduced-resolution depth 

map (where factor N specifies the downsampling ratio). 

Similarly to downsampling, upsampling should preserve 

depth edges. In various works, e.g. [9] and [10], cross-

component bi-lateral filtering has been used for depth 

upsampling. In a cross-component bi-lateral filter, the 

similarity of co-located texture samples is used to derive filter 

weights for depth in addition to the conventional filtering 

window applied spatially for the depth samples. 

Another approach for coded depth upsampling and 

restoration was used in [8] and [11]. Other than a depth 

resampling technique to improve the quality of rendered 

views, authors proposed that a decoded low resolution depth 

map image to be processed with a depth reconstruction filter. 

This filter consists of a novel frequent-low-high filter and a 

bilateral filter. Depth map is first upsampled using a nearest 

neighbor filter, which is followed by post-processing using a 

median filter, a frequent-low-high filter and a cross-

component bi-lateral filter. The 2D median filter is used to 

smooth blocking artifacts caused by coding. The frequent-

low-high filter is a non-linear filter used to recover object 

boundaries, which results into selecting either the most 

frequently occurring sample value below or above the median 

sample value within a filter window. The bilateral filter is 

used to eliminate the errors still present after both filtering 

procedures.  

In [12] an edge adaptive upsampling method for better 

compression of depth maps is presented. In this work edge 

information is extracted from the high resolution 

reconstructed texture video by applying 3×3 Sobel filter 

operators. Gradients caused by texture transitions, rather than 

depth changes, are eliminated by considering the local depth 

intensity gradients. Then the linear interpolation filters are 

replaced with a locally adaptive filter. Test results reported in 

[12], show that the proposed technique outperformed linear 

MPEG upsampling filter [13] in terms of objective and 

subjective quality of synthesized views. However, the 

utilization of texture data in upsampling process of depth map 

can be considered a drawback of the proposed method due to 

a significant increase in the memory access bandwidth and 

computational complexity.  

III. PROPOSED DOWN AND UP SAMPLING  METHODS 

The proposed down and upsampling method presented 

in this section can be applied directly to depth maps and do 

not need complementary information from the reconstructed 

or the decoded texture images. In following sub-sections a 

detailed description of the algorithms is presented.  

A. Downsampling 

To perform the proposed downsampling method, a block 

of pixels (BOP) will be determined based on the 

downsampling ratio. The FR image will be covered with the 

necessary number of non-overlapping BOPs and for each 

BOP a single value will be calculated to present it in the 

downsampled image. The size of the BOP is defined as the 

reciprocal of the downsampling ratio; e.g. if the image is 

downsampled with ratios 1/x and 1/y (both x and y are 

positive values equal or bigger than 1) along the horizontal 

and vertical direction where the size of the BOP is specified 

with x and y in width and height, respectively.  

The proposed downsampling method utilizes a 

closeness-favored averaging algorithm as described in the 

following paragraphs. In the first step an average over the 

BOP will be calculated, as seen in (1).  
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where    (   ) presents a pixel value where i and j are the 

horizontal and vertical pixel indices within the BOP. 

In the next step pixels of BOP are categorized into two 

sets as shown in (2). 

 

   (   )   {
            (   )        
                                          

                        ( ) 

 

where    (   ) is the same as in equation (1). 

If the number of pixels in       is equal to or greater 

than half of the number of pixels in the BOP, the Estimated 

Value (EV) of the associated BOP is an average over the pixel 

values of      . Otherwise, EV is set to       , as shown in 

(3) and (4).  
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where       ( ) counts the number of elements in X. 

The calculated EV is the value which represents the 

considered BOP in the downsampled image. As can be 

observed from the equations, if at least half of the pixels in a 

BOP are classified to belong to objects that are close-by, i.e. 

closer than the average depth value of the BOP, the method 

considers only those pixels in downsampling and hence 

attempts to preserve sharp boundaries of foreground objects. 

Since the entire FR image is processed with non-overlapped 



BOPs, the calculated EVs form a downsampled version of the 

input image. 

B. Upsampling 

Considering Figure 1 pixel values {A, B, C, D, E, F, G, H, 

I} in the downsampled image are utilized to upsample pixel E 

and calculate values of pixels {a, b, c, d} in the associated 

BOP in the upsampled image.  Afterwards, a, b, c, and d will 

be utilized to create possible remaining pixel values in the 

BOP of upsampled image.  

Let us consider the pixel which needs to be upsampled 

(pixel E in Figure 1).  To calculate the value of the top-left 

pixel in the BOP of the upsampled image (a in Figure 1), the 

pixel values on the left and top of E will be considered (D and 

B in Figure 1, respectively).  

In the first step, the absolute differences of E with D and 

B are calculated. This is shown in (5) and (6). 
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The filter window (FW) by which the value of a will be 

calculated is defined as following. If both        and        

are smaller than a threshold (th), then it is assumed that A, B, 

D, and E belong to the same depth region, and consequently 

the final FW contains pixels A, B, D, and E. Otherwise, the 

final FW is chosen to contain only A, B, and D, as shown in 

(7). This choice of the filter window attempts to restore the 

shape of a depth boundary between E and a depth object 

containing A, B, and D. 
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In the next step, the average of pixel values in selected  

   is calculated and utilized as a in the upsampled image 

(see Figure 1).This is presented in (8). 
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The complete procedure to calculate a from A, B, D, and 

E can be presented with function           as shown in (9). 
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The same process is applied for the other three corner 

pixels, i.e. b, c, and d. The pixel values of b, c, and d in Figure 

1 can be calculated using the equations shown in (10). 
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Finally, when a, b, c, and d in the BOP of the upsampled 

image are available, bi-linear interpolation is applied to obtain 

the remaining pixel values in the BOP.  

IV. SIMULATIONS 

A. Simulation Setup 

3DV-ATM reference software [5] (hereafter referred to 

as reference software (RS)) was utilized for encoding the 

multiview plus depth (MVD) data. Simulations were 

conducted according to the MPEG 3DV Common Test 

Conditions (CTC) [14].  

Depth maps for all resampling schemes were first 

downsampled to half resolution along each of coordinate axes 

prior to encoding and upsampled to the FR after decoding. 

The threshold utilized for proposed upsampling process was 

fixed to 16 for all sequences. The view synthesis was 

performed with VSRS software, version 3.5 [15] with 

configuration and camera parameters information provided 

with MPEG 3DV CTC [14]. In our experiment, we provide 

the results for C3 scenario, described in [14] where three 

evenly distributed intermediate views between each two input 

(coded) views were synthesized. 

B. Simulation Results 

The proposed algorithm was tested against the depth 

map resampling utilized in the RS, with 12-tap low pass 

filtering in downsampling according to Joint Scalable Video 

Model (JSVM) [16] and bi-linear upsampling for upsampling. 

The performance of the proposed down and upsampling 

methods was evaluated separately against the techniques 

utilized in the RS with the two following set of experiments: 

- First experiment: A combination of the proposed 

downsampling and RS upsampling compared against RS 

used for both downsampling and upsampling 

- Second experiment: A combination of the RS 

downsampling and the proposed upsampling compared 

against RS used for both downsampling and upsampling  

In the third experiment the efficiency of the method in [11] 

and a joint utilization of the proposed down and upsampling 

was tested against the RS. 

Simulation results for the first and second experiments 

using Bjontegaard delta bitrate and delta Peak Signal-to-Noise 

Ratio (PSNR) [17] are reported in Tables I while results of the 

third experiment are presented in table II. In these calculations 

the total bitrate of texture plus depth maps along with the 

average luma PSNR of all six synthesized views were 

considered.  

 

 

 
Figure 1. To be upsampled pixel value (E) and associated 

block of pixels  in upsampled image 



Table I shows that the proposed downsampling method 

outperformed the anchor method of [14] by 5.29% of 

Bjontegaard delta bitrate reduction (dBR) and 3.31% dBR on 

average was achieved by the proposed upsampling algorithm. 

Results of the third experiment show that a joint utilization of 

both proposed methods provided 7.35% dBR comparing the 

RS. From our simulations, the algorithm presented in [11] 

performed worse than anchor objectively. However, based on 

our expert subjective viewing, the perceived quality of our 

proposed method and the algorithm presented in [11] 

outperformed that of RS. Moreover, in [11] it is claimed that 

by applying the proposed filter on depth maps a better 

compression for depth map and higher subjective quality for 

rendered views are achieved. Additionally, the decoder 

execution time of the proposed method was 85% of the RS on 

average, while the method presented in [11] has more 

computation operations per pixel than our proposed algorithm. 

V. CONCLUSIONS  

Due to the characteristics of depth maps, coding of depth 

maps at a lower spatial resolution than the resolution of luma 

texture pictures typically results into improved rate-distortion 

performance. However, traditional resampling algorithms 

which use linear filtering result to significant distortions 

introduced to rendered views. In this experiment, we 

improved the depth-enhanced 3D video coding through edge-

preserving techniques for depth map resampling. Two novel 

algorithms for down and upsampling depth maps were 

presented in this letter. Results showed that proposed down 

and upsampling steps with ratio ½ outperform MPEG 3DV 

anchor resampling methods by 7.35% of dBR on average and 

up to 20.4%. In addition to this, the proposed implementation 

decreased the decoder execution time by 15% compared to the 

MPEG H.264/AVC-based 3DV reference software.  
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TABLE I.  FIRST AND SECOND EXPERIMENTS: PERFORMANCE OF 

PROPOSED DOWN AND UP SAMPLING AGAINST ANCHOR 

 

Proposed 

downsampling against 

anchor 

Proposed upsampling 

against anchor 

       dBR,% 

dPSNR 

,dB dBR,% 

dPSNR 

,dB 

Poznan Hall2 -2.47 0.08 -1.61 0.05 

Poznan Street -3.43 0.10 -1.93 0.05 

Undo Dancer -17.15 0.65 -9.87 0.33 

Ghost Town -5.69 0.21 -1.88 0.07 

Kendo -2.62 0.12 -2.62 0.12 

Balloons -1.07 0.05 -1.01 0.04 

Newspaper -4.57 0.17 -4.21 0.16 

Average -5.29 0.20 -3.31 0.12 
  

 
TABLE II. THIRD EXPERIMENT: PERFORMANCE OF JOINT UTILIZATION 

OF PROPOSED DOWN/UP SAMPLING AGAINST RS  

 

Method presented 

 in [11] Proposed method 

       dBR,% 

dPSNR 

,dB dBR,% 

dPSNR 

,dB 

Poznan Hall2 0.22 -0.27 -4.34 0.15 

Poznan Street 0.79 -0.02 -5.24 0.15 

Undo Dancer 0.99 -0.04 -20.40 0.87 

Ghost Town 1.91 -0.07 -8.54 0.33 

Kendo 1.72 -0.07 -4.53 0.21 

Balloons 1.92 -0.09 -1.19 0.05 

Newspaper 2.94 -0.1 -7.19 0.29 

Average 1.50 -0.09 -7.35 0.29 
  

http://iphome.hhi.de/suehring/tml/download
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Abstract— Viewing stereoscopic 3D content is typically enabled 

either by using polarizing or active shutter glasses. In certain 

cases, some viewers may not wear viewing glasses and hence, it 

would be desirable to tune the stereoscopic 3D content so that 

it could be simultaneously watched with and without viewing 

glasses. In this paper we propose a video post-processing 

technique which enables good quality 3D and 2D perception of 

the same content. This is done through manipulation of one 

view by making it more similar to the other view to reduce the 

ghosting artifact perceived without viewing glasses while 3D 

perception is maintained. The proposed technique includes 

three steps: disparity selection, contrast adjustment, and low-

pass filtering. The proposed approach was evaluated through 

an extensive series of subjective tests, which also revealed good 

adjustment parameters to suit viewing with and without 

viewing glasses with an acceptable 3D and 2D quality, 

respectively. 

Index Terms—Stereoscopic; depth perception; subjective 

quality assessment; 3DV; 2DV. 

1. INTRODUCTION 

In the recent years, the number of 3D movie titles has 

increased considerably both at cinemas and as Blu-ray 3D 

discs. Moreover, broadcast of stereoscopic video content is 

provided commercially on a few television channels. Hence, 

many user side devices are already capable of processing 

stereoscopic 3D content whose volume is expected to rise 

sharply in the coming years. Preferences of customers drive 

the direction of improvements and novelties in different 

presentation methods of the 3D content and it is therefore 

important to understand the habits of viewing 3D content 

and mechanisms of the human vision. Psycho-visual aspects 

must therefore be considered when displaying 3D content. 

The human vision system (HVS) perceives color 

images using receptors on the retina of the eye which 

respond to three broad color bands in the regions of red, 

green and blue in the color spectrum. HVS is more sensitive 

to overall luminance changes than to color changes. The 

major challenge in understanding and modeling visual 

perception is that what people see is not simply a translation 

of retinal stimuli (i.e., the image on the retina). Moreover, 

HVS has a limited sensitivity; it does not react to small 

stimuli, it is not able to discriminate between signals with an 

infinite precision, and it also presents saturation effects. In 

general one could say it achieves a compression process in 

order to keep visual stimuli for the brain in an interpretable 

range. 

Stereoscopic vision is one of the principal methods by 

which humans extract 3D information from a scene. HVS is 

able to fuse the sensory information from the two eyes in 

such a way that a 3D perception of the scene is formed in a 

process called stereopsis. In stereoscopic presentation, the 

brain registers slight perspective differences between left 

and right views to create a 3D representation incorporating 

both views. In other words, the visual cortex receives 

information from each eye and combines this information to 

form a single stereoscopic image.  Presenting different 

views for each eye (stereoscopic presentation) usually 

results into binocular rivalry where the two monocular 

patterns are perceived alternately [1]. In such a case, where 

dissimilar monocular stimuli are presented to corresponding 

retinal locations of the two eyes, rather than perceiving 

stable single stimuli, two stimuli compete for perceptual 

dominance. Rivalry can be triggered by very simple 

stimulus differences or by differences between complex 

images. These include differences in color, luminance, 

contrast polarity, form, size, and velocity. Stronger, high-

contrast stimuli lead to stronger perceptual competition. In 

particular cases, one of the two stimuli dominates the field. 

This effect is known as binocular suppression [2], [3]. It is 

assumed according to the binocular suppression theory that 

the HVS fuses the two images with different levels of 

sharpness such that the perceived quality is close to that of 

the sharper view [4]. In contrast, if both views show 

different amounts of blocking artifacts, no considerable 

binocular suppression is observed and the binocular quality 

of a stereoscopic sequence is rated close to the mean quality 

of both views [5]. 

Binocular suppression has been exploited in 

asymmetric stereoscopic video coding, for example by 

providing one of the views with lower spatial resolution [6] 

or with lower frequency bandwidth [7], fewer color 

quantization steps [8], or coarser transform-domain 

quantization [9], [10]. In this paper we exploit binocular 

suppression and asymmetric quality between views in 



 

 

another domain, namely presentation of stereoscopic 3D 

content simultaneously on a single display for viewers with 

and without viewing glasses. Such a viewing situation may 

occur, for example, when television viewing is not active, 

but the television set is just being kept on as a habit. The 

television may be located in a central place at home, where 

many family members are spending their free time. 

Consequently, there might be viewers actively watching the 

television with glasses and while others are primarily doing 

something else (without glasses) and just momentarily 

peeking at the television. Furthermore, the price of the 

glasses, particularly the active ones, might constrain the 

number of glasses households are willing to buy. Hence, in 

some occasions, households might not have a sufficient 

number of glasses for family members and visitors watching 

the television. While glasses-based stereoscopic display 

systems provide a good stereoscopic viewing quality, the 

perceived quality of the stereo picture or picture sequence 

viewed without glasses is intolerable. Recently, authors in 

[11] presented a system for automatic 2D/3D display mode 

selection based on whether the users in front of the 3D 

display wear viewing glasses. In the research presented in 

[11] a combination of special viewing glasses and a camera 

on top of the display enables such display mode selection. 

However, this approach does not solve the problem of a 

mixed group of observers, some with and some without 

viewing glasses and only enables switching between 2D and 

3D presentation based on the number of subjects with or 

without viewing glasses in front of the display. 

We enable the same content to be simultaneously 

viewed both in 3D with viewing glasses and in 2D without 

viewing glasses by digital signal processing of the decoded 

stereoscopic video content, making the perceived quality in 

glasses-based stereoscopic viewing systems acceptable for 

viewers with and without 3D viewing glasses 

simultaneously. Viewers with glasses should be able to 

perceive stereoscopic pictures with acceptable quality and 

good depth perception, while viewers without glasses should 

be able to perceive single-view pictures i.e. one of the views 

of the stereoscopic video. The proposed processing is 

intended to take place at the display and can be adapted for 

example based on the ratio of users with and without 

viewing glasses. In the proposed algorithm, one of the views 

is processed so that its presence becomes harder to perceive 

when viewing the content without viewing glasses, while 

the quality and 3D perception is not compromised much 

thanks to binocular suppression. The proposed method 

includes three steps, namely disparity adaptation, low-pass 

filtering of the non-dominant view, and contrast adjustment. 

While known methods are used for each processing step, we 

are not aware of previous research works tackling the same 

problem, i.e. stereoscopic 3D content being simultaneously 

viewed with viewing glasses by some users and without 

viewing glasses by other users. 

The rest of this paper is organized as follows. In 

section 2 we present a literature review of the research fields 

related to the algorithm proposed in the paper, while the 

proposed post-processing algorithm is described in section 

3. Test setup and results are presented in sections 4 and 5, 

respectively. Finally the paper concludes in section 6. 

2. LITERATURE REVIEW 

In this section, we provide an extensive literature review 

focused on the operation of human visual system when 

observing an asymmetric quality stereoscopic video. 

Different types of asymmetry are classified and subjective 

assessment results are reported in sections 2.1 and 2.2 from 

perception and video compression viewpoints, respectively. 

Moreover, in section 2.3, we discuss the effect of camera 

separation on the depth perception. These techniques 

provide a basis for rendering algorithms utilized in this 

study. In section 2.4 we summarize some key aspects 

affecting the perceived 3D video quality, which are 

subsequently taken into consideration in the performed 

subjective viewing experiment. Finally, in section 2.5, the 

concept of depth-enhanced multiview video coding is 

described, as it can provide an unlimited number of rendered 

views at the 3D display. This coding approach can be 

exploited to display stereoscopic video with arbitrary 

camera separations, hence facilitating the disparity 

adaptation step of the method proposed in this paper. 

2.1. Visual perception of asymmetric stereoscopic video 

Binocular suppression provides an opportunity to use 

different types of asymmetry between views. Many research 

works have been carried out to study which types of 

asymmetry are subjectively most pleasing to human 

observers or closest to the symmetric stereoscopic video and 

to find optimal settings for various parameters related to the 

strength of asymmetry.  

Typically the greater the amount of high frequency 

components (more detail), the better the 3D perception of 

the objects. This means that the stereo acuity decreases 

when the amount of blurring increases [12]. However, [13] 

studied this topic in more detail showing that within certain 

limits, it is possible to perceive stimuli well in 3D even 

when one eye sees a blurred image while the other eye sees 

a sharper one.   

The capability of the HVS to fuse stereo pairs of 

different sharpness has been studied in many papers. 

Authors in [6] subjectively assessed the quality of 

uncompressed mixed-resolution asymmetric stereoscopic 

video by downsampling one view with ratios 1/2, 3/8, and 

1/4. The results show that while downsampling ratio is equal 

to 1/2 the average subjective score has sufficient subjective 

quality which is comparable to that of full resolution stereo 

pair. A similar experiment was conducted by Stelmach in 

[14] where the response of HVS to mixed-resolution stereo 

video sequences where one view was low-pass filtered was 

explored by performing a series of subjective tests. Subjects 

rated the overall quality, sharpness, and depth perception of 

stereo video clips. The results show that the overall 

sensation of depth was unaffected by low-pass filtering, 

while ratings of quality and sharpness were strongly 



 

 

weighted towards the eye with the greater spatial resolution. 

Moreover, authors in [7] evaluated the perceptual impact of 

low-pass filtering applied to one view of a stereo image 

pairs and stereoscopic video sequences in order to achieve 

an asymmetric stereo scenario. The results showed that 

binocular perception was dominated by the high quality 

view when the other view was low-pass filtered.  

2.2. Asymmetric stereoscopic video coding 

The types of asymmetric video coding can be coarsely 

classified into mixed-resolution, asymmetric sample-domain 

quantization, asymmetric transform-domain quantization 

and asymmetric temporal resolution. Furthermore, a 

combination of different types of scalabilities can be used. 

The different types of asymmetric stereoscopic video coding 

are reviewed briefly in the sequel. 

Mixed-resolution stereoscopic video coding [15], also 

referred to as resolution-asymmetric stereoscopic video 

coding, introduces asymmetry between views by low-pass 

filtering one view and hence providing smaller amount of 

spatial details or a lower spatial resolution. Furthermore, 

usually a coarser sampling grid is utilized for the low-pass-

filtered image, i.e. the content is represented with fewer 

pixels. Mixed-resolution coding can also be applied for a 

subset of color components. For example, in [16], luma 

pictures of both views had equal resolution while chroma 

pictures of one view were represented by fewer samples 

than the respective chroma pictures of the other view. 

In asymmetric transform-domain quantization the 

transform coefficients of the two views are quantized with a 

different step size. As a result, one of the views has a lower 

fidelity and may be subject to a greater amount of visible 

coding artifacts, such as blocking and ringing. In [9], the 

authors performed a series of subjective test experiments on 

coded stereoscopic video clips with asymmetric luminance 

qualities. Asymmetric luminance was achieved with coarser 

quantization of transform coefficient values in one luma 

view. Subjective results show that stereoscopic video coding 

with asymmetric luminance information achieved a bitrate 

reduction from 9% to 34% while maintaining the just 

noticeable distortion as introduced in [17]. Moreover, 

authors in [10] subjectively compared the quality of coded 

mixed-resolution stereoscopic video with that of compressed 

full-resolution video. The results revealed that under the 

same bitrate constraint, the same subjective quality can be 

expected while decreasing the spatial resolution of one view 

by a factor of 1/2 horizontally and vertically. 

In asymmetric sample-domain quantization [8] the 

sample values of each view are quantized with a different 

step size. A higher compression ratio can be achieved for 

the quantized view compared to the other view, due to fewer 

quantization steps. Both luma and chroma samples can be 

processed with different quantization step sizes. If the 

number of quantization steps in each view matches a power 

of two, a special case of asymmetric sample-domain 

quantization, called bit-depth-asymmetric stereoscopic 

video, can be achieved. [8] presents a video coding scheme 

based on uneven quantization steps for luma sample values 

of left and right views along with spatial downsampling. 

Results of subjective quality assessment showed that the 

average ratings of proposed method outperformed full 

resolution symmetric and mixed resolution asymmetric 

stereoscopic video coding schemes with different 

downsampling ratios. 

To our knowledge, asymmetric contrast has not been 

utilized in stereoscopic video compression. However, 

authors in [18] subjectively assessed the subjective quality 

of a wide range of binocular image imperfections by 

pointing out asymmetry threshold values which provide 

equal visual comfort. It was found that the contrast 

difference between views should not exceed 25% to prevent 

eye strain in subjects.  

2.3. Impact of parallax on depth perception 

Screen parallax is created by the difference between the left 

and right eye images on the 3D display. We need to 

converge and accommodate (focus) the eyes in order to 

project the object of interest to the fovea in both eyes. The 

distance between us and the object of interest defines the 

amount of convergence and accommodation in our eyes. 

Convergence can be defined as a process that is basically 

disparity driven and consists of the movement of the two 

eyes in opposite direction to locate correctly the area of 

interest on the fovea. Accommodation tries to remove blur 

and hence, alters the lens to focus the area of interest on the 

fovea [19]. 

Under natural conditions the accommodation and 

convergence systems are reflexively linked. The amount of 

accommodation needed to focus on an object changes 

proportionally to the amount of convergence required to 

project the same object on the fovea of the eyes. Under 

conditions of binocular fusion, for a certain amount of 

convergence, accommodation has a certain depth of focus, 

in which it can move freely and objects are perceived 

properly [20]. 

An area defining an absolute limit for disparities that 

can be fused in HVS is known as Panum’s fusional area 

[21], [22]. It describes an area, within which different points 

projected on to the left and right retinas produce binocular 

fusion and sensation of depth. Hence, horizontal disparity 

should be limited within Panum’s fusional area. Otherwise, 

excessive disparity could cause double vision or severe 

visual fatigue. The limits of Panum's fusional area are 

affected by many factors e.g. including stimulus size, spatial 

frequency, exposure duration, temporal effects, continuous 

features, and amount of luminance [21]. Disparities beyond 

60 to 70 arcmin are assumed to cause visual discomfort and 

eye strain [23], [24]. 

Camera separation creates a disparity between the 

same object on the left- and right-view images on a display, 

which can be expressed in terms of number of pixels. Based 

on the display width and resolution, the disparity can be 

converted from a number of pixels to a distance disparity 

e.g. in centimeters as shown in (1) and (2). 



 

 

 

   Wcm / Wpixels      (1) 

 

where Wcm is the display width in cm and Wpixels is the 

display width in pixels. Hence, w presents one pixel width 

in cm. 

 

            (2) 

 

where DD is the distance disparity and PD is the 

disparity in number of pixels 

Considering the viewing distance (VD), the disparity 

in arcmin can be calculated for different objects in the scene 

using (3). This is depicted in Figure 1.  

 

DArcmin         
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where DArcmin is the disparity in arcmin and atan 

calculates the Arc Tangent in arcmin. 

 

Pastoor in [17] assessed the viewing comfort when 

watching a series of stereoscopic images with disparities 

ranging from 0 to 140 arcmin. The results show that 

disparities up to 35 arcmin do not cause any discomfort 

while disparities above 70 arcmin should be avoided. 

2.4. 3D video quality 

Considering asymmetric stereoscopic video, artifacts 

causing contradictory depth cues are sent to each eye. 

Similarly to asymmetric video encoding which results in the 

masking of the artifacts of the worst view, the risk is to 

suppress the stereopsis because there might be no 

correspondences between the left and right views.  

Even though it has been shown that image quality is 

important for visual comfort, it is not the only factor for 

great 3D visual experience. New concepts such as depth 

perception and presence i.e. the feeling of being there have 

to be considered too. These concepts are extensively studied 

in [25], [26], and [27]. 

One annoying artifact while observing 3D content with 

glasses is crosstalk [28]. It is perceived as shadow or double 

contours (ghosting artifact) due to imperfect optical 

separation between the left and the right images by filters of 

passive glasses or slight imperfection in synchronization 

between shutters in active glasses and the displayed left and 

right views [29]. This will cause perception of opposite view 

by each eye causing the ghosting artifact while it should 

have been blocked by the viewing glasses. Crosstalk has 

been mentioned as one of the main disturbing perceptual 

display related factors for 3D viewers [30]. The ghosting 

artifact is most visible when watching a stereoscopic video 

on a 3D display without glasses (2D presentation), since 

both left and right views are visible to both eyes. Hence, the 

subjective quality of stereoscopic video in 2D presentation 

is not acceptable due to this artifact as depicted in Figure 2. 

2.5. Depth-enhanced multiview video coding 

Multiview autostereoscopic displays (ASDs) require many 

high-quality views to be available at the decoder/display 

side prior to displaying. Due to the natural limitations of 

content production and content distribution technologies, 

there is no way that a large number of views can be 

delivered to users with existing video compression 

standards. Moreover, due to differing subjective preferences 

on the amount of depth in 3D displaying as well as different 

3D displays and viewing environments, it is desirable to 

enable depth or disparity of the content in the 

decoder/display side. Therefore, the Moving Picture Experts 

Group (MPEG) issued a Call for Proposals for 3D video 

coding (hereafter referred to as the 3DV CfP) [31] for a new 

standard which enables rendering of a selectable number of 

views without increasing the required bitrate. The work 

initiated by MPEG has been continued in the 3D video 

coding standardization in the Joint Collaborative Team on 

3D Video Coding Extension Development (JCT-3V) [32] 

and aims at enabling a variety of display types and 

 
Figure 1. Disparity calculation in arcmin based on different 

disparities in number of pixels on display 

 

 
Figure 2. Subjective quality of stereoscopic video without 

glasses 



 

 

preferences including varying camera separation to adjust 

the depth perception. 

In ASD and other 3D display applications many views 

should be available at the decoder side. A multiview video 

plus depth (MVD) format [33], where each video data pixel 

is associated with a corresponding depth map value, allows 

reducing the input data for the 3DV systems significantly, 

since most of the views can be rendered from the available 

decoded views and depth maps using a depth-image-based 

rendering (DIBR) [34] algorithm. Such a scenario ensures 

the availability of a sufficient number of views for display 

where different disparities based on the targeted application 

can be achieved. Hence, as proposed by the 3DV CfP, a 3-

view MVD coding scenario is suitable for creation of a wide 

range of required views for multiview ASD rendering while 

a suitable pair of synthesized views can also be used for 

rendering on a stereoscopic display. 

3. PROPOSED RENDERING ALGORITHM 

In this section, a set of adaptation methods, taking 

advantage of the binocular suppression theory and achieving 

a tradeoff between stereoscopic viewing with glasses and 

single-view viewing without glasses, are introduced. In 

these adaptation methods, one view is chosen as the 

dominant view while the other view will be the non-

dominant view. The aim of the methods is to let the 

dominant view be perceived clearly and the ghosting effect 

caused by the non-dominant view to be close to 

imperceptible when viewing without glasses, while the 

perceived quality in viewing with glasses is only slightly 

degraded. The adaptation processes the non-dominant view 

and the disparity of the stereo pair with three methods. The 

selection of these methods was based on the previous 

conclusions in the literature showing that none of the 

methods is expected to affect the subjective quality of 

stereoscopic video considerably. In the first step, disparity is 

selected in agreement with [5], [17] and without sacrificing 

the depth perception in stereoscopic 3D presentation. 

Following this, the non-dominant view is low pass filtered, 

as it is shown in [6], [7], [13], and [14] that this does not 

affect the 3D perceived subjective quality. In the final step, 

a contrast adjustment algorithm is applied on the non-

dominant view in favor of better quality in presentation 

without glasses. It has been confirmed in [18] that contrast 

adjustment of one view does not decrease the visual quality 

of stereoscopic video noticeably while watched with glasses. 

Figure 3 depicts the block diagram of the rendering process. 

As can be seen from Figure 3, the proposed processing takes 

place after decoding the stereoscopic video content and 

could be implemented in a television set or a display capable 

of stereoscopic rendering. All processing steps can be made 

adjustable, so that the viewers can be given the option of 

controlling the strength or the amount of processing. In the 

following sub-sections, each of the three processing steps is 

described in more details. 

 
Figure 3. Block diagram of the rendering process 

3.1. Disparity selection 

It is important to control the disparity between the views in 

a stereoscopic presentation of 3D content in such a manner 

that the content is comfortable to view while a desired depth 

perception is also obtained. Clearly, while increasing the 

distance between left and right views, the ghosting artifact 

in 2D presentation of stereoscopic video increases and thus, 

more annoying subjective quality is expected when the 

content is viewed without viewing glasses. On the other 

hand, if the small disparity between views is chosen, the 

depth perception in 3D presentation decreases. 

Disparity selection between the views is initially 

determined at the time of generating the content, for 

example through the camera baseline separation and the 

distance from the camera to the filmed objects. Disparity 

selection at the rendering device is enabled if a depth-

 

 
Figure 4. Enabling disparity selection through view 

synthesis process where D´ represents the view separation 

achieved by view synthesis process compared to view 

separation of decoded views (D)  



 

 

enhanced multiview video coding is used as a distribution 

format or if the rendering device is capable of a disparity or 

depth estimation from decoded stereo pairs. Consequently, 

by means of DIBR algorithms, a view at a desired location 

can be synthesized. Considering the selected disparity and 

hence, the estimated view separation, a combination of one 

coded view and one synthesized view can be exploited to 

create the displayed stereoscopic video. This is illustrated in 

Figure 4. 

The proposed adaptation methods presented in the next 

two sub-sections aims at rendering the non-dominant view 

as invisible as possible in the presentation of stereoscopic 

video without glasses. Nevertheless, having a smaller 

disparity still provides a smoother subjective quality for a 

2D presentation of the content.  

3.2. Low pass filtering 

Low-pass filtering decreases the number of high frequency 

components (HFCs) in the non-dominant view by removing 

some details. Hence, in the created asymmetric stereoscopic 

video, the non-dominant view will be blurred compared to 

the dominant view. This will favor better 2D presentation of 

the stereo pair, as the dominant view will be sharper 

compared to the blurred non-dominant view and therefore it 

will be better perceived by HVS. Yet, as verified 

extensively in previous studies [4], [6], [7], and [14] 

asymmetric stereoscopic video where one view has been 

low pass filtered provides similar subjective quality and 

depth perception to those of stereoscopic video where both 

views have the same high quality. 

In our experiments, the applied low-pass filter (LPF) 

was a 2D circular averaging filter (pillbox) within a square 

matrix having 2×radius+1 elements in each row and column, 

as it resulted in a better subjective performance compared to 

a few other tested LPFs. The equation used for this filter is 

MATLAB implementation of a simple pillbox filter 

presented in [35]. In general, any LPF can also be selected 

for example on the basis of memory access and complexity 

constraints. The level of HFC reduction depends on the 

radius defined for the filter such that increasing the radius 

results in more reduction of HFCs. The 2D matrix 

presenting the LPF coefficients of the used LPF for radius 6 

is depicted in (4).  
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3.3. Contrast adjustment 

The response of HVS depends much more on the relation of 

luminance local variations compared to the surrounding 

values than absolute luminance. Contrast is a measure for 

this relative variation of luminance. In the visual perception 

of different scenes, contrast is determined by the difference 

in color and brightness of each object and other objects in 

the same viewing field. Hence, contrast adjustment is related 

to brightness and color settings i.e. how the luminance and 

chrominance differ and change. 

The approach utilized in this experiment is to decrease 

the contrast of luma and chroma components of the non-

dominant view while keeping the contrast of the dominant 

view unchanged. The contrast decrease of the non-dominant 

view will help the 2D presentation of the stereoscopic view 

that has more similarity to the dominant view while the 

stereoscopic presentation is not influenced considerably. 

The contrast adjustment of an image can be done in 

various ways. We follow the same algorithm as used for the 

weighted prediction mode of the Advanced Video Coding 

(H.264/AVC) standard [36], that is: 

 

       (
   

  )               (5) 

where: 

  is the adjusted luma or chroma contrast value 

      is a function returning the closest integer 

  is the input sample value 

  and   are the parameters utilized to create the   

adjustment weight 

>> is a bit shift operation to the right 

4. TEST SETUP 

 The performed tests targeted at verifying that the proposed 

method has potential to tackle the presented problem 

satisfactorily, i.e. that the same stereoscopic 3D content can 

be viewed with viewing glasses with acceptable 3D quality 

and depth perception and without viewing glasses with 

acceptable 2D quality and a tolerable level of ghosting 

artifacts. Furthermore, the performed tests aimed at 

discovering how to tune the processing steps of the 

proposed algorithm optimally, i.e. which are good trade-offs 

for the three processing components, disparity selection, 

low-pass filtering and contrast adjustment. As no objective 

video quality metrics are applicable to the presented 

problem as far as the authors are aware of, a large-scale 

subjective assessment was performed with four sequences: 

Poznan Hall2, Poznan Street [37], Ghost Town Fly (GT 

Fly), Undo Dancer, which were used in the 3DV CfP [31]. 

For GT Fly and Undo Dancer sequences, 500 frames were 

used while 250 and 200 frames were used for Street and 

Hall2, respectively. No encoding was applied to the 

TABLE 1. INPUT VIEWS AND CAMERA DISTANCES FOR SMALL AND BIG 

CAMERA SEPARATIONS 

   Left view-Right view , (Camera separation in cm) 

Sequence Small disparity Big disparity 

Poznan Hall2 7-6.5 , (6.87) 7-6 , (13.75) 

Poznan Street 5-4.5, (6.87) 5-4 , (13.75) 

GT Fly 3-1 , (4) 5-1 , (8) 

Undo Dancer 1-3 , (4) 1-5 , (8) 
 



 

 

sequences. The frame rate was fixed to 25 Hz for all 

sequences. Each sequence was evaluated at two different 

disparities or camera separations, referred to as small and 

big disparity subsequently. The camera separation of the big 

disparity is the same as those introduced in MPEG 3DV CfP 

for the 3-view coding scenario and can be considered to 

represent a typical disparity for stereoscopic viewing, while 

in the small disparity scheme the camera separation distance 

is halved. The input views and the relative camera 

separation distances used in the experiments, for both small 

and large disparity stereoscopic sequences, are shown in 

Table 1.  

4.1. Preparation of Test Stimuli 

To prepare test material, the three adaptation methods 

presented in section 3 were used and various test cases 

based on different combinations of adaptation methods were 

created. In the experiments, we tested contrast reduction to 

50% and 75% of the original values for different 

combinations by fixing the value of   to 4 and setting the 

value of   equal to 8 and 12, respectively, in equation (5). 

Moreover, all non-dominant views for different schemes 

except Original 2D were low pass filtered using the circular 

averaging filter with radius equal to 6 as presented in 

equation (4). 

Two different disparities between the left and the right 

views were selected for different sequences. In the test 

sequences the disparity was always positive i.e. the objects 

are always behind the display level. Disparity selection was 

limited so that the results were in agreement with previous 

findings in the literature to prevent eye strain due to 

excessive disparities.  

Disparity can be calculated from depth map by 

converting it to disparity. Table 2 presents the average and 

the maximum disparities for each sequence. Moreover, 

Table 1 presents the selected views and corresponding 

camera separations for different disparities of the sequences. 

For Poznan Hall2 and Poznan Street sequences, views 6.5 

and 4.5, respectively, were synthesized from the original 

texture and depth views using the MPEG View Synthesis 

Reference Software (VSRS) version 3.5 [38]. The subjective 

quality of synthesized views was comparable to that of the 

original views. Moreover, since the synthesized artifacts 

were subjectively negligible, we assume that the 

synthesizing process did not affect the subjective ratings.  

Combining the above-mentioned tested parameters, the 

following seven test cases were prepared and subjectively 

assessed. The combinations for each scheme are presented 

in the format of (disparity, contrast) where for disparity the 

values 0, Small, Big refer to 0 disparity (identical left and 

right views), Small disparity, and Big disparity, respectively. 

For contrast the values X% present the contrast ratio of the 

non-dominant view relative to the dominant view. Seven 

different test schemes, as presented in Table 3, were used in 

the subjective tests. 

4.2. Test Procedure and Subjects 

Subjective viewing was conducted according to the 

conditions suggested in MPEG 3DV CfP. The polarized 

46’’ Vuon E465SV 3D display manufactured by Hyundai 

was used. The display has a total resolution of 19201200 

pixels and a resolution of 1920600 per view when used in 

the stereoscopic mode was used for displaying the test 

material. The viewing distance was equal to 4 times the 

displayed image height (2.29m). 

Subjective quality assessment was done according to 

the Double Stimulus Impairment Scale (DSIS) method [39] 

with a discrete unlabeled quality scale from 0 to 10 for 

quality assessment. The test was divided into two sessions 

where in the first session, subjects assessed the subjective 

quality of video clips with glasses and in the second session, 

the test was performed without glasses. Two questions for 

each session of the test were considered and the subjects 

wrote their ratings after each clip was played. These 

questions are presented in Table 4. Each question is 

associated with its short term for simplicity in reporting the 

results. Prior to each test, subjects were familiarized with 

the test task, the test sequences and the variation in the 

quality to be expected in the actual tests. The subjects were 

instructed that 0 stands for the lowest quality and 10 for the 

highest. 

Subjective viewing was conducted with 20 subjects, (16 

males, 4 females), aged between 21-31 years (mean: 24.2). 

All subjects passed the test for stereovision prior to the 

actual test. Moreover, they were all considered naïve as they 

did not work or study in fields related to information 

technology, television or video processing. To prevent 

subjects from getting exhausted during the evaluation 

sessions, the duration of the test was limited to 45 minutes. 

5. RESULTS AND DISCUSSION 

In this section we present the results of the conducted 

subjective tests and an analysis of the statistics of the 

quantitative viewing experience ratings.  

Figure 5 shows the subjective viewing experience 

ratings with 95% confidence interval (CI) for all sequences. 

The results are provided for four questions that subjects 

TABLE 2. DISPARITIES FOR SMALL AND BIG CAMERA SEPARATION 

   Average disparity (Maximum disparity) in arcmin 

Sequence Small disparity Big disparity 

Poznan Hall2 18.6(22.2) 37.2(44.3) 

Poznan Street 19.3(23.6) 38.6(47.2) 

GT Fly 12.1(42.2) 24.3(84.3) 

Undo Dancer 13.6(22.2) 27.2(47.2) 
 

TABLE 3. DIFFERENT SCHEMES AND THEIR CHARACTERISTICS 

Scheme Disparity Contrast adjustment 

O   (Original 2D) 0 100% 

S1 Small 100% 

S2 Small 75% 

S3   (Best 2D quality) Small 50% 

B1  (Best 3D quality) Big 100% 

B2 Big 75% 

B3 Big 50% 
 



 

 

were asked during the test sessions (see sub-section 4.2). 

The naming introduced for the different schemes in sub-

section 4.1 is used in the figures for simplicity. Subjective 

ratings show that scheme O achieved the highest value in 

2D evaluation (i.e. the session where viewing took place 

without glasses) and in the general quality of 3D 

presentation. However, because depth perception was rated 

the smallest in this scheme, it cannot be considered as a 

competitor for an acceptable trade-off for simultaneous 2D 

and 3D perception. Hence, it was excluded from the analysis 

presented next. For the other tested schemes, the following 

general trend was observed. In both small and big 

disparities, while decreasing the contrast ratio of the non-

dominant view, the ratings of the 2D evaluation session 

increase and at the same time the 3D evaluation ratings 

decrease. This was expected as reducing the contrast of the 

non-dominant view targets ideal 2D subjective quality while 

compromising the 3D perception. Moreover, in all 

sequences, the ghosting effect in the 2D presentation of 

stereoscopic video clips without any contrast adjustment 

annoyed subjects more in the big disparity scheme when 

compared to the small disparity schemes. Considering the 

large amount of viewing experience ratings, it is hard to 

make many logical conclusions based on Figure 5. Hence, 

significant differences between the schemes were further 

analyzed using statistical analysis as presented in the 

paragraphs below.  

The Wilcoxon’s signed-rank test [40] was used as the 

data did not reach normal distribution (Kolmogorov-

Smirnov: p<0.05). Wilcoxon’s test is used to measure 

differences between two related and ordinal data sets [41]. A 

significance level of p< 0.05 was used in the analysis. 

The following conclusions were obtained with this 

statistical significance analysis mentioned above. In the 

analysis, we compared pairwise the ratings of each two test 

case combinations resulting in fifteen flags per question and 

per sequence, indicating whether the subjective quality 

between different test cases have any statistically significant 

difference. Considering four sequences, four questions per 

sequence, and fifteen two-sided pairwise comparisons per 

question, we obtained 4×4×15×2 = 480 flags.  Table 5 

reports a summary of the distribution of these flags. Each 

cell presents the total number of flags from different 

questions where -1, 0, and 1 present significantly lower, 

similar, and significantly higher quality compared to other 

schemes, respectively. From this Table it is clear that only 

S2 provides similar or better subjective results for all 

sequences while other schemes have a lower performance at 

least in one sequence. Hence, the combination used in S2 

seems to be a well-designed potential candidate for 

simultaneous 2D and 3D presentation. Moreover, Table 5 

reports the cumulative flag counts over all sequences. It can 

be observed that the cumulative counts for S3 are 

comparable or better than those for S2. However, by 

studying the performance of S3 for individual sequences, it 

can be observed that the performance of S3 for Hall2 is 

inferior to the results obtained with S2. To analyze the 

subjective performance of each test scheme combination for 

2D and 3D viewing separately, similar flag tables as the one 

presented in Table 5 are presented in Table 6, reporting 

results for 2D and 3D viewing experiments separately. 

Considering the two summaries provided in Table 6, S2 is 

the only test scheme for which the number of test cases 

where its performance was statistically superior to the 

another test scheme (flag value equal to 1) was greater than 

the number of test cases where its performance was 

statistically inferior to another test scheme (flag value equal 

to -1) in both 2D and 3D viewing experiments. 

TABLE 5. FLAG TABLE PRESENTING SIGNIFICANT DIFFERENCES FOR 

DIFFERENT TEST SCHEMES PRESENTED IN TABLE 3 

FLAGS -1, 0, AND 1 PRESENT SIGNIFICANTLY LOWER, SIMILAR, AND 

SIGNIFICANTLY HIGHER QUALITY COMPARED TO OTHER SCHEMES, 

RESPECTIVELY  

  Test scheme combinations 

  Flags S1 S2 S3 B1 B2 B3 

 

Dancer 

-1 2 1 0 3 2 3 

0 17 17 16 16 18 14 

1 1 2 4 1 0 3 
 

 

GT Fly 

-1 4 1 1 5 2 1 

0 16 17 13 13 17 16 

1 0 2 6 2 1 3 
 

 

Street 

-1 4 2 3 7 4 4 

0 13 13 9 10 15 12 

1 3 5 8 3 1 4 
        

 

Hall2 

-1 4 3 6 4 0 4 

0 12 14 12 12 14 14 

1 4 3 2 4 6 2 
        

Sum for all 

sequences 

-1 14 7 10 19 8 12 

0 58 61 50 51 64 56 

1 8 12 20 10 8 12 
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Figure 5. Viewing experience ratings with 95% confidence interval. The schemes are named according to Table 3. 
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The conclusion that S2 provides the most acceptable 

trade-off for simultaneous 2D and 3D viewing is in 

agreement with previous findings on contrast asymmetry in 

[18], where the contrast difference limit between the left and 

the right views was found to be equal to or less than 25% to 

provide equal viewing comfort. Moreover, considering 

camera separations presented in Table 2, the perceived 

disparity for all sequences was aligned with the results 

presented in [17], [23], and [24], where the limit for the 

maximum disparity between the left and right views was 

found to be 70 arcmin. Only the maximum disparity of the 

big camera separation for GT Fly is above this limit. This 

big disparity happens for 0.06 seconds in the 20 second 

sequence (3 frames in 500 frames). Figure 6 depicts a 

sample frame from a 2D presentation of a stereoscopic 

video from scheme S2 and the corresponding stereoscopic 

video frame with equal disparity and without any LPF or 

contrast adjustment applied.  

After the test, the participants were asked whether they 

experienced any fatigue or eye strain during and/or after the 

test. Subjects seemed quite comfortable and there were no 

complaints regarding the 3D content and the asymmetric 

nature of the stereoscopic video clips. However, five 

subjects complained that sometimes it was difficult to 

distinguish the differences between the observed clips. 

6. CONCLUSION 

Stereoscopic video provides 3D perception by presenting 

slightly different views for each eye. Ghosting artifacts 

make it almost intolerable to watch the content without 

glasses for both active and passive glasses/displays.  In this 

paper we tackled the problem of viewing 3D content 

simultaneously with and without viewing glasses by 

proposing a technique which makes it quite acceptable to 

watch stereoscopic content without glasses while the 3D 

perception is not sacrificed much. In the proposed approach, 

one dominant view is selected and then the non-dominant 

view is adjusted through disparity selection, contrast 

adjustment, and low-pass-filtering. These steps increase the 

similarity of the non-dominant view to the dominant view. 

The performance of the proposed technique was 

assessed through extensive subjective tests. The statistical 

analysis of scores showed that combination of a disparity 

smaller than what is conventionally used for stereoscopic 

video along with low-pass-filtering the non-dominant view 

and decreasing its contrast to 75% provides the best trade-

off between 3D and 2D perception of a stereoscopic 3D 

content. This is a new topic introduced in 3D research field 

and as a future plan we intend to do more research on other 

potential approaches to be used in the process. 

 

TABLE 6. FLAG TABLE PRESENTING SIGNIFICANT DIFFERENCES FOR DIFFERENT TEST SCHEMES PRESENTED IN TABLE 3 FOR (A) 2D AND (B) 3D 

EXPERIMENTS 

FLAGS -1, 0, AND 1 PRESENT SIGNIFICANTLY LOWER, SIMILAR, AND SIGNIFICANTLY HIGHER QUALITY COMPARED TO OTHER SCHEMES, RESPECTIVELY   
 

(A) 

  Test scheme combinations 

  Flags S1 S2 S3 B1 B2 B3 

 

Dancer 

-1 2 1 0 3 2 0 

0 8 8 6 7 8 7 

1 0 1 4 0 0 3 
 

 

GT Fly 

-1 4 1 0 5 2 0 

0 6 7 4 5 7 7 

1 0 2 6 0 1 3 
 

 

Street 

-1 4 2 0 7 3 1 

0 5 5 2 3 6 5 

1 1 3 8 0 1 4 
        

 

Hall2 

-1 4 0 0 4 0 0 

0 6 8 8 6 8 8 

1 0 2 2 0 2 2 
        

Sum for all 

sequences 

-1 14 4 0 19 7 1 

0 25 28 20 21 29 27 

1 1 8 20 0 4 12 
 

 

(B) 

  Test scheme combinations 

  Flags S1 S2 S3 B1 B2 B3 

 

Dancer 

-1 0 0 0 0 0 3 

0 9 9 10 9 10 7 

1 1 1 0 1 0 0 
 

 

GT Fly 

-1 0 0 1 0 0 1 

0 10 10 9 8 10 9 

1 0 0 0 2 0 0 
 

 

Street 

-1 0 0 3 0 1 3 

0 8 8 7 7 9 7 

1 2 2 0 3 0 0 
        

 

Hall2 

-1 0 3 6 0 0 4 

0 6 6 4 6 6 6 

1 4 1 0 4 4 0 
        

Sum for all 

sequences 

-1 0 3 10 0 1 11 

0 33 33 30 30 35 29 

1 7 4 0 10 4 0 
 

  



 

 

  

Hall2 

  
Street 

  
Dancer 

(a) (b) 

Figure 6. 2D presentation of stereoscopic video 

combinations from (a) Original scheme and (b) Selected 

scheme i.e. S2 
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Abstract In asymmetric stereoscopic video compression,
the views are coded with different qualities. According to the
binocular suppression theory, the perceived quality is closer
to that of the higher-fidelity view. Hence, a higher compres-
sion ratio is potentially achieved through asymmetric cod-
ing. Furthermore, when mixed-resolution coding is applied,
the complexity of the coding and decoding is reduced. In
this paper, we study whether asymmetric stereoscopic video
coding achieves the mentioned claimed benefits. Two sets
of systematic subjective quality evaluation experiments are
presented in the paper. In the first set of the experiments, we
analyze the extent of downsampling for the lower-resolution
view in mixed-resolution stereoscopic videos. We show that
the lower-resolution view becomes dominant in the subjec-
tive quality rating at a certain downsampling ratio, and this
is dependent on the sequence, the angular resolution, and
the angular width. In the second set of the experiments,
we compare symmetric stereoscopic video coding, quality-
asymmetric stereoscopic video coding, and mixed-resolution
coding subjectively. We show that in many cases, mixed-
resolution coding achieves a similar subjective quality to that
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of symmetric stereoscopic video coding, while the computa-
tional complexity is significantly reduced.

Keywords Mixed resolution · Asymmetric stereoscopic ·
Stereoscopic 3D video · Subjective quality

1 Introduction

Stereoscopic video compression has gained importance dur-
ing the recent years thanks to the recent advances in dis-
play technology. In many stereoscopic 3D video services
and applications, the challenge is that the available bitrate
or storage space is similar to that for monoscopic video,
while the perceived temporal and spatial quality should also
be similar to those for monoscopic video. Recent advances
in video compression have alleviated the mentioned chal-
lenge to some extent. For example, the inter-view prediction
enabled by the Multiview Video Coding (MVC) [1] annex
of the widely used Advanced Video Coding (H.264/AVC)
standard [2] has been shown to improve compression effi-
ciency significantly compared to independent coding of the
views. As an example, Merkle et al. [3] reported gains up
to 3.2 dB and an average gain of 1.5 dB in terms of aver-
age luma peak signal-to-noise ratio (PSNR). However, fur-
ther compression without compromising the visual quality
is desirable in order to meet the bitrate and quality expec-
tations of many applications. There are several other exam-
ples for video coding methods that aim to provide higher
performance encoding to video content, for example, High
Efficiency Video Coding (HEVC) [4] and a depth enhanced
extension for MVC, abbreviated MVC+D, specifying encap-
sulation of MVC-coded texture and depth views into a single
bitstream [5,6].
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Video compression is commonly achieved by remov-
ing spatial, frequency, and temporal redundancies. Different
types of prediction and quantization of transform-domain
prediction residuals are jointly used in many video coding
standards to exploit both spatial and temporal redundan-
cies. In addition, as coding schemes have a practical limit
in the redundancy that can be removed, spatial and temporal
sampling frequency as well as the bit depth of samples can
be selected in such a manner that the subjective quality is
degraded as little as possible.

One branch of research for obtaining compression
improvement in stereoscopic video is known as asymmet-
ric stereoscopic video coding, in which there is a quality
difference between the two coded views. This is attributed to
the binocular suppression theory [7]. It is assumed according
to the binocular suppression theory that the HVS fuses the
two images with different levels of sharpness such that the
perceived quality is close to that of the sharper view [8]. This
is because, in normal vision, there is some additional fusion
to impulses from corresponding points of the two retinas.
The correspondence of the retinal elements is completely
rigid and un-changing; however, one of a pair of correspond-
ing points tends to suppress the other and create the binoc-
ular suppression. In the next sections, we will cover several
studies which have been exploiting binocular suppression in
asymmetric stereoscopic video coding.

Asymmetry in quality between the two coded views can
be achieved by one or more of the following methods:

(a) Mixed-resolution (MR) stereoscopic video coding, first
introduced in [9], also referred to as resolution- asym-
metric stereoscopic video coding. One of the views is
low-pass filtered and hence has a smaller amount of spa-
tial details or a lower spatial resolution. Furthermore, the
low-pass filtered view is usually sampled with a coarser
sampling grid, that is, represented by fewer pixels.

(b) Mixed-resolution chroma sampling [10]. The chroma
pictures of one view are represented by fewer samples
than the respective chroma pictures of the other view.

(c) Asymmetric sample-domain quantization [11]. The sam-
ple values of the two views are quantized with a different
step size. For example, the luma samples of one view may
be represented with the range of 0–255 (i.e., 8 bits per
sample), while the range may be scaled to the range of
0–159 for the second view. Thanks to fewer quantization
steps, the second view can be compressed with a higher
ratio compared to the first view. Different quantization
step sizes may be used for luma and chroma samples. As
a special case of asymmetric sample-domain quantiza-
tion, one can refer to bit-depth-asymmetric stereoscopic
video when the number of quantization steps in each view
matches a power of two.

(d) Asymmetric transform-domain quantization. The trans-
form coefficients of the two views are quantized with a
different step size. As a result, one of the views has a
lower fidelity and may be subject to a greater amount of
visible coding artifacts, such as blocking and ringing.

(e) A combination of different encoding techniques above.

The aforementioned types of asymmetric stereoscopic
video coding are illustrated in Fig. 1. The first row presents
the higher quality view which is only transform-coded.
The remaining rows present several encoding combinations
which have been investigated to create the lower quality
view using different steps, namely, downsampling, sample-
domain quantization, and transform-based coding. It can
be observed from the figure that downsampling or sample-
domain quantization can be applied or skipped regardless of
how other steps in the processing chain are applied. Like-
wise, the quantization step in the transform-domain coding
step can be selected independently of the other steps. Thus,
practical realizations of asymmetric stereoscopic video cod-
ing may use appropriate techniques for achieving asymme-
try in a combined manner as illustrated in Fig. 1e. Moreover,
in [12], the subjective quality of mixed temporal resolution
was assessed and compared to mixed spatial resolution on
two test sequences having a resolution of 720 × 480. The
paper concluded that at 1/2 temporal resolution, mixed tem-
poral resolution performed worse than mixed spatial resolu-
tion with different downsampling ratios. Due to its inferior
performance, mixed temporal resolution is not considered in
the subsequent parts of this paper.

This paper attempts to provide answers to two research
questions: Firstly, to what extent downsampling can be
applied for mixed resolution stereoscopic video? Secondly,
what are the constraints which limit the preference of uti-
lizing asymmetric coding achieved with different coding
schemes compared to symmetric coding? These research
questions were studied using systematic subjective testing,
because no commonly acceptable objective metrics are avail-
able for approximating the perceived quality of asymmetric
stereoscopic video.

The rest of this paper is organized as follows: A brief
overview of the relevant literature is presented in Sect. 2.
Section 3 presents a study of downsampling constraints
for MR stereoscopic video. Asymmetric stereoscopic video
achieved by mixed-resolution coding or asymmetric
transform-domain quantization is subjectively assessed and
compared to symmetric stereoscopic video coding in Sect. 4.
The primary target in the study presented in Sect. 4 is to reveal
whether asymmetric stereoscopic video coding outperforms
symmetric stereoscopic video coding in terms of subjective
quality when the same bitrate is used for both. Furthermore,
the study compares the subjective quality achieved by the
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Fig. 1 Illustrative examples of different types of asymmetric stereoscopic video coding

mentioned two asymmetric stereoscopic video coding meth-
ods. Finally, conclusions are provided in Sect. 5.

2 Literature review

2.1 Uncompressed mixed-resolution stereoscopic video

The subjective impact of uncompressed MR sequences at
downsampling ratios of 1/2 and 1/4 applied both horizon-
tally and vertically was studied in [12]. A combination of
a data projector and shutter glasses were used as the view-
ing equipment with a viewing distance equal to 4H, where
H was 91.5 cm. It was found that the perceived sharpness
and the subjective image quality of the MR image sequences
were nearly transparent at the downsampling ratio of 1/2
along both coordinate axes but dropped slightly at the ratio
of 1/4.

The study presented in [13] included a subjective eval-
uation for full- and mixed-resolution stereo video on a 32-
inch polarization stereo display and on a 3.5-inch mobile
display. One of the views in the MR sequences was down-
sampled to half the resolution both horizontally and verti-
cally. The results revealed that uncompressed full-resolution
(FR) sequences were preferred in 94 and 63 % of the test
cases for the 32- and 3.5-inch displays, respectively. More-
over, different resolutions for the symmetric stereo video and
the higher-resolution view of the MR videos were tried out,
while the downsampling ratio in the MR videos was always
1/2 both horizontally and vertically. It was found that the

higher the resolution, the smaller the subjective difference is
between FR and MR stereoscopic video. An equivalent result
was also discovered as a function of the viewing distance by
changing the distance from 1 to 3 m—the greater the view-
ing distance, the smaller the subjective difference becomes
between FR and MR.

An obvious question related to MR stereoscopic video is
whether people having a different ocular dominance perceive
the quality of the same MR stereoscopic image sequence dif-
ferently. However, it has been discovered in several studies,
such as [14] and [15], that subjective ratings of MR image
sequences are not statistically impacted by eye dominance.

In this paper, along with providing results completing
those included in [12] and [13] under our test setup, we also
determine the extent of the downsampling ratio that can be
applied to one view before the low-resolution view starts to
dominate in the perceived quality.

2.2 Compressed asymmetric stereoscopic video

The quantization of transform coefficients may result into
perceivable coding artifacts and also often suppresses
high-frequency transform coefficients and hence essentially
reduces spatial resolution. Consequently, there is a tradeoff
between spatial resolution of images used as input for the
encoding and the quantization step size. The tradeoff between
the selections of spatial resolution and the quantization step
size in JPEG coding of monoscopic images was studied in
[16].
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Saygili et al. [17] addressed the questions what should be
the level of asymmetry and whether asymmetry should be
achieved by spatial resolution reduction or SNR reduction
by presenting subjective assessment results. They used two
test setups. The first setup included polarized glasses and a
pair of projectors each having resolution of 1,024 × 768.
The viewing distance was set to approximately 3 m from
the screen. In the second setup, a parallax barrier auto-
stereoscopic display was used. The authors concluded that
when the reference view is encoded at a sufficiently high
quality, the auxiliary view can be encoded above a low-
quality threshold without a noticeable degradation on the
perceived quality. This low-quality threshold was 31 and
33 dB in terms of average luma PSNR for the parallax bar-
rier and the polarized projection displays, respectively. More-
over, their results showed that, at high bitrates, asymmetric
coding with SNR scaling achieved the best perceived quality,
while at low bitrates, asymmetric coding with spatial scal-
ing achieved the best perceived quality. In between these two
thresholds, symmetric coding was preferred over asymmetric
coding.

Tam [18] compared the MR approach with a quality-
asymmetric approach, in which the transform coefficients of
one of the coded views were quantized coarsely. It was found
that the perceived quality of the mixed-resolution videos was
close to that of the higher-resolution view, while the per-
ceived quality of the quality-asymmetric video was approx-
imately equal to the average of the perceived qualities of
the two views. The impact of the quantization of transform
coefficients was verified in [15], where it was concluded that
the perceived quality of coded equal-resolution stereo image
pairs was approximately the average of the perceived quali-
ties of the high-quality image and the low-quality image of
the stereo pairs.

A comparison among different compression methods was
presented in [19] among which MR and symmetric stereo-
scopic video coded with H.264/AVC were compared. Forty-
seven subjects assessed 6 sequences at two bitrates typically
suitable for mobile devices. The downsampling ratio of 1/2
was used for the MR bitstreams. The viewing was performed
on a mobile autostereoscopic display. At the higher bitrate,
symmetric stereoscopic video outperformed MR in terms of
subjective acceptance and satisfaction, while the methods
performed similarly at the lower bitrate.

In Sect. 4 of this paper, a systematic subjective quality
evaluation test comparing different methods of asymmetric
stereoscopic video coding and symmetric stereoscopic video
coding are presented. The results provide some indications
under which bitrates and other conditions asymmetric stereo-
scopic video coding is beneficial and which parameter val-
ues, such as which downsampling ratios for MR stereoscopic
video, should be used. This paper therefore supplements the
earlier findings reviewed above.

3 Extent of downsampling for mixed-resolution
stereoscopic video

3.1 Introduction

It is evident that there are limits on the amount of asymmetry
that binocular fusion can successfully mask so that the per-
ceived quality is closer to the quality of the higher-fidelity
view. It is presumably easier to discover such limits in sub-
jective tests when only one type of asymmetry is applied.
Hence, studying uncompressed MR stereoscopic video in
subjective tests makes it possible to assess such limits in
resolution asymmetry between views and avoids the diffi-
culty of analyzing the results of subjective experiences when
views undergo multiple types of asymmetry. In this section,
we seek to clarify as follows: “under which viewing con-
ditions uncompressed mixed-resolution stereoscopic video
is similar to full-resolution symmetric stereoscopic video in
terms of subjective quality.” The research question was tack-
led by performing a subjective quality evaluation study and
analyzing the results. This section extends the discussion of
the subjective experiment as reported in [20] by providing
more technical detail, for example, angular width, visual hor-
izontal angle, subjective scores, and PSNR of test materials.
Section 3.2 introduces the used test material, while Sect. 3.3
presents the test setup. The results are presented and analyzed
in Sect. 3.4.

3.2 Test material

A subjective test was performed to evaluate the subjective
quality of MR stereoscopic video. The test was carried out
using five sequences: undo dancer, dog, pantomime, cham-
pagne tower, and newspaper. All these sequences, presented
in Fig. 2, are common test sequences in the 3D Video (3DV)
ad hoc group of the moving picture expert group (MPEG). No
audio track was available for any of the test sequences. The
duration of all sequences in all experiments was limited to
10 s. The user perception of video quality may vary between
different content types; for example, viewers may perceive
action sequences differently from slow moving sequences.
In order to characterize the content of the sequences, spatial
and temporal perceptual information were determined using
spatial information (SI) and temporal information (TI) met-
rics [21], although they may not always correlate well with
individual’s perception experience. Considering these val-
ues, one can have a general approximation on the amount of
details available in the video and how much temporal move-
ment is expected during the content playback. The obtained
SI and TI results are reported in Table 1.

For each sequence, we had the possibility to choose
between several camera separations or view selections. This
was studied first in a pilot test of 9 subjects. The test pro-
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Fig. 2 a Undo dancer, b dog, c
pantomime, d champagne tower,
e newspaper

Table 1 Spatial and temporal complexity of sequences calculated using
SI and TI metrics

Sequence SI TI

Undo dancer 98.6 23.0

Dog 90.7 23.6

Pantomime 108.3 47.0

Champagne tower 107.0 24.8

Newspaper 77.6 15.4

cedure of the pilot test was similar to that of the actual test
presented in Sect. 3.3. The best average subjective viewing
experience rating for undo dancer was obtained with the cam-
era separation of 4 cm, while in the other tests, separations of
2, 6, 8, 14, and 26 cm dropped the average subjective view-
ing experience rating by less than 1 point on a 7-point scale.
For other sequences, camera separations of 5, 10, 15, and

20 cm were tested and 5 cm separation provided the highest
subjective ratings for all sequences.

Test clips were prepared as follows. Both the left and the
right view image sequences were first downsampled from
their original resolution to the “full” resolution presented in
Table 2. The “full” resolution was selected to occupy the
largest possible area on the used monitor (see Sect. 3.3)
with a downsampling ratio of 1/2, 5/8, or 3/4. Moreover,
the same downsampling ratio was along both directions to
keep the pixel aspect ratio unchanged. To achieve the full-
resolution (FR) sequences, downsampling ratio 1/2 and 3/4,
were applied in both directions for undo dancer and news-
paper, respectively, and 5/8 for the rest of the sequences.
No cropping was applied in the conversion from the original
resolution to the “full” resolution.

Two sets of test sequences were then generated, differing
in whether the left view or the right view was downsampled
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Table 2 Spatial resolutions and
angular widths of sequences Original Full 1/2 3/8 1/4 Angular width

Undo dancer 1,920 × 1,080 960 × 540 480 × 270 360 × 202 240 × 135 40.4◦

Dog 1,280 × 960 800 × 600 400 × 300 300 × 225 200 × 150 34.1◦

Pantomime 1,280 × 960 800 × 600 400 × 300 300 × 225 200 × 150 34.1◦

Champagne 1,280 × 960 800 × 600 400 × 300 300 × 225 200 × 150 34.1◦

Newspaper 1,024 × 768 768 × 576 384 × 288 288 × 216 192 × 144 32.8◦

and subsequently upsampled. In other words, in the first set
of sequences, the left view was downsampled to 1/2, 3/8,
or 1/4 resolution and subsequently upsampled for render-
ing on the display, while the right view was kept at “full”
resolution. In the second set, the right view was downsam-
pled and subsequently upsampled, while the left view was
kept at “full” resolution. This arrangement of preparing two
sets of sequences was done so that we could study the effect
of eye dominance on the subjective quality of asymmetric
stereoscopic sequences. The tested downsampling factors
were 1/2, 3/8, and 1/4 symmetrically along both coordinate
axes. The resolutions of the test sequences are provided in
Table 2. The filters included in the JSVM reference soft-
ware of the scalable video coding standard were used in the
downsampling and upsampling operations [22]. The default
method 0 for down and upsampling was enabled for the
process. For downsampling, a sine-windowed sinc-function
designed to support an extended range of spatial scaling
ratios, as required by Extended Spatial Scalability (ESS),
was applied. For upsampling the Scalable Video Coding
(SVC), normative upsampling method designed to support
ESS was applied. This filter includes a 4 tap filter with coef-
ficients [−3, 19, 19,−3] which is originally derived from the
Lanczos-3 filter. This interpolation supports any inter-layer
scaling ratios, which can also be different in horizontal and
vertical.

3.3 Test setup

The sequences were displayed un-scaled with a black back-
ground on a Hyundai P240W with a 24” polarizing stereo-
scopic screen having a total resolution of 1,920×1,200 pixels
and a resolution of 1,920×600 per view when used in stereo-
scopic mode. The viewing distance was set to 70 cm because
in a trial test, it yielded slightly better subjective ratings with
smaller quality variation compared to those of the viewing
distance of 110 cm. Since the image height was slightly dif-
ferent and the images were displayed un-scaled, the viewing
distance of 70 cm corresponded to the range of 2.1–2.4 H for
different sequences, where H is the image height. Table 3
reports the visual angle in pixels per degree (PPD) for the
test setup. Moreover, Table 2 reports the angular widths in
degrees.

Table 3 Visual angle (in pixels per degree)

Downsampling ratio Visual horizontal angle

1 22.8

1/2 11.4

3/8 7.6

1/4 5.7

Ten subjects with an average age of 21 years and without
substantial prior experiences on stereoscopic video partici-
pated in the test. As we intended to confirm the previously
achieved results regarding the eye dominance effect on the
perceived visual quality of asymmetric stereoscopic video,
half of the viewers were right-eye-dominant, while the other
half were left-eye-dominant. Prior to the experiment, the
viewers were subject to a thorough vision screening. The
participants were screened for far and near visual acuity of
each eye with a rejection criterion of 20/40 tested with Lea
Numbers [23], stereoacuity criterion was 60 arcsec tested
with the TNO stereo test. Criteria for near horizontal pho-
ria, tested with the Maddox Wing test [24], were 13D for
exophoria and 7D for esophoria, and 1D for vertical pho-
ria. All participants had a stereoscopic acuity of 60 arc sec
or better. The following visual tests were conducted for all
participants: far and near visual acuity, stereoscopic acuity
(Randot test), contrast sensitivity (Functional Acuity Con-
trast Test), near point of accommodation and convergence
RAF gauge test [25], and the interpupillary distance. View-
ers who were found not to have normal visual acuity and
stereopsis were rejected. The duration of subjective test was
limited to 45 min to prevent eye strain and fatigue in sub-
jects. D50 white point, ambient illuminance level of ∼200
lux, and 20 % image surround reflectance were fixed as the
viewing conditions of all experiments. Moreover, the back-
ground noise level was kept equal or less than 30 dBA. The
subjective test started with a combination of anchoring and
training. The participants were shown both extremes of the
quality range of a stimulus to familiarize the participants with
the test task, the contents, and the variation in quality to be
expected in the actual test that followed. The test sequences
were presented one at a time in a random order and appeared
twice in the test session. Each sequence was rated indepen-
dently after its presentation utilizing an on-screen scoring
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Fig. 3 Average subjective viewing experience ratings and the 95 % CI

scroll bar. After each rating, the next sequence started, and
hence, the time used for rating was not limited in any of the
experiments.

In this experiment, an integer scale in the range of −3 to 3
was used for the rating. At the beginning of the test, the scales
were presented and explained orally by the test coordinator to
the participants until they understood everything thoroughly.
The viewers were instructed that −3 means “very bad” or
“not natural,” 0 is “mediocre”, and 3 stands for “very good” or
“very natural.” Moreover, the viewers were asked to estimate
the limit of sufficient quality [26] with a line on the general
image quality scale after viewing each test sequence. This
value estimated the minimum subjective rating over which
the quality was acceptable for the viewers. Observers were
allowed to keep the limit of the sufficient quality at the same
point for the whole experiment.

3.4 Results

3.4.1 Limit of downsampling ratio

Figure 3 presents the average values and the 95 % confidence
interval (CI) of the subjective viewing experience ratings.
Furthermore, it displays the average limit of sufficient qual-
ity, which did not vary very much between sequences. It can
be seen that the FR stereoscopic video sequences outper-
formed the MR sequences in all test cases. The quality of
all MR stereoscopic image sequences downsampled by 1/2
both horizontally and vertically was clearly above the limit
of sufficient quality. For three of the sequences, the down-
sampling ratio of 3/8 provided a quality higher than the limit
of sufficient quality, while the quality of the MR sequences
with the downsampling ratio of 1/4 was clearly unacceptable
in terms of subjective image quality. Moreover, we observed
that 70 % of the total rating interval was covered by the aver-
age subjective viewing experience ratings.

When compared to earlier studies [12,13], the perfor-
mance of the MR sequences relative to the respective FR
sequences was worse. This might be explained by the chosen
viewing distance in relation to the physical size of a pixel.
It has also been established that when the angular resolu-
tion (e.g. in pixels per degree) stays unchanged, the greater
the angular size of the display, the more contrast sensitivity
the HVS has [27]. Thus, the threshold angular resolution for
mixed-resolution stereoscopic video may also depend on the
angular size of the display. In the viewing conditions used in
this test, downsampling ratios 1/2, 3/8, and 1/4 corresponded
to 11.4, 7.6, and 5.7 PPD (of viewing angle), respectively,
in the lower-resolution view. As a comparison, the down-
sampling ratios of 1/2 and 1/4 in [12] corresponded to more
than 15 and close to 10 PPD, respectively, as far as we could
conclude from the information provided in the paper. The
exact values for pixels per viewing angle could not be con-
cluded from the information given in [13], but the authors
discovered equivalently to our results that the subjective dif-
ference between FR and MR was a descending function of
the resolution in terms of the number of pixels.

Moreover, we analyzed whether the subjective image
quality ratings had any correlation to the average luma PSNR
of the lower-resolution view. The downsampled views were
first upsampled to the FR, and the PSNR values were derived
against the FR sequences. Then, a least square estimate was
derived for the relation of the subjective image quality rat-
ings and the obtained average luma PSNR values. Finally,
a Pearson’s correlation coefficient was derived between the
least square estimate and the PSNR values. A large Pear-
son’s correlation value can be assumed to indicate that the
lower-resolution view contributed more heavily to the image
quality rating. Table 4 provides the PSNR of the left view
and the corresponding subjective score.

A comparison between the PSNR values and the subjec-
tive viewing experience ratings of the views downsampled
by ratio 1/2 resulted in Pearson’s correlation coefficient equal
to 0.10, indicating that there was practically no correlation
between the subjective image quality rating and the average
luma PSNR of the downsampled view. The data points and
the resulting least square fit for downsampling ratios 3/8 and
1/4 are presented in Fig. 4. Interestingly, the slope of the
linear estimations for downsampling ratios 3/8 and 1/4 was
similar and equal to 0.30 and 0.28, respectively. Along with
obvious similarity of the subjective scores and the linear esti-
mations, we further confirmed the correlation by deriving the
root mean square error values, 0.25 and 0.11, and the Pear-
son’s correlation coefficients, 0.88 and 0.97, for downsam-
pling ratios 3/8 and 1/4, respectively. This analysis indicates
that the PSNR of the lower-resolution view correlated with
subjective perception at downsampling ratios of 3/8 and 1/4.
As full-reference objective quality metrics, such as PSNR,
were not applicable for the full-resolution view, no analysis
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Table 4 The average luma PSNR of the left view and the average subjective viewing experience rating for different downsampling ratios

Downsampling ratio 1/2 3/8 1/4

PSNR in dB–SSIM (average subjective rating)

Dog 37.60–0.985 (1.47) 32.79–0.970 (1.11) 29.80–0.948 (−1.21)

Pantomime 35.62–0.990 (1.24) 33.42–0.979 (0.53) 28.74–0.965 (−1.68)

Champagne 36.32–0.993 (1.29) 33.96–0.988 (1.02) 29.04–0.983 (−1.28)

Newspaper 36.93–0.972 (1.52) 34.54–0.943 (1.14) 31.06–0.912 (−0.76)

Undo dancer 32.82–0.887 (1.45) 30.01–0.825 (−0.26) 26.44–0.778 (−2.05)

Fig. 4 Correlation of the average luma PSNR of the lower-resolution view and the subjective viewing experience ratings, blue = downsampling
ratio 3/8, red = downsampling ratio 1/4 (color figure online)

on the subjective impact of the full-resolution view was fea-
sible with a similar method. It would therefore require fur-
ther studies to verify whether the full-resolution view was
dominant in the subjective quality ratings for downsampling
ratio 1/2 and similarly whether the lower-resolution view was
dominant at downsampling ratios 3/8 and 1/4 for the viewing
conditions and the sequences used in this experiment.

3.4.2 Eye dominance

As explained above, there were both left- and right-eye-
dominant participants in the test which included two sets
of test sequences, differing in whether the left view or the
right view was downsampled and subsequently upsampled.
Both left and right-eye dominant subjects scored the two sets
of test sequences. Figure 5 presents the average ratings given
by the left- and right-eye-dominant viewers, separately. The
labels of the horizontal axis identify which view was down-
sampled and the downsampling factor. It can be observed
that there is always an overlap of the 95 % confidence inter-
val for all the respective scores, hence indicating that the
eye dominance of the viewers had no significant impact on
the perceived quality of the MR sequences used in the test.
However, at the downsampling ratio of 1/4 along both coor-

Fig. 5 Impact of eye dominance versus downsampled view

dinate axes, the average rating of the MR sequences where
the full-resolution view was the same as the dominant eye of
the viewer was slightly higher than the average rating of the
other sequences of the same downsampling ratio.

We also performed statistical significance comparison
achieved by the Wilcoxon signed-rank test on the results.
The scores from the left- and right-eye-dominant observers
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were tested against each other in order to find out whether
their evaluations of the sequences differ in any case. All test
cases achieved a P value equal to 1 except champagne and
dog sequences at downsampling ratios of 1/2 and 3/8, respec-
tively, for which the P values were 0.86 and 0.885, respec-
tively. In other words, there were no significant differences
of ratings between the left- and right-eye-dominant view-
ers based on these results. Our results therefore confirmed
the earlier findings in [14] and [15] that eye dominance has
no statistically significant impact on how MR sequences are
rated subjectively.

4 Subjective quality assessment of asymmetric
stereoscopic video coding

4.1 Introduction

Asymmetric stereoscopic video is perceived by the HVS
in such a way that the lower quality of one view, due to
compression artifacts, might be masked by the higher qual-
ity view. Therefore, we seek to assess the subjective qual-
ity of asymmetric stereoscopic videos with different quality
combinations. For single-view video, there are a number of
objective quality measures which can be used [28]. How-
ever, when it comes to stereoscopic video, objective quality
assessment metrics may face some ambiguity as how to per-
form the joint assessment fairly, since there are two views
involved with different qualities. In this section, we seek an
answer to the following question: “Does asymmetric stereo-
scopic video coding make sense from a subjective quality
point of view?” The approach to reach a conclusion is based
on subjective quality assessment of symmetric and asym-
metric stereoscopic videos having the same bitrate. Further-
more, the impact of downsampling ratio in mixed-resolution
stereoscopic video coding is analyzed in terms of encoding
computational complexity. This section further extends our
preliminary results in [29].

4.2 Test material

The tests were carried out using four sequences: undo dancer,
dog, pantomime, and newspaper. Three types of sequences
were tested as follows:

1. Full-resolution with symmetric quality in both views
2. Full-resolution with asymmetric quality between the

views caused by different quantization step of transform
coefficients

3. Mixed-resolution with asymmetric quality

The uncompressed full-resolution sequences were gen-
erated by downsampling both the left and right view

Table 5 Spatial resolutions of different sequences

Full 1/2 3/8

Undo dancer 960 × 576 480 × 288 360 × 216

Others 768 × 576 384 × 288 288 × 216

image sequences from their original resolution to the “Full”
resolution mentioned in Table 5. The mixed-resolution
uncompressed sequences were generated from the FR ones
by downsampling the left view further. Downsampling ratios
1/2 and 3/8 were symmetrically applied horizontally and ver-
tically. As in Sect. 3.4.2, we confirmed that eye dominance
was not shown to have an impact which view is provided
with a better quality, only one set of MR sequences was pre-
pared. Views were independently coded using H.264/AVC
in order to treat the FR and MR cases as equally as possible
and prevent affecting the results by different performance of
inter-view prediction depending on the downsampling ratios.
Moreover, since no inter-view prediction has been standard-
ized for a MR coding scheme, we specifically avoided the use
of non-standardized codecs to provide as generally applica-
ble results as possible. Examples of coding arrangements
enabling mixed-resolution stereoscopic video with inter-
view prediction have been proposed, for example, in [30]
and [31].

The duration of a viewing session was limited to less than
1 h to avoid viewers becoming exhausted. Hence, the exper-
iment was split into two sessions, where 9 and 7 naïve sub-
jects attended the assessment tests, respectively. None of the
viewers attended both sessions. Test clips having the bitrate
corresponding to QP values 30 and 39 were tested in one
session, whereas the remaining test clips were tested in the
other test session.

The quality and bitrate of H.264/AVC bitstreams are
controlled by the quantization parameter (QP). In order to
get results from a large range of qualities and compressed
bitrates, four constant quantization parameter (QP) values,
25, 30, 35, and 39, were selected for symmetrically com-
pressed FR sequences. The horizontal axis of Fig. 6 displays
the bitrates for different test sequences resulting from this
QP value selection. A number of candidate asymmetric FR
and MR bitstreams were generated, each having a bitrate
within 5 % of the bitrate of the corresponding symmetric full-
resolution bitstream. The QP of a view was kept unchanged
throughout the sequence in order to avoid any consequences
of time-varying quality on the results. FR sequences with
asymmetric quality were created by decreasing the QP for
one view and increasing it for the other one. Table 6a presents
these selected QP values. Consequently, a large variety of
compressed MR combinations were considered, and the best
combinations were selected in expert viewing for the actual
subjective viewing test by naive viewers. Table 6b, c sum-
marize the QP selections for the downsampling ratio of 1/2
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Fig. 6 Results of compressed MR subjective tests for sequences: a undo dancer, b newspaper, c pantomime, d dog

and 3/8, respectively. These selections of QP values caused
the bitrates of the lower-resolution view to vary from 33 to
39 % relative to the bitrate of both the views together. In addi-
tion, the uncompressed FR and MR sequences were included
in the viewed sequences to obtain a reference point for the
highest perceived quality of a particular sequence.

4.3 Results and discussion

The average subjective viewing experience ratings are pre-
sented in Fig. 6. The results of both testing sessions are
merged into the same figure, even though they are not fully
comparable due to different test stimuli and participants. The
subjective quality of MR clips with downsampling ratio 3/8
along both axes is clearly inferior to the subjective quality
of all other corresponding test cases. Thus, the results of
downsampling ratio 3/8 are not discussed further. Moreover,
although the confidence intervals overlap for the two highest
bitrates in Fig. 6c, the average subjective ratings of the high-

est bitrate are slightly lower than the second highest bitrate.
This is due to the fact that the experiment was divided to two
sessions, and as a result, all four bitrates are not comparable.
The highest bitrate and second lowest bitrate were included
in the same session while the two other bitrates in another
session.

Figure 6 indicates that mixed-resolution stereoscopic
video of downsampling ratio 1/2 along both coordinate axes
performed close to full-resolution symmetric stereoscopic
video. Moreover, it confirms that except for the highest bitrate
of newspaper, there is an overlap of the 95 % confidence inter-
vals of the subjective ratings of FR symmetric, FR asym-
metric, and MR with downsampling ratio 1/2 for each test
sequence. However, the use of mixed-resolution coding can
be justified in many applications by its lower computational
complexity. Furthermore, it can be observed from Fig. 6
that the performance of mixed-resolution coding of down-
sampling ratio 1/2 depends on the input sequence to some
extent.
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Table 6 QP selection (left-right) for asymmetric stereo bitstreams. a represents QP for FR asymmetric quality, while b and c represent QP selection
where the left view is downsampled with ratio of 1/2 and 3/8, respectively

QP 39-39 35-35 30-30 25-25

(a) FR asymmetric bitstreams

Undo dancer 42-36 38-32 32-28 27-23

Dog 41-37 27-33 32-28 27-23

Pantomime 42-36 37-33 33-27 28-22

Newspaper 42-36 37-33 32-28 27-23

(b) MR bitstreams with downsampling ratio of 1/2

Undo dancer 33-36 30-32 25-28 20-23

Dog 33-37 30-33 24-28 19-23

Pantomime 34-36 31-32 24-28 20-22

Newspaper 33-36 30-32 24-28 20-23

(c) MR bitstreams with downsampling ratio of 3/8

Undo dancer 32-36 29-32 24-28 19-23

Dog 32-36 29-32 24-27 19-22

Pantomime 32-36 29-32 24-27 19-21

Newspaper 31-36 28-32 24-27 20-22

Objective quality metrics were applied to the sequences
to analyze the subjective viewing results as follows. Since
to our knowledge, no widely adopted objective metrics for
stereoscopic video are available, we verified the results
with two common metrics: PSNR and structured similar-
ity (SSIM) [32,33]. The average luma PSNR was derived
for each view of each bitstream. For mixed-resolution
bitstreams, a decoded view of a lower-resolution was
upsampled before the PSNR calculation to have compa-
rable results with full-resolution bitstreams. In the fol-
lowing, the PSNR of the left (L) and right (R) views
of the full-resolution symmetric, full-resolution quality-
asymmetric, and mixed-resolution bitstreams are marked
with PSFRL, PSFRR, PAFRL, PAFRR, PMRL, and PMRR,
respectively. SSIM values were also derived for each view
of each bitstream similarly to PSNR. In the following, the
SSIM values are marked in a similar fashion as, that is,
SSFRL, SSFRR, SAFRL, SAFRR, SMRL, and SMRR.

In the case of MR stereoscopic video, both blurring and
blocking are involved. We analyzed the relative contribution
of the views of MR bitstreams to the overall subjective qual-
ity with both PSNR and SSIM as follows. It was assumed that
the average objective quality (PSNR or SSIM) of the sym-
metric FR bitstreams reflects the overall subjective quality.
Furthermore, we assumed that when a weighted average of
the objective quality values between the left and right view
of an MR bitstream matches the average objective quality of
the respective symmetric FR bitstream having the same sub-
jective quality rating, the weights for the weighted averaging
reveal the relative contribution of left and right views to the
subjective quality. In other words, for those MR bitstreams

that had approximately equal subjective quality as the respec-
tive FR bitstreams, we derived weights W that minimized the
mean square error of the difference between the weighted
average of the objective quality of the left and right views
and that of the FR:

mse = (W × PMRR + (1 − W ) × PMRL − PSFR)2 (1)

In Eq. (1), W ×PMRR+(1−W )×PMRL reflects the weighted
average of MR bitstreams and mse is minimized by chang-
ing the weight (W ) over the quality of left and right views.
Assuming that PMRL < PSFR < PMRR, which is typically
true because only the left view is downsampled and due to
the downsampling, the right view gets a lower QP value com-
pared to the right view of symmetric FR, the above expression
reaches its minimum when

W = (PSFR − PMRL) /(PMRR − PMRL) (2)

The same reasoning can be applied for SSIM. Figure 7a,
b indicate the contribution of the right view to the overall
quality, that is, W , for different QP values and sequences,
derived from PSNR and SSIM, respectively. The results of
undo dancer were not included in Fig. 7b because the MAT-
LAB implementation of the SSIM index, utilizing the sug-
gested empirical formula [33], seemed to fail in estimating its
subjective quality. SSIM provided very close values for the
left and right views for undo dancer as derived from Eq. (2).
A full 100 % contribution was assigned to the right view for
the three highest QP values. This was not the case for the
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Fig. 7 Contribution of the FR
view (right) to the overall
quality of mixed-resolution
stereoscopic video measured by
a PSNR b SSIM, that is, the
value of W as derived with
Eq. (2)

other sequences, perhaps due to the synthetic nature of the
undo dancer sequence. It can be seen from Fig. 7a, b that
the contribution of the right view increased when blocking
decreased and that the higher the QP value became, the more
contribution the left view had on the overall quality. More-
over, Fig. 7 appears to be in agreement with the conclusions in
[7] that the perceived quality of the mixed-resolution videos
was close to that of the higher-resolution view. This behav-
ior was not biased by QP selection for the left and the right
view for different bitrates since as reported in Table 6b, the
QP difference between the left and the right view for all MR
videos was kept equal or close to three. It can also be seen
in Fig. 7 that the relative contribution of the right view was
dependent on the sequence.

The average luma PSNR over both views of the quality-
asymmetric full-resolution bitstreams, that is, (PAFRL +
PAFRR)/2, was found to be very close to that of the sym-
metric full-resolution bitstreams, that is, PSFR = (PSFRL +
PSFRR)/2, the absolute difference being only 0.1 dB on aver-
age. The same analysis for SSIM metric resulted in an
absolute difference of 0.005 on average. This finding is
aligned with the earlier conclusions in [7] and [15] that
the perceived quality of the quality-asymmetric video was
approximately the mean of the perceived qualities of the two
views. The same analysis, as reported for MR stereoscopic
video in Fig. 7, was performed for quality-asymmetric full-
resolution sequences. The results are provided in Fig. 8 for
both PSNR and SSIM objective metrics showing that both
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Fig. 8 Contribution of the right
view to the overall quality of
quality-asymmetric
full-resolution stereoscopic
video measured by a PSNR b
SSIM

views contributed almost equally to the final quality of the
stereoscopic video.

As discussed above, MR coding did not provide a better
subjective quality compared to FR coding. However, due to
the smaller spatial resolution, the use of MR coding may
be justified. A complexity comparison for encoding the full
and lower-resolution views in our experiments is presented
in Fig. 9. The experiments were performed on Windows OS
with a dual-core CPU having a clock rate of 3.16 GHz. The
execution time for the FR view consisted of the encoding
time, and for the lower-resolution view, it included both the
encoding and the downsampling times. Since the encoding
time varied depending on the ongoing processes of the PC,
an average value of seconds per frame over five different QP
values for full-length videos was calculated. As illustrated in
Fig. 9 by decreasing the spatial resolution by ratio 1/2 and 3/8
both vertically and horizontally, the encoding time decreased
on average to 36 and 21 % of the encoding time for the FR
sequences, respectively.

To reduce the amount of time-taking subjective experi-
ments, it is preferred to estimate the subjective quality of

asymmetric stereoscopic video by a reliable model depend-
ing on available information, for example, the characteris-
tics of the viewing conditions, the used asymmetric coding
scheme, and the viewed video content. In [34], we tried to
estimate the subjective quality of asymmetric stereoscopic
video taking into account the number of pixels per degree of
viewing angle. The results showed high correlation between
subjective ratings and pixels per degree values but were
obtained with a relatively small amount of subjective test
data. In order to verify the results of [34] and to develop the
model further, we plan to conduct extensive subjective tests
under multiple test setup conditions, different asymmetric
coding schemes, and various video clips.

5 Conclusions

In this paper, we attempted to discover suitable methods
and configurations for asymmetric stereoscopic video coding
through two sets of systematic subjective quality evaluation
experiments. We studied the subjective impact of downsam-
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Fig. 9 Encoding time comparison for FR view and downsampled
views

pling applied for one of the views in an uncompressed mixed-
resolution (MR) stereoscopic video. In our experiment, FR
sequences always outperformed MR sequences. However,
the quality of the MR sequences where one view was down-
sampled by a factor of 1/2 horizontally and vertically was
clearly acceptable. We found that the lower-resolution view
appeared to become dominant in the subjective quality rating
at a certain downsampling ratio, which seemed to depend on
the sequence, the angular resolution, and the angular width.

A subjective test comparing symmetric full-resolution,
quality-asymmetric full-resolution, and mixed-resolution
stereoscopic video coding was also presented. The perfor-
mance of symmetric and quality-asymmetric full-resolution
bitstreams was found to be approximately equal. Mixed-
resolution stereoscopic video with downsampling ratio 1/2
along both coordinate axes performed similarly to the
full-resolution bitstreams in most of the test cases. Due
to the lower required processing complexity, the use of
mixed-resolution stereoscopic video can be considered in
many applications. Mixed-resolution stereoscopic video with
downsampling ratio 3/8 along both coordinate axes was
found to be clearly inferior to all other tested coding arrange-
ments and did not yield acceptable quality at any bitrate.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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Abstract— Recent developments of three-dimensional (3D) video 

coding greatly rely on the use of Multiview Video plus Depth 

(MVD) data format for representing a 3D scene. This type of data 

can be coded with conventional video compression schemes and can 

enable advanced 3D video functionality, such as rendering of 

virtual views at the decoder side. The MVD represents a 3D scene 

from different viewing angles as video and pixel-wise associated 

depth data. In this paper we consider the redundancy of depth data 

in the MVD representation and propose a novel scheme, called 

Unpaired MVD (UP-MVD) format to be used in 3D video 

applications. Being a subset of the MVD this new format assumes 

that a reduced number of depth views compared to the number of 

texture views can reduce bitrate as well as the encoding/decoding 

complexity while still providing the 3DV functionality in many 

scenarios. The simulation results show that the proposed unpaired 

MVD format outperforms the MVD format on average from 0.9% 

to 6.95% of Bjontegaard delta bitrate (dBR) for the baseline 

disparity adjustments from 50% to 100% of the coded baseline, 

respectively. Moreover, UP-MVD provides equal or better rate-

distortion results for all test sequences for up to 20% view 

separation adjustment, and in five out of seven sequences a better 

rate-distortion performance is observed when 50% view separation 

adjustment is applied. 

Keywords-3DV; MVD; View synthesis. 

I. INTRODUCTION 

The presence of depth data at the decoder side enables a more 
flexible display of three-dimensional (3D) video compared to 
conventional stereoscopic and multiview video coding. While 
coding of two texture views provides a basic 3D perception on 
stereoscopic displays, it has been discovered that disparity 
adjustment between views is needed for adapting the content on 
different displays and viewing conditions as well as for 
individual preferences [1]. Moreover, in autostereoscopic 
displays a large number of views is typically required to be 
displayed simultaneously. However, it is impossible or 
impractical to transmit a large number of views through today’s 
networks, such as the Internet, using existing video compression 
standards, such as the Multiview Video Coding (MVC) extension 
of the Advanced Video Coding (H.264/AVC) standard [2]. 
Therefore, the required views have to be generated in the 
playback device from the received views. These needs can be 
addressed by representing a 3D scene with a multiview video 
plus depth (MVD) format [3] and using the decoded MVD data 

as source for depth image-based rendering (DIBR) [4]. In the 
MVD format each video data pixel is associated with a 
corresponding depth map value from which new views can be 
synthesized using any DIBR algorithm in the post processing 
stage before displaying the content. 

The Moving Picture Experts Group (MPEG) issued a Call for 
Proposals (CfP) on 3D video coding technology in March 2011 
[5]. The CfP aimed at starting the standardization of a coding 
format that supports advanced stereoscopic display processing 
and improved support for auto-stereoscopic multiview displays. 
As a result of the CfP evaluation [6], the MPEG and, since July 
2012, the Joint Collaborative Team on 3D Video Coding (JCT-
3V) [7] have initiated the development of an MVC extension to 
include depth maps [2], abbreviated as MVC+D, and to specify 
the encapsulation of coded MVD data into a single bitstream [8]. 
According to this specification, MVC coding [2] is applied 
independently to both texture and depth components of MVD, 
and the texture views of MVC+D bitstreams can be decoded with 
a conventional MVC decoder. A reference test model of MVC+D 
is implemented in 3DV-ATM reference software [9] and it was 
used in our work. 

DIBR enables the projection of a texture view to a virtual 
viewing position. However, DIBR has intrinsic limitations of 
being unable to render samples in areas that become uncovered in 
synthesized views (termed “dis-occlusions” or “holes”) in the 
capturing process. This mainly happens while extrapolating one 
view, i.e., while rendering a view in a specific location from 
information of a single view. To overcome this, view 
interpolation can be performed in DIBR algorithms, i.e., a middle 
view can be rendered by exploiting information of the left- and 
right-side views while performing projection from different 
directions to fill the dis-occluded parts. The dis-occlusion 
problem of DIBR is due to areas covered by objects in the 
reference view which appear in the synthesized view. Such holes 
and dis-occluded areas have neither a certain depth or texture 
attribute, nor a correspondence in the reference views. In DIBR, 
these holes need to be filled properly otherwise annoying artifacts 
will appear in the dis-occluded regions. To solve the problem of 
dis-occlusions in DIBR, several algorithms have been developed. 
There has been an extensive research proposing different hole-
filling methods [10] using simple and sophisticated image 
processing techniques. Most of these conventional methods 



exploit neighbor pixel values to fill-in the holes by extrapolation, 
linear interpolation, or diffusion techniques.  

In our work, we assumed that the conventional MVD 
representation with pixel-wise correspondence between texture 
and depth can be redundant for some 3D scenes and for some of 
use cases. It is assumed and proved in this paper that in many 
application scenarios, the amount of depth map data describing 
the 3D scene can be reduced without a significant impact on 
DIBR performance. Analogously to [11], [12] and [13], where it 
was shown that depth information can be spatially decimated 
within a single view improving the performance of DIBR, we 
consider that depth data for some views can be completely 
ignored since it does not present a considerable amount of 
information in addition to other presented views. 

As a result of our study, we propose a novel Unpaired MVD 
(UP-MVD) format to be used in 3D video applications. Being a 
subset of the MVD data format, UP-MVD reduces the number of 
depth views compared to texture views while maintaining a 
sufficient view synthesis capability for typical 3DV applications 
and reducing the encoding/decoding complexity. The process of 
removing the redundant depth components within MVD data can 
be conducted at the post-production stage of 3D video content 
capturing or at the encoder side of the 3DV coding chain.  

The rest of paper is organized as follows. Section II describes 
the proposed unpaired MVD scheme. The test material and 
simulation results are presented in Section III, while Section IV 
concludes the paper. 

II. PROPOSED UNPAIRED MVD SCHEME 

A. Motivation 

MVD represents a 3D scene from different viewing angles as 
video and pixel-wise associated depth data. However, as 
demonstrated in many of the responses to the 3DV CfP [5], 
coding of depth map data at a reduced resolution is a viable 
solution for improving the rate-distortion performance of the 
complete 3D video coding system. As a result, for most of 
available MVD content, e.g. MPEG 3DV Test Set [14], the depth 
component can be spatially decimated within each view without a 
significant impact on the performance of DIBR-based 3D Video 
applications. As a follow up of this concept, we considered view-
level decimation of the depth data, and studied the redundancy 
within the currently available MVD content confirming that the 
number of depth data compared to texture views can be reduced 
without sacrificing the quality of synthesized views. As a result 
of the analysis of practical scenarios of 3D scene capturing and 
3D video applications, a few examples where a complete MVD 
representation is unnecessary and/or redundant are presented 
below. 

A typical 3D video scene capturing process nowadays 
features a stereo camera and depth information is derived through 
disparity estimation process having a stereoscopic video as input. 
A disparity search is performed in a one-directional manner, i.e. 
for each sample in the first view component (e.g. a picture of the 

left view), the corresponding sample in the second view 
component (e.g. a picture of the right view) is searched. The 
resulting disparity picture can be converted to a depth component 
of the first view. The depth information for the second view can 
be produced by inverting the disparity vectors computed for the 
first view. Thus, there is no need to produce and code depth 
component for the second view, since this information would be 
completely redundant.  

Alternatively, depth information may be generated using a 
specific depth sensor [15] [16] rather than generated in a per-
pixel depth estimation process based on texture views. In such a 
camera setup, it is typical that a depth sensor is not collocated 
with any of the utilized image sensors. A visualization of this 
concept is shown in Fig. 1 where two cameras are accompanied 
by a single ranging device which is not located in the same place 
as any of the image sensors.    

In some practical 3D Video applications, a stereo baseline 
adjustment would be required in relatively close proximity to one 
decoded texture view, whereas another decoded texture view 
would be displayed as it is. Therefore, a depth data associated 
with the first view can be sufficient as the input for DIBR in 
extrapolation mode and no need to process depth data associated 
with the second view. This example is illustrated in Fig. 2 where 
four stereo baselines can be achieved depending on the use of L, 
L1, L2 or L3 as the left view. Hence, even if a depth view is 
available for encoding for each texture view, this complete MVD 
representation for 3D scene may be unnecessary for enabling 
many 3D video applications and the encoder side may be 

T0 T1D0

 

Figure 1. Stereo camera (T0 and T1) with a single ranging device 

(D0) 

 

 

Figure 2. Visualization of depth perception adjustment by view 

synthesis in close proximity from one decoded view                          
T0 and T1 are input texture views while D0 is the only input depth view                  

L1, L2, and L3 present the synthesized views 



adjusted to limit the number of depth views to be encoded.   

The need for synthesizing only one view from stereoscopic 
video also applies for use cases when the extrapolation of virtual 
views rather than interpolation is required. For example, an 
optimal disparity for a two-view autostereoscopic display for 
handheld use is typically wider than that for a living-room 
polarized or a shutter-glass display. Depth-enhanced stereoscopic 
content for handheld devices could therefore have two texture 
views and only one depth view, as the extrapolation quality 
would remain the same as that for two texture and depth views. 
This is depicted in Fig. 3. 

As stated in Section I, DIBR does not guarantee a full and 
correct projection of one view to the target location, because 
some parts of the projected view may be dis-occluded or contain 
holes. The percentage of hole pixels in a rendered view depends 
on many factors e.g. scene characteristics and the view separation 
between the original and projected views. In the following 
paragraph, we evaluate the forward projection process on the first 
frame of depth views of the 2-view sequences used in this paper 
in order to demonstrate that the two depth views are correlated 

and that the second depth view contains only a moderate 
proportion of pixels that could not be projected from the first 
depth view. 

For simplicity, the case with two texture views and their 
associated depth maps is considered (2-view MVD data). 
However, this approach can be extended to be applied for MVD 
content with more than two views. Considering Fig. 4, D1 is 
projected forward to the position of view 0 to produce D0*. The 
missing information in D0* results either from a different field of 
view compared to D0 or from the inaccuracy of the depth 
estimation and the depth projection algorithms. The location of 
the missing information is marked as a “hole”. Table I shows the 
proportions of pixel locations with such missing information 
normalized by the number of pixels in a depth image D0 for the 
first frame of each sequence. The estimates have been evaluated 
with the MPEG 3DV test set [14]. As reported in Table I, on 
average more than 95% of the pixel locations in D0* contain 
projected pixels from D1 and hence, D0* can be assumed to 
provide a proper estimation of D0. This is further studied in 
Section III with a series of simulations and reported objective 
results.  

Moreover, the encoder and the decoder complexity are 
reduced as a direct result of the view reduction introduced in 
proposed MVD format compared to the conventional MVD 
format. 

B. Proposed schemes 

In this sub-section, we describe a novel 3D video processing 
scheme that is based on the unpaired MVD format. The input of 
the proposed scheme is a conventional MVD format with a 
reduced number of coded depth views.  

After removing some of the depth views, the full set of 
texture views and a subset of the depth views is coded with a 
modified MVC+D codec [9], resulting in a smaller bitrate than 
that of the respective complete MVD data coded with MVC+D. 
At the decoder side, the UP-MVD data is used for rendering 
virtual views with DIBR and the quality of these views is used 
for the performance evaluation. In our work we studied the 
impact of the use of unpaired MVD with two schemes, the details 
of which are given below. 

Scheme 1 targets low-complexity encoder and decoder 
operations with reduced memory requirements, whereas Scheme 

 

Figure 4.  Forward projection of depth maps to calculate 

percentage of hole pixels in the rendered view 

 

Figure 3.  Visualization of depth perception adjustment by view 

synthesis to an extrapolated view                                                        
T0 and T1 are input texture views while D0 is the only input depth view                  

L1, L2, and L3 present the synthesized views 

TABLE I. PERCENTAGE OF DISOCCLUDED AND UN-PROJECTED PIXELS 

IN D0* 

Sequence  

Poznan Hall2[17] 3.8% 

Poznan Street 2.2% 

Undo Dancer 3.4% 

Ghost Town Fly 4.3% 

Kendo 11.4% 

Balloons 5.4% 

Newspaper 3.5% 

Average 4.9% 
 



2 assumes a more advanced decoder providing a higher 
subjective and objective quality. 

Scheme 1: 
A flowchart of this scheme is depicted in Fig. 5.  First, two 

texture views and one depth view are encoded and decoded. 
Then, rendered views are created with an extrapolation of the 
base view (T0 and D0). The stereoscopic image-pair is made of 
one coded texture view (T1) and for the other view based on the 
desired baseline, either the other coded view (T0) or one of the 
synthesized views (L1, L2, L3) is used. This approach has a low 
computational complexity and memory requirement due to the 
fast extrapolation from one view. However, the drawback of this 
scheme is the omission of T1 in the rendering process where it 
can significantly improve the quality of the synthesized views.  

Scheme 2: 
This scheme is similar to Scheme 1 but for the rendering 

process, both texture views are utilized. The corresponding 
flowchart of Scheme 2 is shown in Fig. 6. In this scheme, D1* is 
produced from the available D0 through a projection to view 
location 1 followed by basic hole filling [10].  The desired views 
(L1, L2, and L3) are then obtained by interpolation using T0 and 
D0 as well as T1 and D1*. This enables exploiting the texture 
information of T1 associated with D1* in the rendering process, 

and therefore, improves the quality of view synthesis compared 
to that achievable with Scheme 1.  

III. SIMULATION RESULTS 

The simulation results run under the specifications of C2 
scenario of 3DV Common Test Conditions (CTC) [14] and the 
complete set of MPEG 3DV test sequences was utilized. In this 
scenario two depth-enhanced texture views are encoded and then 
several possible intermediate views are synthesized in-between to 
be exploited in stereoscopic image-pair creation. 3DV-ATM 
software configured in MVC+D was utilized for coding UP-
MVD, and 3DV VSRS [18] was used for the rendering of virtual 
the depth and texture views.   

In our experiments, stereo baseline adjustment was enabled in 
the proximity of one of the decoded texture view, whereas the 
other decoded texture view was used as the second view of the 
displayed stereoscopic image-pair. Rendered views were located 
at 0.1, 0.2, and 0.5 of the baseline named L1, L2, and L3, 
respectively, as it is shown in Fig. 5. The specific views used at 
the input and output of this experiment are listed in Table II.  

The quality of the stereoscopic video was compared to the 
anchor case where both views were coded with their associated 
depth map. To evaluate the performance objectively, the Peak 

 

Figure 5. Proposed Scheme 1 for Unpaired MVD 

 

Figure 6.  Proposed Scheme 2 for Unpaired MVD 
 



Signal-to-Noise Ratio (PSNR) of both views in the stereoscopic 
image pairs (including one coded view and one synthesized view) 
was calculated. The PSNR of the synthesized views was 
calculated against the reference synthesized views created from 
the conventional MVD format including the original 
uncompressed texture and depth views as specified in MPEG 
CTC [14]. The objective results are presented using Bjontegaard 
delta bitrate (dBR) and delta PSNR [19]. The delta bitrate (dBR) 
is presented for the coded views and the stereoscopic image pairs 
created with one decoded view and one synthesized view. The 
results for the first and the second proposed schemes are provided 
in Table III and IV, respectively. Moreover rate-distortion curves 
for the largest baseline stereoscopic image pair (base + 0.9) for 
Scheme 2 is depicted in Fig. 7. The results show that a bitrate 
reduction, compared to the anchor, of 6.95% for coded views is 
achieved due to the removal of one depth view. Moreover, in 
Scheme 1, a larger baseline (i.e. base + 0.9) provides 4% dBR 
gain with a visible degradation in the performance when 
decreasing the baseline. However, this problem is addressed in 
Scheme 2 where a higher average performance compared to the 

anchor is always achieved. As reported in Table IV, the smallest 
baseline achieves 0.9% of dBR compared to the anchor. This 
gain increases up to 5.44% for the largest baseline achieved from 
one decoded and one synthesized view. It can also be concluded 
that using Scheme 2, up to 20% view separation adjustment can 
be achieved while the proposed UP-MVD format always 
outperforms the anchor conventional MVD format. Moreover, in 
five out of seven test sequences in the smallest baseline 
configuration, the anchor is outperformed by the proposed 
method. 

IV. CONCLUSIONS  

In this paper we studied the objective quality of encoded and 
synthesized views from an MVD data format. Our assumption 
was that the number of depth views can be smaller than the 
number of texture views. Hence, the proposed UP-MVD format 
as a subset of MVD data format was introduced, where the 
number of texture views differs from the number of depth views, 
e.g. two texture views are accompanied with only one depth 
view. The proposed data format succeeded to outperform the 
conventional MVD data format on average by 0.9% to 6.95% of 
dBR when changing the view separation from 50% to 100% of 
the coded baseline, respectively. Moreover, it was confirmed that 
the proposed UP-MVD enables up to 20% view separation 
adjustment while outperforming the anchor MVD format in all 
test sequences. Increasing the camera separation adjustment to 
50%, still five out of seven sequences encoded with the proposed 
UP-MVD format outperformed the MVD anchor bitstreams in 
rate-distortion performance. As a future trend to further 
accomplish this research, the useof UP-MVD in multiview video 

TABLE II. 3DV TEST SEQUENCES, INPUT  AND SYNTHESIZED VIEWS 

Sequence Input views Synthesized views 

PoznanHall2  7-6 7.5 – 7.8 – 7.9 

Poznan Street 5-4 5.5 – 5.8 – 5.9 

Undo Dancer 1-5 3 – 4.2 – 4.6 

Ghost Town fly 9-5 7 – 5.8  – 5.4 

Kendo 1-3 2 – 3.6 – 3.8 

Balloons 1-3 2 – 3.6 – 3.8 

Newspaper 2-4 3 – 4.6 – 4.8 
 

 
 

TABLE III.  PERFORMANCE OF UP-MVD FORMAT WITH PROPOSED SCHEME 1 AGAINST ANCHOR 

  Total (Coded PSNR) Stereo pair (Base + 0.9) Stereo pair (Base + 0.8) Stereo pair (Base + 0.5) 

  dBR, % dPSNR, dB dBR, % dPSNR, dB dBR, % dPSNR, dB dBR, % dPSNR, dB 

Poznan Hall2  -5.90 0.22 -3.15 0.10 3.55 -0.14 32.59 -1.22 

Poznan Street -4.97 0.16 -5.37 0.18 -2.70 0.09 14.88 -0.49 

Undo Dancer -2.28 0.08 -4.05 0.15 -0.55 0.02 24.09 -0.74 

Ghost Town Fly -3.18 0.13 -5.22 0.20 -4.45 0.17 4.96 -0.19 

Kendo -14.10 0.79 -5.13 0.22 -0.98 -0.01 19.75 -1.05 

Balloons -9.06 0.50 -4.76 0.23 0.17 -0.05 20.52 -1.09 

Newspaper -9.14 0.42 -0.38 -0.01 12.22 -0.53 55.54 -1.80 

Average -6.95 0.33 -4.01 0.15 1.04 -0.07 24.62 -0.94 
 

TABLE IV.  PERFORMANCE OF UP-MVD FORMAT WITH  PROPOSED SCHEME 2 AGAINST ANCHOR 

  Total (Coded PSNR) Stereo pair (Base + 0.9) Stereo pair (Base + 0.8) Stereo pair (Base + 0.5) 

  dBR, % dPSNR, dB dBR, % dPSNR, dB dBR, % dPSNR, dB dBR, % dPSNR, dB 

Poznan Hall2 -5.90 0.22 -5.51 0.18 -3.59 0.12 -16.07 0.60 

Poznan Street -4.97 0.16 -4.65 0.15 -4.18 0.14 -2.39 0.08 

Undo Dancer -2.28 0.08 -2.75 0.10 0.34 -0.01 11.08 -0.36 

Ghost Town Fly -3.18 0.13 -3.19 0.12 -2.96 0.11 -1.50 0.06 

Kendo -14.10 0.79 -11.58 0.59 -10.48 0.52 -7.26 0.33 

Balloons -9.06 0.50 -7.77 0.41 -6.58 0.34 -3.25 0.14 

Newspaper -9.14 0.42 -2.62 0.09 0.62 -0.06 13.09 -0.58 

Average -6.95 0.33 -5.44 0.23 -3.83 0.16 -0.90 0.04 
 



with three or more views may be considered. 
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Figure 7. Rate distortion curves of four sequences with largest baseline 

stereopair (Base + 0.9) for proposed scheme 2 
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ABSTRACT 

 

The emerging MVC+D standard specifies the coding of 

Multiview Video plus Depth (MVD) data for enabling 

advanced 3D video applications. MVC+D specifications 

define the coding of all views of MVD at equal spatial 

resolution and apply a conventional MVC technique for 

coding the multiview texture and the depth independently. 

This paper presents a modified MVC+D coding scheme, 

where only the base view is coded at the original resolution 

whereas dependent views are coded at reduced resolution. 

To enable inter-view prediction, the base view is 

downsampled within the MVC coding loop to provide a 

relevant reference for dependent views. At the decoder side, 

the proposed scheme consists of a post-processing scheme 

which upsamples of the decoded views to their original 

resolution. The proposed scheme is compared against the 

original MVC+D scheme and an average of 4% delta bitrate 

reduction (dBR) in the coded views and 14.5% of dBR in 

the synthesized views are reported. 
 

Index Terms— 3DV, MVC, asymmetric coding, spatial 

resolution, synthesized views 

1. INTRODUCTION 
 

The Moving Picture Experts Group (MPEG) has recently 

started 3D Video (3DV) standardization to enable support of 

advanced 3DV applications. The concept of advanced 3DV 

applications assumes that users can perceive a selected 

stereo-pair from numerous available views at the decoder 

side. Examples of such applications includes varying 

baseline to adjust the depth perception and multiview auto-

stereoscopic displays (ASDs). Considering the complexity 

of capturing 3D scenes and the limitations in the distribution 

technologies, it is not possible to deliver a sufficiently large 

number of (20-50) views to the user’s side with existing 

compression standards. To solve this problem, a 3D scene 

can be represented in multiview video plus depth (MVD) 

format [1] with a limited number of views, e.g. 2-3. The 

MVD data is coded and served as a source to a depth image-

based rendering (DIBR) [2] algorithm which produces the 

required number of views at the decoder side.  

In March 2011, MPEG issued a Call for Proposals for 

3D video coding (hereafter referred to as the 3DV CfP) [3] 

for a new 3DV standard enabling the rendering of a 

selectable number of views with respect to the available 

bitrate. As a result of the CfP evaluation [4], MPEG and, 

since July 2012, the Joint Collaborative Team on 3D Video 

Coding (JCT-3V) [5] have initiated development of a depth 

enhanced extension for MVC [6], abbreviated as MVC+D, 

to specify the encapsulation of coded MVD data into a 

single bitstream [7]. The MVC+D standard specifies MVD 

components (texture and depth) to have equal spatial 

resolution between different views and utilizes MVC 

technology [4] for the independent coding of texture and 

depth. As a result, a forward compatibility with MVC 

specification is preserved, and texture views of MVC+D 

bitstreams can be decoded with a conventional MVC 

decoder. The MVC+D specification was implemented in 

3DV-ATM reference software [8] and was used in this 

study. 

A possible solution to further reduce the bitrate and/or 

complexity of 3DV applications is to reduce the spatial 

resolution of a number of video views compared to the 

original resolution while preserving the original resolution 

for the remaining views. At the decoder side, views coded at 

the reduced resolution are upsampled to the original one 

using either conventional linear upsampling [9], or advanced 

super resolution techniques [10] that would benefit from 

multiview representation and the presence of depth. Being 

applied to texture component of MVD, this would result in a 

mixed-resolution texture representation and a significant 

bitrate reduction is hence expected. 

It is obvious, that a scheme with a mixed-resolution 

texture representation would result in decoded views (e.g. 

stereoscopic image-pair) with different quality, which may 

affect stereoscopic perception. However, this argument can 

be addressed with the binocular rivalry theory [11] claiming 

that stereoscopic vision in the human visual system (HVS) 

fuses the images of an asymmetric quality stereoscopic 

image-pair so that the perceived quality is closer to that of 

the higher quality view. Several subjective quality 

evaluation studies have been conducted to investigate the 

use of the binocular rivalry theory in stereoscopic video 

coding [12-15]. Another work presented in [16] showed the 

applicability of asymmetric coding for MVC-like coding by 

encoding dependent views with a coarser quantization step 

compared to the base view. Subjective assessments 

confirmed that such coding scheme achieved a 20% bitrate 

reduction for stereoscopic image-pairs created from 

rendered views with no degradation in the perceived 

subjective quality. 
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This paper presents a modified MVC+D coding 

scheme, where only the base view is coded at the original 

resolution whereas dependent views are coded at a reduced 

resolution. To enable inter-view prediction, the base view is 

downsampled within the MVC coding loop to provide a 

relevant reference for the inter-view predicted dependent 

views. At the decoder side, a post-processing scheme that 

performs upsampling of the decoded views back to their 

original resolution is proposed. 

The rest of the paper is organized as follows. Section 2 

presents the asymmetric texture coding schemes, while test 

material and simulation results are reported in Section 3. 

Finally, section 4 concludes the paper. 
 

2. MVC CODING FOR MIXED-RESOLUTION 

TEXTURE REPRESENTATION 
 

Let us assume that the 3DV system is coding MVD data 

representing a 3D scene with three viewing positions. In our 

description, we assume three-view (C3) coding scenario, 

since this is the most relevant test configuration with respect 

to the MPEG/JCT-3V Common Test Condition [17]. 

The flowchart of the proposed 3DV system with a 

mixed-resolution texture representation is shown in Figure 

1. An arbitrary view (e.g. the center view) of the input MVD 

data is coded with H.264/AVC at the original resolution. 

According to H.264/MVC specification, this view is 

considered as a base view and provides reference pictures 

for the inter-view prediction and the coding of dependent 

views. In the proposed scheme, dependent views of MVD 

data are coded at a reduced resolution, thus the proposed 

scheme downsamples the data at the pre-processing stage 

and upsamples it back to original resolution at the post-

processing stage, as shown in Figure 1. 

In this study, the base view was coded at the original 

full resolution (FR) whereas dependent views were coded at 

half of the original resolution along each direction, which 

resulted in quarter resolution (QR) downsampled view. 

However, the downsampling ratio can be adjusted based on 

the target application. 

Figure 2 shows a simplified flowchart of H.264/MVC 

scheme with the proposed modification in the in-loop 

operations for enabling mixed-resolution coding. Base view 

coding is performed with the conventional H.264/AVC 

technique and the decoded pictures are stored in a frame 

buffer. Since the resolution of the base view is different 

from that of the dependent view, the decoded picture of the 

original view cannot be used as a reference picture for 

coding dependent views. To enable inter-view prediction, 

the resolution of the base view picture should match the 

resolution of dependent views. There are various approaches 

to do this, and in this paper we tested two methods: 

decimation of the reference picture (marked with green line 

in Figure 2) and downsampling of the decoded picture 

(marked with blue line). The following sections present the 

motivation and describe the proposed schemes in details.  
 

2.1  Low complexity Coding (Scheme 1) 
 

The specification of H.264/MVC defines Motion 

Compensating Prediction (MCP) with quarter-pixel (Q-pel) 

resolution of motion vectors. To achieve this, in each 

decoded image view, which is marked to be used as a 

reference, undergoes in-loop interpolation by a factor of 4 in 

the horizontal and vertical directions. The interpolated 

picture is stored in a frame buffer of the corresponding view 

and used as a reference picture for inter-prediction (temporal 

MCP). In addition, the reference picture of the base view 

can be used as a reference for inter-view prediction when a 

dependent view is coded. However, in the case of mixed-

resolution coding, the reference picture produced in the base 

view is 2x larger than the reference pictures produced in 

dependent views and hence cannot be used in the same 

MCP. To solve this problem, the inter-view reference 

picture (Q-pel resolution) of the base view is decimated by a 

factor of 2 along each direction and the subsampled version 

is placed in the reference frame buffer of the dependent 

view, shown by the green line module in Figure 2.  

The algorithm proposed in this section (scheme 1) has a 

negligible complexity increase and introduces minimal 

changes to the H.264/MVC architecture. It is believed that 

such changes can be performed by software only update to 

the already deployed decoding infrastructure. 

However, this algorithm does not take into 

consideration parameters of downsampling performed to the 

dependent view at the post-processing stage, e.g. the low 

pass filter (LPF) phase, and its performance may suffer from 

a possible mismatch in the pixel location grid used in the 

base and dependent views, and aliasing, since the 

decimation procedure does not apply any LPF. This may 

lead to sub-optimal performance of the MCP in the inter-

view prediction.  
 

 

 

Figure 1. Block diagram of the proposed encoding scheme 



 

 

2.2 High performance Coding (Scheme 2) 
 

To overcome the problem raised in the previous sub-section, 

the reference picture of the base view which is to be used for 

inter-view prediction should be downsampled with a proper 

antialiasing low pass filtering applied prior to decimation. 

The decoded picture of the base view is downsampled and 

undergoes Q-pel interpolation in the dependent view, and 

thus it is handled independently from the MCP chain of the 

base view. The proposed alternative solution is shown in 

Figure 2 with processing modules marked with blue dashed 

lines. 

It is essential for in-loop downsampling applied to 

pictures of the base view to use an identical filter as the one 

used in the preprocessing of the dependent views. This will 

require adequate signaling in the Sequence Parameters Set: 

however, it will ensure an identical pixel location grid for 

the dependent view and the reference picture of the base 

view.  

The algorithm proposed in this section (scheme 2) has a 

larger computational complexity in comparison to scheme 1, 

since it performs antialiasing low pass filtering and 

additional Q-Pel interpolation. However, the absence of 

aliasing artifacts along with no mismatch in pixel location 

grid between the coded and the reference images are 

expected to contribute towards efficient inter-view 

prediction. The simulation results provided in the next 

section confirm these expectations. 
 

3. TEST MATERIAL AND SIMULATION 

RESULTS 
 

Both schemes proposed in this paper (Scheme 1 and Scheme 

2) were integrated to the 3DV-ATM software and compared 

against the anchor scheme (MVC+D). Simulations were 

conducted under the specifications of C3 scenario of 3DV 

Common Test Condition (CTC) [17] and JCT-3V/MPEG 

MVD test sequences were utilized. In this scenario three 

depth-enhanced texture views are encoded and then several 

possible in-between views are synthesized to be exploited in 

stereoscopic image-pair creation.  

The full resolution MVC+D coding, as implemented in 

3DV-ATM [8], and 3DV VSRS [18] were utilized to 

produce a full resolution anchor results. Table I summarizes 

the major parameters used for the 3DV-ATM configuration, 

whereas complete configuration files for MVC+D are 

available in [17]. 

The simulation framework for the proposed schemes 

(Scheme 1 and Scheme 2) is specified as shown in Table I 

and the following changes were introduced. 

The following pre-processing and post-processing 

stages as shown in Figure 1 were utilized to produce 

simulation results for the proposed Scheme 1 and Scheme 2. 
 

Pre-processing: 

Texture views of MVD data marked to be coded as 

dependent views were downsampled at the pre-processing 

stage. The downsampling was performed with a lowpass 

filter used in [19]. The LPF is designed with a cut-off 

frequency of 0.9π and has 12 filter taps . The filter 

coefficients are as follows: 
  

h1 = [2 -3 -9 6 39 58 39 6 -9 -3 2 0]/128         (1) 
 

Post-processing: 

Following the decoding and prior to the DIBR, the 

decoded dependent views were upsampled by a factor of 2 

in the horizontal and vertical directions back to the original 

resolution. The upsampling was performed with the 6-tap 

H.264/AVC interpolation filter [9]. The coefficients of this 

 

Figure 2.  MVC coding for mixed-resolution video, where the 

proposed Scheme 1 is depicted in green box and Scheme 2 in 

blue 

TABLE I.  CONFIGURATION OF 3DV-ATM CONFIGURED THE 

ANCHOR (MVC+D) AND PROPOSED SCHEME 

Coding Parameters Settings 

Compatibility Mode 0 (MVC+D) 

Multi-view scenario Three views (C3) 

MVD resolution ratio  

(Texture : Depth) 1:0.5 

Inter-view prediction structure PIP  

Inter prediction structure HierarchicalB, GOP8 

QP settings for texture & depth 26, 31, 36, 41 

Encoder settings RDO ON, VSO OFF 

View Synthesis in Post-

processing Fast_1D VSRS [18] 

Test sequences and coded, 
synthesized views As specified in  [17] 

 



 

 

filter are as follows: 
 

h2 = [1 -5 20 20 -5 1]/32                           (2) 
 

Proposed schemes: 

Integration of Scheme 1 to the 3DV-ATM software was 

straightforward and its details were given in sub-section 2.1. 

Scheme 2 as described in Section 2.2 was integrated to 

3DV-ATM and the filter given in equation (1) was used.  

The compression efficiency of the proposed schemes 

was evaluated according to the CTC [17] specification. The 

Bjontegaard delta bitrate and delta Peak Signal-to-Noise 

Ratio (PSNR) metrics [20] were utilized for these purposes 

and the MVC+D scheme was used as the anchor. The delta 

bitrate reduction (dBR) is presented for the total coded 

views (the total bitrate of the texture and depth coding along 

with PSNR of the texture views) and the synthesized views 

(the total bitrate of the texture and depth coding along with 

the PSNR of the synthesized views). The PSNR of the 

synthesized views at the decoder side were computed 

against the reference view synthesis results, as specified in 

CTC [17] and achieved from the original uncompressed 

texture and depth information. The results comparing the 

proposed schemes against the MVC+D anchor are reported 

in Tables II and III. Moreover, rate-distortion (RD) curves 

achieved with Scheme 2 and for the synthesized views of 

Poznan Hall 2 sequence are depicted in Figure 3. These 

curves well match with dBR values presented in Table III, 

confirming higher efficiency of Scheme 2 against anchor. 

As reported in Tables II and III, both proposed MVC+D 

schemes with mixed-resolution texture representation 

outperformed the full resolution MVC+D anchor. The low 

complexity Scheme 1 reduces the average coded bit rate by 

1.35% compared to the anchor, whereas the average 

compression gain for all natural sequences (excluding Ghost 

Town Fly and Dancer) is more than 10% of dBR. For the 

synthesized views, Scheme 1 provides 12.63% dBR on 

average (synthetic sequences included). A possible 

explanation for this effect is the fact that DIBR operates at 

the low resolution depth map, see Table I, and therefore, 

rendering becomes less accurate and high frequency 

components of synthetic sequences may not bias the final 

PSNR of synthesized views.  

The high performance Scheme 2, as expected, provides 

a larger coding gain, outperforming the MVC+D anchor by 

4.06% of dBR on average for coded bitrates and by 14.52% 

of dBR on average for synthesized views. It should be noted 

that Scheme 2 significantly outperforms Scheme 1 for 

synthetic sequences, where the impact of aliasing artifacts 

and mismatch in pixel grid seem to degrade inter-view 

prediction in Scheme 1. On the other hand, coding 

performance for natural sequences seems to be very close 

for both Scheme 1 and Scheme 2, giving about 10% of dBR 

for coded views and about 14% of dBR gain for synthesized 

views against the MVD anchor, respectively. 
 

4. CONCLUSIONS  
 

The paper proposed a novel modified MVC+D coding 

scheme that supports the coding MVD data with a mixed-

resolution texture representation. We proposed to encode 

only the base view at the original resolution whereas the 

spatial resolution of dependent views is reduced. At the 

decoder side, the proposed scheme consists of a post-

processing scheme that performs upsampling of decoded 

views back to their original resolution. To enable inter-view 

prediction, the base view is downsampled within the MVC 

coding loop to provide a relevant reference for dependent 

views. The proposed scheme was compared against the 

original MVC+D and objective coding gains of 4% of 

average delta bitrate reduction (dBR) and 14.5% of dBR on 

synthesized views were reported.  
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TABLE II.  PERFORMANCE OF THE PROPOSED MIXED-RESOLUTION 

SCHEME 1 COMPARED TO THE ANCHOR 

 Coded views Synthesized  views 

 
dBR, % 

dPSNR, 

dB dBR, % 

dPSNR, 

dB 

Poznan Hall2 -18.12 0.60 -20.22 0.75 

Poznan Street -2.16 0.00 -8.96 0.27 

Undo Dancer 30.74 -1.22 -12.39 0.32 

Ghost Town Fly 10.47 -0.83 -6.43 0.11 

Kendo -12.14 0.59 -14.46 0.69 

Balloons -13.35 0.68 -15.47 0.77 

Newspaper -4.90 0.17 -10.45 0.39 

Average -1.35 0.00 -12.63 0.47 
 

TABLE III.  PERFORMANCE OF THE PROPOSED  MIXED-RESOLUTION 

SCHEME 2 COMPARED TO THE ANCHOR 

 Coded views Synthesized  views 
 

dBR, % 

dPSNR, 

dB dBR, % 

dPSNR, 

dB 

Poznan Hall2 -18.29 0.62 -20.58 0.78 

Poznan Street 0.04 -0.09 -8.39 0.25 

Undo Dancer 18.98 -0.88 -18.27 0.54 

Ghost Town Fly 1.58 -0.41 -12.96 0.40 

Kendo -12.36 0.60 -14.88 0.71 

Balloons -13.44 0.68 -15.86 0.79 

Newspaper -4.90 0.15 -10.71 0.40 

Average -4.06 0.10 -14.52 0.55 
 

 

Figure 3. Rate-distortion curve for synthesized views for the  

sequnce Poznan Hall used in Scheme 2 against the anchor 
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ABSTRACT 

Conventional mixed-resolution (MR) stereoscopic video where one 

view has full resolution (FR) and the other view has a lower 

resolution has shown to provide similar subjective quality 

compared to symmetric FR stereoscopic video while decreasing 

the encoding complexity considerably. In this paper, we propose a 

new cross-asymmetric mixed-resolution scheme where both views 

have a lower resolution compared to FR but downsampling is 

applied in horizontal direction for one view while the other view is 

vertically downsampled. Subjective results comparing the 

proposed scheme with the conventional MR and the symmetric FR 

schemes show that the perceived quality of the proposed scheme is 

higher than that of the two other schemes. Moreover, the 

computational complexity and memory requirements also are 

reduced thanks to the decreased number of pixels involved in the 

encoding and decoding processes.  

Index Terms — Asymmetric stereoscopic video, mixed 

resolution, subjective evaluation 
 

1. INTRODUCTION 
 

Two approaches for compressing stereoscopic video are common 

nowadays: frame-compatible stereoscopic video and Multiview 

Video Coding (MVC) [1].The latter was standardized as an annex 

to Advanced Video Coding (H.264/AVC) standard [2]. In frame-

compatible stereoscopic video, a spatial packing of a stereo pair 

into a single frame is performed at the encoder side as a pre-

processing step for encoding and then the frame-packed frames are 

encoded with a conventional 2D video coding scheme. The 

encoder side may indicate the used frame packing format for 

example by including one or more frame packing arrangement 

supplemental enhancement information (SEI) messages as 

specified in the H.264/AVC standard into the bitstream. The 

decoder unpacks the two constituent frames from the output frames 

of the decoder and upsamples them to revert the encoder side’s 

downsampling process and render the constituent frames on a 3D 

display. In contrast to frame packing, MVC enables any spatial 

resolution to be used in encoding and facilitates plain H.264/AVC 

decoders to produce single-view output without additional 

processing. Moreover, inter-view prediction presented in MVC 

provides a considerable compression improvement compared to 

frame packing and stereoscopic video representation using 

H.264/AVC simulcast. However, due to increased amount of data 

compared to conventional 2D video, further compression without 

perceivable subjective quality degradation is required in many 

applications.  

One potential approach to achieve a better compression is to 

provide left and right views with different qualities referred to as 

asymmetric quality video where one of the two views is coded with 

a lower quality compared to the other one. This is attributed to the 

widely believed assumption of the binocular suppression theory [3] 

that the Human Visual System (HVS) fuses the two images such 

that the perceived quality is close to that of the higher quality view. 

Quality difference can be achieved by utilizing coarser 

quantization steps for one view and/or presenting stereoscopic 

video with MR where one view is downsampled prior to encoding. 

Considering that a smaller number of samples are involved in the 

coding/decoding process of MR stereoscopic video, it is expected 

to have lower processing complexity compared to the FR scheme.  

Asymmetric stereoscopic video coding has been studied 

extensively over the years. For example, in [4] a set of subjective 

tests on encoded FR and MR stereoscopic videos were performed 

under the same bitrate constraint. The results show that the MR 

stereoscopic video with downsampling ratio 1/2, applied both 

vertically and horizontally, performed similarly to the FR in most 

cases. In [5], the MR approach was compared with a quality-

asymmetric approach, in which the bigger steps were utilized for 

transform coefficients while coding one of the views. Results 

confirmed that perceived quality of the MR videos were close to 

that of the FR view. The impact of quantization was verified in [6], 

which concluded that the perceived quality of coded equal-

resolution stereo image pairs was approximately the average of the 

perceived qualities of the high-quality image and the low-quality 

image of the stereo pairs.  

To approximate the perceived quality of the stereoscopic 

video, objective quality metrics often perform well. However, in 

the case of asymmetric stereoscopic video, there are two views 

with different qualities, and it has been found that objective quality 

assessment metrics face some ambiguity on how to approximate 

the perceived quality of asymmetric stereoscopic video [7]. 

This paper first describes a new cross-asymmetric MR 

compression technique and then evaluates its performance with a 

set of subjective tests. The proposed method is compared to 

compressed FR and conventional MR videos with different 

downsampling ratios applied to one view and along both 

coordinate axes. JM 17.2 reference software [8] of H.264/AVC is 

utilized as the encoder and the comparison is performed under the 

same bitrate constraints for two different bitrates. 

This paper is organized as follows. In Section 2, the 

proposed MR scheme is presented while the test material and 

procedure are explained in section 3. Section 4 presents and 

discusses the results, and section 5 concludes the paper.  



2.  PROPOSED CROSS-ASYMMETRIC MIXED-

RESOLUTION SCHME 
 

2.1 Overview 
 

The traditional MR scheme performs downsampling on one view 

while the other view remains untouched having FR. In order to 

apply inter-view prediction between views of different resolution, a 

resampling process is required in the coding and decoding loop. As 

no such resampling is available in H.264/MVC, we present the 

proposed scheme in the context of H.264/AVC simulcast. 

Consequently, we also avoid any influence of non-standardized 

resampling and inter-view prediction algorithms on the results. 

Hence, we can be sure that the results are trustable and different 

performances are only due to utilization of different MR schemes, 

rather than different performance of utilized MR adaptive 

H.264/MVC codec. While the proposed method is presented for 

H.264/AVC simulcast environment, a frame packing scheme can 

also be designed, or a multiview codec with in-loop resampling 

and inter-view prediction can be applied. 
 

2.2 Proposed MR scheme 
 

In the proposed cross-asymmetric MR scheme, different 

resolutions for left and right views are utilized. Unlike the 

conventional MR scheme, we intend not to utilize any of two 

views in FR but downsample both views asymmetrically in such a 

way that horizontal and vertical downsampling ratios differ for the 

same view and the choice of the horizontal and vertical 

downsampling ratios is reversed for the other view. In other words, 

one view is downsampled more in the vertical direction while 

keeping more horizontal spatial information in that view. The other 

view is downsampled more in the horizontal direction. On the basis 

of the binocular suppression theory we expect the human visual 

system to perceive the picture in such a way that the higher quality 

information in each direction from the view where less 

downsampling along that direction was applied prevails. Figure 2 

presents the general block diagram of the proposed MR scheme. W 

and H represent the width and height of the FR views, respectively, 

while a1, a2, b1, and b2 are downsampling coefficients. In the 

proposed scheme, it is required that a1 > a2 and b1 < b2. Since the 

encoding is applied on downsampled views, after decoding and 

prior to the final presentation of stereoscopic video, the views will 

be upsampled to the FR.  

Considering that eye dominance was shown not to have an 

impact on the perceived quality of MR stereoscopic videos [9], it is 

proposed that the decision on which the view should be more 

downsampled in horizontal/vertical direction is made based on 

spatial information (SI) [10] along each direction of each view. To 

calculate SI, a 3×3 Sobel filter is utilized (1) to emphasize 

horizontal edges using the smoothing effect by approximating a 

vertical gradient. To emphasize vertical edges, the transpose of the 

filter (  ) will be applied. 

   [
   
   
      

]              (1) 

 Based on the direction of the applied Sobel filter to the luma 

values of each image, SI will be calculated for the vertical or 

horizontal direction averaging over the magnitudes of the filtered 

image. Considering LV, LH, RV, and RH presenting SI of Left view 

in Vertical direction, Left view in Horizontal direction, Right view 

in Vertical direction, and Right view in Horizontal direction, 

respectively. The flowchart presented in Figure 3 shows how the 

decision of the downsampling direction of the left and right views 

is made. If LV is greater than RV and LH is smaller than RH, then 

the right view will be downsampled more in the vertical direction 

and the left view will be downsampled more in the horizontal 

direction. On the other hand, if LV is smaller than RV and LH is 

greater than RH, then the right view will be downsampled more in 

the horizontal direction while the left view is downsampled more 

in the vertical direction. If none of the above mentioned cases is 

valid, i.e. the left view has a higher SI in both directions (LV>RV 

and LH>RH) or the right view has a higher SI in both directions 

(LV<RV and LH<RH), the decision is made based on the 

normalized absolute difference levels, defined next. Considering 

the case where the left view has a higher SI in both directions, let 

us define the normalized absolute difference values as: 
 

    
          

              
                                  

 

    
          

              
                               

   where                
     

 
  and    and    present the 

normalized absolute difference between the left and right views in 

vertical and horizontal direction, respectively. If      , then 

 

 
Figure 2. Proposed MR encoding/decoding scheme 

 
Figure 3. Flowchart of selecting the downsampling direction for left and 

right view. 
 



the left view will be downsampled more in the horizontal direction 

and the right view will be downsampled more in the vertical 

direction. In the case where the right view has a higher SI in both 

directions, if       then the right view will be downsampled 

more in the horizontal direction and the left view will be 

downsampled more in the vertical direction. The main idea behind 

the use of SI for downsampling the left and right views is that the 

highest combined amount of information in the downsampled MR 

stereoscopic video is preserved.  
 

3. TEST SETUP 
 

3.1 Test material 
 

The tests were carried out using four sequences: Ballet, 

Breakdancer [11], Alt Moabit, and Book Arrival [12] with 

resolution 1024 768. 

Five types of encoding schemes based on the resolution of 

left and right views were selected for the subjective test: 

1. Anchor scheme: Full-resolution in both views (AS)        

2. Conventional MR Scheme with downsampling ratio = 

1/2, i.e. half resolution for one view in both directions 

and FR in the other view (CS1/2)  

3. Proposed MR Scheme with downsampling ratio = 1/2, 

i.e. one  view is downsampled only in vertical direction 

while the other view is only downsampled in the 

horizontal direction, the downsampling ratio is set to 1/2 

for both cases (PS1/2)  

4. Conventional MR Scheme with downsampling ratio = 

1/4, (CS1/4) 

5. Proposed MR Scheme with downsampling ratio = 1/4, 

(PS1/4)  

The filters included in the JSVM reference software of the 

Scalable Video Coding standard were utilized in the downsampling 

and upsampling operations [13]. Moreover, views were 

independently coded using the reference JM 17.2 software in order 

to treat the FR and MR cases as equally as possible, as described in 

sub-section 2.1. 

The quality and bitrate of H.264/AVC bitstreams is 

controlled by the quantization parameter (QP). In order to get 

results from a larger range of qualities and compressed bitrates, 

two constant QP values, 34 and 38, were selected for encoding in 

AS. Other schemes were encoded having a bitrate within 4% of the 

bitrate of the corresponding AS. The QP for left and right view was 

selected in such a way that bitrate ratio between the left and right 

view was close to one. This was due to the fact that we did not 

want to affect the experiment by the selection of different QPs but 

limit the study to evaluate the performance of different applied 

downsampling schemes. The uncompressed FR sequences were 

included in the viewed sequences to obtain a reference point for the 

highest perceived quality of each particular sequence. 
 

3.2 Test procedure 
 

Test clips were displayed on a 46" polarizing stereoscopic screen 

having a total resolution of 19201200 pixels and a resolution of 

1920600 per view when used in the stereoscopic mode. 

Sequences were presented un-scaled with black background on the 

display fixing the viewing distance to 1.63 meter that is 4 times the 

height of the videos. 

The duration of a viewing session was limited to ~35 

minutes to avoid viewers becoming exhausted. In total 20 subjects 

(17 male and 3 female) attended the test. The average age of 

subjects was 26.5 years. All the participants were naïve users who 

had no previous experience on 3D video processing.  

Subjective quality assessment was done according to Double 

Stimulus Impairment Scale (DSIS) method [14] and discrete 

unlabeled quality scale from 0 to 10 was used for quality 

assessment. Prior to the actual test, subjects were familiarized with 

test task, test sequences and with the variation in quality they could 

expect in the actual tests. The viewers were instructed that 0 stands 

for the lowest quality and 10 for the highest. The test clips were 

presented in a random order each clip was rated independently 

after its presentation. Prior to the participation in subjective 

viewing experiment, candidates were subject to a thorough vision 

screening. All participants had a stereoscopic acuity of at least 60 

arc sec. 
 

4. RESULTS AND DISCUSSION 
 

The average and 95% confidence interval (CI) of subjective scores 

are presented in Figure 4. The naming of the encoding schemes is 

according to sub-section 3.1 and O represents the original FR 

uncompressed stereoscopic video. 

It can be judged from the mean scores and confidence 

intervals presented in Figure 4 that the subjective quality of the 

higher bitrate was rated better in general compared to the lower 

bitrate. Moreover, the original uncompressed video had superior 

quality compared to other schemes. The observation on significant 

differences between the encoding schemes was further analyzed 

using statistical analysis as presented in the paragraphs below.  

Non-parametric statistical analysis methods, Friedman’s and 
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Figure 4. Viewing experience ratings  
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Wilcoxon’s tests, were used as the data did not reach normal 

distribution (Kolmogorov-Smirnov: p<.05). Wilcoxon’s test is 

applicable to measure differences between two related and ordinal 

data sets [15]. A significance difference level of p < 0.05 was used 

in our analysis. 

Table 1 reports the performance analysis results of each 

coding scheme, as achieved by Wilcoxon’s test, in a pairwise 

comparison to other schemes. For each coding scheme three values 

are reported per bitrate. First, the value in column Better provides 

the total number of cases in which the associated scheme was 

ranked significantly better than the other schemes. The second 

number reports the total number of cases where similar subjective 

quality to the other schemes was reported (Similar). Finally, the 

third value in column Worse, reports the number of cases in which 

the referred coding scheme provided a significantly worse rating 

compared to the other schemes. The next paragraphs discuss the 

performance of different coding schemes based on the statistics 

reported in Table 1. 

In the higher bitrate the performance of PS1/2 was clearly 

superior, since in no comparison it was ranked worse than other 

schemes and in the majority of cases it was ranked better compared 

to other schemes. Moreover, CS1/4 performed worse since in the 

majority of comparisons it was ranked worse than other schemes 

while in none of the comparisons it was ranked better. 

In the lower bitrate, the coding schemes performed closer to 

each other while the majority of comparisons resulted in a similar 

subjective quality. AS performed slightly inferior to others since it 

was never ranked better. Moreover, PS1/2 and CS1/2 were never 

ranked worse compared to other schemes; nevertheless, PS1/2 had 

slightly better performance compared to CS1/2 since it was ranked 

better in four cases compared to two cases for CS1/2.  

In general, the results show that utilization of FR videos (as 

in AS) in that lower bitrate was not subjectively preferred and 

applying downsampling through different schemes provided a 

higher perceived quality. This is in agreement with the conclusion 

achieved in [4, 16]. Moreover, the subjective results confirm that 

PS1/2 performed the best in the lower and higher bitrates.  

Next we compare the complexity of the coding/decoding 

schemes based on the number of pixels involved in the 

coding/decoding process. If the width and the height of the FR 

views is represented with   and  , respectively, the total number 

of pixels for both views can be calculated as shown in Table 2. 

Based on the results presented in Table 2 the proposed methods 

(PS1/2 and PS1/4) introduce the least number of pixels for the 

coding/decoding process. Hence, along with superior subjective 

quality, lower complexity is another important advantage which 

justifies the utilization of the proposed coding scheme.  
 

5. CONCLUSIONS 
 

The paper proposes a mixed-resolution (MR) stereoscopic video 

coding scheme, where one view is horizontally downsampled 

while the other view is vertically downsampled at different rates. 

The proposed scheme was compared with symmetric full-

resolution (FR) stereoscopic video as well as the conventional MR 

coding, where one view is downsampled along both coordinate 

axes while the other view is maintained at its original resolution. A 

series of subjective tests was conducted comparing the proposed 

scheme with conventional MR and symmetric FR schemes. The 

results show that proposed method outperforms the other methods 

while decreasing the computational complexity and memory 

requirements of the codec. 
   

 

6. REFERENCES 
 

[1] Y. Chen, Y.-K. Wang, K. Ugur, M. M. Hannuksela, J. Lainema, and 
M. Gabbouj, “The emerging MVC standard for 3D video services,” 
EURASIP Journal on Advances in Signal Processing, vol. 2009 

[2] ITU-T Recommendation H.264, “Advanced video coding for 
generic audiovisual services,” Mar. 2009. 

[3] R. Blake, “Threshold conditions for binocular rivalry,” Journal of 
Experimental Psychology: Human Perception and Performance, vol. 
3(2), pp. 251-257, 2001. 

[4] P. Aflaki, et al ,“Subjective study on compressed asymmetric 
stereoscopic video,” Proc. of Int. Conf. on Image Proc., Sep. 2010. 

[5] W. J. Tam, “Image and depth quality of asymmetrically coded 
stereoscopic video for 3D-TV,” Joint Video Team document JVT-
W094, Apr. 2007. 

[6] P. Seuntiens, L. Meesters, and W. IJsselsteijn, “Perceived quality of 
compressed stereoscopic images: effects of symmetric and 
asymmetric JPEG coding and camera separation,” ACM Trans. on 
Applied Perception, vol. 3, no. 2, pp. 95–109, Apr. 2006. 

[7] P. W. Gorley, N.S. Holliman; “Stereoscopic image quality metrics 
and compression”, Stereoscopic Displays and Virtual Reality 
Systems XIX, Proceedings of SPIE-IS&T Electronic Imaging, SPIE 
Vo1.6803, January 2008 

[8] JM reference software: http://iphome.hhi.de/suehring/tml/download 

[9] P. Aflaki, M. M. Hannuksela, J. Häkkinen, P. Lindroos, and M. 
Gabbouj, “Impact of downsampling ratio in mixed-resolution 
stereoscopic video,” Proc. of 3DTV-Conference, Jun. 2010. 

[10] ITU-T Recommendation P.910, “Subjective video quality 
assessment methods for multimedia applications,” 1999. 

[11] http://research.microsoft.com/en-
us/um/people/sbkang/3dvideodownload 

[12] ftp://ftp.hhi.de/HHIMPEG3DV/sequences/  

[13] JSVM Software 
http://ip.hhi.de/imagecom_G1/savce/downloads/SVC-Reference-
Software.htm 

[14] ITU-R Rec. BT.500-11, Methodology for the subjective assessment 
of the quality of television pictures, 2002 

[15] H. Cooligan “Research methods and statistics in psychology,” (4th 
ed.). London: Arrowsmith., 2004. 

[16] H. Brust, A. Smolic, K. Müller, G. Tech, and T. Wiegand, “Mixed 
resolution coding of stereoscopic video for mobile devices” 3DTV 

Conference, May 2009. 

Table 1. Pairwise performance comparison of different coding schemes 

over all content 

 Higher bitrate Lower bitrate 

Coding 
scheme 

Better Similar Worse Better Similar Worse 

AS 5 8 3 0 12 4 

CS1/2 3 9 4 2 14 0 

PS1/2 9 7 0 4 12 0 

CS1/4 0 7 9 1 12 3 

PS1/4 3 9 4 3 10 3 
 

 

Table 2. Per view and total number of pixels involved in the 

coding/decoding process for different coding schemes 
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ABSTRACT 
 
Downsampling applied to texture views prior to encoding 
can increase the subjective quality of decoded video. In our 
study, we show that spatial resolution selection based on 
traditional pixel-based distortion metrics, such as Mean 
Square Error (MSE) is weakly correlated with the 
resolution selection based on subjective quality of coded 
video. To overcome this problem, we propose a novel 
frequency-based distortion metric which is shown to 
resemble subjective quality of coded video more accurately 
compared to conventionally used MSE-based metric.  
 

Index Terms— MVC, resolution adjustment, objective 
quality metrics, subjective assessment, frequency power 
spectrum 

 
1. INTRODUCTION 

 
3D video coding standardization is a recent activity 
targeting at enabling a variety of display types,  including 
autostereoscopic multiview displays and stereoscopic 
displays, as well as user-adjustable depth perception.  To 
enable this functionality, multiple high-quality views shall 
be available in decoder/display side. Due to the natural 
limitations of content production and content distribution 
technologies, capturing and delivery of a large number of 
high-quality views to user side is a very challenging task 
under the current video coding technologies. To assess 
available solutions for this challenge, the Moving Picture 
Experts Group (MPEG) issued a Call for Proposals for 3D 
video coding technologies (hereafter referred to as the 3DV 
CfP) [1] which enables rendering of a selectable number of 
views within a certain viewing range without increasing the 
required bitrate compared to conventional bandwidth. More 
than 20 solutions were submitted to the CfP and they were 
evaluated through a rigorous formal subjective quality 
assessment performed by the MPEG and its partners.  

A significant number of responses to the CfP utilized 
the Multiview Video plus Depth (MVD) data format and 
were based on the H.264/MVC video coding standard [2]. 
The MVD data format consists of natural texture image and 
its associated depth map data image. The use of MVD data 
format and Depth-Image-Based Rendering (DIBR) 
algorithms [3] at the decoder side allows rendering required 

number of intermediate views from limited input views. 
However these views (both texture and depth) should be 
encoded and transmitted to the decoder. 

The H.264/MVC is the state-of-the-art coding standard 
in the field of multiview video coding (MVC) which 
utilizes inter-view and temporal redundancies in multiview 
data. However, the resulting bitrate of MVC coded MVD 
data (texture and depth views) exceeds the bandwidth 
reserved for conventional 2D video services. As a result, 
significant research was done to further decrease the bitrate 
while preserving subjective quality of decoded views and 
preserving the compatibility with existing H.264/MVC 
video coding technology. 

Adaptive spatial resolution adjustment for coded video 
data is a potential approach to decrease the bitrate. If the 
same encoding parameters are utilized, downsampling of 
video data prior to encoding leads to bitrate reduction. In 
this design, the overall system distortion is a combination 
of conventional coding distortion and reduction of high 
frequency components due to low pass filtering introduced 
by downsampling. The video coding system should be 
designed properly to balance these distortions in order to 
achieve a subjectively superior visual quality of decoded 
video data.  

The spatial downsampling proposed in [4, 5] improves 
compression at low bitrates. An adaptive decision is made 
for appropriate downsampling and quantization mode 
according to local visual significance. The downsampling 
ratio is automatically adjusted from 1/4 to 1 according to 
local image contents. Authors in [6] proposed an adaptive 
downscaling ratio decision approach for better compression 
of multiview video. The proposed method is based on a 
trade-off between the distortion introduced by 
downsampling and distortion introduced by quantization. 
The results indicated that using bit-rate adaptive mixed 
spatial resolution coding for both views and depth maps can 
achieve savings in bit-rate, compared to Full Resolution 
(FR) multiview coding when the quality of synthesized 
views is considered. In [7] authors utilized adaptive 
downsampling to improve performance of H.246/AVC 
video coding. In this work, it is proposed to optimize the 
spatial resolution through a rate distortion optimization, 
where distortion of downsampling and coding processes 
were averaged.  

In this paper, we perform a set of subjective tests 
showing that MSE-based resolution selection cannot 



estimate the subjective results accurately. Hence, a novel 
algorithm for adaptive spatial resolution selection based on 
frequency-based distortion metric is presented. Results 
prove that this method is capable of better estimating the 
subjective quality comparing MSE-based approach. 

The rest of paper is organized as follows. Section 2 
describes proposed methods. The test material, setup, and 
results are presented in sections 3 and 4 for objective and 
subjective experiments, respectively. Section 5 discusses 
the results. Finally, conclusions are given in Section 6. 

 
2. PROPOSED SPATIAL RESOLUTION 

SELECTION METHODS 
 

The level of distortions introduced by lossy video coding 
systems is typically controlled by a Quantization Parameter 
(QP) where higher QP corresponds with low bitrates but 
higher coding distortions. In the case of multi-resolution 
encoding and under constrained bitrate, different QP values 
are associated with selected resolutions. This association 
between different resolutions and QPs, providing a same 
target bitrate, can be estimated in advance and specified to 
the encoder through a properly designed lookup table. In 
such design, video data at lower spatial resolution can be 
coded at a lower QP under the same bitrate constrain and 
less coding distortions are introduced to coded data. 
However, process of resolution rescaling introduces its own 
distortion through a low pass filtering of input data. To 
solve this rate-distortion optimization problem, encoder 
should take both of these distortions in consideration.  In 
this paper we present two methods for encoder to make 
decision on the spatial resolution of texture data under 
constrained bitrate: 

1) Mean Square Error based method 
2) Frequency Power Spectrum based method 
The two proposed methods are described in detail in 

following sub-sections. 
 

2.1 Pixel-based distortion metric 
 
In this method the MSE over FR encoded image is 
calculated against the original image. For downsampled 
schemes, the encoded image with different downsampling 
ratios is upsampled to FR and then the MSE is calculated 
against the original.  Considering that under the same 
bitrate constrain, different resolutions provide different 
MSE values, therefore, the resolution providing the least 
MSE value will be selected as the candidate which should 
be utilized for encoding. In this step, we consider a fine 
interval for MSE values in which a lower resolution is 
preferred. In other words, if the MSE value of the lower 
resolution is in a predefined and fixed interval of MSE 
values of a higher resolution, the lower resolution will be 
selected. Selecting a lower resolution favors a lower 
computational complexity. 

 

2.2 Frequency-based distortion metric 
 
Our approach is based on the assumption that image quality 
degradation caused by downsampling and coding can be 
better evaluated in frequency domain, rather than in the 
pixel domain. Since downsampling and block-based coding 
with scalar quantization are both suppressing high 
frequencies, we can evaluate introduced degradation throw 
analysis of high frequency components of 2D Discrete 
Cosine Transform (DCT) spectrum.  

Let us introduce the following notation: F  as a 
separable 2D forward DCT and 2,1 www  as 
coordinates of DCT coefficients. 2D DCT being performed 
over the whole image s size of M×N results in 2D DCT 
spectrum of the same size M×N:  
 

  ,),()2,1( yxsFwwS   (1) 
 

where F is the function performing the 2D DCT transfer 
while x=0,…M-1 and y=0…N-1 are spatial coordinates of 
the image s , and w1= 0,…M-1 and w2=0,..N-1 are 
coordinates in the 2D DCT spectrum S.  

Transform coefficient which are located in the right-
bottom section of spectral image are associated with high 
frequency components (HFC) of image I and we select 
these information for further analysis as follows: 
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where terms T1 and T2 are boundaries that specify HFC in 
horizontal and vertical directions of 2D DCT spectrum, 
respectively. 

In our method we compare HFC of 2D DCT 
coefficients computed for the following image: 

- UF: Uncompressed image at the Full Resolution  
- CF: Compressed image at the Full Resolution 
- CL: Compressed image at Low Resolution  
Note that original image is downsampled prior to 

encoding and upsampled to FR after decoding to produce 
CL.  

Each of these images undergo 2D DCT and HFC 
coefficients for CF and CL spectral images are compared 
against the HFC of the UF image: 

 

))2,1(())2,1(()2,1( wwCFwwUFwwdCF HFCHFC (3) 
   ))2,1(())2,1(()2,1( wwCLwwUFwwdCL HFCHFC  

 

The differential spectral images dCF and dCL are computed 
coefficient-wise for all transform coefficients that belong to 
the specified HFC. Since transform coefficients of dCF and 
dCL are computed over the entire image s, a large number 
of them would have magnitude close to zero. These 
coefficients would not reflect noticeable components of the 
image s, but their cumulative magnitude might affect the 
decision making. In order to avoid this, we filter dCF and 



dCL with commonly used in transform-based filtering hard-
thresholding [8]. This non-linear filtering operation T is 
performed over each transform coefficient of dCF and dCL 
as following: 
 

   else         ,0
3    , TwYwY

wYT ,  (4) 

 
where Y(w) is original transform coefficient, and T(Y(w))  
filtered transform coefficient and T3 is a threshold 
specifying an expected level of the noise present in the 
current image. 

Following the filtering, we compute arithmetic mean of 
transform coefficients presented in T(dCF) and T(dCL) and 
utilize this value as a distortion metric. 
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where term n determines number of samples within HFC 
and computed as: 1112 TMTNn  

Optimal resolution for coded image is selected as such 
that provide minimal cost of the metric presented in (5): 
 

)(cost),(costminarg
cost

CLCFresolution  (7) 
 

3. OBJECTIVE EXPERIMENTS 
 

3.1 Test material and setup 
 

Test sequences and input views utilized in this study are the 
same as specified in 3DV CfP for case C2 [1]. Modified JM 
17.2 reference software [10] with extended multiview 
profile was utilized for encoding multiview texture data. 
Four Rate Points (RP) specified in the CfP were utilized for 
the encoding procedure.  

The content of the sequences remains relatively 
similar, hence, only the statistics of the first frame are 
utilized in this study. However, this method can be easily 
extended to be utilized at Group of Picture (GOP) levels or 
scene cuts. If the codec supports the change on spatial 
resolution of frames through the encoding process, it might 
be subjectively beneficial to utilize the proposed method in 
scene cuts. Utilization of first frame statistics is due to 
similar content of each sequence and controlling the 
increase of complexity.  

Considering that constant QP settings were required in 
the CfP, a target bitrate was met by coding FR scheme with 
different QP values and choosing the QP value that 
produced the closest bitrate to the bitrate point given in the 
CfP. Under the same bitrate constraint, downsampling with 
lower resolutions enables encoding with lower QP values 

compared to the QP utilized in FR encoding. Based on our 
statistical results, the ratios between QP values for 
downsampling ratios of 3/4 and 1/2 are 0.88 and 0.74, 
respectively. QP values around this estimated value for 
lower resolutions were tested to achieve the closest bitrate 
to the given bitrate point in the CfP.  

 
3.2 Results of MSE-based method 
 
The MSE method resulted in Rate Distortion (RD) curves 
presenting the distortion by MSE. The lowest MSE per 
specific bitrate and encoding scheme is selected 
considering an interval equal to 5% as presented in sub-
section 2.1. Resolution selection based on MSE RD curves 
is presented in Table 1 where 1/2, 3/4, and FR present 
schemes where the sequences have resolution of 1/2, 3/4, 
and FR, respectively. 

Table 1 shows that the MSE-based method resulted in 
the selection of 1/2 or 3/4 resolution for the 1024×768 
sequences, while FR was consistently selected for the 
1920×1088 sequences. In a subjective assessment of expert 
viewers, a resolution lower than FR was generally preferred 
not only for the 1024×768 sequences but also for the 
1920×1088 sequences, when the viewing conditions of the 
CfP were used. This finding was also supported by the 
results of the CfP [11] as follows. We submitted coded 
sequences using the resolutions in Table 1. The same codec 
was used to encode sequences of different resolutions; 
hence the compression performance should be 
approximately equivalent regardless of the resolution. We 
compared the subjective evaluation results of our 
submission to the H.264/MVC anchor bitstreams by 
linearly interpolating the bitrates where H.264/MVC anchor 
results gave the same subjective quality as our submission 
in RP1 and RP2. It was found that the average bitrate 
reduction of RP1 and RP2 yielding the same subjective 
quality was about 20 percent units higher for the 1024×768 
sequences in the C2 coding conditions. Comparing this 
bitrate reduction to that for the 1920×1088 sequences gave 
indications that an appropriate spatial resolution selection 
played an essential role in the subjective quality of the 
1024×768 sequences and that the subjective quality of 
coded 1920×1088 sequences could be improved by 
downsampling. 

TABLE 1. SPATIAL RESOLUTION SELECTION BASED ON MSE-
BASED METHOD  

 Rate Points 
 RP1 RP2 RP3 RP4 
Poznan Hall2 FR FR FR FR 
Poznan Street FR FR FR FR 
Undo Dancer FR FR FR FR 
GT_Fly FR FR FR FR 
Kendo 1/2  1/2 3/4 3/4 
Balloons 1/2 1/2 3/4 3/4 
Lovebird1 1/2 3/4 3/4 3/4 
Newspaper 1/2 1/2 3/4 3/4 
     

 



3.3 Results of the frequency-based method 
 
Resolution selection based on the distortion metric 
presented in sub-section 2.2 is reported in Table 2. The 
thresholds we used in our experiment are widthT *65.01  
, heightT *65.02 , and )(*2.03 UFT HFC  but the 
scheme is quite flexible to these thresholds.  Note that these 
results differ from those achieved by MSE-based method 
(see Table 1).  

Results in Table 2 show that the proposed metric 
favored selection of the 1/2 resolution consistently for the 
1920x1088 sequences. As explained in the previous sub-
section, such selection of resolutions was supported by 
expert viewing and also the subjective evaluation results of 
the CfP suggested that a lower resolution than FR could be 
appropriate for the 1920x1088 sequences. Nevertheless, we 
wanted to verify the resolutions provided by the proposed 
method through a systematic subjective test as explained in 
Section 4. Frequency based distortion metric-based method 
failed to select the resolution with the highest subjective 
quality for Lovebird1. It might be due to relatively higher 
(~2.5 times) cost(CL) value compared to the rest of 
1024x768 sequences. The higher cost(CL) might be 
because of false edges due to the original sequence having 
JPEG-like blocking artifacts. This means downsampling 
eliminated more high frequency components for 
Lovebird1. 

 
4. SUBJECTIVE EXPERIMENT 

 
Subjective assessment was performed on three out of four 
1920×1088 sequences. The input views and synthesized 
views utilized in our experiment are the same as specified 
in 3DV CfP for case C2 [1]. 

The same encoder as introduced in sub-section 3.1 
was utilized for encoding multiview texture data and the 
following coding scenarios were evaluated:  
 Full Resolution Scheme (FRS): 3DV coding on full 

resolution input 
 Downsampled Scheme 1 (DS1): 3DV coding on 

downsampled texture with downsampling ratio 3/4  
applied to both directions 

 Downsampled Scheme 2 (DS2): 3DV coding on 
downsampled texture with downsampling ratio 1/2 
applied to both directions 
Each of these schemes produced a bit stream 

associated with rate points RP3 and RP1 given in 3DV CfP.  
 

4.1 Test Procedure and Participants 
 

Subjective viewing was conducted according to the 3DV 
CfP specification [1]. The 46’’ Hyundai stereo display with 
passive glasses was utilized for displaying of the test 
material. The viewing distance was equal to 4 times the 
displayed image height (2.29m for HD sequences). 

Subjective quality assessment was done according to 
Double Stimulus Impairment Scale (DSIS) method [12] 
with discrete unlabeled quality scale from 0 to 10 was used 
for quality assessment. Prior to the actual test, subjects 
were familiarized with test task, test sequences and with the 
variation in quality they could expect in the actual tests. 
The viewers were instructed that 0 stands for the lowest 
quality and 10 for the highest. 

Prior to the participation in subjective viewing 
experiment, candidates were subject to a thorough vision 
screening. Candidates who did not pass the criteria (near 
and far vision, Landolt chart) of 20/40 visual acuity with 
each eye or color vision (Ishihara) were rejected. All 
participants had a stereoscopic acuity of at least 60 arc sec. 

Subjective viewing was conducted with 30 subjects, 
(19 female, 11 male), aged between 18-29 years (mean: 
23.7). The majority of the candidates (90%) were 
considered naïve as they did not work or study in fields 
related to information technology or video processing.  

 
4.2 Subjective results 

 
Subjective test results are depicted in Figure 1. It can be 
judged from the mean scores and confidence intervals 
presented in Figure 1 that subjective quality of DS2, 
associated to the lowest resolution, tends to be higher 

TABLE 2. SPATIAL RESOLUTION SELECTION BASED 
FREQUNCY-BASED APPROACH 

 Rate Points 

 RP1 RP2 RP3 RP4 

Poznan Hall2 1/2  1/2  1/2  1/2  
Poznan Street 1/2 1/2 1/2 1/2 
Undo Dancer 1/2 1/2 1/2 1/2 
GT_Fly 1/2 1/2 1/2 1/2 
Kendo 1/2 1/2 1/2 1/2 
Balloons 1/2 1/2 1/2 1/2 
Lovebird1 1/2 FR FR FR 
Newspaper 1/2 1/2  1/2  1/2  
     

 

 
Figure 1. Subjective results for different encoding schemes 



compared to other schemes. The observation on significant 
differences between the encoding schemes was further 
analyzed using statistical analysis as presented in the 
paragraphs below.  

Non-parametric statistical analysis methods, 
Friedman’s and Wilcoxon’s tests, were used as the data did 
not reach normal distribution (Kolmogorov-Smirnov: 
p<.05). Friedman’s test is applicable to measure differences 
between several and Wilcoxon’s test between two related 
and ordinal data sets [13]. A significance level of p < .05 
was used. 

The following conclusions were obtained with 
statistical significance analysis presented above. In lower 
bitrates, DS2 has always better subjective results. In higher 
bitrates, all schemes have a similar performance for Poznan 
Hall2. In Poznan Street, DS2 has significantly a better 
subjective quality while DS1 and DS2 have a similar 
subjective quality for Undo Dancer and both are performing 
better than FRS. These results are reported in Table 3. 

  
5. DISCUSSION  

 
In this section, the objective results of the proposed 
methods are compared with subjective results available on a 
sub-set of test material. The subjective results are used as a 
reference and the performance of MSE- and DCT-based 
methods is evaluated based on similarity of their results 
with subjective results i.e. the more accurately estimating 
the subjective results, the better performing the method.  

First, we compared the objective results achieved by 
MSE method with subjective results on available subset of 
test material. We noticed that MSE is not an appropriate 
metric to predict the subjective quality since only one of the 
resolution selections made by this method were aligned 
with subjective results. MSE results in all cases for HD 
sequences were favored to select the encoding schemes 
with FR while subjective results showed otherwise.  

Second, resolution selection achieved by proposed 
method was compared with selection based on subjective 
test. In all cases the proposed method succeeded to estimate 
the subjective results correctly.  

 
6. CONCLUSIONS  

 
This paper tackled the problem of adaptive spatial 
resolution selection by comparing two methods. First, MSE 
value was calculated for FR and lower resolutions. The 

resolution with the smallest average MSE value was 
selected as the candidate to have the best subjective quality. 
This selection was compared then with subjective results on 
a subset of test material, revealing that the MSE-based 
method is not able to estimate the subjective quality 
accurately (one out of the six cases were estimated 
correctly). To solve this problem an objective metric based 
on FPS was described. The results confirmed that 
utilization of this algorithm succeeded to select the 
resolution with the best subjective quality whenever the 
subjective quality assessment results were available (all 
cases were estimated correctly). Hence, the proposed 
method is a potential candidate metric to select the 
resolution of the texture view prior to encoding by which 
the best perceived quality is assured. 
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ABSTRACT 

Depth-enhanced multiview video formats, such as the 

multiview video plus depth (MVD) format, enable a natural 

3D visual experience which cannot be brought by traditional 

2D or stereo video services. In this paper we studied an 

asymmetric MVD technique for coding of three views that 

enabled rendering of the same bitstream on stereoscopic 

displays and multiview autostereoscopic displays. A larger 

share of bitrate was allocated to a central view, whereas two 

side views were coded at lower quality. The three decoded 

views were used by a Depth-Image-Based Rendering 

algorithm (DIBR) to produce virtual intermediate views. A 

stereopair at a suitable separation for viewing on a 

stereoscopic display was selected among the synthesized 

views. A large-scale subjective assessment of the selected 

synthesized stereopair was performed. A bitrate reduction of 

20% on average and up to 22% was achieved with no 

penalties on subjective perceived quality. In addition, our 

analysis shows that a similar bitrate reduction gain with no 

difference in subjective quality can be achieved in 

multiview autostereoscopic display scenario  

 

Index Terms— 3DV, MVC, asymmetric quality multi-

view video, subjective assessment. 

1. INTRODUCTION 

3D video coding standardization in the Moving Picture 

Experts Group (MPEG) is a recent activity targeting at 

enabling a variety of display types and preferences including 

varying baseline to adjust the depth perception. Another 

important target of the MPEG 3DV standardization is the 

support for multiview autostereoscopic displays (ASDs), 

thus many high-quality views shall be available in 

decoder/display side prior to displaying. Due to the natural 

limitations of content production and content distribution 

technologies, there is no way that a large number of views 

can be delivered to user with existing video compression 

standards. Therefore, MPEG issued a Call for Proposals for 

3D video coding (hereafter referred to as the 3DV CfP) [1] 

for a new standard which enables rendering of a selectable 

number of views without increasing the required bitrate.  

One candidate for 3D video presentation is ASD, 

emitting more than one stereopairs at a time enabling glass-

less 3D perception. However, the ASD technology ensures 

that subjects observe only one stereopair at a time and 

subjects can change their viewpoint and consequently 

observe different stereopairs of the same 3D scene. For this 

purpose many views should be available for the 

autostereoscopic display. A multiview video plus depth 

(MVD) format [2], where each video data pixel is associated 

with a corresponding depth map value, allows reducing the 

input data for the 3DV systems significantly, since most of 

the views will be rendered from the available decoded views 

and depth maps using a DIBR [3] algorithm. 

Autostereoscopic displays provide a larger viewing angle 

and as a result a wider camera separation is needed. Hence, 

as proposed by the 3DV CfP, a 3-view MVD coding 

scenario is suitable for creation of a wide range of required 

views for multiview ASD rendering while a suitable pair of 

synthesized views can also be used for rendering on a 

stereoscopic display. 

The 3DV CfP, in addition to the data format, targets 

the development of new 3DV coding technologies. The 

MVD format can be considered as one of the most potential 

approaches for the 3DV CfP. The Multiview Video Coding 

extension of the Advanced Video Coding standard 

(H.264/MVC) [4] is the state-of-the-art standard in the field 

of multiview video coding. H.264/MVC can be applied for 

coding of MVD data, for example by coding the multiview 

texture video as one H.264/MVC bitstream and the 

respective multiview depth video as another H.264/MVC 

bitstream. Despite the high coding efficiency of 

H.264/MVC, the resulting bitrate of coded multiview data 

exceeds the bandwidth reserved for conventional 2D video 

services by a great margin. As a result, more research has 

been focused on possible approaches to reduce the bitrate of 

coded multiview video while preserving subjective quality 

of decoded views and preserving the compatibility with the 

H.264/MVC standard. 

Asymmetric stereoscopic video has been researched as 

one of the possible solutions to reduce the bitrate and/or 

computational complexity. In asymmetric stereoscopic 

video, the two views have different visual quality. The 

usage of this technique is motivated by the binocular rivalry 



 

 

theory [5], which claims that the stereoscopic vision in 

human visual system (HVS) fuses the images of a stereopair 

so that the visual perceived quality is closer to that of higher 

quality view. Several subjective quality evaluation studies 

have been conducted to research the utilization of the 

binocular rivalry theory in stereoscopic video. For example, 

a set of subjective tests comparing symmetric, quality-

asymmetric stereoscopic video coding were conducted in 

[6]. The presented results showed that subjective quality of 

symmetric and asymmetric stereoscopic videos provided 

similar quality under the same bitrate constraint.  

In this paper, we study the applicability of asymmetric 

coding for the three-view (C3) test scenario of the 3DV CfP. 

We propose a 3-view coding arrangement, where the central 

view can be extracted for 2D viewing, a central stereopair 

can be derived for viewing on stereoscopic displays, and a 

multitude of views can be generated through DIBR for 

viewing on a multiview ASD. The side views are proposed 

to be coded at lower quality compared to the quality of the 

central view, referred to as “full quality”. Consequently, the 

proposed method yields bitrates that are significantly lower 

than the bitrates of the corresponding symmetric full-quality 

bitstreams. A subjective assessment in a typical stereoscopic 

viewing environment was conducted to compare the 

proposed scheme with a conventional symmetric scheme. 

The results of the subjective evaluations confirmed that a 

significant decrease in bitrate (20% of bitrate reduction on 

average for best tested scheme) was achieved with no 

degradation in the subjection quality. Moreover, we 

objectively confirmed the applicability and efficiency of the 

proposed asymmetric scheme for ASD utilization.  

The rest of the paper is organized as follows. Section 2 

presents the utilized quality-asymmetric MVD coding 

scheme. The performed experiments are described in 

Section 3, while Section 4 provides the results. Finally, the 

paper concludes in Section 5. 

2. ASYMMETRIC CODING FOR 3D 

MULTIVIEW VIDEO 

This Section introduces the proposed three-view MVD 

coding method that utilizes asymmetric transform-domain 

quantization between views. In order to provide grounds for 

the proposed coding method, a review of asymmetric 

stereoscopic video coding and a description of rendering of 

3D video on different types of displays are given in Sections 

2.1 and 2.2, respectively. Then, we present the proposed 

coding method in Section 2.3. 

2.1 Asymmetric Stereoscopic Video Coding 

Asymmetric stereoscopic video coding includes a large 

variety of encoding schemes which provide a quality 

difference between two views. If different encodings are 

applied for left and right view, the coding artefacts of one 

method in the lower quality view can be masked by details 

presented in the higher quality view. It is evident that there 

are limits on the amount of asymmetry that binocular fusion 

can successfully mask so that the perceived quality is closer 

to the quality of the higher-fidelity view. Asymmetry 

between the two views can be achieved by one or more of 

the following methods: 

a) Mixed-resolution (MR) stereoscopic video coding, first 

introduced in [7], also referred to as resolution-

asymmetric stereoscopic video coding. One of the 

views is low-pass filtered and hence has a smaller 

amount of spatial details or a lower spatial resolution. 

Furthermore, the low-pass filtered view is usually 

sampled with a coarser sampling grid, i.e., represented 

by fewer pixels.  

b) Mixed-resolution chroma sampling [8]. The chroma 

pictures of one view are represented by fewer samples 

than the respective chroma pictures of the other view. 

c) Asymmetric sample-domain quantization [9] . The 

sample values of the two views are quantized with a 

different step size. For example, the luma samples of 

one view may be represented with the range of 0 to 255 

(i.e., 8 bits per sample) while the range may be scaled 

to the range of 0 to 159 for the second view. Thanks to 

fewer quantization steps, the second view can be 

compressed with a higher ratio compared to the first 

view.  

d) Asymmetric transform-domain quantization. The 

transform coefficients of the two views are quantized 

with a different step size. As a result, one of the views 

has a lower fidelity and may be subject to a greater 

amount of visible coding artifacts, such as blocking and 

ringing. 

e) A combination of different encoding techniques above.  

It was found in [10] that the perceived quality of video 

clips produced using asymmetric transform-domain 

quantization was approximately equal to the average of the 

perceived qualities of the two views individually. The 

impact of the quantization of transform coefficients was 

verified in [11], where it was concluded that the perceived 

quality of coded equal-resolution stereo image pairs was 

approximately the average of the perceived qualities of the 

high-quality image and the low-quality image of the 

stereopairs. Furthermore, the same conclusion of the 

perceived quality of asymmetric transform-domain 

quantization was also reached in [6]. 

2.2 Rendering of 3D Video on Stereoscopic and 

Autostereoscopic Displays 

More than two views are rendered simultaneously on a 

multiview autostereoscopic display. As stated earlier, many 

multiview autostereoscopic displays provide a wider 

separation of views as typical stereoscopic displays. At a 

given time a user sees two views, but by changing the head 

position the user is able to look at other stereopairs of the 

rendered views. For example, the display chosen for the 

3DV CfP, Dimenco BDL5231V3D, renders 28 views. 

Hence, to address the required wider separation of views 



 

 

required by the Dimenco display and many other 

autostereoscopic displays, the 3DV CfP includes a 3-view 

scenario, which is suitable for creation of a wide range of 

required views. 

Fig. 1 illustrates the fact the user sees two views 

(stereopair SP x) at a time out of the 28 views of the 

Dimenco display and can choose his/her head position 

among the possible stereopairs. The difference of view 

numbers in a stereopair depends on several factors such as 

the interpupillary distance, the viewing distance, and the 

rendering parameters of the display. We assumed that views 

N and N+8 out of the 28 views displayed by the Dimenco 

display could be considered to form a stereopair in a typical 

multiview autostereoscopic viewing situation.  

When a 3-view bitstream is adapted for comfortable 

viewing on a stereoscopic display, two views at a suitable 

separation have to be extracted. It can be assumed that 

content providers would appreciate that the mid-most 

stereopair is selected for such stereoscopic viewing, hence 

providing a “central” viewpoint to the content, rather than 

picking views from either side of the 3-view setting. 

Therefore the decoded views in a 3-view bitstream are not 

displayed as such for rendering on a stereoscopic display, 

but a suitable stereopair is synthesized from the decoded 

views. 

2.3 Proposed Asymmetric Three-View MVD 

Coding 

Inspired by the promising results of asymmetric 

stereoscopic video coding (see Section 2.1) we wanted to 

design an asymmetric coding scheme for 3-view MVD 

format. We started off with the following requirements and 

assumptions: 

 
 

Fig. 3. Proposed asymmetric MVC scheme for 3DV coding  
 

1. H.264/AVC decoders must be able to extract 2D video 

from the 3-view MVD bitstreams in order to obtain 

compatibility with existing decoders. 

2. The extracted 2D video should be the central view of 

the content as it is likely to represent the captured 3D 

scene more appropriately than the side views. 

3. No compromise on the 2D video quality should be 

made in the asymmetric coding, as for the time being 

2D viewing is still more common than 3D viewing. 

4. Two midmost views at a suitable separation should be 

generated for viewing on stereoscopic displays (see 

Section 2.2). The quality of the midmost views for 

stereoscopic viewing should not be compromised 

compared to the corresponding views obtained from 

symmetric 3-view MVD bitstreams. 

5. Such number of intermediate views that suits the 

multiview ASD being used should be able to be created 

from the decoded 3-view MVD bitstream. The average 

quality of the perceived stereopairs on the multiview 

ASD should be similar to that obtained from symmetric 

3-view MVD bitstreams. 

In order to respond to the requirements 1 to 3, we 

decided to use H.264/MVC independently for texture and 

depth views and select the PIP inter-view prediction 

structure for encoding (see Fig. 2). In this structure the 

central view is coded with H.264/AVC and utilized as 

reference for coding of the two side views. The transform 

coefficients of the central (base) view are quantized using a 

fine quantization parameter (QP0) while the side views are 

quantized more coarsely with a quantization parameter QP0 

+ deltaQP (Fig. 3). This will result in a lower quality of the 

side views compared to the quality of the base view and 

consequently brings a bitrate reduction comparing the 

symmetric quality case where all views are encoded using 

the same QP0. Alternatively, it is possible to encode an 

asymmetric MVD bitstream with the same bitrate as a 

 
Fig. 1. Perceivable sliding stereopair for ASD  
 

 
Fig. 2. PIP interview prediction structures 



 

 

symmetric MVD bitstream by coding the central view with 

a QP value lower than the QP for the symmetric MVD. 

Asymmetric transform-domain quantization was chosen 

because it enables the realization of the proposed coding 

scheme with the H.264/MVC standard as an encoding 

method without changes to the bitstream format or the 

decoder. In principle, a similar asymmetric MVD coding 

scheme could utilize also utilize the other types of 

asymmetry listed in Section 2.1. 

In the rest of this paper, we study how the requirements 

4 and 5 above are met with the proposed asymmetric MVD 

coding. 

3. DESCRIPTION OF THE EXPERIMENTS 

As introduced in the Section 2.3, we performed experiments 

to clarify whether the proposed asymmetric three-view 

MVD coding scheme is beneficial for stereoscopic viewing 

and multiview autostereoscopic viewing when compared to 

symmetric MVD coding. We decided to carry out a large-

scale systematic subjective evaluation experiment for the 

stereoscopic viewing, because impact of view synthesis on 

the perceived quality has not been explored earlier in a 

similar viewing scenario as much as we are aware and the 

usage of objective metrics would have been therefore 

questionable. With the results obtained from the 

stereoscopic viewing test, we were able to make 

assumptions on the behavior of objective metrics with 

respect to perceived quality and hence generalize the 

findings of the stereoscopic viewing assessment for 

multiview autostereoscopic displays.  

In Section 3.1 we introduce the test material, the 

compared coding scenarios, and the test stimuli preparation 

from the decoded bitstreams. The setup and procedure of the 

subjective viewing experience evaluation on a stereoscopic 

display are presented in Section 3.2. 

3.1 Test stimuli 

In this section the detailed steps of test material preparation 

is described. Four sequences, Undo Dancer, Newspaper, 

Poznan Hall2 [12], and Balloons, included in the 3DV CfP 

test set were used. Basic parameters of these sequences, 

such as resolution, and frame rates are given in Table 1.  

The selected input and output (synthesized) views in 

our experiments are shown in Table 2. Note that input views 

for all tested sequences are the same as specified in the 3DV 

CfP for the C3 case. Based on the discussion presented in 

sub-section 2.3, we chose a stereopair for each sequence 

from the center of the three coded views such that the 

baseline difference of the chosen views suits viewing on a 

stereoscopic display. It is noted that the view separation of 

the stereopairs specified in the 3DV CfP for C3 is 

approximately half of a conventional stereo baseline. Such 

narrow view separation was chosen to mimic the viewing 

conditions on typical autostereoscopic multiview displays. 

As we targeted for a different use case, the synthesized 

views utilized in stereo viewing were selected differently 

from the MPEG 3DV CfP.  

The proposed asymmetric MVC scheme was 

implemented on the top of JM 17.2 reference software [13]. 

The software was configured to produce test materials with 

three MVC schemes: 

 Symmetric Scheme (SS): all views were coded with 

equal QP = QP0. 

 Asymmetric Scheme 1 (AS1), the central view was 

coded at QP=QP0, and the side views were coded with 

QP=QP0+2 

 Asymmetric Scheme 2 (AS2): the central view was 

coded at QP=QP0, and the side views were coded with 

QP=QP0+4 

The SS bitstreams were encoded for two bitrate points 

referred to as R2 and R4 where the QP values were selected 

equal to those of the H.264/AVC anchor encoding of the 

3DV CfP. The bitrates and the utilized QP values of these 

SS bitstreams are provided in Table 3. The other encoding 

settings were chosen to comply with the requirements of the 

3DV CfP. 

The tested schemes (SS, AS1 and AS2) produced 

identical bitrates for the coded central views, whereas the 

bitrates for the coded side views in AS1 and AS2 were 

significantly reduced compared to the SS. An average total 

 

Table 2. Test sequences, input views, and synthesized views  

Sequence Input views Synthesized views 

Poznan Hall2 7-6-5  6.25-5.75 

Undo Dancer 1-5-9  4-6 

Balloons 1-3-5  2.5-3.5 

Newspaper 2-4-6  3.5-4.5 
 

 

Table 3. Tested rate points an corresponding QP settings 

(SS) 

Sequence R2 R4 

QP0  Bitrate, Kbps QP0 Bitrate, Kbps 

Poznan Hall2 36 715.3 28 1747.1 

Undo Dancer 40 1369.4 36 2296.8 

Balloons 44 374.8 35 973.9 

Newspaper 40 553.7 34 1049.3 
 

 

 

Table 1.  Sequences and their characteristics 

Screenshot Sequence Resolution Frames Framerate 

 

Poznan 

Hall2 
1920x1080 250 25 

 

Undo 

Dancer 
1920x1080 250 25 

 

Balloons 1024x768 300 30 

 

Newspaper 1024x768 300 30 

 

 
 



 

 

bitrate reduction compared to SS was 12.6% for AS1 and 

20.2% for AS2. The detailed bitrate reduction in a sequence 

basis is reported in Table 4. 

Stereopairs, as specified in Table 2, were synthesized 

for each of tested schemes (SS, AS1, AS2). The view 

synthesis was performed with VSRS software, version 3.5 

[14]. We utilized VSRS configuration files and camera 

parameters information, as they are specified in the MPEG 

3DV CfP. 

For the multiview autostereoscopic viewing we 

assumed the use of Dimenco BDL5231V3D 

autostereoscopic display as specified in the 3DV CfP. The 

28 views required by the Dimenco display were produced as 

follows. First, we synthesized the views as described in the 

3DV CfP, resulting into 49 and 33 coded or synthesized 

views for Newspaper and the rest of the sequences, 

respectively, and then we picked the 28 mid-most ones for 

rendering.  

3.2  Subjective Quality Evaluation on Stereoscopic 

Display 

25 subjects, (18 female, 7 male), aged between 19-29 years 

(mean: 23.9) participated in this experiment. A majority 

(84%) of them were considered naïve as they did not work 

or study in fields related to information technology, 

television or video processing.  

The test session comprised three parts: 1) pre-test 

sensorial screening and demo-/psychographic data-

collection, 2) actual voting using quantitative data-

collection, and 3) post-test interview with qualitative data-

collection. The candidates were subject to thorough vision 

screening. Candidates who did not pass the criterion of 

20/40 (near and far vision, Landolt chart) visual acuity with 

each eye or color vision (Ishihara) were rejected. All 

participants had a stereoscopic acuity of 60 arc sec at the 

minimum.  

The laboratory conditions were organized according to 

[15]. Hyundai 46-inch stereoscopic monitor model S465D 

with passive polarizing glasses was used, as suggested by 

the 3DV CfP. Furthermore, the viewing distance was four 

times the height of the image (2.29m for 1920×1080 and 

1.63m for 1024×768 video sequences), as specified by the 

3DV CfP. 

The subjective test started with a combination of 

anchoring and training. The extremes of the quality range of 

the stimuli were shown to familiarize the participants with 

the test task, the test sequences, and the variation in quality 

they could expect in the actual tests that followed. The test 

clips were presented one at a time in random order and 

appeared twice in the test session following the ITU 

recommendation Double Stimulus Impairment Scale (DSIS) 

method [15]. A discrete unlabeled quality scale from 0 to 10 

was used for the rating scale. The viewers were instructed 

that 0 stands for the lowest quality and 10 for the highest. 

The post-test sessions contained a semi-structured 

interview that gathered the participant’s impressions, 

experiences and descriptions of the visual quality to deepen 

the understanding behind the decisions of the participant 

[16]. The interview was constructed of main and supporting 

questions. The main question “What kind of factors did you 

pay attention to while evaluating quality?” was asked 

several times with slight variations during the interview. 

The moderator only used the terms introduced by the 

participant when asking the supporting questions to further 

clarify the answers to the main question: “Please could you 

clarify if X was among the positive/negative factors or 

pleasant/unpleasant?” and “Which of the factors you 

mentioned was the most pleasant/unpleasant?”. 

The participant filled the Simulator Sickness 

Questionnaire (SSQ) [17] before and after the actual test. 

The questionnaire measures sickness symptoms using a 

weighted average of nausea, oculomotor and disorientation 

scores, while also calculating a composite score.  

4. RESULTS  

In this section we present the results and the analysis of the 

performed experiments. Section 4.1 presents the statistics of 

the quantitative viewing experience ratings on the 

stereoscopic display. The qualitative results obtained from 

the post-test interviews are summarized in Section 4.2. In 

Section 4.3 we analyze the obtained results through selected 

objective metrics and draw conclusions on the expected 

performance of the proposed method for multiview 

autostereoscopic rendering. 

4.1 Quantitative quality evaluation 

Fig. 4 shows the average and the 95% confidence interval 

(CI) of the subjective viewing experience ratings for all 

sequences in two different bitrates. The naming introduced 

in sub-section 3.2 is used and O stands for the original 

uncompressed sequences. 

As can be judged from the average ratings and 

confidence intervals presented in Fig. 4, no significant 

differences were perceived between the encoding schemes 

for the same value of QP0. In other words, it can be 

observed from Fig. 4 that the described asymmetric scheme 

provided the same subjective quality as the symmetric 

scheme with the test material. However, the utilization of 

asymmetric coding is preferred since on average the bitrate 

was reduced by 12.6% and 20.2% for AS1 and AS2, 

compared to SS, respectively (see Table 4). The observation 

that there were no significant differences between the 

 

Table 4. Bitrate reduction of proposed asymmetric method 

compared to symmetric coding method 

Sequence AS1 (%) AS2 (%) 

Poznan Hall2 12.9 22.1 

Undo Dancer 10.1 16.8 

Balloons 12.4 19.6 

Newspaper 13.1 22.2 

Average 12.6 20.2 
 

 

 

 



 

 

encoding schemes was further verified using statistical 

analysis as presented in the paragraphs below.  

Non-parametric statistical analysis methods, 

Friedman’s and Wilcoxon’s tests, were used as the data did 

not reach normal distribution (Kolmogorov-Smirnov: 

p<.05). Friedman’s test is applicable to measure differences 

between several and Wilcoxon’s test between two related 

and ordinal data sets [18]. A significance level of p < .05 

was used unless otherwise stated below. 

The results of the Friedman’s test verified that there 

were no significant differences between the encoding 

schemes in the test stimuli except that AS1 was rated higher 

than SS in bitrate 1 of Poznan Hall2 (p<.05). Furthermore, 

no significant difference (p<0.001) was observed for the 

subjective rating of different schemes for each sequence and 

for both proposed bitrates in the performed Wilcoxon 

pairwise comparisons either.  

As explained earlier, the side views in the AS1 and 

AS2 coding scenarios had lower objective quality as the side 

views in the SS coding scenario. The objective quality as 

measured by the average luma Peak-Signal-to-Noise Ratio 

(PSNR) metric for the tested coding scenarios and 

sequences is reported in Table 5. The applied view synthesis 

algorithm utilized the decoded texture and depth views that 

are adjacent to the view being synthesized, hence the 

objective quality of the synthesized stereopair of AS1 and 

AS2 was lower than that of SS. This objective quality 

difference was analyzed by first  deriving the average luma 

PSNR of each synthesized view of ratepoint R4 against the 

views synthesized from uncompressed data, so called 

Reference View Synthesis (RVS). Then, the the average of 

the PSNR values of the two views of the selected stereopair 

(denoted aPSNR) was taken and finally the difference 

(dPSNR) of aPSNR(ASx) to aPSNR(SS) was computed. 

The values of dPSNR are reported in Table 6. It can be seen 

that the dPSNR results for the synthesized stereopair of 

Dancer, Balloons, and Newspaper sequences contradicted 

with the obtained results of the subjective quality evaluation 

experience, hence giving an indication that two stereopairs 

having an average luma PSNR difference smaller than or 

similar to the ones reported in Table 6 may have an equal 

quality subjectively.  

4.2 The results of the post-test interview  

The analysis was based on grounded theory and its wide 

applications to visual and audiovisual quality [16, 19]. All 

recorded interviews were transcripted to the text as a pre-

processing step of analysis. 30% of interviews (7 

participants) were used as a base for open coding (read 

through, extraction of meaningful sentences and coding for 

creating the concepts and their properties). All concepts 

were organized into sub-categories and they were further 

organized under main categories. This phase was conducted 

by one researcher and reviewed by another researcher. The 

categorization created was used in the coding of the whole 

data. One mention per category per person was counted and 

frequencies in each category were determined by counting 

the number of participants that described the category. 

 The descriptive quality of experience was composed of 

five main components: 1) 3D quality, 2) spatial quality, 3) 

temporal quality, 4) viewing task and 5) content and quality 

variation. The most commonly mentioned negative quality 

factors were associated to spatial quality (inaccuracy in 

general, or inaccuracy of outlines of objects and details), 

visibility of impairments with detectable structure, 

impairments during motion, and hardness or unpleasurable 

viewing were mentioned by more than 48% of participants. 

In contrast, the most commonly described positive quality of 

experience factors were excellence of depth impression and 

fluency of motion (more than 48% of participants).  

 
 

Fig. 4. Viewing experience ratings (O = original 

uncompressed sequence, SS = symmetric coded sequence, 

AS1, AS2 = asymmetric transform-domain quantization 

between coded views) 

 

Table 5. PSNR of coded views 

  

dQP0 dQP2 dQP4 

Sequence View R2 R4 R2 R4 R2 R4 

Hall2 

3 38.6 41.1 38.1 40.7 37.4 40.3 

4 38.6 41.1 38.6 41.1 38.6 41.1 

5 38.6 41.0 38.0 40.6 37.3 40.2 

Dancer 

1 30.4 32.2 30.1 31.8 29.7 31.4 

5 30.6 32.4 30.6 32.4 30.6 32.4 

9 30.6 32.4 30.2 32.0 29.8 31.5 

Balloons 

1 31.1 36.8 30.3 35.9 29.8 34.9 

3 31.5 37.3 31.5 37.3 31.5 37.3 

5 31.1 36.7 30.2 35.7 29.7 34.8 

Newspaper 

2 32.6 35.8 31.6 34.9 30.7 33.9 

4 33.1 36.2 33.1 36.2 33.1 36.2 

6 32.4 35.4 31.8 34.7 31.1 34.1 
 



 

 

4.3 Objective analysis of results for ASD utilization  

The results presented in Section 4.1 indicated that 

synthesized stereoscopic videos having a relatively small 

average luma PSNR difference between them appeared to 

have subjectively equal quality. In this section we compare 

the performance of different coding schemes (SS, AS1, 

AS2) using PSNR and show the efficiency of the proposed 

asymmetric MVD coding scheme for multiview ASD 

utilization objectively. 

The PSNR analysis similar to that for the stereoscopic 

case was performed as follows. First, the average luma 

PSNR of each synthesized view of ratepoint R4 was 

computed against RVS. Second, the average luma PSNR 

values of each stereopair covering the full range of all 

available 28 views for the used ASD (see Fig. 1) were 

derived. Third, the average luma PSNR difference of the 

respective stereopair positions (dPSNR) between 

asymmetric schemes (AS1 and AS2) and SS were 

calculated. Table 6 provides the average dPSNR over all 

stereopairs visible in the Dimenco multiview ASD. It can be 

seen that dPSNR of the stereopair tested subjectively on the 

stereoscopic display is close to the mean dPSNR of the 

stereopairs perceivable on the ASD. This confirms that there 

is not likely to be a considerable difference between quality 

perception of 3D video in the multiview ASD presentation 

for the tested SS, AS1, and AS2 sequences. However, the 

utilization of the proposed asymmetric scheme is preferred, 

since a bitrate reduction up to 22% was achieved with the 

tested sequences. Moreover, it could be assumed that 

viewers tend to choose a position within a viewing cone that 

is more likely in the center of the cone than on either far 

side, because a center position allows more flexibility in 

head movement. Consequently, as the proposed asymmetric 

coding scheme favors the middle views coded or 

synthesized for the ASD, it could be even more favorably 

perceived than what an average quality measure over all 

possible stereopairs would indicate. Hence, we can assume 

that the conclusions for the stereoscopic case would hold for 

autostereocsopic rendering too. 

We further investigated whether the PSNR calculation 

against RVS is a valid metric for our study. For this 

purpose, we considered the Undo dancer sequence for which 

we had six original views (out of the total 28 displayed 

ones) available. The same procedure as described above was 

performed to calculate the dPSNR values for the available 

stereopairs against RVS and original views. Results, 

reported in Table 7, show that there is no remarkable 

difference between dPSNR against RVS and original views. 

This confirms the validity of our conclusions utilizing PSNR 

calculations against RVS. 

5. CONCLUSIONS AND FUTURE WORK 

In this paper we studied a quality-asymmetric multiview-

video-plus-depth coding scheme for the 3-view test scenario 

specified in MPEG 3DV CfP. The asymmetric quality 

coding was implemented through coarser transform-domain 

quantization for the side views, whereas the central view 

was coded at high quality. Decoded three views were used 

by a Depth Image Based Rendering algorithm to produce 

virtual intermediate views that enabled viewing either on 

stereoscopic displays or multiview autostereoscopic 

displays. A large-scale subjective assessment of synthesized 

stereopair was performed on stereoscopic displays and the 

results showed that a bitrate reduction of 20%, on average, 

was achieved with no penalties on the perceived quality 

when compared to coding all the views at a symmetric 

quality. We also analyzed through objective quality metrics 

that the described asymmetric coding scheme is also likely 

to yield subjectively equal quality at the same bitrate 

reduction factor compared to coding views at symmetric 

quality when viewed on a multiview autostereoscopic 

display. As a future task, we plan to verify the conclusions 

for the multiview autostereoscopic displays with a 

systematic subjective quality evaluation study. 
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ABSTRACT 
 
A novel asymmetric stereoscopic video coding method is presented 
in this paper. The proposed coding method is based on uneven 
sample domain quantization for different views and is typically 
applied together with a reduction of spatial resolution for one of 
the views. Any transform-based video compression, such as the 
Advanced Video Coding (H.264/AVC) standard, can be used with 
the proposed method. We investigate whether the binocular vision 
masks the coded views of different types of degradations caused by 
the proposed method. The paper presents a subjective viewing 
study, where the proposed compression method is compared with 
two other coding techniques: full-resolution symmetric and mixed-
resolution stereoscopic video coding. We show that the average 
subjective viewing experience ratings of the proposed method are 
higher than those of the other tested methods in six out of eight test 
cases.  
 

Index Terms— Low bit-rate video coding, quantization, 
downsampling, asymmetric stereoscopic video, subjective 
assessment. 
 

1. INTRODUCTION 
 
Asymmetric stereoscopic video is one division of ongoing research 
for compression improvement in stereoscopic video, where one of 
the views is sent with high quality, whereas the other view is 
degraded and hence the bitrate is reduced accordingly. This 
technique is based on the psycho-visual studies of stereoscopic 
vision in human visual system (HVS) which demonstrated that the 
lower quality in a degraded view presented to one eye is masked 
by the higher quality view presented to the other eye, without 
affecting the visual perceived quality (binocular suppression theory 
[1]). The quality difference between the views of a stereoscopic 
video is commonly achieved by removing spatial, frequency, and 
temporal redundancies in one view more that in the other. Different 
types of prediction and quantization of transform-domain 
prediction residuals are jointly used in many video coding 
standards. In addition, as coding schemes have a practical limit in 
the redundancy that can be removed, spatial and temporal sampling 
frequency as well as the bit depth of samples can be selected in 
such a manner that the subjective quality is degraded as little as 
possible. 

In  [2],  a  set  of  subjective  tests  on  a  24"  polarized  
stereoscopic display comparing symmetric full-resolution, quality-
asymmetric full-resolution, and mixed-resolution stereoscopic 

video coding were presented. The performance of symmetric and 
quality-asymmetric full-resolution bitstreams was approximately 
equal. The results showed that in most cases, resolution-
asymmetric stereo video with a downsampling ratio of 1/2 along 
both coordinate axes provided similar quality as symmetric and 
quality-asymmetric full-resolution stereo video. These results were 
achieved under the same bitrate constraint.  

Objective quality metrics are often able to provide a close 
approximation of the perceived quality for single-view video. 
However, in the case of asymmetric stereoscopic video, there are 
two views with different qualities, and it has been found that 
objective quality assessment metrics face some ambiguity on how 
to approximate the perceived quality of asymmetric stereoscopic 
video [3].  

In this paper, we propose a novel compression method for 
one view of stereoscopic video coding, while the other view is 
coded conventionally. Our aim is to study the proposed method for 
asymmetric stereoscopic video due to the fact that it introduces 
different compression artifacts than those of conventional coding 
methods and hence the human visual system might mask the 
coding errors of one view by the other view. Consequently, this 
paper verifies the assumption that binocular suppression is capable 
of masking the proposed uneven sample-domain quantization with 
a systematic subjective comparison of the proposed method with 
two other compression techniques, namely symmetric and mixed-
resolution stereoscopic video coding.  

This paper is organized as follows. Section 2 presents the 
proposed compression method. The test setup and test material are 
described in Section 3, while Section 4 provides the results. 
Finally, the paper concludes in Section 5. 

 
2. PROPOSED COMPRESSION METHOD 

 
2.1 Overview 
 
The proposed encoding approach is depicted in Fig. 1. While the 
proposed method is applied to the right view in Fig. 1, it can 
equally be applied to the left view. The proposed coding method 
consists of the transform-based encoding step for the left view and 
three steps for the right view: downsampling, quantization of the 
sample values, and transform-based coding. First, the spatial 
resolution of the image is reduced by downsampling. The lower 
spatial resolution makes it possible to use a smaller quantization 
step in transform coding and hence improves the subjective quality 
compared to a coding scheme without downsampling. Moreover, 
downsampling also reduces the computational and memory 



resource demands in the subsequent steps. Second, the number of 
quantization levels for the sample values is reduced using a tone 
mapping function. Third, transform-based coding, such as 
H.264/AVC encoding, is applied.  

The decoding end consists of the transform-based decoding 
step for the right view and three respective steps for the left view: 
transform-based decoding, inverse quantization of sample values, 
and upsampling. In the first step, the bitstream including coded 
transform-domain coefficients is decoded to a sample-domain 
picture. Then, the sample values are rescaled to the original value 
range. Finally, the image is upsampled to the original resolution 
i.e. the same resolution as of the left view or to the resolution used 
for displaying. 

In the following sub-section, the key novel parts of the 
proposed coding scheme, namely the quantization of the sample 
values in the encoder and their inverse quantization in the decoder 
are described in details. 

 
2.2 Quantization and inverse quantization of sample values 
 
This step of the proposed compression method reduces the number 
of quantization levels for luma samples. In addition, the original 
luma sample values are remapped to a compressed range. Hence, 
the contrast of the input images for transform-based coding and the 
output images from transform-based decoding is smaller compared 
to the contrast of the respective original images. The remapping to 
a compressed value range is typically done towards the zero level, 
and hence the brightness of the processed images is reduced too.  

The proposed method includes the following key steps: 
1) Before transform-based encoding: reduction of the number of 

luma quantization levels in the sample domain and scaling of 
luma sample values to a compressed value range.  

2) After transform-based decoding: Re-scaling of the decoded 
sample values in such a way that the original sample value 
range of the luma sample values is restored.  
When the same quantization step size is used for transform 

coefficients in transform-based encoding, the bitrate of the video 
where sample values are quantized becomes smaller than that of 
the same video without sample value quantization. This reduction 
in bitrate depends on the ratio of the number of luma quantization 
levels divided by the original number of luma quantization levels, 
which typically depends on the bit depth. Ratios closer to 0 have 
very good compression outcome but the quality drop is severe. On 
the other hand, applying a ratio close to 1 keeps the quality close to 
the original quality with a smaller relative bitrate reduction. We 
found ratios greater than or equal to 0.5 to be practical. 

The presented sample value quantization operation is lossy, 

i.e., it cannot be perfectly inverted, when integer pixel values are in 
use. Hence, the original pixel values can be only approximately 
restored by the inverse quantization of sample values.  

Based on informal subjective results, the sample value 
quantization is proposed to be applied only to the luma component. 
This is because the bitrate saving achieved by quantization of the 
two chroma components caused a more severe subjective quality 
reduction than the same bitrate saving achieved by quantizing the 
luma component more coarsely. 

The quantization of sample values can be done in various 
ways. For example, tone mapping techniques can be exploited [4]. 
In this paper, linear luma value quantization with rounding is used 
as expressed as: 
 

2  (1) 
 
where:  

q is the quantized sample value  
round is a function returning the closest integer 
i is the input value of the luma sample  
w is the explicit integer weight ranging from 1 to 127 
d is the base 2 logarithm of the denominator for weighting 

Since Eq. (1) is implemented using integer multiplication, 
addition, and bit shifting, it is computationally fast. As the sample 
value range is reduced, the value of w is required to be smaller than 
2d. With this limitation, Eq. (1) is identical to the formula used for 
H.264/AVC weighted prediction. The ratio (w / 2d) is referred to as 
the luma value quantization ratio. 

Inverse quantization of sample values to their original value 
range is achieved by: 
 

 (2) 
 
where:  

r is the inverse-quantized output value 
q' is  the  scaled  value  of  the  luma  sample  as  output  by  the  
transform-based decoder 
Other parameters are the same values as used in the sample 
value quantization.  

Eq. (2) requires one floating or fixed point multiplication and 
a conversion of the floating or fixed point result to integer by 
rounding. If it is preferred to use integer arithmetic in the decoder 
rather than in the encoder, it is possible to apply Eq. (2) in the 
encoder and Eq. (1) in the decoder with the condition that w is 
greater than 2d. 

 
 

Fig. 1. Diagram of proposed compression method 



3. TEST SETUP 
 

3.1 Preparation of test stimuli 
 

The subjective assessments were performed with four sequences: 
Undo dancer, Kendo, Newspaper, and Pantomime. Undo dancer, 
exemplified in Fig. 2, is a synthetically created photorealistic 
multiview sequence including a dancing person, reproduced from a 
motion capture. The other three sequences are common test 
sequences in the 3D Video (3DV) ad-hoc group of the Moving 
Picture Expert Group (MPEG). The sequences were downsampled 
from their original resolutions to the resolutions mentioned in 
Table 1 in order to be displayed on the used screen without scaling 
(see Section 3.2). The filters included in the JSVM reference 
software of the Scalable Video Coding standard were used in this 
and other subsequent downsampling and upsampling operations 
[5]. 

For each sequence, we had the possibility to choose between 
several camera separations or view selections. This was studied 
first in a pilot test of 9 subjects. The test procedure of the pilot test 
was similar to that of the actual test presented in Section 3.2. 
Several camera views were available for each sequence in the pilot 
test, and based on the subjective scores achieved, the 4 cm and 5 
cm camera separations were chosen for Undo dancer and the rest 
of test sequences, respectively. 

Several bitstreams were coded for each sequence with the 
following coding methods:  
1. Full resolution symmetric stereoscopic video by coding to 

both views with H.264/AVC. No downsampling or 
quantization of luma sample values.  

2. Mixed resolution stereoscopic video by downsampling the 
right view and subsequently applying H.264/AVC coding to it 
while coding the full-resolution left view with H.264/AVC. 

3. The proposed coding scheme including downsampling, 
quantization of luma sample values, and H.264/AVC coding 
to the right view and coding the left view with H.264/AVC. 
The coded left view for each sequence was identical 

regardless  of  the  coding  method.  The  left  view  was  kept  
unchanged, because we wanted to assess the perception and 
acceptability of the left and right eyes presented with different 
types of quality degradations as caused by transform-domain 
quantization, spatial downsampling, and sample-domain 
quantization and to reduce the number of factors which could 
affect the subjective rating. Joint optimization over both views for 
the quantization step size for sample values and transform 
coefficients as well as for the spatial resolution was left to another 
subjective experiment. As the bitrate of the right view for each 

bitstream of the same sequence was kept the same regardless of the 
coding method used, there was a fair comparison between the 
coding methods. 

In order to have a representative set of options for the second 
coding method (with downsampling and transform-based coding), 
three bitstreams per sequence were generated, each processed with 
a different downsampling ratio for the right view. The subjective 
results achieved for stereoscopic video in [2] motivated us to use 
downsampling ratios equal to or greater than 1/2. Hence, 
downsampling was applied to obtain a spatial resolution of 1/2, 
3/4, and 5/6 relative to the original resolution along both 
coordinate axes. Table 1 presents the spatial resolution of the right 
view used for different sequences.  

As the number of potentially suitable combinations for the 
downsampling ratio and the luma value quantization ratio is large, 
their joint impact on the subjective quality was studied first to 
select particular values for the downsampling ratio and the luma 
value quantization ratio for the subsequent comparisons between 
the different coding methods. To reveal potential dependencies at 
different quantization step sizes for transform coefficients, the 
bitstreams were generated with several quantization parameter 
values. Subjective assessment revealed that downsampling ratio 
3/4 along with luma value quantization ratio 5/8 tended to provide 
the best relative subjective results. Thus, these values were 
consistently used in the subsequent comparisons.  

In order to prevent fatigue of test subjects from affecting the 
test results, only two sets of bitstreams at different bitrates were 
included in the test. Table 2 presents the selected Quantization 
Parameter (QP) values for the full-resolution symmetric coding, 
the resulting bitrates, and the respective average luma PSNR 
values for the right view of each sequence coded using different 
coding methods. The PSNR values were derived from the decoded 
sequences after inverse quantization of sample values and 
upsampling to the full resolution.  

 
 
 

 
 

Fig. 2. A frame of Undo dancer sequence 
 

Table 1. Spatial resolution of the right view  
 Full  5/6 3/4 1/2  
Undo dancer 960x576 800x480 720x432 480x288 
Others  768x576 640x480 576x432 384x288 

  

Table 2. Tested bitrates per view, respective QP values per 
sequence for both higher quality (HQ) and lower quality (LQ), 
and the respective PSNR values for different coding techniques 

 Pantomime Dancer Kendo Newspaper 
QP  HQ 41 

44 
42 
45 

43 
45 

42 
45 LQ 

Bitrate 
(Kbps) 

445.8 
343.9 

301.5 
224.6 

280.3 
238.5 

148.0 
115.4 

Proposed 
(PSNR-dB) 

31.9 
30.6 

29.1 
28.3 

34.1 
33.1 

30.7 
29.5 

FR (PSNR) 31.9 
30.0 

29.2 
27.7 

33.3 
32.0 

30.0 
28.3 

1/2 (PSNR) 31.7 
30.9 

29.1 
28.3 

35.5 
34.7 

31.7 
30.7 

3/4 (PSNR) 32.5 
31.0 

29.5 
28.5 

34.7 
33.5 

31.3 
29.8 

5/6 (PSNR) 32.3 
31.0 

29.8 
28.3 

34.1 
32.9 

29.9 
29.2 

 



3.2 Test Procedure 
 
12 subjects participated in this experiment of which 7 were women 
and 5 men. Their age differed from 19 to 32 years with an average 
of 23.6 years. The candidates were subject to thorough vision 
screening. Candidates who did not pass the criterion of 20/40 
visual acuity with each eye were rejected. All participants had a 
stereoscopic acuity of 60 arc sec or better. Test clips were 
displayed on a 24" polarizing stereoscopic screen having the total 
resolution of 1920 1200 pixels and the resolution of 1920 600 per 
view when used in the stereoscopic mode. The viewing conditions 
were kept constant throughout the experiment and in accordance 
with the sRGB standard [6] ambient white point of D50 and 
illuminance level of about 200 lux. Viewing distance was set to 
93cm which is 3 times the height of the image, as used in some 
subjective test standards [7].  

The subjective test started with a combination of anchoring 
and training. The extremes of the quality range of the stimuli were 
shown to familiarize the participants with the test task, the test 
sequences, and the variation in quality they could expect in the 
actual tests that followed. The test clips were presented one at a 
time in a random order and appeared twice in the test session. 
Each clip was rated independently after its presentation. A scale 
from 0  to  5  with  a  step  size  of  0.5  was  used  for  the  rating.  The  
viewers were instructed that 0 means “very bad” or “not natural” 
and 5 stands for “very good” or “very natural”.  

 
4. RESULTS AND DISCUSSIONS 

 
Fig. 3 shows the viewing experience subjective results for all 
sequences in two different bitrates. Based on the average 
subjective ratings, it can be seen that the proposed coding method 
outperformed the other tested coding methods in all cases for the 
higher bitrate. Furthermore, except for the Dancer sequence, it had 
similar performance than the best mixed-resolution test case in the 
lower bitrate. The mixed-resolution coding with 5/6 spatial 
resolution in the lower quality view outperformed the proposed 
method for the Dancer sequence at the lower bitrate, while the 
performance of the proposed method was better than or similar to 
the performance of the other methods. Moreover, the symmetric 
full-resolution coding method was clearly inferior to the other 
tested methods at the lower bitrate.  

When comparing the PSNR values presented in Table 2 with 
the subjective viewing experience results, one can see that PSNR 
was not representative of the subjective quality in this test.  
 

5. CONCLUSIONS AND FUTURE WORK 
 

A novel asymmetric stereoscopic video coding technique was 
introduced in this paper. The method is based on uneven 
quantization step size for luma sample values of different views, 
and it is typically jointly applied with downsampling. The 
proposed compression method was subjectively compared to full-
resolution symmetric stereoscopic video coding and mixed-
resolution stereoscopic video coding at different downsampling 
ratios. The average subjective viewing experience ratings of the 
proposed method were found to be higher than those of the other 
tested  methods  in  six  out  of  eight  test  cases.  The  results  suggest  
that the human visual system is able to fuse views with different 
types of quality degradations caused by the proposed method. The 
provided results should be verified with a greater number of test 
sequences and more subjective tests to verify these conclusions.  
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ABSTRACT 

 
In mixed-resolution (MR) stereoscopic video, one view is 
presented with a lower resolution compared with the other one; 
therefore, a lower bitrate, a reduced computational complexity, and 
a decrease in memory access bandwidth can be expected in coding. 
The human visual system is known to fuse left and right views in 
such a way that the perceptual visual quality is closer to that of the 
higher-resolution view. In this paper, a subjective assessment of 
mixed resolution (MR) stereoscopic videos is presented and the 
results are analyzed and compared with previous subjective tests 
presented in the literature. Three downsampling ratios 1/2, 3/8, and 
1/4 were used to create lower-resolution views. Hence, the lower-
resolution view had different spatial resolutions in terms of pixels 
per degree (PPD) for each downsampling ratio. It was discovered 
that the subjective viewing experience tended to follow a 
logarithmic function of the spatial resolution of the lower-
resolution view measured in PPD. A similar behavior was also 
found from the results of an earlier experiment. Thus, the results 
suggest that the presented logarithmic function characterizes the 
expected viewing experience of MR stereoscopic video. 
 

Index Terms— Video signal processing, video 
compression, asymmetric stereoscopic video, mixed 
resolution, subjective evaluation 
 

1. INTRODUCTION 
 
Mixed resolution (MR) stereoscopic video compression introduced 
in [1] is a well-known approach in the field of stereoscopic video 
coding. In MR stereoscopic video, one view is represented with a 
lower resolution compared to the other one, while, according to the 
binocular suppression theory [2], it is assumed that the perceived 
quality by the Human Visual System (HVS) is closer to that of the 
higher quality view. 

A subjective assessment of full- and mixed- resolution 
stereoscopic video on a 32-inch polarized stereoscopic display and 
on a 3.5-inch mobile display was presented in [3]. One of the 
views was downsampled with ratio 1/2 along both coordinate axes. 
Uncompressed full-resolution (FR) sequences were preferred in 
94% and 63% of the test cases for 32-inch and 3.5-inch displays, 
respectively. While studying different resolutions for the 
symmetric stereoscopic video and the higher-resolution view of the 
MR videos, it was found that the higher the resolution, the smaller 
the subjective difference was between FR and MR stereoscopic 
video. The lower resolution view had always a downsampling ratio 
1/2 vertically and horizontally. 

The study presented in [4] included a subjective evaluation of 
MR sequences with downsampling ratios 1/2 and 1/4 along both 
coordinate axes. The results revealed that the subjective image 
quality of the MR image sequences was preserved well  but 
dropped slightly at downsampling ratio 1/2 and 1/4. 

In [5], the impact of downsampling ratio in MR stereoscopic 
video was studied. Downsampling ratios 1/2, 3/8, and 1/4 were 
applied vertically and horizontally. A 24-inch polarized display 
was used with a viewing distance of 70 cm. A correlation 
comparison between the subjective results and the average luma 
peak-signal-to-noise (PSNR) showed that there might be a 
breakdown point between downsampling with ratio 1/2 and 3/8, at 
which the lower-resolution view became more dominant in the 
subjective quality. Downsampling ratios 1/2 and 3/8 corresponded 
to 11.2 and 7.6 pixels per degree (PPD) of viewing angle, 
respectively. Moreover, it was confirmed that the ocular 
dominance did not affect the subjective ratings regardless of which 
view was downsampled in the MR sequences. 

In this paper, a subjective test for uncompressed MR 
stereoscopic video is presented using a test setup similar to but not 
the same as in [5]. The obtained subjective results are compared to 
the previous subjective test [5] to see if the above-mentioned 
breakpoint is valid for a different test setup. Moreover, a novel 
logarithmic estimation of subjective ratings as a function of PPD 
values of viewing angle is introduced. 

This paper is organized as follows. Section 2 explains the 
subjective test setup and test procedure. The subjective results are 
presented and discussed in Section 3. Finally, the paper is 
concluded in Section 4. 
 

2. TEST SETUP 
 

2.1 Preparation of the Test Stimuli 
 

Four sequences were used: Pantomime, Dog, Newspaper, and 
Kendo. They are all common test sequences in the 3D Video 
(3DV) ad-hoc group of the Moving Picture Expert Group (MPEG). 
No audio track was used. 

For each sequence, we had the possibility to choose between 
several camera separations or view selections. This was studied 
first in a pilot test of 9 subjects. The test procedure of the pilot test 
was similar to that of the actual test presented in Section 2.2. 
Several camera views were available for each sequence in the pilot 
test, and based on the subjective scores achieved, the 5 cm camera 
separation was chosen for all test sequences. 

The test clips were prepared as follows. Both left and right 
view image sequences were first downsampled from their original 



resolution to the “full” resolution mentioned in Table 1. The “full” 
resolution was selected to occupy as large an area as possible on 
the used monitor with a reasonable downsampling ratio from the 
original resolution. As eye dominance was shown to have no 
impact on which view is provided with a better quality [5], only 
one set of MR sequences was prepared. The right view was kept in 
“full” resolution while the left view was downsampled and 
subsequently upsampled to the “full” resolution. Downsampling 
ratios 1/2, 3/8, and 1/4 were selected and symmetrically applied 
along both coordinate axes in order to keep the results easily 
comparable with those presented in [5]. The filters of the JSVM 
reference software of the Scalable Video Coding standard were 
used in the downsampling and upsampling operations [5].  

 
2.2 Test Procedure 
 
The same 24” polarizing stereoscopic screen as in [5] was used for 
subjective experiments. It has width and height of 515 and 322 
mm, respectively, a total resolution of 1920x1200 pixels, and a 
resolution of 1920x600 per view when used in stereoscopic mode. 

22 subjects attended this experiment of which 7 were female 
and 15 were male. The average age of the subjects was 23.5 years. 
The test viewing distance was changed from 70 cm used in [5] to 
93 cm which is 3 times the height of the image, as used in some 
subjective test standards [7]. Hence, the visual angle differed from 
that in [5]. Table 2 reports the visual angle in PPD for both test 
setups. 

Prior to the experiment, the candidates were subject to 
thorough vision screening. Two candidates did not pass the 
criterion of 20/40 visual acuity with each eye and were thus 

rejected. All participants had a stereoscopic acuity of 60 arc sec or 
better. The viewing conditions were kept constant throughout the 
experiment and in accordance with the sRGB standard [8] ambient 
white point of D50 and illuminance level of about 200 lux. 

 
3. RESULTS AND DISCUSSION 

3.1 Viewing Experience 

The average viewing experience ratings and the 95% confidence 
interval (CI) are presented in Fig. 1. The subjective ratings tend to 
have less variation in this test than in the test presented in [5]. We 
observed that 18% and 69% of the total rating interval were 
covered by the average subjective scores of the sequences in this 
experiment and in [5], respectively. This result was expected, 
because increasing the viewing distance diminishes the subjective 
quality difference among MR stereoscopic videos with different 
downsampling ratios.  

3.2 Limit of Downsampling Ratio 

With the test setup presented in [5], we found that the 
downsampling ratio that could be applied before the lower 
resolution view became dominant in subjective results was 
between 1/2 and 3/8, i.e., between 7.6 and 11.4 PPD of viewing 
angle as indicated in Table 2. We studied whether the same PPD 
ratio threshold appeared in this experiment too. Therefore, as also 
done in [5], we analyzed the correlation of subjective viewing 
experience ratings of the presented study with PSNR of the lower 
resolution view upsampled to the full resolution. Unlike in [5], 
practically no correlation was found between the subjective 
viewing experience rating and the average luma PSNR of the lower 
resolution view for any downsampling ratio. Consequently, the 
analysis did not reveal the limit of the downsampling ratio for the 
lower-resolution view in the presented study. We suspect that the 
lack of correlation could have been caused by the selection of the 
test sequences and the smaller variation in subjective viewing 
experience ratings in general. It has also been discovered that the 
greater the angular size of the display, the more contrast sensitivity 
the human visual system has [9]. Thus, the threshold angular 
resolution for mixed-resolution stereoscopic video may also 
depend on the angular size of the display. As the correlation 
analysis of the average luma PSNR of the lower resolution view 
did not lead to conclusions in this test, we explored another 
approach for discovering the limits of the downsampling ratio in 
MR stereoscopic video, as presented in the next sub-section. 

3.3 Logarithmic Estimation of Subjective Ratings 

We analyzed ratings achieved in these experiments and those 
included in [5] against the PPD values of each test setup. A 
logarithmic relationship was observed between the subjective 
viewing experience ratings and the corresponding PPD values of 
each downsampling ratio. The fitting model used to generate the 
curves in Fig. 2 under the mean square error criterion is as follows: 

 (1) 
where: 

ppd = pixels per degree (PPD) of viewing angle 
= coefficients calculated for each sequence separately 

k = fixed offset for each test setup 
y = estimated subjective rating 

Table 1. Spatial resolution of sequences 

 Full 1/2 3/8 1/4 
All sequences 768x576 384x288 288x216 192x144 

 

Table 2.  Visual angle (in pixels per degree) of the two test setups 
Downsampling 

ratio 
Test setup presented 

in this paper 
Test setup presented 

in [5] 
1 30.2 22.8 

1/2 15.1 11.4 
3/8 11.3 7.6 
1/4 7.5 5.7 

 

 

 

 
Fig. 1. Average of viewing experience ratings and the 95% CI 



Fig. 2 shows the estimated curves for each of the sequences 
used in this work and in [5]. The subjectively obvious correlation 
of the data points and the logarithmic estimates were confirmed by 

deriving the Pearson correlation coefficients presented in Table 3. 
Note that as the Pearson correlation measures the linear 
dependence between two variables, the x-axis of the plots in Fig. 2 

a) Experiments done in this work b) Experiments done in [5] 

  

  

  

  
 

 
Fig. 2. Relation of the subjective average viewing experience ratings and PPD values 

 

 



should be modified to be log(ppd - k) in order to reflect a correct 
geometric interpretation of the correlation coefficients in Table 3. 
On average, the Pearson correlation coefficient between all data 
points and estimated values among all sequences was 0.97 and 
0.98 for tests held in this experiment and [5], respectively.  

As the estimation curves turned out to be similar for each test 
setup, Fig. 3 presents the logarithmic relations estimated in the 
mean square error sense for all the sequences except Newspaper, 
whose data points differed significantly from the data points of the 
other sequences. The other eight test cases fitted the logarithmic 
estimation very well. The Pearson correlation coefficient between 
all data points and the joint logarithmic estimation equation is 0.96 
for both tests setups in this work and also in [5]. 

The presented logarithmic equation provided a good 
estimation of the subjective viewing experience ratings of two 
different test setups; hence, one could conclude that there might be 
always a high correlation between MR stereoscopic video 
subjective scores and the angular resolution of the lower-resolution 
view measured in PPD. This conclusion should be confirmed by 
more intensive subjective experiments. 
 

4. CONCLUSIONS 
 
In this work, a set of subjective tests on four asymmetric resolution 
stereoscopic video sequences was performed. Three different 
downsampling ratios were applied to the sequences to produce the 
lower-resolution views. We observed a logarithmic relationship 
between the subjective viewing experience rating and the angular 
resolution of the lower-resolution view measured in pixels per 
degree of viewing angle. The results of the subjective tests 
presented in this paper and in an earlier work were used to derive 
two sets of coefficient values for the logarithmic relationship. 
While the coefficients were remarkably different between the test 
presented in this paper and the earlier paper, the logarithmic 
relation provided good estimates of the subjective ratings across all 
test sequences. Thus, the results suggest that when some subjective 
evaluations for a few mixed-resolution sequences are available for 
particular viewing conditions, the proposed logarithmic relation 
can be used to estimate the subjective rating for other video 
sequences and downsampling ratios for the lower-resolution view 
under the same viewing conditions. It is acknowledged that the 
results should be verified with other video clips and test conditions. 
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(a) (b) 
 

Fig. 3. Logarithmic relation for (a) tests done in this work (b) tests done in [5] 

Table 3. Pearson correlation coefficient between actual ratings and 
estimated values, for all sequences of both test cases 

Experiment held in this paper Experiment held in [5] 
Sequence Pearson Coef. Sequence Pearson Coef. 

Dog 0.96 Dog 0.97 
Newspaper 0.90 Newspaper 0.98 
Pantomime 0.97 Pantomime 0.99 

Kendo 0.99 Champagne 0.97 
  Undo dancer 0.99 
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