246 research outputs found

    Performance evaluation of real-time schedulers for HCCA function in IEEE 802.11e wireless networks

    Get PDF
    IEEE 802.11 standard for wireless networks recently has been enhanced with IEEE 802.11e amendment to this protocol which introduces Quality of Service support. It provides differentiation mechanisms at the Medium Access Control layer, using two additional access functions: the Enhanced Distributed Channel Access (EDCA) function and the HCF Controlled Channel Access (HCCA) function. The EDCA function is based on a distributed control and enables prioritized channel access while the latter requires centralized scheduling and allows the applications to negotiate parameterized service guarantees. Only HCCA mechanism is suitable for serving traffic streams with real-time requirements such as multimedia applications and Voice Over IP. The IEEE 802.11e standard does not specify a mandatory HCCA scheduling algorithm, while it offers a reference scheduler. In this paper we analyze four HCCA schedulers which are alternative to the reference one and which offer real-time guarantees. A performance evaluation through simulation is conducted to show the main differences between the considered schedulers, including the reference one

    Modelling Quality of Service in IEEE 802.16 Networks

    Get PDF
    While only relatively recently standardized, IEEE 802.16 orWiMAX networks are receiving a great deal of attention in both industry and research. This is so because with the increased emphasis on multimedia data, apart from the general advantage of wireless, 802.16 promises wider bandwidth and QoS as part of the standard. As a back haul network for other networks, in particular the 802.11a/b/g/e or WiFi networks, it is well suited. As for any new technology, there are many open questions of which Transmission Scheduling and Connection Admission Control (CAC) are the most prominent. The standard intentionally makes no statement about either function. Different from other performance models we have seen, we consider an analytical framework which takes into account the close relationship between the CAC algorithms and the Scheduler algorithms and is applicable to each mode of operation and admission control paradigm specified by the standard. The long term objective of this work is to present a hybrid analytic and simulation model, based on the proposed framework, for modelling QoS metrics in 802.16 networks

    A Technical Review of Real-time QoS Protocols in Wireless Sensor Networks

    Get PDF
    Real-time wireless sensor networks become more and more important in emerging new applications as message delivery timeliness is highly concerned. However, supporting real-time QoS in sensor networks has faced many challenges due to their wireless nature, limited resource, dynamic network topology, and the demand of distributed architecture. There are tradeoffs between different application requirements including energy efficiency and delay performance. This paper studies the state of the art of current real-time solutions including MAC protocols, routing protocols, data aggregation strategies, and cross-layer designs. Some research challenges and design favors are also identified. The discussion may offer a reference for future investigations

    Enhancing quality-of-service conditions using a cross-layer paradigm for ad-hoc vehicular communication

    Get PDF
    The Internet of Vehicles (IoVs) is an emerging paradigm aiming to introduce a plethora of innovative applications and services that impose a certain quality of service (QoS) requirements. The IoV mainly relies on vehicular ad-hoc networks (VANETs) for autonomous inter-vehicle communication and road-traffic safety management. With the ever-increasing demand to design new and emerging applications for VANETs, one challenge that continues to stand out is the provision of acceptable QoS requirements to particular user applications. Most existing solutions to this challenge rely on a single layer of the protocol stack. This paper presents a cross-layer decision-based routing protocol that necessitates choosing the best multi-hop path for packet delivery to meet acceptable QoS requirements. The proposed protocol acquires the information about the channel rate from the physical layer and incorporates this information in decision making, while directing traffic at the network layer level. Key performance metrics for the system design are analyzed using extensive experimental simulation scenarios. In addition, three data rate variant solutions are proposed to cater for various application-specific requirements in highways and urban environments. © 2013 IEEE

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    QoS-Aware Error Recovery in Wireless Body Sensor Networks Using Adaptive Network Coding

    Get PDF
    Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network’s QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts

    Cross-layer RaCM design for vertically integrated wireless networks

    Get PDF
    Includes bibliographical references (p. 70-74).Wireless local and metropolitan area network (WLAN/WMAN) technologies, more specifically IEEE 802.11 (or wireless fidelity, WiFi) and IEEE 802.16 (or wireless interoperability for microwave access, WiMAX), are well-suited to enterprise networking since wireless offers the advantages of rapid deployment in places that are difficult to wire. However, these networking standards are relatively young with respect to their traditional mature high-speed low-latency fixed-line networking counterparts. It is more challenging for the network provider to supply the necessary quality of service (QoS) to support the variety of existing multimedia services over wireless technology. Wireless communication is also unreliable in nature, making the provisioning of agreed QoS even more challenging. Considering the advantages and disadvantages, wireless networks prove well-suited to connecting rural areas to the Internet or as a networking solution for areas that are difficult to wire. The focus of this study specifically pertains to IEEE 802.16 and the part it plays in an IEEE vertically integrated wireless Internet (WIN): IEEE 802.16 is a wireless broadband backhaul technology, capable of connecting local area networks (LANs), wireless or fixed-line, to the Internet via a high-speed fixed-line link

    Preamble-Based Medium Access in Wireless Sensor Networks

    Get PDF

    Effective scheduling mechanism for a mixture of 5G multimedia use cases

    Get PDF
    This paper proposes a novel mechanism to address the challenging scheduling problem which is to maximize the ultra-Reliable Low Latency Communication (uRLLC) and enhanced Mobile Broad Band (eMBB) capacity at the desired Quality of Service (QoS) in the downlink Fifth Generation (5G) network. Though some packet scheduling mechanisms that can maximize the network capacity at the desired QoS are available, they were developed for before 5G mobile communication networks. These mechanisms may not perform well in the unique 5G framework that holds distinct characteristics. Conversely, the available 5G packet scheduling mechanisms were mostly developed to maximize capacity when the network contains only one 5G multimedia use case, assumed an ideal simulation environment in the performance evaluation, considered the legacy fixed numerology of 1 ms slot length and make use of mathematical analysis to maximize the desired metrics. Extensive performance evaluations conducted via computer simulations suggest the effectiveness of the proposed mechanism. At the desired uRLLC QoS which is Packet Error Rate (PER) at 10-5 threshold, the proposed mechanism maximizes the network capacity by 52.5% over a benchmark mechanism known as Virtual Token Modified-Largest Weighted Delay First (VTM) when an equal distribution of uRLLC and eMBB users are available
    corecore