101,404 research outputs found

    Critical sets in parametric optimization

    Get PDF
    We deal with one-parameter families of optimization problems in finite dimensions. The constraints are both of equality and inequality type. The concept of a ‘generalized critical point’ (g.c. point) is introduced. In particular, every local minimum, Kuhn-Tucker point, and point of Fritz John type is a g.c. point. Under fairly weak (even generic) conditions we study the set∑ consisting of all g.c. points. Due to the parameter, the set∑ is pieced together from one-dimensional manifolds. The points of∑ can be divided into five (characteristic) types. The subset of ‘nondegenerate critical points’ (first type) is open and dense in∑ (nondegenerate means: strict complementarity, nondegeneracy of the corresponding quadratic form and linear independence of the gradients of binding constraints). A nondegenerate critical point is completely characterized by means of four indices. The change of these indices along∑ is presented. Finally, the Kuhn-Tucker subset of∑ is studied in more detail, in particular in connection with the (failure of the) Mangasarian-Fromowitz constraint qualification

    Reduced Memory Footprint in Multiparametric Quadratic Programming by Exploiting Low Rank Structure

    Full text link
    In multiparametric programming an optimization problem which is dependent on a parameter vector is solved parametrically. In control, multiparametric quadratic programming (mp-QP) problems have become increasingly important since the optimization problem arising in Model Predictive Control (MPC) can be cast as an mp-QP problem, which is referred to as explicit MPC. One of the main limitations with mp-QP and explicit MPC is the amount of memory required to store the parametric solution and the critical regions. In this paper, a method for exploiting low rank structure in the parametric solution of an mp-QP problem in order to reduce the required memory is introduced. The method is based on ideas similar to what is done to exploit low rank modifications in generic QP solvers, but is here applied to mp-QP problems to save memory. The proposed method has been evaluated experimentally, and for some examples of relevant problems the relative memory reduction is an order of magnitude compared to storing the full parametric solution and critical regions

    A Parametric Non-Convex Decomposition Algorithm for Real-Time and Distributed NMPC

    Get PDF
    A novel decomposition scheme to solve parametric non-convex programs as they arise in Nonlinear Model Predictive Control (NMPC) is presented. It consists of a fixed number of alternating proximal gradient steps and a dual update per time step. Hence, the proposed approach is attractive in a real-time distributed context. Assuming that the Nonlinear Program (NLP) is semi-algebraic and that its critical points are strongly regular, contraction of the sequence of primal-dual iterates is proven, implying stability of the sub-optimality error, under some mild assumptions. Moreover, it is shown that the performance of the optimality-tracking scheme can be enhanced via a continuation technique. The efficacy of the proposed decomposition method is demonstrated by solving a centralised NMPC problem to control a DC motor and a distributed NMPC program for collaborative tracking of unicycles, both within a real-time framework. Furthermore, an analysis of the sub-optimality error as a function of the sampling period is proposed given a fixed computational power.Comment: 16 pages, 9 figure

    An Adaptive Semi-Parametric and Context-Based Approach to Unsupervised Change Detection in Multitemporal Remote-Sensing Images

    Get PDF
    In this paper, a novel automatic approach to the unsupervised identification of changes in multitemporal remote-sensing images is proposed. This approach, unlike classical ones, is based on the formulation of the unsupervised change-detection problem in terms of the Bayesian decision theory. In this context, an adaptive semi-parametric technique for the unsupervised estimation of the statistical terms associated with the gray levels of changed and unchanged pixels in a difference image is presented. Such a technique exploits the effectivenesses of two theoretically well-founded estimation procedures: the reduced Parzen estimate (RPE) procedure and the expectation-maximization (EM) algorithm. Then, thanks to the resulting estimates and to a Markov Random Field (MRF) approach used to model the spatial-contextual information contained in the multitemporal images considered, a change detection map is generated. The adaptive semi-parametric nature of the proposed technique allows its application to different kinds of remote-sensing images. Experimental results, obtained on two sets of multitemporal remote-sensing images acquired by two different sensors, confirm the validity of the proposed approach

    An improved multi-parametric programming algorithm for flux balance analysis of metabolic networks

    Full text link
    Flux balance analysis has proven an effective tool for analyzing metabolic networks. In flux balance analysis, reaction rates and optimal pathways are ascertained by solving a linear program, in which the growth rate is maximized subject to mass-balance constraints. A variety of cell functions in response to environmental stimuli can be quantified using flux balance analysis by parameterizing the linear program with respect to extracellular conditions. However, for most large, genome-scale metabolic networks of practical interest, the resulting parametric problem has multiple and highly degenerate optimal solutions, which are computationally challenging to handle. An improved multi-parametric programming algorithm based on active-set methods is introduced in this paper to overcome these computational difficulties. Degeneracy and multiplicity are handled, respectively, by introducing generalized inverses and auxiliary objective functions into the formulation of the optimality conditions. These improvements are especially effective for metabolic networks because their stoichiometry matrices are generally sparse; thus, fast and efficient algorithms from sparse linear algebra can be leveraged to compute generalized inverses and null-space bases. We illustrate the application of our algorithm to flux balance analysis of metabolic networks by studying a reduced metabolic model of Corynebacterium glutamicum and a genome-scale model of Escherichia coli. We then demonstrate how the critical regions resulting from these studies can be associated with optimal metabolic modes and discuss the physical relevance of optimal pathways arising from various auxiliary objective functions. Achieving more than five-fold improvement in computational speed over existing multi-parametric programming tools, the proposed algorithm proves promising in handling genome-scale metabolic models.Comment: Accepted in J. Optim. Theory Appl. First draft was submitted on August 4th, 201

    On Robust Tie-line Scheduling in Multi-Area Power Systems

    Full text link
    The tie-line scheduling problem in a multi-area power system seeks to optimize tie-line power flows across areas that are independently operated by different system operators (SOs). In this paper, we leverage the theory of multi-parametric linear programming to propose algorithms for optimal tie-line scheduling within a deterministic and a robust optimization framework. Through a coordinator, the proposed algorithms are proved to converge to the optimal schedule within a finite number of iterations. A key feature of the proposed algorithms, besides their finite step convergence, is the privacy of the information exchanges; the SO in an area does not need to reveal its dispatch cost structure, network constraints, or the nature of the uncertainty set to the coordinator. The performance of the algorithms is evaluated using several power system examples
    • …
    corecore